A Transformer Fault Diagnosis Method Based on Parameters Optimization of Hybrid Kernel Extreme Learning Machine
Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot efficiently process large amounts of incomplete defect information with DGA, which affects the accuracy of fault diagnosis. To this end, this...
Saved in:
| Published in | IEEE access Vol. 9; pp. 126891 - 126902 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2021.3112478 |
Cover
| Abstract | Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot efficiently process large amounts of incomplete defect information with DGA, which affects the accuracy of fault diagnosis. To this end, this paper proposes a transformer fault diagnosis method based on the optimization of kernel parameters and weight parameters of a kernel extreme learning machine (KELM). First, based on Mercer's theorem, we combine the radial basis kernel function with the polynomial kernel function to construct a new hybrid kernel function. Then, the gray wolf optimization (GWO) algorithm and the differential evolution (DE) algorithm are combined to improve the diversity of the gray wolf population, enhance the searchability of GWO, and prevent GWO from falling into a local optimum during the iterative process. Finally, the kernel parameters and weight parameters of the hybrid kernel function are optimized by using the modified grey wolf optimization (MGWO) algorithm. The International Electrotechnical Commission Technical Committee (IEC TC) 10 transformer fault data and constructed hybrid feature set is used as the input set of the model, the model is simulated and analyzed, and the transformer fault data collected at a site are used for training and verification. The simulation results on the two sets of data show that the method can accurately and effectively diagnose transformer faults, and has a higher fault diagnosis accuracy rate than traditional methods. |
|---|---|
| AbstractList | Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot efficiently process large amounts of incomplete defect information with DGA, which affects the accuracy of fault diagnosis. To this end, this paper proposes a transformer fault diagnosis method based on the optimization of kernel parameters and weight parameters of a kernel extreme learning machine (KELM). First, based on Mercer's theorem, we combine the radial basis kernel function with the polynomial kernel function to construct a new hybrid kernel function. Then, the gray wolf optimization (GWO) algorithm and the differential evolution (DE) algorithm are combined to improve the diversity of the gray wolf population, enhance the searchability of GWO, and prevent GWO from falling into a local optimum during the iterative process. Finally, the kernel parameters and weight parameters of the hybrid kernel function are optimized by using the modified grey wolf optimization (MGWO) algorithm. The International Electrotechnical Commission Technical Committee (IEC TC) 10 transformer fault data and constructed hybrid feature set is used as the input set of the model, the model is simulated and analyzed, and the transformer fault data collected at a site are used for training and verification. The simulation results on the two sets of data show that the method can accurately and effectively diagnose transformer faults, and has a higher fault diagnosis accuracy rate than traditional methods. |
| Author | Feng, Zhen Li, Jifang Hai, Chen Li, Genxu |
| Author_xml | – sequence: 1 givenname: Jifang orcidid: 0000-0002-4970-4557 surname: Li fullname: Li, Jifang organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China – sequence: 2 givenname: Chen orcidid: 0000-0002-3113-252X surname: Hai fullname: Hai, Chen email: haichen00@126.com organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China – sequence: 3 givenname: Zhen orcidid: 0000-0002-7971-6524 surname: Feng fullname: Feng, Zhen organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China – sequence: 4 givenname: Genxu orcidid: 0000-0003-3562-4086 surname: Li fullname: Li, Genxu organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China |
| BookMark | eNptkltrGzEQhZeSQlM3vyAvgj7b1W1vj67rNKEOKSR9FrPakSOzllxJpnV-fZRsMMVULxIHfWc0c_SxOHPeYVFcMjpjjLZf5ovF8v5-xilnM8EYl3XzrjjnrGqnohTV2T_nD8VFjBuaV5Olsj4v_Jw8BHDR-LDFQK5gPyTyzcLa-WgjucX06HvyFSL2xDvyEwJsMWGI5G6X7NY-QbJZ94ZcH7pge_IDg8OBLP-mgFskK4TgrFuTW9CP1uGn4r2BIeLF2z4pfl0tHxbX09Xd95vFfDXVpZRpWgkuoGct8LpjJTPSAK24NqgRqaZUt6g73QlTdmXPGkFZJWTPudayF0agmBQ3o2_vYaN2wW4hHJQHq14FH9YKQrJ6QGUYmr7M7k3fyDbPhfMOsqc2pmuharOXHL32bgeHPzAMR0NG1UsGCrTGGNVLBuotg4x9HrFd8L_3GJPa-H1wuWvFy1qUNZW5y0nRjrd08DEGNErb9DrUFMAOxwpjyqcVxAl7-q7_U5cjZRHxSLT5e9Rcimd0JLS7 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1088_1742_6596_2260_1_012002 crossref_primary_10_1109_ACCESS_2024_3515479 crossref_primary_10_1016_j_epsr_2023_109176 crossref_primary_10_1016_j_neunet_2024_107120 crossref_primary_10_3390_su14106197 crossref_primary_10_1109_ACCESS_2022_3156102 crossref_primary_10_1007_s11071_022_08109_8 crossref_primary_10_2174_2352096516666221222164311 crossref_primary_10_32604_cmc_2022_029140 crossref_primary_10_3390_w16162232 crossref_primary_10_1038_s41598_023_50833_7 crossref_primary_10_1063_5_0212861 crossref_primary_10_20965_jaciii_2025_p0053 crossref_primary_10_1016_j_energy_2021_122585 crossref_primary_10_1007_s42524_023_0256_2 crossref_primary_10_1016_j_egyr_2023_09_183 crossref_primary_10_1016_j_epsr_2023_109256 crossref_primary_10_1109_ACCESS_2024_3435057 crossref_primary_10_1016_j_agsy_2024_103966 |
| Cites_doi | 10.1109/TDEI.2015.005410 10.1109/TDEI.2015.004999 10.1109/TDEI.2017.006727 10.1109/MEI.2014.6943428 10.1109/ACCESS.2020.3043803 10.1109/INDICON.2015.7443245 10.1080/00207160108805080 10.1109/EI247390.2019.9061786 10.1109/ACCESS.2017.2675940 10.1109/ACCESS.2018.2864138 10.1109/TSMCB.2011.2168604 10.1109/ACCESS.2018.2880271 10.1109/TIE.2017.2721922 10.1109/TASC.2020.2990415 10.1109/ACCESS.2019.2923242 10.1109/CEIDP.2012.6378754 10.1109/TDEI.2012.6148524 10.1109/TDEI.2016.005301 10.1109/MEI.2002.1014963 10.1109/ACCESS.2019.2927018 10.1109/TEVC.2008.927706 10.1109/TDEI.2018.006746 10.1016/j.advengsoft.2013.12.007 10.1109/TDEI.2017.005959 10.1109/TDEI.2013.6678888 10.1109/TIM.2018.2890329 10.3390/en9050312 10.1016/j.rser.2015.02.052 10.1109/TLA.2013.6601752 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2021.3112478 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 126902 |
| ExternalDocumentID | oai_doaj_org_article_f1efd562c8d84916922ba183cffb9a69 10.1109/access.2021.3112478 10_1109_ACCESS_2021_3112478 9536724 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1804149 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c544t-6323ad19a27b151f4fa062cfecee0c00c9ecbcb3f5b5d18301634d22cc4d3f3e3 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:40:14 EDT 2025 Wed Oct 01 15:26:21 EDT 2025 Sun Jun 29 15:48:04 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Wed Oct 01 04:44:26 EDT 2025 Wed Aug 27 02:26:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c544t-6323ad19a27b151f4fa062cfecee0c00c9ecbcb3f5b5d18301634d22cc4d3f3e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7971-6524 0000-0003-3562-4086 0000-0002-3113-252X 0000-0002-4970-4557 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9536724 |
| PQID | 2573570432 |
| PQPubID | 4845423 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f1efd562c8d84916922ba183cffb9a69 proquest_journals_2573570432 crossref_primary_10_1109_ACCESS_2021_3112478 unpaywall_primary_10_1109_access_2021_3112478 ieee_primary_9536724 crossref_citationtrail_10_1109_ACCESS_2021_3112478 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20210000 2021-00-00 20210101 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 20210000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 jiejie (ref15) 2017; 24 yang (ref30) 2010; 2 ref14 ref31 ref33 ref11 ref32 ref10 ref1 ref17 ref16 ref19 ref18 (ref2) 2019 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 (ref3) 2016 ref6 ref5 (ref4) 2008 |
| References_xml | – ident: ref24 doi: 10.1109/TDEI.2015.005410 – ident: ref8 doi: 10.1109/TDEI.2015.004999 – volume: 24 start-page: 2828 year: 2017 ident: ref15 article-title: Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network publication-title: IEEE Trans Dielectr Electr Insul doi: 10.1109/TDEI.2017.006727 – ident: ref6 doi: 10.1109/MEI.2014.6943428 – ident: ref20 doi: 10.1109/ACCESS.2020.3043803 – ident: ref23 doi: 10.1109/INDICON.2015.7443245 – ident: ref31 doi: 10.1080/00207160108805080 – ident: ref25 doi: 10.1109/EI247390.2019.9061786 – ident: ref18 doi: 10.1109/ACCESS.2017.2675940 – ident: ref22 doi: 10.1109/ACCESS.2018.2864138 – ident: ref16 doi: 10.1109/TSMCB.2011.2168604 – ident: ref28 doi: 10.1109/ACCESS.2018.2880271 – ident: ref17 doi: 10.1109/TIE.2017.2721922 – year: 2016 ident: ref3 publication-title: Mineral Oil-Filled Electrical Equipment in Service-Guidance Interpretation of Dissolved and Free Gases Analysis – start-page: 1 year: 2019 ident: ref2 – ident: ref27 doi: 10.1109/TASC.2020.2990415 – ident: ref21 doi: 10.1109/ACCESS.2019.2923242 – ident: ref7 doi: 10.1109/CEIDP.2012.6378754 – ident: ref9 doi: 10.1109/TDEI.2012.6148524 – ident: ref10 doi: 10.1109/TDEI.2016.005301 – ident: ref5 doi: 10.1109/MEI.2002.1014963 – ident: ref11 doi: 10.1109/ACCESS.2019.2927018 – ident: ref26 doi: 10.1109/TEVC.2008.927706 – ident: ref14 doi: 10.1109/TDEI.2018.006746 – ident: ref29 doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref1 doi: 10.1109/TDEI.2017.005959 – ident: ref12 doi: 10.1109/TDEI.2013.6678888 – start-page: 1 year: 2008 ident: ref4 – ident: ref19 doi: 10.1109/TIM.2018.2890329 – ident: ref32 doi: 10.3390/en9050312 – volume: 2 start-page: 63 year: 2010 ident: ref30 article-title: Test problems in optimization publication-title: Mathematics – ident: ref33 doi: 10.1016/j.rser.2015.02.052 – ident: ref13 doi: 10.1109/TLA.2013.6601752 |
| SSID | ssj0000816957 |
| Score | 2.4078956 |
| Snippet | Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 126891 |
| SubjectTerms | Algorithms Animal populations Artificial neural networks Dissolved gases Evolutionary algorithms Evolutionary computation extreme learning machine Extreme learning machines Fault diagnosis Gas analysis hybrid kernel function Iterative methods Kernel Kernel functions Machine learning Mathematical models modified gray wolf optimization Oil insulation Optimization Parameter modification Polynomials Power transformer insulation Power transformers Process parameters Training Transformers Weight Wolves |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLrSHikerhpd86LERjh-b5LgsrFYg2h5A4mb5iSqlWbRkBfx7xo53FYQEF25R5FiTmck8nJlvEPrJCuNKUbjc6HhaxU2uGNM5JHGCeLjkOlb5_h7Nrvn5jbgZjPoKNWE9PHDPuGNfOG_BSZvKVhximZpSrUAPjfe6VqPYukeqepBMRRtcwUpRJpihgtTH48kE3ggSQlpAngpeLQxWG7iiiNifRqy8iDY3l-2denpQTTNwPNMt9DVFjHjcU7qNPrl2B30Z4AjuovkYX60CULfAU7VsOnzaF9H9u8eXcUo0PgGHZfG8xX9VqMgKsJr4D1iM_6kVE889nj2FDi584Rata_DZYxeOD3ECYb3Fl7H00n1D19Ozq8ksT5MUciM47_IRo0zZola01ODiPfeKAEu9AxdJDCGmdkYbzbzQwgJzIQ5k3FJqDLfMM8e-o4123rofCFvHNNgFEGFoXyh9bQ1kKN4IXxFTjXyG6Iqp0iSY8TDtopEx3SC17CUhgyRkkkSGfq0fuutRNt5efhKktV4aILLjDVAcmRRHvqc4GdoNsl5vEv5jl5Rn6GAle5k-53sJdo2JMqAXZihf68MrUlWccfmC1L2PIHUffQ579ic_B2ijWyzdIcRCnT6Kav8MqEwEIg priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQgYH8wCNpE9tx6seurKpAG3tYpfFk-RNNhLTqUrHx13N23KoDCQnerMiJHN357nf23e8QekdL4-qqdLnR8bSKmVxRqnMI4qrCw5DpmOV7xucL9vGyukwHbrEWxjkXk8_cMAzjXf6Va27qESeBPE2MOLh4CBJGgSiN14QNV9bfRwe8Aiw-QAeLs_PJl9BRruQip_Fu8nUi1hyp2IMQgkJSQqwKni00V9tzR5G1P7VZuYM4H2zalbr9oZpmz_nMHiO5XXafc_JtuOn00Pz8jdHx___rCXqUcCme9Ir0FN1z7TP0cI-t8BAtJ_hiC3PdGs_Upunwhz5V7-oan8Ze1PgY3KLFyxafq5D3Fcg78WewS99TwSdeejy_DXVi-JNbt67BJzddOKTEier1Kz6NCZ7uOVrMTi6m8zz1a8hNxViXc0qosqVQpNYAJDzzquDEeAeOuDBFYYQz2mjqK11ZMCWANimzhBjDLPXU0Rdo0C5b9xJh66gG6wOKEookai-sgTjIm8qPCzPmPkNkKzZpEpl56KnRyBjUFEJOplPQYBlkLZOsM_R-99Kq5_L4-_TjoA-7qYGIOz4A2cm0r6UvnbeAIc3YjhlAbUGIVvBvxnstFBcZOgzy3n0kCTdDR1vtksloXEuwnrSqA0dihvKdxv2x1F6L7yz11T_OP0KDbr1xbwBPdfpt2jS_AJGuGz0 priority: 102 providerName: Unpaywall |
| Title | A Transformer Fault Diagnosis Method Based on Parameters Optimization of Hybrid Kernel Extreme Learning Machine |
| URI | https://ieeexplore.ieee.org/document/9536724 https://www.proquest.com/docview/2573570432 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09536724.pdf https://doaj.org/article/f1efd562c8d84916922ba183cffb9a69 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAceBVEoKx84NhsEzvP43bpagXa0kNXKqfIT4QISbVNBOXXM3a80RYQ4mZFTmJrxvPyzDcAb1ksdZ7GOpTCRasSGXLGRIhOXBoZHCbCZfmeZ8t18v4qvdqD47EWRmvtks_01A7dXb5qZW9DZSf2qjGnyT7s50U21GqN8RTbQKJMcw8sFEflyWw-xz2gC0hj9ExRj9lWajvKx2H0-6Yqd-zL-31zzW-_87reUTWLx7DaLnLIMPk67TsxlT9_w2_83108gUfe5iSzgUmewp5unsHDHSTCQ2hn5HJrwuoNWfC-7si7IQ3vyw1ZuT7T5BRVniJtQy64zemywJzkI8qcb76Yk7SGLG9tDRj5oDeNrsnZj84GIImHcf1MVi55Uz-H9eLscr4MfS-GUKZJ0oUZo4yruOQ0F2gkmMTwKKPSaFSykYwiWWoppGAmFalCMYGWJEsUpVImihmm2Qs4aNpGvwSiNBMoWZAJbAFEbkol0ccxMjVFJIvMBEC3RKqkByq3_TLqyjksUVkNlK0sZStP2QCOx5euB5yOf08_tdQfp1qQbfcAKVX5M1uZWBuF9qEsVJGgGV1SKjjuTRojSp6VARxa6o4f8YQN4GjLS5UXCDcVSkaW5hb_MIBw5K8_lspdl8w7S33197-8hgd21hANOoKDbtPrN2gfdWLi4goTdzwmcG99fjH79AsIuw-t |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvApioYAPHJtt4keyOW6XrhbaLRy2Um-WnwgRkmqbCMqvZ-x4oy0gxM2K7MTO2PPyzDcIvaWZtgXPbKJV8FYxnUhKVQJGHE8dNJkKUb7n-eKCfbjklzvocMiFsdaG4DM79s1wl28a3XlX2ZG_aiwIu4PucsYY77O1Bo-KLyFR8iJCC2VpeTSdzWAVYASSDGxTkGS-mNqW-Ako_bGsyi0Nc6-rr-TNd1lVW8Jm_hAtN9PsY0y-jrtWjfXP3xAc_3cdj9CDqHXiab9NHqMdWz9B97ewCPdRM8WrjRJr13guu6rF7_pAvC_XeBkqTeNjEHoGNzX-JH1Ul4fmxB-B63yL6Zy4cXhx47PA8Kld17bCJz9a74LEEcj1M16G8E37FF3MT1azRRKrMSQa_nab5JRQabJSkkKBmuCYk2lOtLMgZlOdprq0WmlFHVfcAKMAXZIyQ4jWzFBHLX2Gduumts8RNpYq4C2wDXwKROFKo8HKcZq7SaonuRshsiGS0BGq3FfMqEQwWdJS9JQVnrIiUnaEDodBVz1Sx7-7H3vqD109zHZ4AJQS8dQKl1lnQEPUEzNhoEiXhCgJa9POqVLm5Qjte-oOL4mEHaGDzV4SkSVcC-CNlBceAXGEkmF__TFVGepk3prqi79_5Q3aW6yWZ-Ls_fnpS3TPj-h9Qwdot1139hVoS616HQ7JL3QfEFU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQgYH8wCNpE9tx6seurKpAG3tYpfFk-RNNhLTqUrHx13N23KoDCQnerMiJHN357nf23e8QekdL4-qqdLnR8bSKmVxRqnMI4qrCw5DpmOV7xucL9vGyukwHbrEWxjkXk8_cMAzjXf6Va27qESeBPE2MOLh4CBJGgSiN14QNV9bfRwe8Aiw-QAeLs_PJl9BRruQip_Fu8nUi1hyp2IMQgkJSQqwKni00V9tzR5G1P7VZuYM4H2zalbr9oZpmz_nMHiO5XXafc_JtuOn00Pz8jdHx___rCXqUcCme9Ir0FN1z7TP0cI-t8BAtJ_hiC3PdGs_Upunwhz5V7-oan8Ze1PgY3KLFyxafq5D3Fcg78WewS99TwSdeejy_DXVi-JNbt67BJzddOKTEier1Kz6NCZ7uOVrMTi6m8zz1a8hNxViXc0qosqVQpNYAJDzzquDEeAeOuDBFYYQz2mjqK11ZMCWANimzhBjDLPXU0Rdo0C5b9xJh66gG6wOKEookai-sgTjIm8qPCzPmPkNkKzZpEpl56KnRyBjUFEJOplPQYBlkLZOsM_R-99Kq5_L4-_TjoA-7qYGIOz4A2cm0r6UvnbeAIc3YjhlAbUGIVvBvxnstFBcZOgzy3n0kCTdDR1vtksloXEuwnrSqA0dihvKdxv2x1F6L7yz11T_OP0KDbr1xbwBPdfpt2jS_AJGuGz0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Transformer+Fault+Diagnosis+Method+Based+on+Parameters+Optimization+of+Hybrid+Kernel+Extreme+Learning+Machine&rft.jtitle=IEEE+access&rft.au=Li%2C+Jifang&rft.au=Hai%2C+Chen&rft.au=Feng%2C+Zhen&rft.au=Li%2C+Genxu&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=126891&rft.epage=126902&rft_id=info:doi/10.1109%2FACCESS.2021.3112478&rft.externalDocID=9536724 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |