An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis

MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have eva...

Full description

Saved in:
Bibliographic Details
Published inProteomics (Weinheim) Vol. 5; no. 13; pp. 3475 - 3490
Main Authors Kapp, Eugene A., Schütz, Frédéric, Connolly, Lisa M., Chakel, John A., Meza, Jose E., Miller, Christine A., Fenyo, David, Eng, Jimmy K., Adkins, Joshua N., Omenn, Gilbert S., Simpson, Richard J.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.08.2005
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN1615-9853
1615-9861
1615-9861
DOI10.1002/pmic.200500126

Cover

Abstract MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false‐positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed‐sequence search as demonstrated in this study based on a validated data set. The availability of open‐source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of “consensus scoring”, i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs.∁
AbstractList MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of "consensus scoring", i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs. complement.MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of "consensus scoring", i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs. complement.
MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of "consensus scoring", i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs. complement.
MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false-positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed-sequence search as demonstrated in this study based on a validated data set. The availability of open-source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of "consensus scoring", i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs.[comp]
MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform a systematic analysis of the various algorithms currently in use. Using blood specimens used in the HUPO Plasma Proteome Project, we have evaluated five search algorithms with respect to their sensitivity and specificity, and have also accurately benchmarked them based on specified false‐positive (FP) rates. Spectrum Mill and SEQUEST performed well in terms of sensitivity, but were inferior to MASCOT, X!Tandem, and Sonar in terms of specificity. Overall, MASCOT, a probabilistic search algorithm, correctly identified most peptides based on a specified FP rate. The rescoring algorithm, PeptideProphet, enhanced the overall performance of the SEQUEST algorithm, as well as provided predictable FP error rates. Ideally, score thresholds should be calculated for each peptide spectrum or minimally, derived from a reversed‐sequence search as demonstrated in this study based on a validated data set. The availability of open‐source search algorithms, such as X!Tandem, makes it feasible to further improve the validation process (manual or automatic) on the basis of “consensus scoring”, i.e., the use of multiple (at least two) search algorithms to reduce the number of FPs.∁
Author Miller, Christine A.
Adkins, Joshua N.
Omenn, Gilbert S.
Connolly, Lisa M.
Kapp, Eugene A.
Schütz, Frédéric
Simpson, Richard J.
Chakel, John A.
Fenyo, David
Eng, Jimmy K.
Meza, Jose E.
Author_xml – sequence: 1
  givenname: Eugene A.
  surname: Kapp
  fullname: Kapp, Eugene A.
  organization: Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research (Melbourne Branch)/Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
– sequence: 2
  givenname: Frédéric
  surname: Schütz
  fullname: Schütz, Frédéric
  organization: Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research (Melbourne Branch)/Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
– sequence: 3
  givenname: Lisa M.
  surname: Connolly
  fullname: Connolly, Lisa M.
  organization: Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research (Melbourne Branch)/Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
– sequence: 4
  givenname: John A.
  surname: Chakel
  fullname: Chakel, John A.
  organization: Agilent Technologies, Santa Clara, CA, USA
– sequence: 5
  givenname: Jose E.
  surname: Meza
  fullname: Meza, Jose E.
  organization: Agilent Technologies, Santa Clara, CA, USA
– sequence: 6
  givenname: Christine A.
  surname: Miller
  fullname: Miller, Christine A.
  organization: Agilent Technologies, Santa Clara, CA, USA
– sequence: 7
  givenname: David
  surname: Fenyo
  fullname: Fenyo, David
  organization: GE Healthcare, Bio-Sciences, Piscataway, NJ, USA
– sequence: 8
  givenname: Jimmy K.
  surname: Eng
  fullname: Eng, Jimmy K.
  organization: Institute for Systems Biology, Seattle, WA, USA
– sequence: 9
  givenname: Joshua N.
  surname: Adkins
  fullname: Adkins, Joshua N.
  organization: Pacific Northwest National Laboratory, Richland, WA, USA
– sequence: 10
  givenname: Gilbert S.
  surname: Omenn
  fullname: Omenn, Gilbert S.
  organization: University of Michigan Medical School, Ann Arbor, MI, USA
– sequence: 11
  givenname: Richard J.
  surname: Simpson
  fullname: Simpson, Richard J.
  email: richard.simpson@ludwig.edu.au
  organization: Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research (Melbourne Branch)/Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16047398$$D View this record in MEDLINE/PubMed
BookMark eNqFkkuP0zAURi00iHnAliXyihVt7cR2YnajAvPQFBAdYGnduM7U4Dywkw75F_xk3ElVEBLqyg-dc3X9XZ-io7qpDULPKZlSQpJZW1k9TQjhhNBEPEInVFA-kbmgR_s9T4_RaQjfIpLlMnuCjqkgLEtlfoJ-ndfYbMD10NmmfoV1U7XgbdjuoV5h0Lr30BlcmFqvK_DfbX2HmxIHszEeHG77wlntBgwbsA4KZ_BiOVssIwBerzG4u8bbbl2F13hp6mA7u7Hd8FA8tEbb0urxDG4INjxFj0twwTzbrWfo87u3t_PLyc2Hi6v5-c1Ec8bEhAsuCrlKoRS8iDc6oyyVSb6CTNPSFEJTLcpc5klOk0KKLC8ZlDzRCS0JFJCeodlYt69bGO7BOdV6Gx84KErUNlu1zVbts43Gy9FoffOjN6FTlQ3aOAe1afqgRM4JI1IeBKlkjMuERfDFDuyLyqz-NLAbTwTYCGjfhOBNqWJWD5PqfEz7_51O_9EOPk2Owr11ZjhAq4-Lq_nf7mR0bejMz70bf4oSWZpx9fX9hbp-Iz7dXn-5VDT9DW0p1TY
CitedBy_id crossref_primary_10_1186_1471_2105_9_347
crossref_primary_10_1002_pmic_200800473
crossref_primary_10_1074_mcp_T600049_MCP200
crossref_primary_10_1016_j_drudis_2006_05_011
crossref_primary_10_1021_pr900538e
crossref_primary_10_1111_jam_12339
crossref_primary_10_1186_1477_5956_11_13
crossref_primary_10_1074_mcp_M900483_MCP200
crossref_primary_10_1016_j_jasms_2009_07_024
crossref_primary_10_1074_mcp_M500319_MCP200
crossref_primary_10_1002_pmic_200700502
crossref_primary_10_1186_1471_2105_11_437
crossref_primary_10_1002_jms_5116
crossref_primary_10_1021_pr9006365
crossref_primary_10_4051_ibc_2009_3_0009
crossref_primary_10_1002_pmic_200500856
crossref_primary_10_1021_pr400402s
crossref_primary_10_1074_mcp_M111_008599
crossref_primary_10_1021_cb600357d
crossref_primary_10_47992_IJAEML_2581_7000_0186
crossref_primary_10_1002_pmic_200900074
crossref_primary_10_1016_j_jprot_2015_07_001
crossref_primary_10_1534_genetics_115_185231
crossref_primary_10_1021_pr900907g
crossref_primary_10_1021_pr201041j
crossref_primary_10_1093_nar_gkm848
crossref_primary_10_1186_1471_2105_10_43
crossref_primary_10_1021_pr800002u
crossref_primary_10_1093_nar_gkp099
crossref_primary_10_1007_s13361_013_0591_3
crossref_primary_10_1074_mcp_M800139_MCP200
crossref_primary_10_1074_mcp_T600050_MCP200
crossref_primary_10_1016_j_bbrc_2012_04_100
crossref_primary_10_1021_pr400286p
crossref_primary_10_1002_mas_20291
crossref_primary_10_3390_biology9050104
crossref_primary_10_1002_pmic_200600929
crossref_primary_10_1038_nmeth1088
crossref_primary_10_1074_mcp_M113_032813
crossref_primary_10_1134_S1990750818010043
crossref_primary_10_1186_1471_2105_8_197
crossref_primary_10_1002_mas_20177
crossref_primary_10_1517_17460441_1_5_477
crossref_primary_10_1142_S021972001740011X
crossref_primary_10_1016_j_pneurobio_2012_06_006
crossref_primary_10_1016_j_jprot_2012_06_012
crossref_primary_10_1002_jms_951
crossref_primary_10_1002_elps_200900072
crossref_primary_10_1002_pmic_201100102
crossref_primary_10_1074_mcp_M600320_MCP200
crossref_primary_10_1002_0471142727_mb1021s108
crossref_primary_10_1007_s10495_010_0534_4
crossref_primary_10_1021_pr070540w
crossref_primary_10_1002_pmic_200600814
crossref_primary_10_1002_pmic_200800207
crossref_primary_10_1021_pr200824a
crossref_primary_10_1093_bioinformatics_btm417
crossref_primary_10_3390_ijms130911593
crossref_primary_10_1007_s12566_010_0015_9
crossref_primary_10_1089_omi_2006_10_152
crossref_primary_10_1002_pmic_200500096
crossref_primary_10_1007_s12177_009_9042_6
crossref_primary_10_1016_j_idairyj_2011_10_014
crossref_primary_10_1039_c000896f
crossref_primary_10_1517_17530059_1_3_325
crossref_primary_10_1021_jf504400c
crossref_primary_10_1186_1471_2164_12_358
crossref_primary_10_1016_j_vetimm_2010_10_003
crossref_primary_10_1016_j_mcpro_2021_100171
crossref_primary_10_1016_j_ymeth_2011_01_006
crossref_primary_10_3109_13813450903390039
crossref_primary_10_7717_peerj_1401
crossref_primary_10_1186_1471_2105_12_423
crossref_primary_10_1074_mcp_O110_007088
crossref_primary_10_1039_b705178f
crossref_primary_10_2353_ajpath_2007_070015
crossref_primary_10_1002_pmic_200700139
crossref_primary_10_1371_journal_pone_0062724
crossref_primary_10_1002_pmic_200600273
crossref_primary_10_1021_tx9002808
crossref_primary_10_1002_pmic_200900433
crossref_primary_10_1021_ac801708p
crossref_primary_10_1021_cr068279a
crossref_primary_10_1089_cmb_2007_0119
crossref_primary_10_1104_pp_15_00921
crossref_primary_10_1002_pmic_200600832
crossref_primary_10_1109_TCBB_2012_86
crossref_primary_10_1038_s41587_021_01038_8
crossref_primary_10_1002_prca_200780067
crossref_primary_10_1002_mas_20243
crossref_primary_10_1021_pr800792z
crossref_primary_10_1002_pmic_200600284
crossref_primary_10_1255_ejms_1434
crossref_primary_10_1111_j_1582_4934_2009_00907_x
crossref_primary_10_1016_j_chroma_2007_12_060
crossref_primary_10_1002_pmic_200900108
crossref_primary_10_1021_pr300411q
crossref_primary_10_1016_j_jprot_2010_02_022
crossref_primary_10_1007_s42485_024_00166_4
crossref_primary_10_1021_acs_jproteome_7b00651
crossref_primary_10_1371_journal_pone_0079283
crossref_primary_10_1002_mas_20132
crossref_primary_10_1074_mcp_R111_009522
crossref_primary_10_1116_1_4940705
crossref_primary_10_1021_pr2002879
crossref_primary_10_1021_pr200273r
crossref_primary_10_1021_pr8003216
crossref_primary_10_1186_1479_5876_9_80
crossref_primary_10_1002_pmic_200600295
crossref_primary_10_1021_cr500491u
crossref_primary_10_1002_jnr_22104
crossref_primary_10_1021_pr200828t
crossref_primary_10_1074_mcp_M900134_MCP200
crossref_primary_10_1007_s00018_013_1360_y
crossref_primary_10_1038_nmeth_1333
crossref_primary_10_1094_MPMI_04_20_0082_TA
crossref_primary_10_1002_rcm_8778
crossref_primary_10_1186_1756_0500_7_444
crossref_primary_10_1385_CP_2_1_67
crossref_primary_10_1021_pr200031z
crossref_primary_10_1021_pr400813u
crossref_primary_10_1002_pmic_200700152
crossref_primary_10_1371_journal_pone_0111112
crossref_primary_10_1371_journal_pntd_0004180
crossref_primary_10_1371_journal_pone_0075054
crossref_primary_10_1002_pmic_201000591
crossref_primary_10_1002_prca_200601013
crossref_primary_10_1002_prca_200700217
crossref_primary_10_1021_acs_analchem_2c04722
crossref_primary_10_18097_pbmc20236901046
crossref_primary_10_1007_s00726_010_0614_3
crossref_primary_10_1016_j_aca_2015_02_055
crossref_primary_10_1186_1745_6150_2_26
crossref_primary_10_1186_1745_6150_2_25
crossref_primary_10_4161_15476286_2014_992280
crossref_primary_10_1002_pmic_200600625
crossref_primary_10_1039_C8AN02141D
crossref_primary_10_1016_j_phytochem_2011_01_002
crossref_primary_10_1186_1471_2105_8_133
crossref_primary_10_1134_S0026893319010096
crossref_primary_10_1186_1471_2180_11_63
crossref_primary_10_1371_journal_pcbi_0040012
crossref_primary_10_1016_j_ijfoodmicro_2013_08_019
crossref_primary_10_1021_pr800229j
crossref_primary_10_1002_pmic_200600079
crossref_primary_10_5355_JAST_2010_1
crossref_primary_10_1021_pr3011588
crossref_primary_10_1002_pmic_200600756
crossref_primary_10_1093_nar_gkv145
crossref_primary_10_1016_j_jasms_2007_01_010
crossref_primary_10_1002_elps_200800630
crossref_primary_10_1021_pr8005217
crossref_primary_10_1586_epr_11_54
crossref_primary_10_1002_elps_200500892
crossref_primary_10_1016_j_ymeth_2007_02_019
crossref_primary_10_4137_BMI_S689
crossref_primary_10_1002_rcm_3150
crossref_primary_10_1093_bioinformatics_btm267
crossref_primary_10_1002_rcm_6781
crossref_primary_10_1021_acs_jproteome_0c00670
crossref_primary_10_1089_omi_2011_0137
crossref_primary_10_1002_jms_4446
crossref_primary_10_1128_EC_00040_06
crossref_primary_10_1039_C2MB25415H
crossref_primary_10_1074_mcp_R113_027797
crossref_primary_10_1007_s12217_011_9258_5
crossref_primary_10_1002_pmic_200900492
crossref_primary_10_1074_mcp_M112_021105
crossref_primary_10_1002_pmic_200900254
crossref_primary_10_1021_pr070432
crossref_primary_10_1002_art_23120
crossref_primary_10_1021_pr8010974
crossref_primary_10_1074_mcp_M800215_MCP200
crossref_primary_10_1042_BSR20090045
crossref_primary_10_1021_ac901764g
crossref_primary_10_1016_j_bbapap_2006_11_011
crossref_primary_10_1016_j_jprot_2009_08_004
crossref_primary_10_1002_rcm_2631
crossref_primary_10_1021_acs_analchem_2c03172
crossref_primary_10_1021_pr300781t
crossref_primary_10_1586_14789450_3_6_621
crossref_primary_10_1021_pr500319y
crossref_primary_10_18097_PBMC20176304316
crossref_primary_10_1093_bioinformatics_btn011
crossref_primary_10_1038_s41467_022_34919_w
crossref_primary_10_1134_S0006297912110120
crossref_primary_10_1021_pr700798h
crossref_primary_10_1016_j_forsciint_2017_10_039
crossref_primary_10_1074_mcp_M600469_MCP200
crossref_primary_10_1074_mcp_R112_019554
crossref_primary_10_1002_pmic_201400177
crossref_primary_10_1021_acs_analchem_7b01780
crossref_primary_10_1002_pmic_200900727
crossref_primary_10_1016_j_jasms_2007_04_012
crossref_primary_10_1002_pmic_200700422
crossref_primary_10_4236_ns_2013_58111
crossref_primary_10_1016_j_forsciint_2015_11_009
crossref_primary_10_1038_nbt_2585
crossref_primary_10_1002_pmic_200700419
crossref_primary_10_1007_s00216_010_4093_x
crossref_primary_10_1016_j_neuron_2009_06_011
crossref_primary_10_4049_jimmunol_0902306
crossref_primary_10_1142_S0219720014400010
crossref_primary_10_1074_mcp_M110_001131
crossref_primary_10_1002_jms_4471
crossref_primary_10_1002_0471140864_ps1601s62
crossref_primary_10_1371_journal_pcbi_1005661
crossref_primary_10_1021_pr4004773
crossref_primary_10_1021_pr300083x
crossref_primary_10_1371_journal_pone_0189689
crossref_primary_10_1074_mcp_M600197_MCP200
crossref_primary_10_1021_ac9006107
crossref_primary_10_1074_mcp_M111_010587
crossref_primary_10_1021_pr0703223
crossref_primary_10_1002_pmic_201600332
crossref_primary_10_1186_1471_2105_9_163
crossref_primary_10_1016_j_chroma_2009_02_059
crossref_primary_10_1002_0471140864_ps2502s49
crossref_primary_10_1021_pr1003104
crossref_primary_10_1002_pmic_200900502
crossref_primary_10_1074_mcp_O114_039586
crossref_primary_10_1177_0269881109106931
crossref_primary_10_1021_pr2006268
crossref_primary_10_1021_pr3007123
crossref_primary_10_1002_pmic_200700322
crossref_primary_10_1074_jbc_M115_649806
crossref_primary_10_1021_ac100783x
crossref_primary_10_3390_proteomes8020013
crossref_primary_10_1074_mcp_M800099_MCP200
crossref_primary_10_1586_epr_12_54
crossref_primary_10_1021_pr900189c
crossref_primary_10_1021_pr2002116
crossref_primary_10_1074_mcp_M700558_MCP200
crossref_primary_10_1242_jcs_028597
crossref_primary_10_1002_prca_200700369
crossref_primary_10_1016_j_jprot_2010_08_009
crossref_primary_10_1016_j_jchromb_2024_124128
crossref_primary_10_1128_AEM_03995_13
crossref_primary_10_1002_pmic_200800767
crossref_primary_10_1021_cr068213f
crossref_primary_10_1586_14789450_3_2_165
Cites_doi 10.1016/0960-9822(93)90195-T
10.1002/pmic.200300721
10.1021/pr025556v
10.1074/mcp.R200007-MCP200
10.1007/978-3-642-48380-6
10.1002/1615-9861(200201)2:1<36::AID-PROT36>3.0.CO;2-W
10.1021/ac049717l
10.1021/ac035229m
10.1021/pr0499646
10.1002/pmic.200300686
10.1021/pr049946o
10.1038/nmeth725
10.1002/rcm.1198
10.1002/elps.200490007
10.1016/S1359-6446(03)02978-7
10.1002/pmic.200300652
10.1089/153623102760092805
10.1021/ac0258709
10.1093/bioinformatics/bth092
10.1016/1044-0305(94)80016-2
10.1074/mcp.M300127-MCP200
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1002/(SICI)1522-2683(20000501)21:9<1707::AID-ELPS1707>3.0.CO;2-Q
10.1074/mcp.R300012-MCP200
10.1021/pr034039p
10.1021/pr0498638
10.1021/ac0341261
10.1021/ac034616t
10.1021/pr0499491
10.1074/mcp.T400003-MCP200
10.1074/mcp.T400006-MCP200
10.1038/85686
10.1074/mcp.M200066-MCP200
10.1021/ac025747h
10.1021/ac026424o
10.1038/10890
10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R
10.1038/nbt1031
10.1142/S021972000300023X
ContentType Journal Article
Copyright Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7X8
ADTOC
UNPAY
DOI 10.1002/pmic.200500126
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Engineering Research Database

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Chemistry
EISSN 1615-9861
EndPage 3490
ExternalDocumentID 10.1002/pmic.200500126
16047398
10_1002_pmic_200500126
PMIC200500126
ark_67375_WNG_JD6RTJVH_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5VS
66C
702
7PT
8-1
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
Y6R
ZGI
ZZTAW
~IA
~KM
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RWI
WRC
7QO
8FD
FR3
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c5446-5656b9d3af65b544c7143928da7c1feb6c1c6f8982812b9678f4af52c21f0aba3
IEDL.DBID DR2
ISSN 1615-9853
1615-9861
IngestDate Sun Oct 26 02:51:48 EDT 2025
Thu Oct 02 06:55:04 EDT 2025
Tue Oct 07 09:29:55 EDT 2025
Wed Feb 19 01:53:42 EST 2025
Sat Oct 25 05:14:10 EDT 2025
Thu Apr 24 23:04:10 EDT 2025
Tue Sep 09 05:09:00 EDT 2025
Sun Sep 21 06:18:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5446-5656b9d3af65b544c7143928da7c1feb6c1c6f8982812b9678f4af52c21f0aba3
Notes istex:274E6E5E7BCADE18E26DA80E288C7DCCBE86C014
ArticleID:PMIC200500126
ark:/67375/WNG-JD6RTJVH-1
These authors contributed equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pmic.200500126
PMID 16047398
PQID 19445924
PQPubID 23462
PageCount 16
ParticipantIDs unpaywall_primary_10_1002_pmic_200500126
proquest_miscellaneous_68504099
proquest_miscellaneous_19445924
pubmed_primary_16047398
crossref_citationtrail_10_1002_pmic_200500126
crossref_primary_10_1002_pmic_200500126
wiley_primary_10_1002_pmic_200500126_PMIC200500126
istex_primary_ark_67375_WNG_JD6RTJVH_1
PublicationCentury 2000
PublicationDate 2005-08-01
PublicationDateYYYYMMDD 2005-08-01
PublicationDate_xml – month: 08
  year: 2005
  text: 2005-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Proteomics (Weinheim)
PublicationTitleAlternate Proteomics
PublicationYear 2005
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References Beer, I., Barnea, E., Ziv, T., Admon, A., Proteomics 2004, 4, 950-960.
Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J. et al., Electrophoresis 2000, 21, 1707-1732.
Simpson, R. J., Eur. J. Pharm. Sci. Rev. 2004, 9, 25-36.
Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y. et al., Proteomics 2004, 4, 1985-1988.
Craig, R., Beavis, R. C., Rapid Commun. Mass Spectrom. 2003, 17, 2310-2316.
Eng, J. K., McCormack, A. L., Yates III, J. R., J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
Omenn, G. S., Proteomics 2004, 4, 1235-1240.
Anderson, N. L., Polanski, M., Pieper, R., Gatlin, T. et al., Mol. Cell. Proteomics 2004, 3, 311-326.
Craig, R., Beavis, R. C., Bioinformatics 2004, 20, 1466-1467.
Pappin, D. J., Hojrup, P., Bleasby, A. J., Curr. Biol. 1993, 3, 327-332.
Veenstra, T. D., Conrads, T. P., Issaq, H. J., Electrophoresis 2004, 25, 1278-1279.
Adkins, J. N., Varnum, S. M., Auberry, K. J., Moore, R. J. et al., Mol. Cell. Proteomics 2002, 1, 947-955.
Kearney, P., Thibault, P., J. Bioinform. Comput. Biol. 2003, 1, 183-200.
Moritz, R. L., Ji, H., Schutz, F., Connolly, L. M. et al., Anal. Chem. 2004, 76, 4811-4824.
Anderson, N. L., Anderson, N. G., Mol. Cell. Proteomics 2002, 1, 845-867.
Keil, B., Specificity of Proteolysis, Springer-Verlag, Berlin 1992.
Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F. et al., J. Proteome Res. 2005, 4, 53-62.
Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M. et al., Nat. Biotechnol. 2004, 22, 1459-1466.
Field, H. I., Fenyo, D., Beavis, R. C., Proteomics 2002, 2, 36-47.
Wysocki, V. H., Tsaprailis, G., Smith, L. L., Breci, L. A., J. Mass Spectrom. 2000, 35, 1399-1406.
Resing, K. A., Meyer-Arendt, K., Mendoza, A. M., Aveline-Wolf, L. D. et al., Anal. Chem. 2004, 76, 3556-3568.
Clauser, K., Negvizhskii, A., Carr, S., Aebersold, R., Baldwin, M., Burlingame, A. et al., Mol. Cell. Proteomics 2004, 3, 531-533.
Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L. et al., J. Proteome Res. 2004, 3, 958-964.
Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Anal. Chem. 2002, 74, 5383-5392.
Sadygov, R. G., Cociorva, D., Yates III, J. R., Nat. Methods 2004, 1, 195-202.
Fenyo, D., Beavis, R. C., Anal. Chem. 2003, 75, 768-774.
Washburn, M. P., Wolters, D., Yates, J. R., 3rd, Nat. Biotechnol. 2001, 19, 242-247.
Nesvizhskii, A. I., Aebersold, R., Drug Discov. Today 2004, 9, 173-181.
Baldwin, M. A., Mol. Cell. Proteomics 2004, 3, 1-9.
Olsen, J. V., Ong, S. E., Mann, M., Mol. Cell. Proteomics 2004, 3, 608-614.
Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., Yates, J. R., 3rd, Anal. Chem. 2003, 75, 2470-2477.
Cargile, B. J., Bundy, J. L., Stephenson, J. L., Jr., J. Proteome Res. 2004, 3, 1082-1085.
Reid, G. E., Roberts, K. D., Kapp, E. A., Simpson, R. J., J. Proteome Res. 2004, 3, 751-759.
Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Electrophoresis 1999, 20, 3551-3567.
R Developement Core Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria 2005, http://www.R-project.org.
Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., Gygi, S. P., J. Proteome Res. 2003, 2, 43-50.
Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S. et al., Omics 2002, 6, 207-212.
Marshall, J., Jankowski, A., Furesz, S., Kireeva, I. et al., J. Proteome Res. 2004, 3, 364-382.
Kapp, E. A., Schutz, F., Reid, G. E., Eddes, J. S. et al., Anal. Chem. 2003, 75, 6251-6264.
Link, A. J., Eng, J., Schieltz, D. M., Carmack, E. et al., Nat. Biotechnol. 1999, 17, 676-682.
Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., Anal. Chem. 2003, 75, 4646-4658.
2004; 22
2004; 20
2002; 74
2000; 21
2004; 25
2002; 6
2004; 9
2004; 4
2002; 1
2004; 3
2002; 2
1999; 20
2003; 17
2005
1992
2004; 1
2003; 75
1993; 3
2004; 76
2000; 35
1999; 17
2001; 19
2003; 2
2005; 4
2003; 1
1994; 5
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Simpson R. J. (e_1_2_1_7_2) 2004; 9
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
R Developement Core Team (e_1_2_1_31_2) 2005
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Field, H. I., Fenyo, D., Beavis, R. C., Proteomics 2002, 2, 36-47.
– reference: Cargile, B. J., Bundy, J. L., Stephenson, J. L., Jr., J. Proteome Res. 2004, 3, 1082-1085.
– reference: Kersey, P. J., Duarte, J., Williams, A., Karavidopoulou, Y. et al., Proteomics 2004, 4, 1985-1988.
– reference: Tabb, D. L., MacCoss, M. J., Wu, C. C., Anderson, S. D., Yates, J. R., 3rd, Anal. Chem. 2003, 75, 2470-2477.
– reference: Keller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Anal. Chem. 2002, 74, 5383-5392.
– reference: Moritz, R. L., Ji, H., Schutz, F., Connolly, L. M. et al., Anal. Chem. 2004, 76, 4811-4824.
– reference: Anderson, N. L., Polanski, M., Pieper, R., Gatlin, T. et al., Mol. Cell. Proteomics 2004, 3, 311-326.
– reference: Keil, B., Specificity of Proteolysis, Springer-Verlag, Berlin 1992.
– reference: Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L. et al., J. Proteome Res. 2004, 3, 958-964.
– reference: Beer, I., Barnea, E., Ziv, T., Admon, A., Proteomics 2004, 4, 950-960.
– reference: Veenstra, T. D., Conrads, T. P., Issaq, H. J., Electrophoresis 2004, 25, 1278-1279.
– reference: Marshall, J., Jankowski, A., Furesz, S., Kireeva, I. et al., J. Proteome Res. 2004, 3, 364-382.
– reference: Craig, R., Beavis, R. C., Rapid Commun. Mass Spectrom. 2003, 17, 2310-2316.
– reference: Pappin, D. J., Hojrup, P., Bleasby, A. J., Curr. Biol. 1993, 3, 327-332.
– reference: Simpson, R. J., Eur. J. Pharm. Sci. Rev. 2004, 9, 25-36.
– reference: Pedrioli, P. G., Eng, J. K., Hubley, R., Vogelzang, M. et al., Nat. Biotechnol. 2004, 22, 1459-1466.
– reference: Kearney, P., Thibault, P., J. Bioinform. Comput. Biol. 2003, 1, 183-200.
– reference: Craig, R., Beavis, R. C., Bioinformatics 2004, 20, 1466-1467.
– reference: Washburn, M. P., Wolters, D., Yates, J. R., 3rd, Nat. Biotechnol. 2001, 19, 242-247.
– reference: Perkins, D. N., Pappin, D. J., Creasy, D. M., Cottrell, J. S., Electrophoresis 1999, 20, 3551-3567.
– reference: Eng, J. K., McCormack, A. L., Yates III, J. R., J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.
– reference: Qian, W. J., Liu, T., Monroe, M. E., Strittmatter, E. F. et al., J. Proteome Res. 2005, 4, 53-62.
– reference: Simpson, R. J., Connolly, L. M., Eddes, J. S., Pereira, J. J. et al., Electrophoresis 2000, 21, 1707-1732.
– reference: Olsen, J. V., Ong, S. E., Mann, M., Mol. Cell. Proteomics 2004, 3, 608-614.
– reference: Sadygov, R. G., Cociorva, D., Yates III, J. R., Nat. Methods 2004, 1, 195-202.
– reference: Link, A. J., Eng, J., Schieltz, D. M., Carmack, E. et al., Nat. Biotechnol. 1999, 17, 676-682.
– reference: Wysocki, V. H., Tsaprailis, G., Smith, L. L., Breci, L. A., J. Mass Spectrom. 2000, 35, 1399-1406.
– reference: Anderson, N. L., Anderson, N. G., Mol. Cell. Proteomics 2002, 1, 845-867.
– reference: Fenyo, D., Beavis, R. C., Anal. Chem. 2003, 75, 768-774.
– reference: Kapp, E. A., Schutz, F., Reid, G. E., Eddes, J. S. et al., Anal. Chem. 2003, 75, 6251-6264.
– reference: Keller, A., Purvine, S., Nesvizhskii, A. I., Stolyar, S. et al., Omics 2002, 6, 207-212.
– reference: Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., Gygi, S. P., J. Proteome Res. 2003, 2, 43-50.
– reference: Reid, G. E., Roberts, K. D., Kapp, E. A., Simpson, R. J., J. Proteome Res. 2004, 3, 751-759.
– reference: Baldwin, M. A., Mol. Cell. Proteomics 2004, 3, 1-9.
– reference: Resing, K. A., Meyer-Arendt, K., Mendoza, A. M., Aveline-Wolf, L. D. et al., Anal. Chem. 2004, 76, 3556-3568.
– reference: Nesvizhskii, A. I., Aebersold, R., Drug Discov. Today 2004, 9, 173-181.
– reference: Clauser, K., Negvizhskii, A., Carr, S., Aebersold, R., Baldwin, M., Burlingame, A. et al., Mol. Cell. Proteomics 2004, 3, 531-533.
– reference: Adkins, J. N., Varnum, S. M., Auberry, K. J., Moore, R. J. et al., Mol. Cell. Proteomics 2002, 1, 947-955.
– reference: Omenn, G. S., Proteomics 2004, 4, 1235-1240.
– reference: Nesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., Anal. Chem. 2003, 75, 4646-4658.
– reference: R Developement Core Team, A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria 2005, http://www.R-project.org.
– volume: 3
  start-page: 311
  year: 2004
  end-page: 326
  publication-title: Mol. Cell. Proteomics
– volume: 76
  start-page: 3556
  year: 2004
  end-page: 3568
  publication-title: Anal. Chem.
– volume: 1
  start-page: 195
  year: 2004
  end-page: 202
  publication-title: Nat. Methods
– volume: 21
  start-page: 1707
  year: 2000
  end-page: 1732
  publication-title: Electrophoresis
– volume: 3
  start-page: 1
  year: 2004
  end-page: 9
  publication-title: Mol. Cell. Proteomics
– year: 2005
– volume: 4
  start-page: 950
  year: 2004
  end-page: 960
  publication-title: Proteomics
– volume: 3
  start-page: 327
  year: 1993
  end-page: 332
  publication-title: Curr. Biol.
– volume: 9
  start-page: 25
  year: 2004
  end-page: 36
  publication-title: Eur. J. Pharm. Sci. Rev.
– volume: 3
  start-page: 751
  year: 2004
  end-page: 759
  publication-title: J. Proteome Res.
– volume: 20
  start-page: 3551
  year: 1999
  end-page: 3567
  publication-title: Electrophoresis
– volume: 3
  start-page: 364
  year: 2004
  end-page: 382
  publication-title: J. Proteome Res.
– volume: 25
  start-page: 1278
  year: 2004
  end-page: 1279
  publication-title: Electrophoresis
– volume: 6
  start-page: 207
  year: 2002
  end-page: 212
  publication-title: Omics
– volume: 3
  start-page: 531
  year: 2004
  end-page: 533
  publication-title: Mol. Cell. Proteomics
– volume: 75
  start-page: 768
  year: 2003
  end-page: 774
  publication-title: Anal. Chem.
– volume: 9
  start-page: 173
  year: 2004
  end-page: 181
  publication-title: Drug Discov. Today
– volume: 74
  start-page: 5383
  year: 2002
  end-page: 5392
  publication-title: Anal. Chem.
– year: 1992
– volume: 1
  start-page: 947
  year: 2002
  end-page: 955
  publication-title: Mol. Cell. Proteomics
– volume: 2
  start-page: 36
  year: 2002
  end-page: 47
  publication-title: Proteomics
– volume: 3
  start-page: 958
  year: 2004
  end-page: 964
  publication-title: J. Proteome Res.
– volume: 75
  start-page: 6251
  year: 2003
  end-page: 6264
  publication-title: Anal. Chem.
– volume: 2
  start-page: 43
  year: 2003
  end-page: 50
  publication-title: J. Proteome Res.
– volume: 76
  start-page: 4811
  year: 2004
  end-page: 4824
  publication-title: Anal. Chem.
– volume: 3
  start-page: 1082
  year: 2004
  end-page: 1085
  publication-title: J. Proteome Res.
– volume: 75
  start-page: 2470
  year: 2003
  end-page: 2477
  publication-title: Anal. Chem.
– volume: 19
  start-page: 242
  year: 2001
  end-page: 247
  publication-title: Nat. Biotechnol.
– volume: 1
  start-page: 845
  year: 2002
  end-page: 867
  publication-title: Mol. Cell. Proteomics
– volume: 75
  start-page: 4646
  year: 2003
  end-page: 4658
  publication-title: Anal. Chem.
– volume: 3
  start-page: 608
  year: 2004
  end-page: 614
  publication-title: Mol. Cell. Proteomics
– volume: 5
  start-page: 976
  year: 1994
  end-page: 989
  publication-title: J. Am. Soc. Mass Spectrom.
– volume: 22
  start-page: 1459
  year: 2004
  end-page: 1466
  publication-title: Nat. Biotechnol.
– volume: 20
  start-page: 1466
  year: 2004
  end-page: 1467
  publication-title: Bioinformatics
– volume: 35
  start-page: 1399
  year: 2000
  end-page: 1406
  publication-title: J. Mass Spectrom.
– volume: 17
  start-page: 2310
  year: 2003
  end-page: 2316
  publication-title: Rapid Commun. Mass Spectrom.
– volume: 4
  start-page: 1235
  year: 2004
  end-page: 1240
  publication-title: Proteomics
– volume: 4
  start-page: 1985
  year: 2004
  end-page: 1988
  publication-title: Proteomics
– volume: 4
  start-page: 53
  year: 2005
  end-page: 62
  publication-title: J. Proteome Res.
– volume: 1
  start-page: 183
  year: 2003
  end-page: 200
  publication-title: J. Bioinform. Comput. Biol.
– volume: 17
  start-page: 676
  year: 1999
  end-page: 682
  publication-title: Nat. Biotechnol.
– ident: e_1_2_1_23_2
  doi: 10.1016/0960-9822(93)90195-T
– ident: e_1_2_1_29_2
  doi: 10.1002/pmic.200300721
– volume: 9
  start-page: 25
  year: 2004
  ident: e_1_2_1_7_2
  publication-title: Eur. J. Pharm. Sci. Rev.
– ident: e_1_2_1_26_2
  doi: 10.1021/pr025556v
– ident: e_1_2_1_33_2
  doi: 10.1074/mcp.R200007-MCP200
– ident: e_1_2_1_37_2
  doi: 10.1007/978-3-642-48380-6
– ident: e_1_2_1_18_2
  doi: 10.1002/1615-9861(200201)2:1<36::AID-PROT36>3.0.CO;2-W
– volume-title: A Language and Environment for Statistical Computing
  year: 2005
  ident: e_1_2_1_31_2
– ident: e_1_2_1_28_2
  doi: 10.1021/ac049717l
– ident: e_1_2_1_41_2
  doi: 10.1021/ac035229m
– ident: e_1_2_1_10_2
  doi: 10.1021/pr0499646
– ident: e_1_2_1_2_2
  doi: 10.1002/pmic.200300686
– ident: e_1_2_1_39_2
  doi: 10.1021/pr049946o
– ident: e_1_2_1_17_2
  doi: 10.1038/nmeth725
– ident: e_1_2_1_22_2
  doi: 10.1002/rcm.1198
– ident: e_1_2_1_35_2
  doi: 10.1002/elps.200490007
– ident: e_1_2_1_4_2
  doi: 10.1016/S1359-6446(03)02978-7
– ident: e_1_2_1_20_2
  doi: 10.1002/pmic.200300652
– ident: e_1_2_1_34_2
  doi: 10.1089/153623102760092805
– ident: e_1_2_1_3_2
  doi: 10.1021/ac0258709
– ident: e_1_2_1_21_2
  doi: 10.1093/bioinformatics/bth092
– ident: e_1_2_1_11_2
  doi: 10.1016/1044-0305(94)80016-2
– ident: e_1_2_1_8_2
  doi: 10.1074/mcp.M300127-MCP200
– ident: e_1_2_1_12_2
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– ident: e_1_2_1_32_2
  doi: 10.1002/(SICI)1522-2683(20000501)21:9<1707::AID-ELPS1707>3.0.CO;2-Q
– ident: e_1_2_1_6_2
  doi: 10.1074/mcp.R300012-MCP200
– ident: e_1_2_1_13_2
  doi: 10.1021/pr034039p
– ident: e_1_2_1_40_2
  doi: 10.1021/pr0498638
– ident: e_1_2_1_16_2
  doi: 10.1021/ac0341261
– ident: e_1_2_1_9_2
  doi: 10.1021/ac034616t
– ident: e_1_2_1_42_2
  doi: 10.1021/pr0499491
– ident: e_1_2_1_38_2
  doi: 10.1074/mcp.T400003-MCP200
– ident: e_1_2_1_5_2
  doi: 10.1074/mcp.T400006-MCP200
– ident: e_1_2_1_25_2
  doi: 10.1038/85686
– ident: e_1_2_1_27_2
  doi: 10.1074/mcp.M200066-MCP200
– ident: e_1_2_1_15_2
  doi: 10.1021/ac025747h
– ident: e_1_2_1_19_2
  doi: 10.1021/ac026424o
– ident: e_1_2_1_24_2
  doi: 10.1038/10890
– ident: e_1_2_1_36_2
  doi: 10.1002/1096-9888(200012)35:12<1399::AID-JMS86>3.0.CO;2-R
– ident: e_1_2_1_30_2
  doi: 10.1038/nbt1031
– ident: e_1_2_1_14_2
  doi: 10.1142/S021972000300023X
SSID ssj0017897
Score 2.3355997
Snippet MS/MS and associated database search algorithms are essential proteomic tools for identifying peptides. Due to their widespread use, it is now time to perform...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3475
SubjectTerms Algorithms
Benchmarking
Blood Proteins - chemistry
Computational Biology
Databases, Protein
False Positive Reactions
Humans
Internet
MASCOT
Mass Spectrometry
Mass Spectrometry - methods
PeptideProphet
Peptides - chemistry
Proteomics - methods
Reference Standards
ROC Curve
Sensitivity and Specificity
SEQUEST
Software
Sonar
Spectrum Mill
Trypsin - pharmacology
X!Tandem
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V5FB64JHyMM89oMKhbuONd-3lFrWUKFKjijRQTtY-bBrhOFEbA-FX8JPZh-1SoCoSN9sarXa93-zM7M5-A_AiIhHPKFE-znjkh2nY9UWqen6XSakU0Q6Ey7YY0cEkHJ6QkzXYr-_COH6IZsPNaIZdr42CL1Tm1vnqdB_vLmZTS0NIjNWmN6BNifbIW9CejI76H02spQ22z2JLRlk906DmbvyjgUu2qW1-87e_OZ4bsF4WC776yvP8sk9rjdLBbUjr4bhclM875VLsyO-_MT3-73jvwK3Ka0V9B7O7sJYWHdjsFzpin63QFrJ5pHaDvgPre3UNuQ5s_EJ3uAk_-gW6YBffRrKpgbiNeKEQl7I0zBVIaNU5nXG7jY_mGdLW22ydIcfJna8Q_8Knubn0hQ7Hu4dj5PQV8fzT_Gy6PJ2dv0Zjk5nvSmPYxs2VUpMW5d4dE8s9mBy8Od4b-FVFCF8SHbf6xvsUTPUMvIT-Ik31doZjxSMZZKmgMpA0i5kOIwMsmDbEWcgzgiUOsi4XvHcfWsW8SB8CSjlWvVRHf0TwkMZMMCmkRihTJutSYQ_8GguJrOjSTdWOPHFEzzgxk5E0k-HBy0Z-4YhCrpTcstBqxPTvNOl1EUk-jN4mw3367nj4fpAEHjyvsZfoeTMnObxI5-V5ErAwJDpyvlqCxkQvz4x58MCB9qJTtBtGPRZ78KpB8bU9xhaZ14glR3rlaN4e_Xv7j-GmZcS1eZVPoLU8K9On2tdbimeVKv8EuN5PgQ
  priority: 102
  providerName: Unpaywall
Title An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis
URI https://api.istex.fr/ark:/67375/WNG-JD6RTJVH-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpmic.200500126
https://www.ncbi.nlm.nih.gov/pubmed/16047398
https://www.proquest.com/docview/19445924
https://www.proquest.com/docview/68504099
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pmic.200500126
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1615-9861
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1615-9861
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017897
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6h9lB64JFCMY-yB1Q41I1fa3u5RYUSRWpUNQ2U02ofNo1wnKiJgfAr-MnsI3YaRFUJjmvNWuvdb3Zm1rPfALxKcMLyGEs3yFniRlnkuTyToesRIaTEyoGw2Rb9uDuMehf44totfssP0Ry4ac0w-7VWcMZn7RVp6HQ8MhSEWFtszbnth7GJqc4a_ig_SW11FWW2XaIMU83a6AXt9e5rVmlTT_CPv7mc27BVlVO2-M6KYt2bNebo-D6w-kNsFsrXw2rOD8XPPzge_-dLH8C9pa-KOhZcD-FOVrZgp1OqOH28QPvIZI-aY_kWbB3VleNasH2N5HAHfnVKtOIUP0CiqXx4gFgpEROi0nwViCuFuRwzc3iPJjlSNlsfmCHLxF0sEPvGRoW-6oVOBu2TAbJailjxZXI1ml-OZ2_RQOfj24IY5uX6IqlOhrJty7_yCIbH78-Puu6yDoQrsIpWXe1zciJDDSqunghds50EqWSJ8POMx8IXcZ4SFTz6ASfK_OYRy3EgAj_3GGfhY9goJ2X2BFDGAhlmKubDnEVxSjgRXChcEqlzLWXggFvjgIolSbqu1VFQS-8cUL0YtFkMB1438lNLD3Kj5L6BVSOmplMn1SWYfup_oL138dl572OX-g68rHFH1brp_zeszCbVjPokirCKl2-WiFOsNmVCHNi1gF0NKvaiJCSpA28aBN864sCg8hYxeqr2i6b19F86PYO7hhHX5FU-h435VZW9UL7enO8Zfd6DzWH_tPP5N1FyTcg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6B9hB64JECDa_qwBQOdWM7lm1xyxRKCE2GaVLgppFkm2bqOJk2AcKv4CejlWKHMHQ6A0d7Vh5b-lb78OpbgOcRjUQW0sTxMxE5QRq4jkyTluMypZKEagfCVlv0w85p0P1My2pCPAtj-SGqhBtqhtmvUcExId1csYZOxyPDQUjRZIc3YTMIdbCCftFJxSDlRbHtr6INt8O0aSp5G12_uT5-zS5t4hR__5vTuQW1eTEVi28iz9f9WWOQju6ALD_F1qGcH8xn8kD9-IPl8b--9S7cXrqrpG3xdQ9upEUdttuFDtXHC7JHTAGpyczXoXZYNo-rw9ZvPIfb8LNdkBWt-D5RVfPDfSKKhAil5khZQaTWmbOxMPl7MsmINtuYMyOWjDtfEPFVjHI87UV6g2ZvQKyiEpF_mVyMZmfjy1dkgCX5tieGeTieJcV6KHttKVjuw-nRm-Fhx1m2gnAU1QGrg26nZEkLcSX1HYVt25kfJyJSXpbKUHkqzGKm40fPl0xb4CwQGfWV72WukKL1ADaKSZHuAEmFn7RSHfZRKYIwZpIpqTQ0WYLllonfAKcEAldLnnRs15Fzy_Dsc1wMXi1GA15U8lPLEHKl5J7BVSWmpxPr6iLKP_Xf8u7r8GTY_djhXgN2S-BxvW74C0cU6WR-yT0WBFSHzFdLhDHV-zJjDXhoEbt6qdANohaLG_CygvC1b-wbWF4jxj_oLaO6evQvg3ah1hn2jvnxu_77x3DLEOSaMssnsDG7mKdPtes3k8-Mcv8CnuxQOQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V5FB64JHyMM89oMKhbuONd-3lFrWUKFKjijRQTtY-bBrhOFEbA-FX8JPZh-1SoCoSN9sarXa93-zM7M5-A_AiIhHPKFE-znjkh2nY9UWqen6XSakU0Q6Ey7YY0cEkHJ6QkzXYr-_COH6IZsPNaIZdr42CL1Tm1vnqdB_vLmZTS0NIjNWmN6BNifbIW9CejI76H02spQ22z2JLRlk906DmbvyjgUu2qW1-87e_OZ4bsF4WC776yvP8sk9rjdLBbUjr4bhclM875VLsyO-_MT3-73jvwK3Ka0V9B7O7sJYWHdjsFzpin63QFrJ5pHaDvgPre3UNuQ5s_EJ3uAk_-gW6YBffRrKpgbiNeKEQl7I0zBVIaNU5nXG7jY_mGdLW22ydIcfJna8Q_8Knubn0hQ7Hu4dj5PQV8fzT_Gy6PJ2dv0Zjk5nvSmPYxs2VUpMW5d4dE8s9mBy8Od4b-FVFCF8SHbf6xvsUTPUMvIT-Ik31doZjxSMZZKmgMpA0i5kOIwMsmDbEWcgzgiUOsi4XvHcfWsW8SB8CSjlWvVRHf0TwkMZMMCmkRihTJutSYQ_8GguJrOjSTdWOPHFEzzgxk5E0k-HBy0Z-4YhCrpTcstBqxPTvNOl1EUk-jN4mw3367nj4fpAEHjyvsZfoeTMnObxI5-V5ErAwJDpyvlqCxkQvz4x58MCB9qJTtBtGPRZ78KpB8bU9xhaZ14glR3rlaN4e_Xv7j-GmZcS1eZVPoLU8K9On2tdbimeVKv8EuN5PgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation%2C+comparison%2C+and+accurate+benchmarking+of+several+publicly+available+MS%2FMS+search+algorithms%3A+Sensitivity+and+specificity+analysis&rft.jtitle=Proteomics+%28Weinheim%29&rft.au=Kapp%2C+Eugene+A&rft.au=Schuetz%2C+Frederic&rft.au=Connolly%2C+Lisa+M&rft.au=Chakel%2C+John+A&rft.date=2005-08-01&rft.issn=1615-9853&rft.volume=5&rft.issue=13&rft.spage=3475&rft.epage=3490&rft_id=info:doi/10.1002%2Fpmic.200500126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1615-9853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1615-9853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1615-9853&client=summon