A Transformer Fault Diagnosis Method Based on Parameters Optimization of Hybrid Kernel Extreme Learning Machine

Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot efficiently process large amounts of incomplete defect information with DGA, which affects the accuracy of fault diagnosis. To this end, this...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 9; pp. 126891 - 126902
Main Authors Li, Jifang, Hai, Chen, Feng, Zhen, Li, Genxu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2021.3112478

Cover

Abstract Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot efficiently process large amounts of incomplete defect information with DGA, which affects the accuracy of fault diagnosis. To this end, this paper proposes a transformer fault diagnosis method based on the optimization of kernel parameters and weight parameters of a kernel extreme learning machine (KELM). First, based on Mercer's theorem, we combine the radial basis kernel function with the polynomial kernel function to construct a new hybrid kernel function. Then, the gray wolf optimization (GWO) algorithm and the differential evolution (DE) algorithm are combined to improve the diversity of the gray wolf population, enhance the searchability of GWO, and prevent GWO from falling into a local optimum during the iterative process. Finally, the kernel parameters and weight parameters of the hybrid kernel function are optimized by using the modified grey wolf optimization (MGWO) algorithm. The International Electrotechnical Commission Technical Committee (IEC TC) 10 transformer fault data and constructed hybrid feature set is used as the input set of the model, the model is simulated and analyzed, and the transformer fault data collected at a site are used for training and verification. The simulation results on the two sets of data show that the method can accurately and effectively diagnose transformer faults, and has a higher fault diagnosis accuracy rate than traditional methods.
AbstractList Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot efficiently process large amounts of incomplete defect information with DGA, which affects the accuracy of fault diagnosis. To this end, this paper proposes a transformer fault diagnosis method based on the optimization of kernel parameters and weight parameters of a kernel extreme learning machine (KELM). First, based on Mercer's theorem, we combine the radial basis kernel function with the polynomial kernel function to construct a new hybrid kernel function. Then, the gray wolf optimization (GWO) algorithm and the differential evolution (DE) algorithm are combined to improve the diversity of the gray wolf population, enhance the searchability of GWO, and prevent GWO from falling into a local optimum during the iterative process. Finally, the kernel parameters and weight parameters of the hybrid kernel function are optimized by using the modified grey wolf optimization (MGWO) algorithm. The International Electrotechnical Commission Technical Committee (IEC TC) 10 transformer fault data and constructed hybrid feature set is used as the input set of the model, the model is simulated and analyzed, and the transformer fault data collected at a site are used for training and verification. The simulation results on the two sets of data show that the method can accurately and effectively diagnose transformer faults, and has a higher fault diagnosis accuracy rate than traditional methods.
Author Feng, Zhen
Li, Jifang
Hai, Chen
Li, Genxu
Author_xml – sequence: 1
  givenname: Jifang
  orcidid: 0000-0002-4970-4557
  surname: Li
  fullname: Li, Jifang
  organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China
– sequence: 2
  givenname: Chen
  orcidid: 0000-0002-3113-252X
  surname: Hai
  fullname: Hai, Chen
  email: haichen00@126.com
  organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China
– sequence: 3
  givenname: Zhen
  orcidid: 0000-0002-7971-6524
  surname: Feng
  fullname: Feng, Zhen
  organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China
– sequence: 4
  givenname: Genxu
  orcidid: 0000-0003-3562-4086
  surname: Li
  fullname: Li, Genxu
  organization: College of Electricity, North China University of Water Resources and Electric Power, Zhengzhou, China
BookMark eNptkltrGzEQhZeSQlM3vyAvgj7b1W1vj67rNKEOKSR9FrPakSOzllxJpnV-fZRsMMVULxIHfWc0c_SxOHPeYVFcMjpjjLZf5ovF8v5-xilnM8EYl3XzrjjnrGqnohTV2T_nD8VFjBuaV5Olsj4v_Jw8BHDR-LDFQK5gPyTyzcLa-WgjucX06HvyFSL2xDvyEwJsMWGI5G6X7NY-QbJZ94ZcH7pge_IDg8OBLP-mgFskK4TgrFuTW9CP1uGn4r2BIeLF2z4pfl0tHxbX09Xd95vFfDXVpZRpWgkuoGct8LpjJTPSAK24NqgRqaZUt6g73QlTdmXPGkFZJWTPudayF0agmBQ3o2_vYaN2wW4hHJQHq14FH9YKQrJ6QGUYmr7M7k3fyDbPhfMOsqc2pmuharOXHL32bgeHPzAMR0NG1UsGCrTGGNVLBuotg4x9HrFd8L_3GJPa-H1wuWvFy1qUNZW5y0nRjrd08DEGNErb9DrUFMAOxwpjyqcVxAl7-q7_U5cjZRHxSLT5e9Rcimd0JLS7
CODEN IAECCG
CitedBy_id crossref_primary_10_1088_1742_6596_2260_1_012002
crossref_primary_10_1109_ACCESS_2024_3515479
crossref_primary_10_1016_j_epsr_2023_109176
crossref_primary_10_1016_j_neunet_2024_107120
crossref_primary_10_3390_su14106197
crossref_primary_10_1109_ACCESS_2022_3156102
crossref_primary_10_1007_s11071_022_08109_8
crossref_primary_10_2174_2352096516666221222164311
crossref_primary_10_32604_cmc_2022_029140
crossref_primary_10_3390_w16162232
crossref_primary_10_1038_s41598_023_50833_7
crossref_primary_10_1063_5_0212861
crossref_primary_10_20965_jaciii_2025_p0053
crossref_primary_10_1016_j_energy_2021_122585
crossref_primary_10_1007_s42524_023_0256_2
crossref_primary_10_1016_j_egyr_2023_09_183
crossref_primary_10_1016_j_epsr_2023_109256
crossref_primary_10_1109_ACCESS_2024_3435057
crossref_primary_10_1016_j_agsy_2024_103966
Cites_doi 10.1109/TDEI.2015.005410
10.1109/TDEI.2015.004999
10.1109/TDEI.2017.006727
10.1109/MEI.2014.6943428
10.1109/ACCESS.2020.3043803
10.1109/INDICON.2015.7443245
10.1080/00207160108805080
10.1109/EI247390.2019.9061786
10.1109/ACCESS.2017.2675940
10.1109/ACCESS.2018.2864138
10.1109/TSMCB.2011.2168604
10.1109/ACCESS.2018.2880271
10.1109/TIE.2017.2721922
10.1109/TASC.2020.2990415
10.1109/ACCESS.2019.2923242
10.1109/CEIDP.2012.6378754
10.1109/TDEI.2012.6148524
10.1109/TDEI.2016.005301
10.1109/MEI.2002.1014963
10.1109/ACCESS.2019.2927018
10.1109/TEVC.2008.927706
10.1109/TDEI.2018.006746
10.1016/j.advengsoft.2013.12.007
10.1109/TDEI.2017.005959
10.1109/TDEI.2013.6678888
10.1109/TIM.2018.2890329
10.3390/en9050312
10.1016/j.rser.2015.02.052
10.1109/TLA.2013.6601752
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2021.3112478
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 126902
ExternalDocumentID oai_doaj_org_article_f1efd562c8d84916922ba183cffb9a69
10.1109/access.2021.3112478
10_1109_ACCESS_2021_3112478
9536724
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: U1804149
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c544t-6323ad19a27b151f4fa062cfecee0c00c9ecbcb3f5b5d18301634d22cc4d3f3e3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:40:14 EDT 2025
Wed Oct 01 15:26:21 EDT 2025
Sun Jun 29 15:48:04 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Wed Oct 01 04:44:26 EDT 2025
Wed Aug 27 02:26:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c544t-6323ad19a27b151f4fa062cfecee0c00c9ecbcb3f5b5d18301634d22cc4d3f3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7971-6524
0000-0003-3562-4086
0000-0002-3113-252X
0000-0002-4970-4557
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9536724
PQID 2573570432
PQPubID 4845423
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_f1efd562c8d84916922ba183cffb9a69
proquest_journals_2573570432
crossref_primary_10_1109_ACCESS_2021_3112478
unpaywall_primary_10_1109_access_2021_3112478
ieee_primary_9536724
crossref_citationtrail_10_1109_ACCESS_2021_3112478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
jiejie (ref15) 2017; 24
yang (ref30) 2010; 2
ref14
ref31
ref33
ref11
ref32
ref10
ref1
ref17
ref16
ref19
ref18
(ref2) 2019
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
(ref3) 2016
ref6
ref5
(ref4) 2008
References_xml – ident: ref24
  doi: 10.1109/TDEI.2015.005410
– ident: ref8
  doi: 10.1109/TDEI.2015.004999
– volume: 24
  start-page: 2828
  year: 2017
  ident: ref15
  article-title: Dissolved gas analysis of insulating oil for power transformer fault diagnosis with deep belief network
  publication-title: IEEE Trans Dielectr Electr Insul
  doi: 10.1109/TDEI.2017.006727
– ident: ref6
  doi: 10.1109/MEI.2014.6943428
– ident: ref20
  doi: 10.1109/ACCESS.2020.3043803
– ident: ref23
  doi: 10.1109/INDICON.2015.7443245
– ident: ref31
  doi: 10.1080/00207160108805080
– ident: ref25
  doi: 10.1109/EI247390.2019.9061786
– ident: ref18
  doi: 10.1109/ACCESS.2017.2675940
– ident: ref22
  doi: 10.1109/ACCESS.2018.2864138
– ident: ref16
  doi: 10.1109/TSMCB.2011.2168604
– ident: ref28
  doi: 10.1109/ACCESS.2018.2880271
– ident: ref17
  doi: 10.1109/TIE.2017.2721922
– year: 2016
  ident: ref3
  publication-title: Mineral Oil-Filled Electrical Equipment in Service-Guidance Interpretation of Dissolved and Free Gases Analysis
– start-page: 1
  year: 2019
  ident: ref2
– ident: ref27
  doi: 10.1109/TASC.2020.2990415
– ident: ref21
  doi: 10.1109/ACCESS.2019.2923242
– ident: ref7
  doi: 10.1109/CEIDP.2012.6378754
– ident: ref9
  doi: 10.1109/TDEI.2012.6148524
– ident: ref10
  doi: 10.1109/TDEI.2016.005301
– ident: ref5
  doi: 10.1109/MEI.2002.1014963
– ident: ref11
  doi: 10.1109/ACCESS.2019.2927018
– ident: ref26
  doi: 10.1109/TEVC.2008.927706
– ident: ref14
  doi: 10.1109/TDEI.2018.006746
– ident: ref29
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref1
  doi: 10.1109/TDEI.2017.005959
– ident: ref12
  doi: 10.1109/TDEI.2013.6678888
– start-page: 1
  year: 2008
  ident: ref4
– ident: ref19
  doi: 10.1109/TIM.2018.2890329
– ident: ref32
  doi: 10.3390/en9050312
– volume: 2
  start-page: 63
  year: 2010
  ident: ref30
  article-title: Test problems in optimization
  publication-title: Mathematics
– ident: ref33
  doi: 10.1016/j.rser.2015.02.052
– ident: ref13
  doi: 10.1109/TLA.2013.6601752
SSID ssj0000816957
Score 2.4078956
Snippet Dissolved gas analysis (DGA) is a widely used method for diagnosing internal transformer defects. The traditional single intelligent diagnostic method cannot...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 126891
SubjectTerms Algorithms
Animal populations
Artificial neural networks
Dissolved gases
Evolutionary algorithms
Evolutionary computation
extreme learning machine
Extreme learning machines
Fault diagnosis
Gas analysis
hybrid kernel function
Iterative methods
Kernel
Kernel functions
Machine learning
Mathematical models
modified gray wolf optimization
Oil insulation
Optimization
Parameter modification
Polynomials
Power transformer insulation
Power transformers
Process parameters
Training
Transformers
Weight
Wolves
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqLrSHikerhpd86LERjh-b5LgsrFYg2h5A4mb5iSqlWbRkBfx7xo53FYQEF25R5FiTmck8nJlvEPrJCuNKUbjc6HhaxU2uGNM5JHGCeLjkOlb5_h7Nrvn5jbgZjPoKNWE9PHDPuGNfOG_BSZvKVhximZpSrUAPjfe6VqPYukeqepBMRRtcwUpRJpihgtTH48kE3ggSQlpAngpeLQxWG7iiiNifRqy8iDY3l-2denpQTTNwPNMt9DVFjHjcU7qNPrl2B30Z4AjuovkYX60CULfAU7VsOnzaF9H9u8eXcUo0PgGHZfG8xX9VqMgKsJr4D1iM_6kVE889nj2FDi584Rata_DZYxeOD3ECYb3Fl7H00n1D19Ozq8ksT5MUciM47_IRo0zZola01ODiPfeKAEu9AxdJDCGmdkYbzbzQwgJzIQ5k3FJqDLfMM8e-o4123rofCFvHNNgFEGFoXyh9bQ1kKN4IXxFTjXyG6Iqp0iSY8TDtopEx3SC17CUhgyRkkkSGfq0fuutRNt5efhKktV4aILLjDVAcmRRHvqc4GdoNsl5vEv5jl5Rn6GAle5k-53sJdo2JMqAXZihf68MrUlWccfmC1L2PIHUffQ579ic_B2ijWyzdIcRCnT6Kav8MqEwEIg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQgYH8wCNpE9tx6seurKpAG3tYpfFk-RNNhLTqUrHx13N23KoDCQnerMiJHN357nf23e8QekdL4-qqdLnR8bSKmVxRqnMI4qrCw5DpmOV7xucL9vGyukwHbrEWxjkXk8_cMAzjXf6Va27qESeBPE2MOLh4CBJGgSiN14QNV9bfRwe8Aiw-QAeLs_PJl9BRruQip_Fu8nUi1hyp2IMQgkJSQqwKni00V9tzR5G1P7VZuYM4H2zalbr9oZpmz_nMHiO5XXafc_JtuOn00Pz8jdHx___rCXqUcCme9Ir0FN1z7TP0cI-t8BAtJ_hiC3PdGs_Upunwhz5V7-oan8Ze1PgY3KLFyxafq5D3Fcg78WewS99TwSdeejy_DXVi-JNbt67BJzddOKTEier1Kz6NCZ7uOVrMTi6m8zz1a8hNxViXc0qosqVQpNYAJDzzquDEeAeOuDBFYYQz2mjqK11ZMCWANimzhBjDLPXU0Rdo0C5b9xJh66gG6wOKEookai-sgTjIm8qPCzPmPkNkKzZpEpl56KnRyBjUFEJOplPQYBlkLZOsM_R-99Kq5_L4-_TjoA-7qYGIOz4A2cm0r6UvnbeAIc3YjhlAbUGIVvBvxnstFBcZOgzy3n0kCTdDR1vtksloXEuwnrSqA0dihvKdxv2x1F6L7yz11T_OP0KDbr1xbwBPdfpt2jS_AJGuGz0
  priority: 102
  providerName: Unpaywall
Title A Transformer Fault Diagnosis Method Based on Parameters Optimization of Hybrid Kernel Extreme Learning Machine
URI https://ieeexplore.ieee.org/document/9536724
https://www.proquest.com/docview/2573570432
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09536724.pdf
https://doaj.org/article/f1efd562c8d84916922ba183cffb9a69
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB615QAceBVEoKx84NhsEzvP43bpagXa0kNXKqfIT4QISbVNBOXXM3a80RYQ4mZFTmJrxvPyzDcAb1ksdZ7GOpTCRasSGXLGRIhOXBoZHCbCZfmeZ8t18v4qvdqD47EWRmvtks_01A7dXb5qZW9DZSf2qjGnyT7s50U21GqN8RTbQKJMcw8sFEflyWw-xz2gC0hj9ExRj9lWajvKx2H0-6Yqd-zL-31zzW-_87reUTWLx7DaLnLIMPk67TsxlT9_w2_83108gUfe5iSzgUmewp5unsHDHSTCQ2hn5HJrwuoNWfC-7si7IQ3vyw1ZuT7T5BRVniJtQy64zemywJzkI8qcb76Yk7SGLG9tDRj5oDeNrsnZj84GIImHcf1MVi55Uz-H9eLscr4MfS-GUKZJ0oUZo4yruOQ0F2gkmMTwKKPSaFSykYwiWWoppGAmFalCMYGWJEsUpVImihmm2Qs4aNpGvwSiNBMoWZAJbAFEbkol0ccxMjVFJIvMBEC3RKqkByq3_TLqyjksUVkNlK0sZStP2QCOx5euB5yOf08_tdQfp1qQbfcAKVX5M1uZWBuF9qEsVJGgGV1SKjjuTRojSp6VARxa6o4f8YQN4GjLS5UXCDcVSkaW5hb_MIBw5K8_lspdl8w7S33197-8hgd21hANOoKDbtPrN2gfdWLi4goTdzwmcG99fjH79AsIuw-t
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKORQOvApioYAPHJtt4keyOW6XrhbaLRy2Um-WnwgRkmqbCMqvZ-x4oy0gxM2K7MTO2PPyzDcIvaWZtgXPbKJV8FYxnUhKVQJGHE8dNJkKUb7n-eKCfbjklzvocMiFsdaG4DM79s1wl28a3XlX2ZG_aiwIu4PucsYY77O1Bo-KLyFR8iJCC2VpeTSdzWAVYASSDGxTkGS-mNqW-Ako_bGsyi0Nc6-rr-TNd1lVW8Jm_hAtN9PsY0y-jrtWjfXP3xAc_3cdj9CDqHXiab9NHqMdWz9B97ewCPdRM8WrjRJr13guu6rF7_pAvC_XeBkqTeNjEHoGNzX-JH1Ul4fmxB-B63yL6Zy4cXhx47PA8Kld17bCJz9a74LEEcj1M16G8E37FF3MT1azRRKrMSQa_nab5JRQabJSkkKBmuCYk2lOtLMgZlOdprq0WmlFHVfcAKMAXZIyQ4jWzFBHLX2Gduumts8RNpYq4C2wDXwKROFKo8HKcZq7SaonuRshsiGS0BGq3FfMqEQwWdJS9JQVnrIiUnaEDodBVz1Sx7-7H3vqD109zHZ4AJQS8dQKl1lnQEPUEzNhoEiXhCgJa9POqVLm5Qjte-oOL4mEHaGDzV4SkSVcC-CNlBceAXGEkmF__TFVGepk3prqi79_5Q3aW6yWZ-Ls_fnpS3TPj-h9Qwdot1139hVoS616HQ7JL3QfEFU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege0A88DUQgYH8wCNpE9tx6seurKpAG3tYpfFk-RNNhLTqUrHx13N23KoDCQnerMiJHN357nf23e8QekdL4-qqdLnR8bSKmVxRqnMI4qrCw5DpmOV7xucL9vGyukwHbrEWxjkXk8_cMAzjXf6Va27qESeBPE2MOLh4CBJGgSiN14QNV9bfRwe8Aiw-QAeLs_PJl9BRruQip_Fu8nUi1hyp2IMQgkJSQqwKni00V9tzR5G1P7VZuYM4H2zalbr9oZpmz_nMHiO5XXafc_JtuOn00Pz8jdHx___rCXqUcCme9Ir0FN1z7TP0cI-t8BAtJ_hiC3PdGs_Upunwhz5V7-oan8Ze1PgY3KLFyxafq5D3Fcg78WewS99TwSdeejy_DXVi-JNbt67BJzddOKTEier1Kz6NCZ7uOVrMTi6m8zz1a8hNxViXc0qosqVQpNYAJDzzquDEeAeOuDBFYYQz2mjqK11ZMCWANimzhBjDLPXU0Rdo0C5b9xJh66gG6wOKEookai-sgTjIm8qPCzPmPkNkKzZpEpl56KnRyBjUFEJOplPQYBlkLZOsM_R-99Kq5_L4-_TjoA-7qYGIOz4A2cm0r6UvnbeAIc3YjhlAbUGIVvBvxnstFBcZOgzy3n0kCTdDR1vtksloXEuwnrSqA0dihvKdxv2x1F6L7yz11T_OP0KDbr1xbwBPdfpt2jS_AJGuGz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Transformer+Fault+Diagnosis+Method+Based+on+Parameters+Optimization+of+Hybrid+Kernel+Extreme+Learning+Machine&rft.jtitle=IEEE+access&rft.au=Li%2C+Jifang&rft.au=Hai%2C+Chen&rft.au=Feng%2C+Zhen&rft.au=Li%2C+Genxu&rft.date=2021&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=9&rft.spage=126891&rft.epage=126902&rft_id=info:doi/10.1109%2FACCESS.2021.3112478&rft.externalDocID=9536724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon