Patterns of Multimorbidity and Differences in Healthcare Utilization and Complexity Among Acutely Hospitalized Medical Patients (≥65 Years) – A Latent Class Approach
The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and...
Saved in:
Published in | Clinical epidemiology Vol. 12; pp. 245 - 259 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Zealand
Taylor & Francis Ltd
01.01.2020
Dove Dove Medical Press |
Subjects | |
Online Access | Get full text |
ISSN | 1179-1349 1179-1349 |
DOI | 10.2147/CLEP.S226586 |
Cover
Abstract | The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and the complexity thereof. The purpose was therefore to investigate patterns of multimorbidity in a Danish national cohort of acutely hospitalized medical patients aged 65 and older and to determine the association between these multimorbid patterns with the healthcare utilization and complexity.
Longitudinal cohort study of 129,900 (53% women) patients. Latent class analysis (LCA) was used to develop patterns of multimorbidity based on 22 chronic conditions ascertained from Danish national registers. A latent class regression was used to test for differences in healthcare utilization and healthcare complexity among the patterns measured in the year leading up to the index admission.
LCA identified eight distinct multimorbid patterns. Patients belonging to multimorbid patterns including the major chronic conditions; diabetes and chronic obstructive pulmonary disease was associated with higher odds of healthcare utilization and complexity than the reference pattern ("Minimal chronic conditions"). The pattern with the highest number of chronic conditions did not show the highest healthcare utilization nor complexity.
Our study showed that chronic conditions cluster together and that these patterns differ in healthcare utilization and complexity. Patterns of multimorbidity have the potential to be used in epidemiological studies of healthcare planning but should be confirmed in other population-based studies. |
---|---|
AbstractList | The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and the complexity thereof. The purpose was therefore to investigate patterns of multimorbidity in a Danish national cohort of acutely hospitalized medical patients aged 65 and older and to determine the association between these multimorbid patterns with the healthcare utilization and complexity.
Longitudinal cohort study of 129,900 (53% women) patients. Latent class analysis (LCA) was used to develop patterns of multimorbidity based on 22 chronic conditions ascertained from Danish national registers. A latent class regression was used to test for differences in healthcare utilization and healthcare complexity among the patterns measured in the year leading up to the index admission.
LCA identified eight distinct multimorbid patterns. Patients belonging to multimorbid patterns including the major chronic conditions; diabetes and chronic obstructive pulmonary disease was associated with higher odds of healthcare utilization and complexity than the reference pattern ("Minimal chronic conditions"). The pattern with the highest number of chronic conditions did not show the highest healthcare utilization nor complexity.
Our study showed that chronic conditions cluster together and that these patterns differ in healthcare utilization and complexity. Patterns of multimorbidity have the potential to be used in epidemiological studies of healthcare planning but should be confirmed in other population-based studies. The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and the complexity thereof. The purpose was therefore to investigate patterns of multimorbidity in a Danish national cohort of acutely hospitalized medical patients aged 65 and older and to determine the association between these multimorbid patterns with the healthcare utilization and complexity.PURPOSEThe majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and the complexity thereof. The purpose was therefore to investigate patterns of multimorbidity in a Danish national cohort of acutely hospitalized medical patients aged 65 and older and to determine the association between these multimorbid patterns with the healthcare utilization and complexity.Longitudinal cohort study of 129,900 (53% women) patients. Latent class analysis (LCA) was used to develop patterns of multimorbidity based on 22 chronic conditions ascertained from Danish national registers. A latent class regression was used to test for differences in healthcare utilization and healthcare complexity among the patterns measured in the year leading up to the index admission.PATIENTS AND METHODSLongitudinal cohort study of 129,900 (53% women) patients. Latent class analysis (LCA) was used to develop patterns of multimorbidity based on 22 chronic conditions ascertained from Danish national registers. A latent class regression was used to test for differences in healthcare utilization and healthcare complexity among the patterns measured in the year leading up to the index admission.LCA identified eight distinct multimorbid patterns. Patients belonging to multimorbid patterns including the major chronic conditions; diabetes and chronic obstructive pulmonary disease was associated with higher odds of healthcare utilization and complexity than the reference pattern ("Minimal chronic conditions"). The pattern with the highest number of chronic conditions did not show the highest healthcare utilization nor complexity.RESULTSLCA identified eight distinct multimorbid patterns. Patients belonging to multimorbid patterns including the major chronic conditions; diabetes and chronic obstructive pulmonary disease was associated with higher odds of healthcare utilization and complexity than the reference pattern ("Minimal chronic conditions"). The pattern with the highest number of chronic conditions did not show the highest healthcare utilization nor complexity.Our study showed that chronic conditions cluster together and that these patterns differ in healthcare utilization and complexity. Patterns of multimorbidity have the potential to be used in epidemiological studies of healthcare planning but should be confirmed in other population-based studies.CONCLUSIONOur study showed that chronic conditions cluster together and that these patterns differ in healthcare utilization and complexity. Patterns of multimorbidity have the potential to be used in epidemiological studies of healthcare planning but should be confirmed in other population-based studies. Purpose: The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and the complexity thereof. The purpose was therefore to investigate patterns of multimorbidity in a Danish national cohort of acutely hospitalized medical patients aged 65 and older and to determine the association between these multimorbid patterns with the healthcare utilization and complexity. Patients and Methods: Longitudinal cohort study of 129,900 (53% women) patients. Latent class analysis (LCA) was used to develop patterns of multimorbidity based on 22 chronic conditions ascertained from Danish national registers. A latent class regression was used to test for differences in healthcare utilization and healthcare complexity among the patterns measured in the year leading up to the index admission. Results: LCA identified eight distinct multimorbid patterns. Patients belonging to multimorbid patterns including the major chronic conditions; diabetes and chronic obstructive pulmonary disease was associated with higher odds of healthcare utilization and complexity than the reference pattern (“Minimal chronic conditions”). The pattern with the highest number of chronic conditions did not show the highest healthcare utilization nor complexity. Conclusion: Our study showed that chronic conditions cluster together and that these patterns differ in healthcare utilization and complexity. Patterns of multimorbidity have the potential to be used in epidemiological studies of healthcare planning but should be confirmed in other population-based studies. Helle Gybel Juul-Larsen, 1-3 Line Due Christensen, 1, 4 Thomas Bandholm, 1-3, 5Ove Andersen, 1, 2, 6Thomas Kallemose, 1 Lillian Mørch Jørgensen, 1, 6 Janne Petersen 1, 7, 8 1Clinical Research Centre, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; 2Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark; 3Department of Physical and Occupational Therapy, Physical Medicine & Rehabilitation Research - Copenhagen (PMR-C), Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; 4Research Unit for General Practice, Aarhus, Denmark; 5Department of Orthopedic Surgery, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; 6Emergency Department, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; 7Centre for Clinical Research and Prevention, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; 8Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, DenmarkCorrespondence: Helle Gybel Juul-LarsenClinical Research Centre, Section 056, Copenhagen University, Amager and Hvidovre Hospitals, Kettegård Allé 30, Hvidovre DK-2650, DenmarkTel +45 38626077Email helle.juul-larsen@regionh.dkPurpose: The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to optimize treatment and care, we need more knowledge of the association between different patterns of multimorbidity and healthcare utilization and the complexity thereof. The purpose was therefore to investigate patterns of multimorbidity in a Danish national cohort of acutely hospitalized medical patients aged 65 and older and to determine the association between these multimorbid patterns with the healthcare utilization and complexity.Patients and Methods: Longitudinal cohort study of 129,900 (53% women) patients. Latent class analysis (LCA) was used to develop patterns of multimorbidity based on 22 chronic conditions ascertained from Danish national registers. A latent class regression was used to test for differences in healthcare utilization and healthcare complexity among the patterns measured in the year leading up to the index admission.Results: LCA identified eight distinct multimorbid patterns. Patients belonging to multimorbid patterns including the major chronic conditions; diabetes and chronic obstructive pulmonary disease was associated with higher odds of healthcare utilization and complexity than the reference pattern ("Minimal chronic conditions"). The pattern with the highest number of chronic conditions did not show the highest healthcare utilization nor complexity.Conclusion: Our study showed that chronic conditions cluster together and that these patterns differ in healthcare utilization and complexity. Patterns of multimorbidity have the potential to be used in epidemiological studies of healthcare planning but should be confirmed in other population-based studies.Keywords: chronic conditions, multimorbidity, older medical patients, acute hospitalization, latent class analysis |
Author | Juul-Larsen, Helle Gybel Petersen, Janne Andersen, Ove Christensen, Line Due Jørgensen, Lillian Mørch Bandholm, Thomas Kallemose, Thomas |
Author_xml | – sequence: 1 givenname: Helle Gybel surname: Juul-Larsen fullname: Juul-Larsen, Helle Gybel – sequence: 2 givenname: Line Due orcidid: 0000-0002-4801-4335 surname: Christensen fullname: Christensen, Line Due – sequence: 3 givenname: Thomas surname: Bandholm fullname: Bandholm, Thomas – sequence: 4 givenname: Ove surname: Andersen fullname: Andersen, Ove – sequence: 5 givenname: Thomas orcidid: 0000-0002-7356-6481 surname: Kallemose fullname: Kallemose, Thomas – sequence: 6 givenname: Lillian Mørch orcidid: 0000-0002-0199-1577 surname: Jørgensen fullname: Jørgensen, Lillian Mørch – sequence: 7 givenname: Janne orcidid: 0000-0001-7323-2548 surname: Petersen fullname: Petersen, Janne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32184671$$D View this record in MEDLINE/PubMed |
BookMark | eNptksFuEzEQhleoiJbQG2dkiUuRSFmvd9frC1IUCqmUikrQAydrYs8mjrzr1HYQ4cSVM8_Agdfqk-A0LWorfLAt-5vf45n_abbXux6z7DnNjwta8jfj6cn58aeiqKumfpQdUMrFkLJS7N3Z72eHISzzNBijnOdPsn1W0KasOT3I_pxDjOj7QFxLztY2ms75mdEmbgj0mrwzbYsee4WBmJ5MEGxcKPBILqKx5jtE4_prcuy6lcVv28BR5_o5Gal1RLshExdWJkKCUZMz1EaBJelZg30M5Ojq5--6Il8QfHhFrn78IiMyhZjuyNhCCGS0WnkHavEse9yCDXh4sw6yi_cnn8eT4fTjh9PxaDpUVVnGIQfdgtDNrK5qqFiFjGqRpgIZiAoAZmUBQmHV6ooLPatSSbTQFcMaAWjBBtnpTlc7WMqVNx34jXRg5PWB83MJPhplUQpRIBWsLinHkoMQpai5bhQ0NRctpUnr7U5rtZ51qFX6lQd7T_T-TW8Wcu6-Sp5XrEnSg-zoRsC7yzWGKDsTFFoLPbp1kAXjTcObsswT-vIBunRr36dSbSnOBaUNS9SLuxn9S-XWEQkodoDyLgSPrVSpedsupwSNlTSXW-fJrfPkjfNS0OsHQbe6_8X_Aptb3Ps |
CitedBy_id | crossref_primary_10_1016_j_archger_2023_104959 crossref_primary_10_1186_s12877_024_04925_2 crossref_primary_10_1186_s12913_024_10604_0 crossref_primary_10_2196_59588 crossref_primary_10_1186_s13063_021_05456_6 crossref_primary_10_1111_imj_16505 crossref_primary_10_1080_10790268_2021_1970898 crossref_primary_10_1016_j_archger_2022_104892 crossref_primary_10_1186_s12877_023_04603_9 crossref_primary_10_1177_08982643221080287 crossref_primary_10_2147_CLEP_S363654 crossref_primary_10_1016_j_jclinepi_2022_10_011 crossref_primary_10_1007_s11357_021_00359_5 crossref_primary_10_1186_s12877_024_04948_9 crossref_primary_10_25279_sak_1088575 crossref_primary_10_1016_j_clnu_2025_02_024 crossref_primary_10_1093_ageing_afab138 crossref_primary_10_1016_j_jad_2023_02_135 crossref_primary_10_1016_j_clnesp_2024_02_031 crossref_primary_10_1097_MD_0000000000036746 crossref_primary_10_2147_CLEP_S405485 crossref_primary_10_1097_NJH_0000000000000946 crossref_primary_10_1111_jocn_16410 crossref_primary_10_31612_2616_4868_3_2024_16 crossref_primary_10_1136_bmjopen_2023_075726 crossref_primary_10_1016_j_jsat_2022_108806 crossref_primary_10_1136_bmjopen_2021_049334 crossref_primary_10_1186_s12889_023_15453_w crossref_primary_10_1111_jan_15868 crossref_primary_10_1093_gerona_glab011 crossref_primary_10_1177_26335565211032880 crossref_primary_10_3390_pharmacy11020043 crossref_primary_10_3390_jcm9124001 crossref_primary_10_1016_j_gerinurse_2023_07_016 crossref_primary_10_1093_ageing_afac155 crossref_primary_10_1177_20420986211052344 crossref_primary_10_1007_s10433_023_00795_6 crossref_primary_10_1007_s10728_023_00474_8 crossref_primary_10_1002_jcsm_13197 |
Cites_doi | 10.1186/s12877-017-0586-1 10.1186/1471-2318-11-54 10.1007/s10433-017-0412-9 10.1007/s00391-005-1104-1 10.1155/2016/8745670 10.1177/1403494810394715 10.1186/s12877-018-0925-x 10.1370/afm.272 10.1177/1403494811399956 10.1071/HC17074 10.1177/0898264318817091 10.1016/j.phrs.2016.09.040 10.1016/j.archger.2019.103956 10.1177/1403494810394717 10.1111/j.1532-5415.2008.02023.x 10.15256/joc.2016.6.81 10.1177/1403494810396561 10.1093/ageing/aft074 10.1093/gerona/gly205 10.3109/02813432.2015.1041828 10.3399/bjgp10X514756 10.1016/j.jclinepi.2007.11.021 10.1093/geroni/igx024 10.1093/ageing/afs100 10.1007/s11336-017-9592-7 10.1186/s12877-017-0434-3 10.1186/s12875-015-0344-4 10.1186/s12913-015-0698-2 10.1371/journal.pone.0208875 10.1111/jgs.14201 10.1177/1403494815618843 10.3109/13814789609162146 10.1177/1403494811399958 10.1371/journal.pone.0179916 10.1186/1471-2296-15-61 10.1371/journal.pone.0154350 10.1186/s12955-015-0260-2 10.1177/1403494810394718 10.2147/COPD.S79638 10.1186/s12875-016-0490-3 10.1136/bmj.39335.541782.AD 10.1001/jama.2010.1568 10.1186/1471-2318-13-120 10.1371/journal.pone.0083783 10.1177/1060028016652997 10.1007/s41999-019-00188-y 10.1016/j.jamda.2018.10.012 10.1016/j.jclinepi.2018.09.008 10.1016/j.jpsychores.2018.09.011 10.1016/j.archger.2016.07.008 10.1007/s11739-015-1381-7 10.1177/1403494810387965 10.1080/10705510701575396 10.1177/0898264317737894 10.1093/ije/dyy134 10.1177/1403494811401482 10.1093/fampra/cmr013 10.1093/ageing/afw044 10.1001/jama.294.6.716 |
ContentType | Journal Article |
Copyright | 2020 Juul-Larsen et al. 2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2020 Juul-Larsen et al. 2020 Juul-Larsen et al. |
Copyright_xml | – notice: 2020 Juul-Larsen et al. – notice: 2020. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2020 Juul-Larsen et al. 2020 Juul-Larsen et al. |
DBID | AAYXX CITATION NPM 3V. 7XB 8C1 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.2147/CLEP.S226586 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Public Health Database (ProQuest) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library Research Library (ProQuest) Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Public Health Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Central Health Research Premium Collection ProQuest One Academic UKI Edition ProQuest Central Korea Health & Medical Research Collection ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health |
DocumentTitleAlternate | Juul-Larsen et al |
EISSN | 1179-1349 |
EndPage | 259 |
ExternalDocumentID | oai_doaj_org_article_992e1936417e47a994967d8ca8679f11 PMC7053819 32184671 10_2147_CLEP_S226586 |
Genre | Journal Article |
GeographicLocations | Denmark |
GeographicLocations_xml | – name: Denmark |
GroupedDBID | --- 0YH 29B 2WC 53G 5VS 8C1 8G5 AAYXX ABUWG ADBBV ADRAZ AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ C1A CCPQU CITATION DIK DWQXO E3Z EBD FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HYE IAO IHR IHW IPNFZ ITC KQ8 M2O M48 M~E O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RIG RPM TDBHL TR2 UKHRP VDV NPM PJZUB PPXIY 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c544t-7adfa9d8b656a535e31d9e312e3a95aaab42a9ce5fd579db5177d9d53e6eaa123 |
IEDL.DBID | M48 |
ISSN | 1179-1349 |
IngestDate | Wed Aug 27 01:25:27 EDT 2025 Thu Aug 21 18:33:21 EDT 2025 Fri Sep 05 06:30:56 EDT 2025 Fri Jul 25 02:21:44 EDT 2025 Mon Jul 21 05:53:48 EDT 2025 Tue Jul 01 02:28:41 EDT 2025 Thu Apr 24 23:09:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | multimorbidity older medical patients latent class analysis acute hospitalization chronic conditions |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 2020 Juul-Larsen et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c544t-7adfa9d8b656a535e31d9e312e3a95aaab42a9ce5fd579db5177d9d53e6eaa123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7356-6481 0000-0002-0199-1577 0000-0002-4801-4335 0000-0001-7323-2548 0000-0001-6884-1971 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/CLEP.S226586 |
PMID | 32184671 |
PQID | 2377791183 |
PQPubID | 3933188 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_992e1936417e47a994967d8ca8679f11 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7053819 proquest_miscellaneous_2378878440 proquest_journals_2377791183 pubmed_primary_32184671 crossref_citationtrail_10_2147_CLEP_S226586 crossref_primary_10_2147_CLEP_S226586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Zealand |
PublicationPlace_xml | – name: New Zealand – name: Macclesfield |
PublicationTitle | Clinical epidemiology |
PublicationTitleAlternate | Clin Epidemiol |
PublicationYear | 2020 |
Publisher | Taylor & Francis Ltd Dove Dove Medical Press |
Publisher_xml | – name: Taylor & Francis Ltd – name: Dove – name: Dove Medical Press |
References | Glynn (ref56) 2011; 28 Bodilsen (ref15) 2016; 11 ref52 Gonsoulin (ref45) 2017; 1 Vass (ref60) 2005; 38 Nunes (ref63) 2016; 67 Balakumar (ref40) 2016; 113 de Gelder (ref14) 2016; 11 Boyd (ref11) 2008; 56 Smith (ref59) 2010; 60 Rosbach (ref10) 2017; 12 Marengoni (ref18) 2019; 20 ref51 Juul-Larsen (ref25) 2019; 10 van den Bussche (ref55) 2011; 11 Wong (ref50) 2014; 25 Juul-Larsen (ref13) 2017; 14 Whitson (ref42) 2016; 64 Inoue (ref41) 2016; 11 Millar (ref7) 2018; 10 Olaya (ref21) 2017; 17 Pedersen (ref28) 2011; 39 ref49 Gill (ref12) 2010; 304 Nicholson (ref5) 2018 Nguyen (ref44) 2018 Hutchinson (ref54) 2015; 13 Bakk (ref39) 2018; 83 Boyd (ref2) 2005; 294 Kouladjian (ref61) 2016; 50 Hughes (ref1) 2013; 42 Klausen (ref65) 2017; 17 Thygesen (ref27) 2011; 39 Søndergaard (ref3) 2015; 33 Dong (ref22) 2013; 13 Buja (ref46) 2018; 13 Lynge (ref29) 2011; 39 Osika Friberg (ref48) 2016; 44 Filipčić (ref43) 2018; 114 Bähler (ref53) 2015; 15 Schiøtz (ref9) 2016; 6 Norredam (ref34) 2011; 39 Schram (ref35) 2008; 61 Austad (ref58) 2016; 17 Fortin (ref36) 2005; 3 McGilton (ref8) 2018; 18 Juul-Larsen (ref16) 2020; 86 Collerton (ref24) 2016; 2016 Jensen (ref33) 2011; 39 (ref37) 2009 von Elm (ref26) 2007; 335 Moffat (ref6) 2015; 16 van den (ref4) 1996; 2 Islam (ref19) 2014; 9 Buja (ref23) 2018 Gellert (ref47) 2019; 31 Nylund (ref38) 2007; 14 van Oostrom (ref57) 2014; 15 Ng (ref20) 2018; 47 Palladino (ref17) 2016; 45 Andersen (ref32) 2011; 39 Helweg-Larsen (ref30) 2011; 39 Kildemoes (ref31) 2011; 39 ref62 Bradshaw (ref64) 2013; 42 |
References_xml | – volume: 17 year: 2017 ident: ref21 publication-title: BMC Geriatr doi: 10.1186/s12877-017-0586-1 – ident: ref62 – volume: 11 start-page: 54 year: 2011 ident: ref55 publication-title: BMC Geriatr doi: 10.1186/1471-2318-11-54 – volume: 14 start-page: 283 year: 2017 ident: ref13 publication-title: Eur J Ageing doi: 10.1007/s10433-017-0412-9 – volume: 38 start-page: I14 year: 2005 ident: ref60 publication-title: Z Gerontol Geriatr doi: 10.1007/s00391-005-1104-1 – volume: 2016 start-page: 8745670 year: 2016 ident: ref24 publication-title: Biomed Res Int doi: 10.1155/2016/8745670 – volume: 39 start-page: 91 year: 2011 ident: ref33 publication-title: Scand J Public Health doi: 10.1177/1403494810394715 – volume: 18 year: 2018 ident: ref8 publication-title: BMC Geriatr doi: 10.1186/s12877-018-0925-x – volume: 3 start-page: 223 year: 2005 ident: ref36 publication-title: Ann Fam Med doi: 10.1370/afm.272 – volume: 39 start-page: 12 year: 2011 ident: ref27 publication-title: Scand J Public Health doi: 10.1177/1403494811399956 – volume: 10 start-page: 44 year: 2018 ident: ref7 publication-title: J Prim Health Care doi: 10.1071/HC17074 – start-page: 898264318817091 year: 2018 ident: ref23 publication-title: J Aging Health doi: 10.1177/0898264318817091 – volume: 113 start-page: 600 year: 2016 ident: ref40 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2016.09.040 – volume: 86 start-page: 103956 year: 2020 ident: ref16 publication-title: Archiv Gerontol Geriatr doi: 10.1016/j.archger.2019.103956 – volume: 39 start-page: 38 year: 2011 ident: ref31 publication-title: Scand J Public Health doi: 10.1177/1403494810394717 – volume: 56 start-page: 2171 year: 2008 ident: ref11 publication-title: J Am Geriatr Soc doi: 10.1111/j.1532-5415.2008.02023.x – volume-title: Applied Latent Class Analysis year: 2009 ident: ref37 – volume: 6 start-page: 95 year: 2016 ident: ref9 publication-title: J Comorb doi: 10.15256/joc.2016.6.81 – volume: 39 start-page: 201 year: 2011 ident: ref34 publication-title: Scand J Public Health doi: 10.1177/1403494810396561 – volume: 42 start-page: 582 year: 2013 ident: ref64 publication-title: Age Ageing doi: 10.1093/ageing/aft074 – year: 2018 ident: ref44 publication-title: J Gerontol a Biol Sci Med Sci doi: 10.1093/gerona/gly205 – volume: 33 start-page: 121 year: 2015 ident: ref3 publication-title: Scand J Prim Health Care doi: 10.3109/02813432.2015.1041828 – volume: 60 start-page: e285 year: 2010 ident: ref59 publication-title: Br J Gen Pract doi: 10.3399/bjgp10X514756 – volume: 25 start-page: 7 year: 2014 ident: ref50 publication-title: Health Reports – volume: 61 start-page: 1104 year: 2008 ident: ref35 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2007.11.021 – volume: 1 year: 2017 ident: ref45 publication-title: Innov Aging doi: 10.1093/geroni/igx024 – volume: 42 start-page: 62 year: 2013 ident: ref1 publication-title: Age Ageing doi: 10.1093/ageing/afs100 – volume: 83 start-page: 871 year: 2018 ident: ref39 publication-title: Psychometrika doi: 10.1007/s11336-017-9592-7 – volume: 17 start-page: 62 year: 2017 ident: ref65 publication-title: BMC Geriatr doi: 10.1186/s12877-017-0434-3 – volume: 16 start-page: 129 year: 2015 ident: ref6 publication-title: BMC Fam Pract doi: 10.1186/s12875-015-0344-4 – volume: 15 start-page: 23 year: 2015 ident: ref53 publication-title: BMC Health Serv Res doi: 10.1186/s12913-015-0698-2 – volume: 13 start-page: e0208875 year: 2018 ident: ref46 publication-title: PLoS One doi: 10.1371/journal.pone.0208875 – volume: 64 start-page: 1668 year: 2016 ident: ref42 publication-title: J Am Geriatr Soc doi: 10.1111/jgs.14201 – volume: 44 start-page: 264 year: 2016 ident: ref48 publication-title: Scand J Public Health doi: 10.1177/1403494815618843 – volume: 2 start-page: 65 year: 1996 ident: ref4 publication-title: Eur J General Pract doi: 10.3109/13814789609162146 – volume: 39 start-page: 26 year: 2011 ident: ref30 publication-title: Scand J Public Health doi: 10.1177/1403494811399958 – volume: 12 start-page: e0179916 year: 2017 ident: ref10 publication-title: PLoS One doi: 10.1371/journal.pone.0179916 – volume: 15 start-page: 61 year: 2014 ident: ref57 publication-title: BMC Fam Pract doi: 10.1186/1471-2296-15-61 – volume: 11 start-page: e0154350 year: 2016 ident: ref15 publication-title: PLoS One doi: 10.1371/journal.pone.0154350 – volume: 13 start-page: 69 year: 2015 ident: ref54 publication-title: Health Qual Life Outcomes doi: 10.1186/s12955-015-0260-2 – volume: 39 start-page: 34 year: 2011 ident: ref32 publication-title: Scand J Public Health doi: 10.1177/1403494810394718 – volume: 11 start-page: 637 year: 2016 ident: ref41 publication-title: Int J Chron Obstruct Pulmon Dis doi: 10.2147/COPD.S79638 – volume: 17 start-page: 92 year: 2016 ident: ref58 publication-title: BMC Fam Pract doi: 10.1186/s12875-016-0490-3 – ident: ref51 – volume: 335 start-page: 806 year: 2007 ident: ref26 publication-title: BMJ doi: 10.1136/bmj.39335.541782.AD – volume: 304 start-page: 1919 year: 2010 ident: ref12 publication-title: JAMA doi: 10.1001/jama.2010.1568 – volume: 13 start-page: 120 year: 2013 ident: ref22 publication-title: BMC Geriatr doi: 10.1186/1471-2318-13-120 – volume: 9 start-page: e83783 year: 2014 ident: ref19 publication-title: PLoS One doi: 10.1371/journal.pone.0083783 – volume: 50 start-page: 625 year: 2016 ident: ref61 publication-title: Ann Pharmacother doi: 10.1177/1060028016652997 – volume: 10 start-page: 431 year: 2019 ident: ref25 publication-title: Eur Geriatr Med doi: 10.1007/s41999-019-00188-y – volume: 20 start-page: 113 year: 2019 ident: ref18 publication-title: J Am Med Dir Assoc doi: 10.1016/j.jamda.2018.10.012 – year: 2018 ident: ref5 publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2018.09.008 – volume: 114 start-page: 72 year: 2018 ident: ref43 publication-title: J Psychosom Res doi: 10.1016/j.jpsychores.2018.09.011 – volume: 67 start-page: 130 year: 2016 ident: ref63 publication-title: Arch Gerontol Geriatr doi: 10.1016/j.archger.2016.07.008 – volume: 11 start-page: 587 year: 2016 ident: ref14 publication-title: Intern Emerg Med doi: 10.1007/s11739-015-1381-7 – volume: 39 start-page: 22 year: 2011 ident: ref28 publication-title: Scand J Public Health doi: 10.1177/1403494810387965 – volume: 14 start-page: 535 year: 2007 ident: ref38 publication-title: Struct Equ Modeling doi: 10.1080/10705510701575396 – volume: 31 start-page: 580 year: 2019 ident: ref47 publication-title: J Aging Health doi: 10.1177/0898264317737894 – ident: ref49 – ident: ref52 – volume: 47 start-page: 1687 year: 2018 ident: ref20 publication-title: Int J Epidemiol doi: 10.1093/ije/dyy134 – volume: 39 start-page: 30 year: 2011 ident: ref29 publication-title: Scand J Public Health doi: 10.1177/1403494811401482 – volume: 28 start-page: 516 year: 2011 ident: ref56 publication-title: Fam Pract doi: 10.1093/fampra/cmr013 – volume: 45 start-page: 431 year: 2016 ident: ref17 publication-title: Age Ageing doi: 10.1093/ageing/afw044 – volume: 294 start-page: 716 year: 2005 ident: ref2 publication-title: JAMA doi: 10.1001/jama.294.6.716 |
SSID | ssj0000331770 |
Score | 2.377823 |
Snippet | The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able to... Purpose: The majority of acutely admitted older medical patients are multimorbid, receive multiple drugs, and experience a complex treatment regime. To be able... Helle Gybel Juul-Larsen, 1-3 Line Due Christensen, 1, 4 Thomas Bandholm, 1-3, 5Ove Andersen, 1, 2, 6Thomas Kallemose, 1 Lillian Mørch Jørgensen, 1, 6 Janne... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 245 |
SubjectTerms | Access to information acute hospitalization Cardiovascular disease chronic conditions Chronic illnesses Citizenship Clinical medicine Comorbidity Dentists Drug use Epidemiology Health services Health services utilization Heart Hospitalization Hospitals Latent class analysis Metabolism multimorbidity older medical patients Older people Original Research Outpatient care facilities Patients Population Studies |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NitRAEG5kT4KI_0ZXKUFBkbgzSXc6fYzrLousMqAD6ylUpztsYMwsm8xB38AHEd_LJ7H6Z4YZUbx4ySGphE6quuqrTtdXjD3VluKAVmVaaKQERWVFqoQxKS-NbTmXZNhuHfLd--Jkzt-eibOtVl9uT1igBw4f7kCpzBLIKPhUWi5RKa4KacoGHVNcG6p6J2qylUx5H5xTXPSd4hzlWeo4-MKud9eW54Cee_FqIOAhXAn1VjzytP1_wpq_b5ncikHHN9j1CB6hCoO-ya7Y_ha7FlbeIBQU3WY_Zp4ysx9g2YKvr_28vNSdIbgN2Bt4E1uikIOAro-3uQ1gMB-7RSzL9JLOVzi-TLqxcj2JoGpWo118gXWzke6rNRB_9cAsMLQO8Pznt--FgE80h4YXkEIFpwRo-xF8A06oIov5HTY_Pvp4eJLGdgxpIzgfU4mmRWVKTRAQRS5sPjWKDpnNUQlE1DxD1VjRGiGV0YI0YJQRuS0sIkXIu2yvX_b2PoNJpibI2xynueOb01hyi0pjazPKSBET9nKtlLqJXOWuZcaippzFqbA-PD2a1R-CChP2bCN9ETg6_iL32ul3I-OYtf0Jsrc62lv9L3tL2P7aOuo43Yc6y6WUFDbKPGFPNpdporq_L9jb5crLkEMvOZ8k7F4wps1IcpdoF5IeLnfMbGeou1f67tyTgUvyooTqHvyPd3vIrmZuOcGvMO2zvfFyZR8R5hr1Yz-9fgGClSoF priority: 102 providerName: Directory of Open Access Journals – databaseName: Public Health Database (ProQuest) dbid: 8C1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXJBQxbsLBRkJJBAKzcOO4xMKS6sKFbQSrFRO0SR2YKVtUjbZA5y4cuY3cOBv9Zcw43iXLgIuOSSTyMq8x55vGHtYWvQDpc6CtARMUHScBloaE4jM2FoIhYJNdcjXb9LDqXh1LI99wa3zxypXNtEZatNWVCPfixOlFGpmljw__RTQ1CjaXfUjNC6yS9QDSslXNo7WNZYwQe-owuG8Ow3k2Rsf7U-evcWQQ1Lz9DlP5AD7_xZl_nlY8pz3ObjKtn3YyPOBz9fYBdtcZ1eGmhsfWolusJ8TB5bZdLytueusPWkX5cxgoM2hMfylH4aCpoHPGv8aHf3i03429w2ZjpKsBCFl4os5TSPiebXs7fwzX40ZmX2xhvtNHj4ZsFk7_vjs249U8veoPd0Tfvb1O8_5EQazTc_d8E2eewTzm2x6sP9ufBj4UQxBJYXoAwWmBm2yEsM_kIm0SWQ0XmKbgJYAUIoYdGVlbaTSppT43402MrGpBUDveIttNW1jdxgPYx2CqBOIEsKaKyETFnQJtY0xGwUYsacrthSVxymncRnzAvMVYmJBTCw8E0fs0Zr6dMDn-AfdC-LwmoZQtd2NdvGh8EpaaB1bDGhTESkrFGgtdKpMVgGhEtZRNGK7K_kovKp3xW_BHLEH68eopLTzAo1tl44GjXkmRDhitwdxWq8koSQ7VfhxtSFoG0vdfNLMPjogcIUWFCO6O_9f1l12OaYigasb7bKtfrG09zCS6sv7Tl1-AXXWIh0 priority: 102 providerName: ProQuest |
Title | Patterns of Multimorbidity and Differences in Healthcare Utilization and Complexity Among Acutely Hospitalized Medical Patients (≥65 Years) – A Latent Class Approach |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32184671 https://www.proquest.com/docview/2377791183 https://www.proquest.com/docview/2378878440 https://pubmed.ncbi.nlm.nih.gov/PMC7053819 https://doaj.org/article/992e1936417e47a994967d8ca8679f11 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3ditNAFD7sD8iCiP9G1zKCgiJZm2Qmk7kQ6dYuRdalqIXdq3DSmWihptqm4PoGPoj4Xj6JZyaTYnX3JhfNSQg9f9-cOfMdgMeFoTxQqCxMC6QFiorTUAmtQ55pU3IuybBtHfLtSToc8zen4nQL2mmj_g9cXri0s_OkxovZwbev56_I4V_aNuaIyxf948Ho4D3hCJGl27DrdopsE58H-i4mJ5Qn3eQ4S4EWWk6-pgv-vxfswZXELntSGW2kKsfofxEM_beb8q_0dHQdrnlcyXqNIdyALVPdhKtNUY41Z41uwa-RY9OslmxeMnf09vN8UUw1IXGGlWav_bQUih1sWvnHbG8YG9fTmT-x6SRtGLFUmvRgz44rYr3Jqjazc9bOIZl-N5r5XSA2ashbl-zp7x8_U8HOyL2Wz1jIeuyYsG5VMzebk_U8wfltGB8NPvSHoZ_UEE4E53UoUZeodFYQOkSRCJNEWtElNgkqgYgFj1FNjCi1kEoXgpShlRaJSQ0iJc87sFPNK3MPWDdWXeRlglFiqegKzLhBVWBpYlqsIgbwvFVKPvE05naaxiyn5YzVZm61mXttBvBkLf2loe-4RO7Q6nctY0m33Q_zxcfc-3CuVGwI76Y8koZLVIqrVOpsgpa0sIyiAPZb68hbQ87jREpJGSVLAni0vk0-bDdmsDLzlZOhWJ9x3g3gbmNM6y9pjTEAuWFmG5-6eaeafnI84ZICLAG--5e-8wHsxbZ84CpK-7BTL1bmIWGsuujAdvdsSNesH3Vg93BwMnrXcfWKjnOsPxW3KLU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5V6QEkhPgnUGCRqARCpv7Z9XoPFUrbVClNowgaqT2ZtXcNkYJdEkeonLhy5hk48BI8TJ-EGXsdGgTcesnBHkcrzez87c73EfIkMRAHEhk5YaKgQJF-6EiutcMibTLGBBg29iEPBmFvxF4d8aMV8rOZhcFrlY1PrBy1LlLskW_4gRACdmYUvDz56CBrFJ6uNhQaylIr6M0KYswOduyb009Qws0293ZA3-u-v9s93O45lmXASTljpSOUzpTUUQKZjeIBN4GnJfz4JlCSK6US5iuZGp5pLqROuCeElpoHJjRKeQh8ACFglWEDpUVWt7qD4etFl8cNID4Lt75xj5RAG9v97vDFG0h6OI5vn4uFFWXA3_LcP69rnot_u9fIVZu40k5tadfJislvkCt114_Ww0w3yY9hBdeZz2iR0Wq290MxTcYaUn2qck13LB0LOCc6zu1nePmMjsrxxI6EVpLopxCrEz7sIB8S7aTz0kxOaUN0Mv5sNLXHTHRYo8PO6NOzr99DTo9BMbNn9OzLN9qhfUin85JW9J-0YzHUb5HRhajpNmnlRW7uEur60lUsC5QXINpdoiJmlExUZnyoh5Vqk-eNWuLUIqUjYcckhooJlRijEmOrxDZZX0if1Agh_5DbQg0vZBDXu3pQTN_F1k3EUvoGUuqQecIwoaRkMhQ6ShXiImae1yZrjX3E1tnM4t9bo00eL16Dm8CzH5WbYl7JQDiJGHPb5E5tTouVBFjmhwL-XCwZ2tJSl9_k4_cVFLkAHw455b3_L-sRudQ7POjH_b3B_n1y2ceWRdXFWiOtcjo3DyCvK5OHdvNQ8vai9-svcthneg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF5VRUJICPFPoMAiUQmETGzvrtd7QCgkjVoaqkhQqT2ZtXcNkYJdEkeonLhy5hk48Ao8Tp-EGXsdGgTcesnBHkcrzf_szDeEPEwt-IFUxV6UakhQVBh5Shjj8djYnHMJgo11yFd70fY-f3kgDtbIz3YWBtsqW5tYG2pTZlgj74ZMSgmaGbNu7toixoPh86OPHm6QwpvWdp1GIyK79vgTpG_zZzsD4PVmGA633vS3PbdhwMsE55Untcm1MnEKUY0WTFgWGAU_oWVaCa11ykOtMityI6QyqQikNMoIZiOrdYCgB2D-z0kmfdSouB8s6zs-A88s_abXHpcBdfujrfHT1xDuCBzcPuUF62UBf4tw_2zUPOX5hpfJJRey0l4jY1fImi2ukotNvY82Y0zXyI9xDdRZzGmZ03qq90M5SycGgnyqC0MHbhELmCU6Kdxn2HZG96vJ1A2D1pRooRClEz7s4SYk2ssWlZ0e03bFyeSzNdRdMNFxgws7p49Ovn6PBD0Etswf05Mv32iPjiCQLipaL_6kPYeefp3snwmTbpD1oizsLUL9UPma50wHDHHuUh1zq1WqcxtCJqx1hzxp2ZJkDiMdV3VME8iVkIkJMjFxTOyQzSX1UYMN8g-6F8jhJQ0ietcPytm7xBmIRKnQQjAd8UBaLrVSXEXSxJlGRMQ8CDpko5WPxJmZefJbKTrkwfI1GAi89dGFLRc1DTiSmHO_Q2424rQ8CcMEP5Lw53JF0FaOuvqmmLyvQcglWG-IJm___1j3yXnQ0mS0s7d7h1wIsVZRl682yHo1W9i7ENBV6b1acyh5e9aq-gt3q2Tq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Patterns+of+Multimorbidity+and+Differences+in+Healthcare+Utilization+and+Complexity+Among+Acutely+Hospitalized+Medical+Patients+%28%E2%89%A565+Years%29+-+A+Latent+Class+Approach&rft.jtitle=Clinical+epidemiology&rft.au=Juul-Larsen%2C+Helle+Gybel&rft.au=Christensen%2C+Line+Due&rft.au=Bandholm%2C+Thomas&rft.au=Andersen%2C+Ove&rft.date=2020-01-01&rft.issn=1179-1349&rft.eissn=1179-1349&rft.volume=12&rft.spage=245&rft_id=info:doi/10.2147%2FCLEP.S226586&rft_id=info%3Apmid%2F32184671&rft.externalDocID=32184671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1179-1349&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1179-1349&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1179-1349&client=summon |