Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative

Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algori...

Full description

Saved in:
Bibliographic Details
Published inBiomedical engineering online Vol. 15; no. 1; p. 99
Main Authors Ahn, Chunsoo, Bui, Toan Duc, Lee, Yong-woo, Shin, Jitae, Park, Hyunjin
Format Journal Article
LanguageEnglish
Published London BioMed Central 24.08.2016
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1475-925X
1475-925X
DOI10.1186/s12938-016-0225-7

Cover

Abstract Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. Methods We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. Results The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Conclusions Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.
AbstractList Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. Methods We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. Results The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Conclusions Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods. Keywords: Knee segmentation, Cartilage, Magnetic resonance imaging, Medical image processing
BACKGROUNDThis study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues.METHODSWe propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance.RESULTSThe proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues.CONCLUSIONSOur study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.
This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.
Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. Methods We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. Results The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Conclusions Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.
This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of cartilage structures. Existing approaches to cartilage segmentation of knee imaging suffer from either lack of fully automatic algorithm, sub-par segmentation accuracy, or failure to consider all three cartilage tissues. We propose a novel segmentation algorithm for knee cartilages with level set-based segmentation method and novel template data. We used 20 normal subjects from osteoarthritis initiative database to construct new template data. We adopt spatial fuzzy C-mean clustering for automatic initialization of contours. Force function of our algorithm is modified to improve segmentation performance. The proposed algorithm resulted in dice similarity coefficients (DSCs) of 87.1, 84.8 and 81.7 % for the femoral, patellar, and tibial cartilage, respectively from 10 subjects. The DSC results showed improvements of 8.8, 4.3 and 3.5 % for the femoral, patellar, and tibial cartilage respectively compared to existing approaches. Our algorithm could be applied to all three cartilage structures unlike existing approaches that considered only two cartilage tissues. Our study proposes a novel fully automated segmentation algorithm adapted for three types of knee cartilage tissues. We leverage state-of-the-art level set approach with newly constructed knee template. The experimental results show that the proposed method improves the performance by an average of 5 % over existing methods.
ArticleNumber 99
Audience Academic
Author Bui, Toan Duc
Ahn, Chunsoo
Shin, Jitae
Park, Hyunjin
Lee, Yong-woo
Author_xml – sequence: 1
  givenname: Chunsoo
  surname: Ahn
  fullname: Ahn, Chunsoo
  organization: School of Electronic and Electrical Engineering, Sungkyunkwan University
– sequence: 2
  givenname: Toan Duc
  surname: Bui
  fullname: Bui, Toan Duc
  organization: School of Electronic and Electrical Engineering, Sungkyunkwan University
– sequence: 3
  givenname: Yong-woo
  surname: Lee
  fullname: Lee, Yong-woo
  organization: School of Electronic and Electrical Engineering, Sungkyunkwan University
– sequence: 4
  givenname: Jitae
  surname: Shin
  fullname: Shin, Jitae
  email: jtshin@skku.edu
  organization: School of Electronic and Electrical Engineering, Sungkyunkwan University
– sequence: 5
  givenname: Hyunjin
  surname: Park
  fullname: Park, Hyunjin
  organization: School of Electronic and Electrical Engineering, Sungkyunkwan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27558127$$D View this record in MEDLINE/PubMed
BookMark eNqNkl2L1DAUhousuB_6A7yRgDcKdk3Sby-EZXF1YEVY98K7cJqezmRNkzFJR-dv-ItN7ag7IosEmkPzvG-SN-c4OTDWYJI8ZvSUsbp86RlvsjqlrEwp50Va3UuOWF4VacOLTwe36sPk2PsbSjmlZfMgOeRVUdSMV0fJ94tR6y2BMdgBAnYviMYNauIxpC147GK1HNAECMoa0ltHPhtE8v5q4cnolVkSMAQ6WAe1wWldxu9o5E8cTEcCDmsdrV-RDgKQ3tmBhBUS6wNacGHlVFCeKBMnmEweJvd70B4f7eaT5PrizfX5u_Tyw9vF-dllKos8CymipA2jWNWUNlXbYJ5DwaFraN02LfS0yJuGZ7Iv86yIRZ-1Oc_zvmRFX8gqO0n4bDuaNWy_gtZi7dQAbisYFVO-Ys5XxHzFlK-YRK9n0XpsB-xkDMbBH6EFJfZXjFqJpd2IeJaqrOpo8Gxn4OyXEX0Qg_IStQaDdvSC1SwvS5qVWUSfzugSNAplehsd5YSLs7ysa56VzWR4-g8qjg4HJWO_9Cr-3xM83xNEJuC3sITRe7H4eLXPPrl93d_3_NU_EWAzIJ313mH_XxlWf2mkmtsrnlzpO5W7J_NxF7NEJ27s6ExskjtEPwDKkfoF
CitedBy_id crossref_primary_10_1016_j_arth_2019_07_022
crossref_primary_10_1049_ipr2_12045
crossref_primary_10_1186_s12891_021_04376_5
crossref_primary_10_1177_1947603518783481
crossref_primary_10_1155_2020_6613191
crossref_primary_10_2174_1573405620666230515090557
crossref_primary_10_3390_jcm11030548
crossref_primary_10_1007_s10462_020_09924_4
crossref_primary_10_1002_mrm_27920
crossref_primary_10_3233_THC_212890
crossref_primary_10_1016_j_compbiomed_2017_07_008
crossref_primary_10_1007_s10439_018_02184_y
crossref_primary_10_1007_s11548_020_02116_z
crossref_primary_10_1515_biol_2022_0611
crossref_primary_10_3390_app12126097
crossref_primary_10_1007_s10334_021_00934_z
Cites_doi 10.1016/j.compmedimag.2005.10.001
10.1007/s11517-011-0838-8
10.1145/2557977.2558036
10.1109/TMI.2004.824224
10.1016/j.compbiomed.2010.10.007
10.7326/0003-4819-133-8-200010170-00016
10.1109/ISBI.2012.6235733
10.1016/j.mri.2013.05.002
10.1109/TBME.2010.2058112
10.1515/bmt-2012-4500
10.1109/tip.2008.2004611
10.1109/TBME.2012.2186612
10.1016/j.joca.2008.06.016
10.1016/j.media.2011.01.007
10.1007/11566465_41
10.1007/11505730_34
10.1016/j.neuroimage.2009.09.062
ContentType Journal Article
Copyright The Author(s) 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright_xml – notice: The Author(s) 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12938-016-0225-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1475-925X
EndPage 99
ExternalDocumentID 10.1186/s12938-016-0225-7
PMC4997678
A468823698
27558127
10_1186_s12938_016_0225_7
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2013R1A1A2008593
  funderid: http://dx.doi.org/10.13039/501100003725
– fundername: ;
  grantid: NRF-2013R1A1A2008593
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5GY
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAWTL
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FRP
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
I-F
IAO
IGS
IHR
INH
INR
ISR
ITC
KQ8
L6V
LK8
M1P
M48
M7P
M7S
MK~
ML~
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
RBZ
RNS
ROL
RPM
RSV
SEG
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c543t-eec0910e780097b9e44a52ad908b9baf0549923cf6435923f3b4244f615f5c73
IEDL.DBID M48
ISSN 1475-925X
IngestDate Wed Oct 29 12:18:29 EDT 2025
Tue Sep 30 16:38:48 EDT 2025
Fri Sep 05 11:32:18 EDT 2025
Mon Oct 20 22:36:56 EDT 2025
Mon Oct 20 16:23:02 EDT 2025
Thu Oct 16 14:38:35 EDT 2025
Thu Apr 03 06:56:40 EDT 2025
Wed Oct 01 00:48:12 EDT 2025
Thu Apr 24 22:52:43 EDT 2025
Sat Sep 06 07:30:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Medical image processing
Knee segmentation
Cartilage
Magnetic resonance imaging
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-eec0910e780097b9e44a52ad908b9baf0549923cf6435923f3b4244f615f5c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12938-016-0225-7
PMID 27558127
PQID 1814660363
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1186_s12938_016_0225_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4997678
proquest_miscellaneous_1814660363
gale_infotracmisc_A468823698
gale_infotracacademiconefile_A468823698
gale_incontextgauss_ISR_A468823698
pubmed_primary_27558127
crossref_primary_10_1186_s12938_016_0225_7
crossref_citationtrail_10_1186_s12938_016_0225_7
springer_journals_10_1186_s12938_016_0225_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-24
PublicationDateYYYYMMDD 2016-08-24
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-24
  day: 24
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Biomedical engineering online
PublicationTitleAbbrev BioMed Eng OnLine
PublicationTitleAlternate Biomed Eng Online
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References 225_CR9
225_CR15
BB Avants (225_CR17) 2010; 49
YS Ababneh (225_CR7) 2011; 15
SK Chuang (225_CR14) 2006; 30
GC Peterfy (225_CR16) 2008; 16
P Dodin (225_CR11) 2011; 49
N Gordillo (225_CR1) 2013; 31
S Lankton (225_CR13) 2008; 17
DT Felson (225_CR2) 2000; 133
A Ringenbach (225_CR4) 2012; 57
V Grau (225_CR3) 2004; 23
GJ Tamez-Pena (225_CR6) 2012; 59
NB Li (225_CR12) 2011; 41
P Dodin (225_CR10) 2010; 57
225_CR5
225_CR18
225_CR8
23790354 - Magn Reson Imaging. 2013 Oct;31(8):1426-38
18786841 - Osteoarthritis Cartilage. 2008 Dec;16(12):1433-41
15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58
21474362 - Med Image Anal. 2011 Aug;15(4):438-48
20639173 - IEEE Trans Biomed Eng. 2010 Nov;57(11):null
16685862 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):327-34
16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15
24443678 - Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1028-1031
19818860 - Neuroimage. 2010 Feb 1;49(3):2457-66
18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39
17354713 - Inf Process Med Imaging. 2005;19:406-17
21074756 - Comput Biol Med. 2011 Jan;41(1):1-10
22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24
11033593 - Ann Intern Med. 2000 Oct 17;133(8):635-46
22318477 - IEEE Trans Biomed Eng. 2012 Apr;59(4):1177-86
References_xml – volume: 30
  start-page: 9
  issue: 1
  year: 2006
  ident: 225_CR14
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2005.10.001
– volume: 49
  start-page: 1413
  issue: 12
  year: 2011
  ident: 225_CR11
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-011-0838-8
– ident: 225_CR15
  doi: 10.1145/2557977.2558036
– volume: 23
  start-page: 447
  issue: 4
  year: 2004
  ident: 225_CR3
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.824224
– volume: 41
  start-page: 1
  issue: 1
  year: 2011
  ident: 225_CR12
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2010.10.007
– volume: 133
  start-page: 635
  issue: 8
  year: 2000
  ident: 225_CR2
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-133-8-200010170-00016
– ident: 225_CR18
– ident: 225_CR5
  doi: 10.1109/ISBI.2012.6235733
– volume: 31
  start-page: 1426
  issue: 8
  year: 2013
  ident: 225_CR1
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2013.05.002
– volume: 57
  start-page: 2699
  issue: 11
  year: 2010
  ident: 225_CR10
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2010.2058112
– volume: 57
  start-page: 0
  year: 2012
  ident: 225_CR4
  publication-title: Biomed Eng Biomed Tech
  doi: 10.1515/bmt-2012-4500
– volume: 17
  start-page: 2029
  issue: 11
  year: 2008
  ident: 225_CR13
  publication-title: IEEE Trans Image Process
  doi: 10.1109/tip.2008.2004611
– volume: 59
  start-page: 1177
  issue: 4
  year: 2012
  ident: 225_CR6
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2186612
– volume: 16
  start-page: 1433
  issue: 12
  year: 2008
  ident: 225_CR16
  publication-title: Osteoarthritis Cartilage
  doi: 10.1016/j.joca.2008.06.016
– volume: 15
  start-page: 438
  issue: 4
  year: 2011
  ident: 225_CR7
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2011.01.007
– ident: 225_CR8
  doi: 10.1007/11566465_41
– ident: 225_CR9
  doi: 10.1007/11505730_34
– volume: 49
  start-page: 2457
  issue: 3
  year: 2010
  ident: 225_CR17
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.062
– reference: 18854247 - IEEE Trans Image Process. 2008 Nov;17(11):2029-39
– reference: 17354713 - Inf Process Med Imaging. 2005;19:406-17
– reference: 21074756 - Comput Biol Med. 2011 Jan;41(1):1-10
– reference: 16361080 - Comput Med Imaging Graph. 2006 Jan;30(1):9-15
– reference: 22038239 - Med Biol Eng Comput. 2011 Dec;49(12):1413-24
– reference: 23790354 - Magn Reson Imaging. 2013 Oct;31(8):1426-38
– reference: 19818860 - Neuroimage. 2010 Feb 1;49(3):2457-66
– reference: 15084070 - IEEE Trans Med Imaging. 2004 Apr;23(4):447-58
– reference: 11033593 - Ann Intern Med. 2000 Oct 17;133(8):635-46
– reference: 22318477 - IEEE Trans Biomed Eng. 2012 Apr;59(4):1177-86
– reference: 20639173 - IEEE Trans Biomed Eng. 2010 Nov;57(11):null
– reference: 21474362 - Med Image Anal. 2011 Aug;15(4):438-48
– reference: 18786841 - Osteoarthritis Cartilage. 2008 Dec;16(12):1433-41
– reference: 24443678 - Proc IEEE Int Symp Biomed Imaging. 2012 Dec 31;2012:1028-1031
– reference: 16685862 - Med Image Comput Comput Assist Interv. 2005;8(Pt 1):327-34
SSID ssj0020069
Score 2.2050743
Snippet Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate...
This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate segmentation of...
Background This study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate...
BACKGROUNDThis study focuses on osteoarthritis (OA), which affects millions of adults and occurs in knee cartilage. Diagnosis of OA requires accurate...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 99
SubjectTerms Adult
Aged
Algorithms
Automation
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical Engineering/Biotechnology
Biotechnology
Cartilage, Articular - diagnostic imaging
Case-Control Studies
Diagnosis
Engineering
Fuzzy Logic
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
Knee Joint - diagnostic imaging
Magnetic Resonance Imaging
Methods
Middle Aged
Osteoarthritis
Osteoarthritis - diagnostic imaging
Signal-To-Noise Ratio
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-0gtoH0foVrbKKIFiDyeZr41spllY4H2qFvi2bze61GPcOkyD9N_yLncnthUuRii9HYCd7uczszuzNb34D8EbEsdY25iEfSLWTMgtFYlRIOSSLRhIZQbXDsy_50bf081l25smiqRZmM38fi_xDS_6I4FYElaXOqzfhFvqofMjL5gfj2YoYd33S8q-3TdzO1c13w_tcRUaO6dFtuNO7pbr8pZpmwwMd3od7PnRk-ytdP4Abxu3A9gah4A7cnvlU-UP4TYfLS6b6boFBqanfs4bwQaw1XUiuq8ar-Q9feeQYxq7sO87DZifHLSM0_Jwpx1StlrQh0rjGT_SCg7hyNSNWqwan_sgIZsqoUIVhOMmobGSBFnk-8CWxC4InDfTij-D08NPpwVHoGzCEOkuTLjRGUzhhCkHlHlVp0lRlXNVlJKqyUjaiwyVPtMWwJsMLm1RUN2cxSrKZLpLHsOUWzjwFlsSW6zqJuKVmx8oKk5dpERWV5jyqizKAaK0eqT05OfXIaORwSBG5XGlUEiCNNCqLAN6NtyxXzBzXCb8mnUtivHAEqZmrvm3l8dcTuZ_mgrq-lyKAt17ILvDLtfIVCvgTiCRrIrk7kcQlqSfDr9amJWmIcGzOLPpWxvSPa07J8wCerExtfHheZBmGW_isxcQIRwFiAp-OuIvzgREc1VBg1BHA3tpcpd-K2uveyd5o0f9-g8_-a-7ncJcPiw-34XQXtrqfvXmB0VtXvRzW7R9OjTuL
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULah98FJvq1VGEQRrtskkk4tvi1haYYvUFlb6ECaTmW3ZmF1MglT8Ff5iz0my62aRig--hIE5CZPJuXyTOecbgJeh4yhlHG7xmlTbjYQVulpatIdkUElsHVLt8OjIPzj1PozFeAPOFrUwTdE5jc_Svwn5rIY2YrBakp7Vfhwbaro3T01j_qG_V1AEowQtSq6ls1qvwaYvEKj3YPP06OPwc11vFAgr4mLc7nP-8b5OpFr31ysBaz2ZcrmjugU3qnwuL7_JLFsJWvu34cfidZtclemgKpOB-r7GBPmf5uMO3GrBLhs22nkXNnS-DVsrFIjbcH3Ubu7fg5-0HL5ksipnCKN1-oZllNHECl1aFGxTbE2-tLVSOUO0zab4HDY6PiwY5e9PmMyZTOWcXDj1K7xi3K7FZZ4y4uHK8NFvGSXGMiqtYQiAGRW6zNCGzmuGJ3ZBCVU1Ifp9ONl_f_LuwGqPjLCU8NzS0loRANJBSAUqSaQ9Twou08gOkyiRxqblMHeVQSAmsGHchCr9DOI6I1TgPoBePsv1I2CuY7hKXZsbOp5ZmlD7kRfYQaI4t9Mg6oO90I5YtXTqdKpHFtfLqtCPm4mPKYWOJj4O-vB6ecu84RK5SvgFqVxMHB05JQFNZFUU8eGn43jo-SGdUx-FfXjVCpkZfXnZ1lTgKxCtV0dypyOJTkR1up8vNDumLsq8y_WsKmKH_hH7tN3fh4eNpi8HzwMhECDiWIOODSwFiLu825NfnNcc5vgZAsRJfdhdWEvcOs_iqjnZXRrU32fw8T9JP4GbvLYRDBzeDvTKr5V-inizTJ61fuMXIJB7HQ
  priority: 102
  providerName: Unpaywall
Title Fully automated, level set-based segmentation for knee MRIs using an adaptive force function and template: data from the osteoarthritis initiative
URI https://link.springer.com/article/10.1186/s12938-016-0225-7
https://www.ncbi.nlm.nih.gov/pubmed/27558127
https://www.proquest.com/docview/1814660363
https://pubmed.ncbi.nlm.nih.gov/PMC4997678
https://biomedical-engineering-online.biomedcentral.com/track/pdf/10.1186/s12938-016-0225-7
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMedCentral
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RBZ
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: KQ8
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DOA
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M~E
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: M48
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: AAJSJ
  dateStart: 20021201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 1475-925X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020069
  issn: 1475-925X
  databaseCode: C6C
  dateStart: 20020112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1tb9MwED7tRYLtA4IBozAqg5CQ2AJp3pwgIVSqlQ2p1VRWqXyyHMfuJkJallbQv8Ev5i5No2aahvgSJfLFSew73zl39xzAq7DVUsq0HMspQLXdyLdCV0uLfEgGmcTWIeUO9_rBydD7MvJHG7Aqb1UOYH7j1o7qSQ2v0re_fy4-osB_KAQ-DN7lpLMoJIvCaak66yZso6KKqJJDz6ucCrR5jkrH5o231VTT9QV6TUNdj56sXKi7cHeeTeXil0zTNS3VvQ_3SvOStZf88AA2dLYHu2ugg3twp1e60x_CH9qALpiczyZouOrkiKUUQ8RyPbNIvSV4Nv5RZidlDO1b9h37Yb3Bac4oYn7MZMZkIqe0aFK7wiNqyoJcZgkj5KsUu37PKBSVUTILQ5OTUWrJBLn2osBUYpcUwlRAkD-C8-7xeefEKos0WMr33JmltSKTQ_OQUkLiSHue9B2ZRHYYR7E0Nm1AHVcZNH18PDFuTLl1Bi0p4yvuPoatbJLpJ8DclnFU4tqOoYLI0oQ6iDxu81g5jp3wqAH2anqEKgHMqY5GKoqNTBiI5YwKClqjGRW8AW-qW6ZL9I7biF_SnAtCxcgo7GYs53kuTr8ORNsLQqoMH4UNeF0SmQk-XMkyiwE_gYC0apQHNUoUW1VrfrFiLUFNFOuW6ck8Fy36KxuQg70B-0tWq17e4b6PJhm-K68xYUVAaOH1luzyokANx2ngaJk04HDFrmIlbbeNyWHF0f8ewaf_1fcz2HEK4cOl2juArdnVXD9HC28WN2GTjzgew-7nJmx_Ou6fDfCqE3SaxT-TZiHX2DLsn7W__QVZwlD_
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdgk9j2gGB8FQYYhITEiMh3HN4qxNSWdQ9bkfZmOY7dTQtORRKh_Rv8xdylTtRMaIiXKpIvbpo7-8693_2OkHfM86TUnu_4Lal2kEYOC5RwMIekwUhcxbB2eH4ST76Hs_Po3NZxVx3avUtJtjt1u6xZ_KlCz4TAKwTNYg_Wu2QbMVawGrfH49nZrD9nIfuuTWD-9caBC7q5EW94opsoyT5Vukd2GrMS179EUWx4o6MH5L4NI-l4rfeH5I4y-2Rvg1xwn9yb27T5I_IbD5rXVDR1CQGqyj_SArFCtFK1g24sh6vlD1uFZCjEsfQK5qHz02lFERm_pMJQkYsVbo44LuETPGIrLkxOkeGqgKk_U4ScUixaoRBaUiwhKcE6L1ruJHqJUKWWavwxWRx9XXyZOLYZgyOjMKgdpSSGFiphWPqRpSoMReSLPHVZlmZCu3jQ9AOpIcSJ4EIHGdbQaYiYdCST4AnZMqVRzwgNPO3LPHB9jY2PhWYqTsPETTLp-26epCPidurh0hKVY7-MgrcHFhbztUY5gtNQozwZkQ_9Las1S8dtwm9R5xzZLwzCa5aiqSo-PTvl4zBm2AE-ZSPy3grpEr5cClutAD8BCbMGkgcDSViecjD8pjMtjkOIaTOqbCru4b-vMSbSR-Tp2tT6h_eTKILQC541GRhhL4Cs4MMRc3nRsoODGhKIQEbksDNXbrel6rZ3cthb9L_f4PP_mvs12Zks5sf8eHry7QXZ9duFCNtzeEC26p-NeglRXZ29sqv4D0knQ-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ta9RAEF60QrUfROtLo1VXEQRraLJ52_itnB499YrUCv22bDa719K4OUyC9G_4i51JcuFSpOKXI7CTvVxmdmf25plnCHnNfV8p4zOXtaTaQRq5PNDSxRySASPxNMfa4flRfPg9_HQanfZ9TqsV2n2VkuxqGpClydb7y9x0S5zH-xV6KQRhIYAW-7HeJLdCcG7YwmAST4YTF_Lw9qnMv942ckZXt-Q1n3QVLzkkTbfI7cYu5eUvWRRrfml6j9ztA0p60FnAfXJD222ytUYzuE02530C_QH5jUfOSyqbuoRQVefvaIGoIVrp2kWHlsPV4kdfj2QpRLT0Auah8-NZRREjv6DSUpnLJW6TOK7gE3xjKy5tTpHrqoCp31MEn1IsX6EQZFIsJinBTs9aFiV6jqCllnT8ITmZfjyZHLp9WwZXRWFQu1orDDJ0wrEIJEt1GMqIyTz1eJZm0nh45GSBMhDsRHBhggyr6QzETiZSSfCIbNjS6h1CA98wlQceM9gCWRqu4zRMvCRTjHl5kjrEW6lHqJ6yHDtnFKI9uvBYdBoVCFNDjYrEIW-HW5YdX8d1wq9Q5wJ5MCwCbRayqSox-3YsDsKYYy_4lDvkTS9kSvhyJfu6BfgJSJ01ktwdScJCVaPhlyvTEjiE6Dary6YSPv4PG2NK3SGPO1MbHp4lUQSGDc-ajIxwEEB-8PGIPT9recJBDQnEIg7ZW5mr6Deo6rp3sjdY9L_f4JP_mvsF2fz6YSq-zI4-PyV3WLsOYZ8Od8lG_bPRzyC8q7Pn7RL-A8lnRsE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7ULah98FJvq1VGEQRrtskkk4tvi1haYYvUFlb6ECaTmW3ZmF1MglT8Ff5iz0my62aRig--hIE5CZPJuXyTOecbgJeh4yhlHG7xmlTbjYQVulpatIdkUElsHVLt8OjIPzj1PozFeAPOFrUwTdE5jc_Svwn5rIY2YrBakp7Vfhwbaro3T01j_qG_V1AEowQtSq6ls1qvwaYvEKj3YPP06OPwc11vFAgr4mLc7nP-8b5OpFr31ysBaz2ZcrmjugU3qnwuL7_JLFsJWvu34cfidZtclemgKpOB-r7GBPmf5uMO3GrBLhs22nkXNnS-DVsrFIjbcH3Ubu7fg5-0HL5ksipnCKN1-oZllNHECl1aFGxTbE2-tLVSOUO0zab4HDY6PiwY5e9PmMyZTOWcXDj1K7xi3K7FZZ4y4uHK8NFvGSXGMiqtYQiAGRW6zNCGzmuGJ3ZBCVU1Ifp9ONl_f_LuwGqPjLCU8NzS0loRANJBSAUqSaQ9Twou08gOkyiRxqblMHeVQSAmsGHchCr9DOI6I1TgPoBePsv1I2CuY7hKXZsbOp5ZmlD7kRfYQaI4t9Mg6oO90I5YtXTqdKpHFtfLqtCPm4mPKYWOJj4O-vB6ecu84RK5SvgFqVxMHB05JQFNZFUU8eGn43jo-SGdUx-FfXjVCpkZfXnZ1lTgKxCtV0dypyOJTkR1up8vNDumLsq8y_WsKmKH_hH7tN3fh4eNpi8HzwMhECDiWIOODSwFiLu825NfnNcc5vgZAsRJfdhdWEvcOs_iqjnZXRrU32fw8T9JP4GbvLYRDBzeDvTKr5V-inizTJ61fuMXIJB7HQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fully+automated%2C+level+set-based+segmentation+for+knee+MRIs+using+an+adaptive+force+function+and+template%3A+data+from+the+osteoarthritis+initiative&rft.jtitle=Biomedical+engineering+online&rft.au=Ahn%2C+Chunsoo&rft.au=Bui%2C+Toan+Duc&rft.au=Lee%2C+Yong-woo&rft.au=Shin%2C+Jitae&rft.date=2016-08-24&rft.pub=BioMed+Central&rft.eissn=1475-925X&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1186%2Fs12938-016-0225-7&rft.externalDocID=10_1186_s12938_016_0225_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-925X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-925X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-925X&client=summon