Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative
Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algori...
Saved in:
| Published in | Biomedical engineering online Vol. 15; no. 1; p. 99 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
24.08.2016
BioMed Central Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1475-925X 1475-925X |
| DOI | 10.1186/s12938-016-0225-7 |
Cover
| Abstract | Background
This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues.
Methods
We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance.
Results
The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues.
Conclusions
Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. |
|---|---|
| AbstractList | Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. Methods We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. Results The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Conclusions Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. Keywords: Knee segmentation, Cartilage, Magnetic resonance imaging, Medical image processing BACKGROUNDThis study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues.METHODSWe propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance.RESULTSThe proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues.CONCLUSIONSOur study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. Methods We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. Results The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Conclusions Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. |
| ArticleNumber | 99 |
| Audience | Academic |
| Author | Bui, Toan Duc Ahn, Chunsoo Shin, Jitae Park, Hyunjin Lee, Yong-woo |
| Author_xml | – sequence: 1 givenname: Chunsoo surname: Ahn fullname: Ahn, Chunsoo organization: School of Electronic and Electrical Engineering, Sungkyunkwan University – sequence: 2 givenname: Toan Duc surname: Bui fullname: Bui, Toan Duc organization: School of Electronic and Electrical Engineering, Sungkyunkwan University – sequence: 3 givenname: Yong-woo surname: Lee fullname: Lee, Yong-woo organization: School of Electronic and Electrical Engineering, Sungkyunkwan University – sequence: 4 givenname: Jitae surname: Shin fullname: Shin, Jitae email: jtshin@skku.edu organization: School of Electronic and Electrical Engineering, Sungkyunkwan University – sequence: 5 givenname: Hyunjin surname: Park fullname: Park, Hyunjin organization: School of Electronic and Electrical Engineering, Sungkyunkwan University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27558127$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl2L1DAUhousuB_6A7yRgDcKdk3Sby-EZXF1YEVY98K7cJqezmRNkzFJR-dv-ItN7ag7IosEmkPzvG-SN-c4OTDWYJI8ZvSUsbp86RlvsjqlrEwp50Va3UuOWF4VacOLTwe36sPk2PsbSjmlZfMgOeRVUdSMV0fJ94tR6y2BMdgBAnYviMYNauIxpC147GK1HNAECMoa0ltHPhtE8v5q4cnolVkSMAQ6WAe1wWldxu9o5E8cTEcCDmsdrV-RDgKQ3tmBhBUS6wNacGHlVFCeKBMnmEweJvd70B4f7eaT5PrizfX5u_Tyw9vF-dllKos8CymipA2jWNWUNlXbYJ5DwaFraN02LfS0yJuGZ7Iv86yIRZ-1Oc_zvmRFX8gqO0n4bDuaNWy_gtZi7dQAbisYFVO-Ys5XxHzFlK-YRK9n0XpsB-xkDMbBH6EFJfZXjFqJpd2IeJaqrOpo8Gxn4OyXEX0Qg_IStQaDdvSC1SwvS5qVWUSfzugSNAplehsd5YSLs7ysa56VzWR4-g8qjg4HJWO_9Cr-3xM83xNEJuC3sITRe7H4eLXPPrl93d_3_NU_EWAzIJ313mH_XxlWf2mkmtsrnlzpO5W7J_NxF7NEJ27s6ExskjtEPwDKkfoF |
| CitedBy_id | crossref_primary_10_1016_j_arth_2019_07_022 crossref_primary_10_1049_ipr2_12045 crossref_primary_10_1186_s12891_021_04376_5 crossref_primary_10_1177_1947603518783481 crossref_primary_10_1155_2020_6613191 crossref_primary_10_2174_1573405620666230515090557 crossref_primary_10_3390_jcm11030548 crossref_primary_10_1007_s10462_020_09924_4 crossref_primary_10_1002_mrm_27920 crossref_primary_10_3233_THC_212890 crossref_primary_10_1016_j_compbiomed_2017_07_008 crossref_primary_10_1007_s10439_018_02184_y crossref_primary_10_1007_s11548_020_02116_z crossref_primary_10_1515_biol_2022_0611 crossref_primary_10_3390_app12126097 crossref_primary_10_1007_s10334_021_00934_z |
| Cites_doi | 10.1016/j.compmedimag.2005.10.001 10.1007/s11517-011-0838-8 10.1145/2557977.2558036 10.1109/TMI.2004.824224 10.1016/j.compbiomed.2010.10.007 10.7326/0003-4819-133-8-200010170-00016 10.1109/ISBI.2012.6235733 10.1016/j.mri.2013.05.002 10.1109/TBME.2010.2058112 10.1515/bmt-2012-4500 10.1109/tip.2008.2004611 10.1109/TBME.2012.2186612 10.1016/j.joca.2008.06.016 10.1016/j.media.2011.01.007 10.1007/11566465_41 10.1007/11505730_34 10.1016/j.neuroimage.2009.09.062 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2016 COPYRIGHT 2016 BioMed Central Ltd. |
| Copyright_xml | – notice: The Author(s) 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12938-016-0225-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1475-925X |
| EndPage | 99 |
| ExternalDocumentID | 10.1186/s12938-016-0225-7 PMC4997678 A468823698 27558127 10_1186_s12938_016_0225_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2013R1A1A2008593 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: ; grantid: NRF-2013R1A1A2008593 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5GY 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AASML AAWTL ABDBF ABJCF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FRP FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE I-F IAO IGS IHR INH INR ISR ITC KQ8 L6V LK8 M1P M48 M7P M7S MK~ ML~ M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO RBZ RNS ROL RPM RSV SEG SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c543t-eec0910e780097b9e44a52ad908b9baf0549923cf6435923f3b4244f615f5c73 |
| IEDL.DBID | M48 |
| ISSN | 1475-925X |
| IngestDate | Wed Oct 29 12:18:29 EDT 2025 Tue Sep 30 16:38:48 EDT 2025 Fri Sep 05 11:32:18 EDT 2025 Mon Oct 20 22:36:56 EDT 2025 Mon Oct 20 16:23:02 EDT 2025 Thu Oct 16 14:38:35 EDT 2025 Thu Apr 03 06:56:40 EDT 2025 Wed Oct 01 00:48:12 EDT 2025 Thu Apr 24 22:52:43 EDT 2025 Sat Sep 06 07:30:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Medical image processing Knee segmentation Cartilage Magnetic resonance imaging |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-eec0910e780097b9e44a52ad908b9baf0549923cf6435923f3b4244f615f5c73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-016-0225-7 |
| PMID | 27558127 |
| PQID | 1814660363 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1186_s12938_016_0225_7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4997678 proquest_miscellaneous_1814660363 gale_infotracmisc_A468823698 gale_infotracacademiconefile_A468823698 gale_incontextgauss_ISR_A468823698 pubmed_primary_27558127 crossref_primary_10_1186_s12938_016_0225_7 crossref_citationtrail_10_1186_s12938_016_0225_7 springer_journals_10_1186_s12938_016_0225_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-24 |
| PublicationDateYYYYMMDD | 2016-08-24 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-24 day: 24 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Biomedical engineering online |
| PublicationTitleAbbrev | BioMed Eng OnLine |
| PublicationTitleAlternate | Biomed Eng Online |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | 225_CR9 225_CR15 BB Avants (225_CR17) 2010; 49 YS Ababneh (225_CR7) 2011; 15 SK Chuang (225_CR14) 2006; 30 GC Peterfy (225_CR16) 2008; 16 P Dodin (225_CR11) 2011; 49 N Gordillo (225_CR1) 2013; 31 S Lankton (225_CR13) 2008; 17 DT Felson (225_CR2) 2000; 133 A Ringenbach (225_CR4) 2012; 57 V Grau (225_CR3) 2004; 23 GJ Tamez-Pena (225_CR6) 2012; 59 NB Li (225_CR12) 2011; 41 P Dodin (225_CR10) 2010; 57 225_CR5 225_CR18 225_CR8 23790354 - Magn Reson Imaging. 2013 Oct;31(8):1426-38 18786841 - Osteoarthritis Cartilage. 2008 Dec;16(12):1433-41 15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58 21474362 - Med Image Anal. 2011 Aug;15(4):438-48 20639173 - IEEE Trans Biomed Eng. 2010 Nov;57(11):null 16685862 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):327-34 16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15 24443678 - Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1028-1031 19818860 - Neuroimage. 2010 Feb 1;49(3):2457-66 18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39 17354713 - Inf Process Med Imaging. 2005;19:406-17 21074756 - Comput Biol Med. 2011 Jan;41(1):1-10 22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24 11033593 - Ann Intern Med. 2000 Oct 17;133(8):635-46 22318477 - IEEE Trans Biomed Eng. 2012 Apr;59(4):1177-86 |
| References_xml | – volume: 30 start-page: 9 issue: 1 year: 2006 ident: 225_CR14 publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2005.10.001 – volume: 49 start-page: 1413 issue: 12 year: 2011 ident: 225_CR11 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-011-0838-8 – ident: 225_CR15 doi: 10.1145/2557977.2558036 – volume: 23 start-page: 447 issue: 4 year: 2004 ident: 225_CR3 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2004.824224 – volume: 41 start-page: 1 issue: 1 year: 2011 ident: 225_CR12 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2010.10.007 – volume: 133 start-page: 635 issue: 8 year: 2000 ident: 225_CR2 publication-title: Ann Intern Med doi: 10.7326/0003-4819-133-8-200010170-00016 – ident: 225_CR18 – ident: 225_CR5 doi: 10.1109/ISBI.2012.6235733 – volume: 31 start-page: 1426 issue: 8 year: 2013 ident: 225_CR1 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2013.05.002 – volume: 57 start-page: 2699 issue: 11 year: 2010 ident: 225_CR10 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2010.2058112 – volume: 57 start-page: 0 year: 2012 ident: 225_CR4 publication-title: Biomed Eng Biomed Tech doi: 10.1515/bmt-2012-4500 – volume: 17 start-page: 2029 issue: 11 year: 2008 ident: 225_CR13 publication-title: IEEE Trans Image Process doi: 10.1109/tip.2008.2004611 – volume: 59 start-page: 1177 issue: 4 year: 2012 ident: 225_CR6 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2186612 – volume: 16 start-page: 1433 issue: 12 year: 2008 ident: 225_CR16 publication-title: Osteoarthritis Cartilage doi: 10.1016/j.joca.2008.06.016 – volume: 15 start-page: 438 issue: 4 year: 2011 ident: 225_CR7 publication-title: Med Image Anal doi: 10.1016/j.media.2011.01.007 – ident: 225_CR8 doi: 10.1007/11566465_41 – ident: 225_CR9 doi: 10.1007/11505730_34 – volume: 49 start-page: 2457 issue: 3 year: 2010 ident: 225_CR17 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.062 – reference: 18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39 – reference: 17354713 - Inf Process Med Imaging. 2005;19:406-17 – reference: 21074756 - Comput Biol Med. 2011 Jan;41(1):1-10 – reference: 16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15 – reference: 22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24 – reference: 23790354 - Magn Reson Imaging. 2013 Oct;31(8):1426-38 – reference: 19818860 - Neuroimage. 2010 Feb 1;49(3):2457-66 – reference: 15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58 – reference: 11033593 - Ann Intern Med. 2000 Oct 17;133(8):635-46 – reference: 22318477 - IEEE Trans Biomed Eng. 2012 Apr;59(4):1177-86 – reference: 20639173 - IEEE Trans Biomed Eng. 2010 Nov;57(11):null – reference: 21474362 - Med Image Anal. 2011 Aug;15(4):438-48 – reference: 18786841 - Osteoarthritis Cartilage. 2008 Dec;16(12):1433-41 – reference: 24443678 - Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1028-1031 – reference: 16685862 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):327-34 |
| SSID | ssj0020069 |
| Score | 2.2050743 |
| Snippet | Background
This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate... This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of... Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate... BACKGROUNDThis study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 99 |
| SubjectTerms | Adult Aged Algorithms Automation Biomaterials Biomedical Engineering and Bioengineering Biomedical Engineering/Biotechnology Biotechnology Cartilage, Articular - diagnostic imaging Case-Control Studies Diagnosis Engineering Fuzzy Logic Humans Image Processing, Computer-Assisted - methods Image segmentation Knee Joint - diagnostic imaging Magnetic Resonance Imaging Methods Middle Aged Osteoarthritis Osteoarthritis - diagnostic imaging Signal-To-Noise Ratio |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0gtoH0foVrbKKIFiDyeZr41spllY4H2qFvi2bze61GPcOkyD9N_yLncnthUuRii9HYCd7uczszuzNb34D8EbEsdY25iEfSLWTMgtFYlRIOSSLRhIZQbXDsy_50bf081l25smiqRZmM38fi_xDS_6I4FYElaXOqzfhFvqofMjL5gfj2YoYd33S8q-3TdzO1c13w_tcRUaO6dFtuNO7pbr8pZpmwwMd3od7PnRk-ytdP4Abxu3A9gah4A7cnvlU-UP4TYfLS6b6boFBqanfs4bwQaw1XUiuq8ar-Q9feeQYxq7sO87DZifHLSM0_Jwpx1StlrQh0rjGT_SCg7hyNSNWqwan_sgIZsqoUIVhOMmobGSBFnk-8CWxC4InDfTij-D08NPpwVHoGzCEOkuTLjRGUzhhCkHlHlVp0lRlXNVlJKqyUjaiwyVPtMWwJsMLm1RUN2cxSrKZLpLHsOUWzjwFlsSW6zqJuKVmx8oKk5dpERWV5jyqizKAaK0eqT05OfXIaORwSBG5XGlUEiCNNCqLAN6NtyxXzBzXCb8mnUtivHAEqZmrvm3l8dcTuZ_mgrq-lyKAt17ILvDLtfIVCvgTiCRrIrk7kcQlqSfDr9amJWmIcGzOLPpWxvSPa07J8wCerExtfHheZBmGW_isxcQIRwFiAp-OuIvzgREc1VBg1BHA3tpcpd-K2uveyd5o0f9-g8_-a-7ncJcPiw-34XQXtrqfvXmB0VtXvRzW7R9OjTuL priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULah98FJvq1VGEQRrtskkk4tvi1haYYvUFlb6ECaTmW3ZmF1MglT8Ff5iz0my62aRig--hIE5CZPJuXyTOecbgJeh4yhlHG7xmlTbjYQVulpatIdkUElsHVLt8OjIPzj1PozFeAPOFrUwTdE5jc_Svwn5rIY2YrBakp7Vfhwbaro3T01j_qG_V1AEowQtSq6ls1qvwaYvEKj3YPP06OPwc11vFAgr4mLc7nP-8b5OpFr31ysBaz2ZcrmjugU3qnwuL7_JLFsJWvu34cfidZtclemgKpOB-r7GBPmf5uMO3GrBLhs22nkXNnS-DVsrFIjbcH3Ubu7fg5-0HL5ksipnCKN1-oZllNHECl1aFGxTbE2-tLVSOUO0zab4HDY6PiwY5e9PmMyZTOWcXDj1K7xi3K7FZZ4y4uHK8NFvGSXGMiqtYQiAGRW6zNCGzmuGJ3ZBCVU1Ifp9ONl_f_LuwGqPjLCU8NzS0loRANJBSAUqSaQ9Twou08gOkyiRxqblMHeVQSAmsGHchCr9DOI6I1TgPoBePsv1I2CuY7hKXZsbOp5ZmlD7kRfYQaI4t9Mg6oO90I5YtXTqdKpHFtfLqtCPm4mPKYWOJj4O-vB6ecu84RK5SvgFqVxMHB05JQFNZFUU8eGn43jo-SGdUx-FfXjVCpkZfXnZ1lTgKxCtV0dypyOJTkR1up8vNDumLsq8y_WsKmKH_hH7tN3fh4eNpi8HzwMhECDiWIOODSwFiLu825NfnNcc5vgZAsRJfdhdWEvcOs_iqjnZXRrU32fw8T9JP4GbvLYRDBzeDvTKr5V-inizTJ61fuMXIJB7HQ priority: 102 providerName: Unpaywall |
| Title | Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative |
| URI | https://link.springer.com/article/10.1186/s12938-016-0225-7 https://www.ncbi.nlm.nih.gov/pubmed/27558127 https://www.proquest.com/docview/1814660363 https://pubmed.ncbi.nlm.nih.gov/PMC4997678 https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-016-0225-7 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RBZ dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: KQ8 dateStart: 20020501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DOA dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M~E dateStart: 20020101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1475-925X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: M48 dateStart: 20020501 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: AAJSJ dateStart: 20021201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 1475-925X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020069 issn: 1475-925X databaseCode: C6C dateStart: 20020112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwED7tRYLtA4IBozAqg5CQ2AJp3pwgIVSqlQ2p1VRWqXyyHMfuJkJallbQv8Ev5i5No2aahvgSJfLFSew73zl39xzAq7DVUsq0HMspQLXdyLdCV0uLfEgGmcTWIeUO9_rBydD7MvJHG7Aqb1UOYH7j1o7qSQ2v0re_fy4-osB_KAQ-DN7lpLMoJIvCaak66yZso6KKqJJDz6ucCrR5jkrH5o231VTT9QV6TUNdj56sXKi7cHeeTeXil0zTNS3VvQ_3SvOStZf88AA2dLYHu2ugg3twp1e60x_CH9qALpiczyZouOrkiKUUQ8RyPbNIvSV4Nv5RZidlDO1b9h37Yb3Bac4oYn7MZMZkIqe0aFK7wiNqyoJcZgkj5KsUu37PKBSVUTILQ5OTUWrJBLn2osBUYpcUwlRAkD-C8-7xeefEKos0WMr33JmltSKTQ_OQUkLiSHue9B2ZRHYYR7E0Nm1AHVcZNH18PDFuTLl1Bi0p4yvuPoatbJLpJ8DclnFU4tqOoYLI0oQ6iDxu81g5jp3wqAH2anqEKgHMqY5GKoqNTBiI5YwKClqjGRW8AW-qW6ZL9I7biF_SnAtCxcgo7GYs53kuTr8ORNsLQqoMH4UNeF0SmQk-XMkyiwE_gYC0apQHNUoUW1VrfrFiLUFNFOuW6ck8Fy36KxuQg70B-0tWq17e4b6PJhm-K68xYUVAaOH1luzyokANx2ngaJk04HDFrmIlbbeNyWHF0f8ewaf_1fcz2HEK4cOl2juArdnVXD9HC28WN2GTjzgew-7nJmx_Ou6fDfCqE3SaxT-TZiHX2DLsn7W__QVZwlD_ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgk9j2gGB8FQYYhITEiMh3HN4qxNSWdQ9bkfZmOY7dTQtORRKh_Rv8xdylTtRMaIiXKpIvbpo7-8693_2OkHfM86TUnu_4Lal2kEYOC5RwMIekwUhcxbB2eH4ST76Hs_Po3NZxVx3avUtJtjt1u6xZ_KlCz4TAKwTNYg_Wu2QbMVawGrfH49nZrD9nIfuuTWD-9caBC7q5EW94opsoyT5Vukd2GrMS179EUWx4o6MH5L4NI-l4rfeH5I4y-2Rvg1xwn9yb27T5I_IbD5rXVDR1CQGqyj_SArFCtFK1g24sh6vlD1uFZCjEsfQK5qHz02lFERm_pMJQkYsVbo44LuETPGIrLkxOkeGqgKk_U4ScUixaoRBaUiwhKcE6L1ruJHqJUKWWavwxWRx9XXyZOLYZgyOjMKgdpSSGFiphWPqRpSoMReSLPHVZlmZCu3jQ9AOpIcSJ4EIHGdbQaYiYdCST4AnZMqVRzwgNPO3LPHB9jY2PhWYqTsPETTLp-26epCPidurh0hKVY7-MgrcHFhbztUY5gtNQozwZkQ_9Las1S8dtwm9R5xzZLwzCa5aiqSo-PTvl4zBm2AE-ZSPy3grpEr5cClutAD8BCbMGkgcDSViecjD8pjMtjkOIaTOqbCru4b-vMSbSR-Tp2tT6h_eTKILQC541GRhhL4Cs4MMRc3nRsoODGhKIQEbksDNXbrel6rZ3cthb9L_f4PP_mvs12Zks5sf8eHry7QXZ9duFCNtzeEC26p-NeglRXZ29sqv4D0knQ-Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ta9RAEF60QrUfROtLo1VXEQRraLJ52_itnB499YrUCv22bDa719K4OUyC9G_4i51JcuFSpOKXI7CTvVxmdmf25plnCHnNfV8p4zOXtaTaQRq5PNDSxRySASPxNMfa4flRfPg9_HQanfZ9TqsV2n2VkuxqGpClydb7y9x0S5zH-xV6KQRhIYAW-7HeJLdCcG7YwmAST4YTF_Lw9qnMv942ckZXt-Q1n3QVLzkkTbfI7cYu5eUvWRRrfml6j9ztA0p60FnAfXJD222ytUYzuE02530C_QH5jUfOSyqbuoRQVefvaIGoIVrp2kWHlsPV4kdfj2QpRLT0Auah8-NZRREjv6DSUpnLJW6TOK7gE3xjKy5tTpHrqoCp31MEn1IsX6EQZFIsJinBTs9aFiV6jqCllnT8ITmZfjyZHLp9WwZXRWFQu1orDDJ0wrEIJEt1GMqIyTz1eJZm0nh45GSBMhDsRHBhggyr6QzETiZSSfCIbNjS6h1CA98wlQceM9gCWRqu4zRMvCRTjHl5kjrEW6lHqJ6yHDtnFKI9uvBYdBoVCFNDjYrEIW-HW5YdX8d1wq9Q5wJ5MCwCbRayqSox-3YsDsKYYy_4lDvkTS9kSvhyJfu6BfgJSJ01ktwdScJCVaPhlyvTEjiE6Dary6YSPv4PG2NK3SGPO1MbHp4lUQSGDc-ajIxwEEB-8PGIPT9recJBDQnEIg7ZW5mr6Deo6rp3sjdY9L_f4JP_mvsF2fz6YSq-zI4-PyV3WLsOYZ8Od8lG_bPRzyC8q7Pn7RL-A8lnRsE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULah98FJvq1VGEQRrtskkk4tvi1haYYvUFlb6ECaTmW3ZmF1MglT8Ff5iz0my62aRig--hIE5CZPJuXyTOecbgJeh4yhlHG7xmlTbjYQVulpatIdkUElsHVLt8OjIPzj1PozFeAPOFrUwTdE5jc_Svwn5rIY2YrBakp7Vfhwbaro3T01j_qG_V1AEowQtSq6ls1qvwaYvEKj3YPP06OPwc11vFAgr4mLc7nP-8b5OpFr31ysBaz2ZcrmjugU3qnwuL7_JLFsJWvu34cfidZtclemgKpOB-r7GBPmf5uMO3GrBLhs22nkXNnS-DVsrFIjbcH3Ubu7fg5-0HL5ksipnCKN1-oZllNHECl1aFGxTbE2-tLVSOUO0zab4HDY6PiwY5e9PmMyZTOWcXDj1K7xi3K7FZZ4y4uHK8NFvGSXGMiqtYQiAGRW6zNCGzmuGJ3ZBCVU1Ifp9ONl_f_LuwGqPjLCU8NzS0loRANJBSAUqSaQ9Twou08gOkyiRxqblMHeVQSAmsGHchCr9DOI6I1TgPoBePsv1I2CuY7hKXZsbOp5ZmlD7kRfYQaI4t9Mg6oO90I5YtXTqdKpHFtfLqtCPm4mPKYWOJj4O-vB6ecu84RK5SvgFqVxMHB05JQFNZFUU8eGn43jo-SGdUx-FfXjVCpkZfXnZ1lTgKxCtV0dypyOJTkR1up8vNDumLsq8y_WsKmKH_hH7tN3fh4eNpi8HzwMhECDiWIOODSwFiLu825NfnNcc5vgZAsRJfdhdWEvcOs_iqjnZXRrU32fw8T9JP4GbvLYRDBzeDvTKr5V-inizTJ61fuMXIJB7HQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automated%2C+level+set-based+segmentation+for+knee+MRIs+using+an+adaptive+force+function+and+template%3A+data+from+the+osteoarthritis+initiative&rft.jtitle=Biomedical+engineering+online&rft.au=Ahn%2C+Chunsoo&rft.au=Bui%2C+Toan+Duc&rft.au=Lee%2C+Yong-woo&rft.au=Shin%2C+Jitae&rft.date=2016-08-24&rft.pub=BioMed+Central&rft.eissn=1475-925X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-016-0225-7&rft.externalDocID=10_1186_s12938_016_0225_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon |