Machine learning derived risk prediction of anorexia nervosa
Background Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in wh...
Saved in:
| Published in | BMC medical genomics Vol. 9; no. 1; p. 4 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
20.01.2016
BioMed Central Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1755-8794 1755-8794 |
| DOI | 10.1186/s12920-016-0165-x |
Cover
| Abstract | Background
Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role.
Methods
In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children’s Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects.
Results
Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC’s of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values.
Conclusions
To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting. |
|---|---|
| AbstractList | Background
Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role.
Methods
In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children’s Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects.
Results
Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC’s of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values.
Conclusions
To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting. Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting. Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting. Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role.BACKGROUNDAnorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role.In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects.METHODSIn this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects.Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values.RESULTSLogistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values.To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting.CONCLUSIONSTo our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting. Background Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association (GWA) studies, researchers have been using machine learning methods in conjunction with genomic data to predict risk of diseases in which genetics play an important role. Methods In this study, we collected whole genome genotyping data on 3940 AN cases and 9266 controls from the Genetic Consortium for Anorexia Nervosa (GCAN), the Wellcome Trust Case Control Consortium 3 (WTCCC3), Price Foundation Collaborative Group and the Children's Hospital of Philadelphia (CHOP), and applied machine learning methods for predicting AN disease risk. The prediction performance is measured by area under the receiver operating characteristic curve (AUC), indicating how well the model distinguishes cases from unaffected control subjects. Results Logistic regression model with the lasso penalty technique generated an AUC of 0.693, while Support Vector Machines and Gradient Boosted Trees reached AUC's of 0.691 and 0.623, respectively. Using different sample sizes, our results suggest that larger datasets are required to optimize the machine learning models and achieve higher AUC values. Conclusions To our knowledge, this is the first attempt to assess AN risk based on genome wide genotype level data. Future integration of genomic, environmental and family-based information is likely to improve the AN risk evaluation process, eventually benefitting AN patients and families in the clinical setting. Keywords: Anorexia nervosa, Machine learning, Genome wide association, Risk prediction, Genotyping |
| ArticleNumber | 4 |
| Audience | Academic |
| Author | Wei, Zhi Hakonarson, Hakon Guo, Yiran Keating, Brendan J. |
| Author_xml | – sequence: 1 givenname: Yiran surname: Guo fullname: Guo, Yiran email: guoy@email.chop.edu organization: The Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia – sequence: 2 givenname: Zhi surname: Wei fullname: Wei, Zhi organization: Department of Computer Science, New Jersey Institute of Technology – sequence: 3 givenname: Brendan J. surname: Keating fullname: Keating, Brendan J. organization: The Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Department of Pediatrics, School of Medicine University of Pennsylvania – sequence: 7 givenname: Hakon surname: Hakonarson fullname: Hakonarson, Hakon email: hakonarson@email.chop.edu organization: The Center for Applied Genomics, Abramson Research Center, The Children’s Hospital of Philadelphia, Department of Pediatrics, School of Medicine University of Pennsylvania |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26792494$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1rFTEQhhep2A_9Ad7Igjd6sTXJJpsERCjFj0JF8OM6ZJPZbeqe5DTZPZ7-e7PsUXtEioQhIXneYeadHBcHPngoiqcYnWIsmlcJE0lQhXAzB6u2D4ojzBmrBJf04M75sDhO6RqhBjGJHxWHpOGSUEmPitcftblyHsoBdPTO96WF6DZgy-jS93IdwTozuuDL0JXahwhbp0sPcROSflw87PSQ4MluPym-vXv79fxDdfnp_cX52WVlGK3HClAuUwjTYIaM0cIKygQnpDWtlaS1nNha10BqYxouiG6poLZmhiGJ67aT9UlBlryTX-vbH3oY1Dq6lY63CiM1W6EWK1S2YQ6mtln0ZhGtp3YF1oAfo_4jDNqp_RfvrlQfNopygjGtc4IXuwQx3EyQRrVyycAwaA9hSgrzBgkpscAZfb6gvR5AOd-FnNHMuDqjFPGGUSQydfoPKi8LK2fyaDuX7_cEL_cEmRlhO_Z6SkldfPm8zz672-7vPn-NOgN8AUwMKUXolHGjnkebq3DDvU7iv5T_4_5uZCmzvoeorsMUff4l94h-AtH323o |
| CitedBy_id | crossref_primary_10_3390_make2030019 crossref_primary_10_3390_s23094439 crossref_primary_10_1123_ijspp_2019_0431 crossref_primary_10_1038_tp_2017_37 crossref_primary_10_1016_j_clineuro_2024_108430 crossref_primary_10_3390_ijms25126422 crossref_primary_10_1016_j_ijmedinf_2024_105526 crossref_primary_10_1109_TCBB_2023_3343808 crossref_primary_10_1016_j_cmpb_2024_108477 crossref_primary_10_1186_s40337_024_01009_9 crossref_primary_10_1088_1361_6463_ac472c crossref_primary_10_1186_s40337_022_00581_2 crossref_primary_10_3390_healthcare11030285 crossref_primary_10_1016_j_beth_2022_08_006 crossref_primary_10_3389_fbioe_2023_1104000 crossref_primary_10_1002_gepi_22290 crossref_primary_10_1111_jgh_15530 |
| Cites_doi | 10.1038/mp.2012.126 10.1016/j.ajhg.2013.05.002 10.1038/mp.2013.91 10.1038/ng.1013 10.1002/eat.20589 10.1016/j.jpsychires.2014.08.017 10.1056/NEJMoa0804742 10.1002/eat.10096 10.1007/BF00225065 10.1017/S0033291701003725 10.1038/mp.2013.34 10.1111/j.1467-9868.2008.00674.x 10.1056/NEJMoa0907727 10.1038/sj.npp.1300719 10.1007/s00439-012-1194-y 10.1016/j.biopsych.2012.03.011 10.1002/eat.20164 10.1038/sj.mp.4001318 10.1371/journal.pgen.1000678 10.1002/eat.10271 10.1016/S0140-6736(99)05363-5 10.1038/mp.2013.187 10.1371/journal.pgen.1002293 10.1007/s10198-002-0137-2 10.1176/appi.ajp.157.3.393 10.1016/j.ajhg.2011.04.001 10.1038/nrg2516 10.1038/jhg.2009.74 10.1007/s00439-013-1401-5 10.1038/nature11582 10.1192/bjp.162.4.452 10.1002/eat.20118 10.1161/CIRCULATIONAHA.106.672402 10.1002/ajmg.c.31384 10.1093/hmg/ddh137 10.1176/appi.ajp.157.3.469 10.1017/S0033291701003087 10.1038/nature07953 10.1002/ajmg.b.31082 10.1038/mp.2010.107 10.1038/nature13595 10.1159/000340057 10.1001/archgenpsychiatry.2011.74 10.1016/S0031-3203(96)00142-2 10.1016/j.biopsych.2006.04.007 10.1176/ajp.152.10.1533 10.1001/archpsyc.55.7.603 10.1176/appi.ajp.162.4.753 10.1002/1098-108X(199204)11:3<235::AID-EAT2260110306>3.0.CO;2-T 10.1016/j.biopsych.2006.03.040 10.18637/jss.v033.i01 10.1056/NEJMra0905980 10.1176/appi.books.9780890425596 10.1038/ng.201 10.1073/pnas.1000274107 10.1038/nrg3457 10.1086/519795 10.1371/journal.pgen.1002051 10.1016/j.biopsych.2009.08.010 10.1145/364520.364540 10.1001/archpsyc.63.3.305 10.1016/S0006-3223(99)00240-1 10.1192/bjp.bp.108.054742 10.1176/appi.ajp.161.12.2215 10.1002/eat.20367 10.1038/nature09764 10.1080/00048670601057718 10.1146/annurev.med.050208.200745 10.1016/B978-0-12-375003-7.00009-1 10.1038/nature07999 |
| ContentType | Journal Article |
| Copyright | Guo et al. 2016 COPYRIGHT 2016 BioMed Central Ltd. |
| Copyright_xml | – notice: Guo et al. 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. |
| CorporateAuthor | The Genetic Consortium for Anorexia Nervosa Price Foundation Collaborative Group The Wellcome Trust Case Control Consortium 3 Wellcome Trust Case Control Consortium 3 Genetic Consortium for Anorexia Nervosa |
| CorporateAuthor_xml | – name: Price Foundation Collaborative Group – name: The Genetic Consortium for Anorexia Nervosa – name: The Wellcome Trust Case Control Consortium 3 – name: Wellcome Trust Case Control Consortium 3 – name: Genetic Consortium for Anorexia Nervosa |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12920-016-0165-x |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1755-8794 |
| ExternalDocumentID | 10.1186/s12920-016-0165-x PMC4721143 A440765408 26792494 10_1186_s12920_016_0165_x |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: Wellcome Trust – fundername: NHGRI NIH HHS grantid: U01 HG006830 – fundername: NIMH NIH HHS grantid: T32 MH076694 – fundername: Wellcome Trust grantid: 076113/C/04/Z – fundername: Wellcome Trust grantid: 068545/Z/02 – fundername: NHGRI NIH HHS grantid: U01 HG008684 – fundername: Medical Research Council grantid: G0000934 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5GY 5VS 6J9 7X7 88E 8AO 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 E3Z EBD EBLON EBS EJD EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D ~8M AAYXX CITATION -A0 3V. ACRMQ ADINQ ALIPV C24 CGR CUY CVF ECM EIF NPM 7X8 5PM 2VQ 4.4 ADTOC IPNFZ LGEZI LOTEE NADUK NXXTH RIG UNPAY |
| ID | FETCH-LOGICAL-c543t-e029288c6150cca8d8458722bcbd92bd72d3a3e23cc6782ab484d35c50913bf93 |
| IEDL.DBID | M48 |
| ISSN | 1755-8794 |
| IngestDate | Sun Oct 26 03:09:33 EDT 2025 Tue Sep 30 16:57:55 EDT 2025 Fri Sep 05 06:39:20 EDT 2025 Mon Oct 20 22:50:50 EDT 2025 Mon Oct 20 17:04:16 EDT 2025 Thu Oct 16 16:21:53 EDT 2025 Thu Jan 02 23:10:59 EST 2025 Thu Apr 24 23:08:47 EDT 2025 Wed Oct 01 03:35:23 EDT 2025 Sat Sep 06 07:29:07 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Genome wide association Risk prediction Anorexia nervosa Genotyping Machine learning |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-e029288c6150cca8d8458722bcbd92bd72d3a3e23cc6782ab484d35c50913bf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://bmcmedgenomics.biomedcentral.com/counter/pdf/10.1186/s12920-016-0165-x |
| PMID | 26792494 |
| PQID | 1760899181 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1186_s12920_016_0165_x pubmedcentral_primary_oai_pubmedcentral_nih_gov_4721143 proquest_miscellaneous_1760899181 gale_infotracmisc_A440765408 gale_infotracacademiconefile_A440765408 gale_incontextgauss_ISR_A440765408 pubmed_primary_26792494 crossref_citationtrail_10_1186_s12920_016_0165_x crossref_primary_10_1186_s12920_016_0165_x springer_journals_10_1186_s12920_016_0165_x |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20160120 2016-1-20 2016-Jan-20 |
| PublicationDateYYYYMMDD | 2016-01-20 |
| PublicationDate_xml | – month: 1 year: 2016 text: 20160120 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC medical genomics |
| PublicationTitleAbbrev | BMC Med Genomics |
| PublicationTitleAlternate | BMC Med Genomics |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | JP Bradfield (165_CR68) 2011; 7 TD Muller (165_CR33) 2012; 5 JT Glessner (165_CR57) 2010; 107 M Ribases (165_CR30) 2004; 13 Schizophrenia Working Group of the Psychiatric Genomics Consortium (165_CR70) 2014; 511 F Fernandez-Aranda (165_CR9) 2007; 41 WH Kaye (165_CR54) 2000; 47 LS Kortegaard (165_CR24) 2001; 31 NR Cook (165_CR67) 2007; 115 P Kraft (165_CR51) 2009; 10 IR Galatzer-Levy (165_CR64) 2014; 59 J Hebebrand (165_CR32) 1995; 95 CW Sharp (165_CR5) 1993; 162 AA Scott-Van Zeeland (165_CR34) 2013; 19 AP Pinheiro (165_CR55) 2010; 153B KL Klump (165_CR23) 2001; 31 L Jostins (165_CR69) 2012; 491 S Zipfel (165_CR11) 2000; 355 PF Sullivan (165_CR10) 1995; 152 C Krauth (165_CR18) 2002; 3 LR Lilenfeld (165_CR20) 1998; 55 DK Katzman (165_CR8) 2005; 37 Suppl C Li (165_CR65) 2014; 133 AW Bergen (165_CR29) 2005; 30 M Strober (165_CR21) 2000; 157 JM Mckenzie (165_CR17) 1992; 11 CM Bulik (165_CR19) 2007; 40 Z Wei (165_CR44) 2013; 92 J Kruppa (165_CR50) 2012; 131 TA Manolio (165_CR49) 2014; 166C J Elia (165_CR56) 2012; 44 NT Godart (165_CR6) 2002; 32 J Friedman (165_CR63) 2010; 33 WH Kaye (165_CR53) 2004; 35 A Hinney (165_CR31) 2010; 94 HR Millar (165_CR13) 2005; 162 WH Kaye (165_CR7) 2004; 161 K Wang (165_CR36) 2011; 16 S Purcell (165_CR62) 2007; 81 CM Bulik (165_CR26) 2010; 67 E Attia (165_CR15) 2010; 61 Z Wei (165_CR39) 2009; 5 ED Green (165_CR48) 2011; 470 TD Wade (165_CR22) 2000; 157 K Nakabayashi (165_CR35) 2009; 54 CM Bulik (165_CR25) 2006; 63 165_CR3 TA Manolio (165_CR47) 2010; 363 K Wang (165_CR59) 2009; 459 JI Hudson (165_CR4) 2007; 61 J Fan (165_CR66) 2008; 70 165_CR1 JB Meigs (165_CR38) 2008; 359 KL Klump (165_CR2) 2009; 42 GH Lubke (165_CR43) 2012; 72 MC O'Donovan (165_CR71) 2008; 40 J Arcelus (165_CR16) 2011; 68 S Wacholder (165_CR40) 2010; 362 165_CR61 KM Brown (165_CR28) 2007; 61 165_CR60 V Boraska (165_CR37) 2014; 19 R Makowsky (165_CR41) 2011; 7 AP Bradley (165_CR52) 1997; 30 E Skafidas (165_CR46) 2014; 19 H-C So (165_CR42) 2011; 88 AW Bergen (165_CR27) 2003; 8 TG Belgard (165_CR45) 2014; 19 JT Glessner (165_CR58) 2009; 459 CL Birmingham (165_CR12) 2005; 38 FC Papadopoulos (165_CR14) 2009; 194 15609150 - Eur J Health Econ. 2002;3(4):244-50 19603084 - J R Stat Soc Series B Stat Methodol. 2008;70(5):849-911 10698830 - Am J Psychiatry. 2000 Mar;157(3):469-71 8481735 - Br J Psychiatry. 1993 Apr;162:452-62 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 20468064 - Am J Med Genet B Neuropsychiatr Genet. 2010 Jul;153B(5):1070-80 21980299 - PLoS Genet. 2011 Sep;7(9):e1002293 19118319 - Br J Psychiatry. 2009 Jan;194(1):10-7 10812038 - Biol Psychiatry. 2000 May 1;47(9):794-803 12740597 - Mol Psychiatry. 2003 Apr;8(4):397-406 23128233 - Nature. 2012 Nov 1;491(7422):119-24 21529750 - Am J Hum Genet. 2011 May 13;88(5):548-65 19680270 - J Hum Genet. 2009 Sep;54(9):531-7 7814009 - Hum Genet. 1995 Jan;95(1):1-11 23546168 - Mol Psychiatry. 2014 Apr;19(4):405-7 23999524 - Mol Psychiatry. 2014 Jun;19(6):724-32 20647212 - N Engl J Med. 2010 Jul 8;363(2):166-76 9672050 - Arch Gen Psychiatry. 1998 Jul;55(7):603-10 15920508 - Neuropsychopharmacology. 2005 Sep;30(9):1703-10 22520966 - Biol Psychiatry. 2012 Oct 15;72(8):707-9 18677311 - Nat Genet. 2008 Sep;40(9):1053-5 11232922 - Psychol Med. 2001 Feb;31(2):361-5 24337655 - Hum Genet. 2014 May;133(5):639-50 23731541 - Am J Hum Genet. 2013 Jun 6;92(6):1008-12 21036328 - Prog Mol Biol Transl Sci. 2010;94:241-70 25260752 - J Psychiatr Res. 2014 Dec;59:68-76 16815322 - Biol Psychiatry. 2007 Feb 1;61(3):348-58 21307933 - Nature. 2011 Feb 10;470(7333):204-13 22138692 - Nat Genet. 2012 Jan;44(1):78-84 15800149 - Am J Psychiatry. 2005 Apr;162(4):753-7 19816555 - PLoS Genet. 2009 Oct;5(10):e1000678 11352375 - Psychol Med. 2001 May;31(4):737-40 15101071 - Int J Eat Disord. 2004 May;35(4):556-70 16134111 - Int J Eat Disord. 2005 Sep;38(2):143-6 23774735 - Nat Rev Genet. 2013 Jul;14(7):507-15 12210640 - Int J Eat Disord. 2002 Nov;32(3):253-70 10703806 - Lancet. 2000 Feb 26;355(9205):721-2 16520436 - Arch Gen Psychiatry. 2006 Mar;63(3):305-12 15569892 - Am J Psychiatry. 2004 Dec;161(12):2215-21 18951455 - Int J Eat Disord. 2009 Mar;42(2):97-103 25056061 - Nature. 2014 Jul 24;511(7510):421-7 10698815 - Am J Psychiatry. 2000 Mar;157(3):393-401 17370290 - Int J Eat Disord. 2007 May;40(4):310-20 20489179 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10584-9 19238176 - Nat Rev Genet. 2009 Apr;10(4):264-9 22752090 - Hum Genet. 2012 Oct;131(10):1639-54 20808728 - J Stat Softw. 2010;33(1):1-22 20237344 - N Engl J Med. 2010 Mar 18;362(11):986-93 19828139 - Biol Psychiatry. 2010 Jan 1;67(1):71-7 22797368 - Obes Facts. 2012;5(3):408-19 19404257 - Nature. 2009 May 28;459(7246):569-73 19719398 - Annu Rev Med. 2010;61:425-35 21552331 - PLoS Genet. 2011 Apr;7(4):e1002051 21079607 - Mol Psychiatry. 2011 Sep;16(9):949-59 21727255 - Arch Gen Psychiatry. 2011 Jul;68(7):724-31 24514567 - Mol Psychiatry. 2014 Oct;19(10):1085-94 22965006 - Mol Psychiatry. 2014 Apr;19(4):504-10 16806108 - Biol Psychiatry. 2007 Feb 1;61(3):367-73 17309939 - Circulation. 2007 Feb 20;115(7):928-35 19020323 - N Engl J Med. 2008 Nov 20;359(21):2208-19 7793446 - Am J Psychiatry. 1995 Jul;152(7):1073-4 24619573 - Am J Med Genet C Semin Med Genet. 2014 Mar;166C(1):1-7 15852321 - Int J Eat Disord. 2005;37 Suppl:S52-9; discussion S87-9 19404256 - Nature. 2009 May 28;459(7246):528-33 15115760 - Hum Mol Genet. 2004 Jun 15;13(12):1205-12 17464678 - Aust N Z J Psychiatry. 2007 Jan;41(1):24-31 |
| References_xml | – volume: 19 start-page: 504 year: 2014 ident: 165_CR46 publication-title: Mol Psychiatry doi: 10.1038/mp.2012.126 – volume: 92 start-page: 1008 year: 2013 ident: 165_CR44 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2013.05.002 – volume: 19 start-page: 724 issue: 6 year: 2013 ident: 165_CR34 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.91 – volume: 44 start-page: 78 year: 2012 ident: 165_CR56 publication-title: Nat Genet doi: 10.1038/ng.1013 – volume: 42 start-page: 97 year: 2009 ident: 165_CR2 publication-title: Int J Eat Disord doi: 10.1002/eat.20589 – volume: 59 start-page: 68 year: 2014 ident: 165_CR64 publication-title: J Psychiatr Res doi: 10.1016/j.jpsychires.2014.08.017 – volume: 359 start-page: 2208 year: 2008 ident: 165_CR38 publication-title: N Eng J Med doi: 10.1056/NEJMoa0804742 – volume: 32 start-page: 253 year: 2002 ident: 165_CR6 publication-title: Int J Eat Disord doi: 10.1002/eat.10096 – volume: 95 start-page: 1 year: 1995 ident: 165_CR32 publication-title: Hum Genet doi: 10.1007/BF00225065 – volume: 31 start-page: 737 year: 2001 ident: 165_CR23 publication-title: Psychol Med doi: 10.1017/S0033291701003725 – volume: 19 start-page: 405 year: 2014 ident: 165_CR45 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.34 – volume: 70 start-page: 849 year: 2008 ident: 165_CR66 publication-title: J R Stat Soc Series B Stat Methodol doi: 10.1111/j.1467-9868.2008.00674.x – volume: 362 start-page: 986 year: 2010 ident: 165_CR40 publication-title: N Engl J Med doi: 10.1056/NEJMoa0907727 – volume: 30 start-page: 1703 year: 2005 ident: 165_CR29 publication-title: Neuropsychopharmacology doi: 10.1038/sj.npp.1300719 – volume: 131 start-page: 1639 year: 2012 ident: 165_CR50 publication-title: Hum Genet doi: 10.1007/s00439-012-1194-y – volume: 72 start-page: 707 year: 2012 ident: 165_CR43 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2012.03.011 – volume: 38 start-page: 143 year: 2005 ident: 165_CR12 publication-title: Int J Eat Disord doi: 10.1002/eat.20164 – volume: 8 start-page: 397 year: 2003 ident: 165_CR27 publication-title: Mol Psychiatry doi: 10.1038/sj.mp.4001318 – volume: 5 start-page: e1000678 year: 2009 ident: 165_CR39 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000678 – volume: 35 start-page: 556 year: 2004 ident: 165_CR53 publication-title: Int J Eat Disord doi: 10.1002/eat.10271 – volume: 355 start-page: 721 year: 2000 ident: 165_CR11 publication-title: Lancet doi: 10.1016/S0140-6736(99)05363-5 – volume: 19 start-page: 1085 issue: 10 year: 2014 ident: 165_CR37 publication-title: Mol Psychiatry doi: 10.1038/mp.2013.187 – volume: 7 start-page: e1002293 year: 2011 ident: 165_CR68 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002293 – volume: 3 start-page: 244 year: 2002 ident: 165_CR18 publication-title: Eur J Health Econ doi: 10.1007/s10198-002-0137-2 – volume: 157 start-page: 393 year: 2000 ident: 165_CR21 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.157.3.393 – volume: 88 start-page: 548 year: 2011 ident: 165_CR42 publication-title: Am J Hum Genet doi: 10.1016/j.ajhg.2011.04.001 – volume: 10 start-page: 264 year: 2009 ident: 165_CR51 publication-title: Nat Rev Genet doi: 10.1038/nrg2516 – volume: 54 start-page: 531 year: 2009 ident: 165_CR35 publication-title: J Hum Genet doi: 10.1038/jhg.2009.74 – volume: 133 start-page: 639 year: 2014 ident: 165_CR65 publication-title: Hum Genet doi: 10.1007/s00439-013-1401-5 – volume: 491 start-page: 119 year: 2012 ident: 165_CR69 publication-title: Nature doi: 10.1038/nature11582 – volume: 162 start-page: 452 year: 1993 ident: 165_CR5 publication-title: Br J Psychiatry doi: 10.1192/bjp.162.4.452 – volume: 37 Suppl start-page: S52 year: 2005 ident: 165_CR8 publication-title: Int J Eat Disord doi: 10.1002/eat.20118 – volume: 115 start-page: 928 year: 2007 ident: 165_CR67 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.106.672402 – volume: 166C start-page: 1 year: 2014 ident: 165_CR49 publication-title: Am J Med Genet C Semin Med Genet doi: 10.1002/ajmg.c.31384 – volume: 13 start-page: 1205 year: 2004 ident: 165_CR30 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddh137 – volume: 157 start-page: 469 year: 2000 ident: 165_CR22 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.157.3.469 – volume: 31 start-page: 361 year: 2001 ident: 165_CR24 publication-title: Psychol Med doi: 10.1017/S0033291701003087 – volume: 459 start-page: 569 year: 2009 ident: 165_CR58 publication-title: Nature doi: 10.1038/nature07953 – volume: 153B start-page: 1070 year: 2010 ident: 165_CR55 publication-title: Am J Med Genet B Neuropsychiatr Genet doi: 10.1002/ajmg.b.31082 – volume: 16 start-page: 949 year: 2011 ident: 165_CR36 publication-title: Mol Psychiatry doi: 10.1038/mp.2010.107 – volume: 511 start-page: 421 year: 2014 ident: 165_CR70 publication-title: Nature doi: 10.1038/nature13595 – volume: 5 start-page: 408 year: 2012 ident: 165_CR33 publication-title: Obes Facts doi: 10.1159/000340057 – volume: 68 start-page: 724 year: 2011 ident: 165_CR16 publication-title: Arch Gen Psychiatry doi: 10.1001/archgenpsychiatry.2011.74 – volume: 30 start-page: 1145 year: 1997 ident: 165_CR52 publication-title: Pattern Recognit doi: 10.1016/S0031-3203(96)00142-2 – volume: 61 start-page: 367 year: 2007 ident: 165_CR28 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.04.007 – volume: 152 start-page: 1073 year: 1995 ident: 165_CR10 publication-title: Am J Psychiatry doi: 10.1176/ajp.152.10.1533 – volume: 55 start-page: 603 year: 1998 ident: 165_CR20 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.55.7.603 – volume: 162 start-page: 753 year: 2005 ident: 165_CR13 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.162.4.753 – volume: 11 start-page: 235 year: 1992 ident: 165_CR17 publication-title: Int J Eat Disord doi: 10.1002/1098-108X(199204)11:3<235::AID-EAT2260110306>3.0.CO;2-T – volume: 61 start-page: 348 year: 2007 ident: 165_CR4 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2006.03.040 – volume: 33 start-page: 1 year: 2010 ident: 165_CR63 publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 363 start-page: 166 year: 2010 ident: 165_CR47 publication-title: N Engl J Med doi: 10.1056/NEJMra0905980 – ident: 165_CR3 doi: 10.1176/appi.books.9780890425596 – volume: 40 start-page: 1053 year: 2008 ident: 165_CR71 publication-title: Nat Genet doi: 10.1038/ng.201 – volume: 107 start-page: 10584 year: 2010 ident: 165_CR57 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1000274107 – ident: 165_CR61 doi: 10.1038/nrg3457 – volume: 81 start-page: 559 year: 2007 ident: 165_CR62 publication-title: Am J Hum Genet doi: 10.1086/519795 – volume: 7 start-page: e1002051 year: 2011 ident: 165_CR41 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002051 – volume: 67 start-page: 71 year: 2010 ident: 165_CR26 publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2009.08.010 – ident: 165_CR60 doi: 10.1145/364520.364540 – volume: 63 start-page: 305 year: 2006 ident: 165_CR25 publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.63.3.305 – volume: 47 start-page: 794 year: 2000 ident: 165_CR54 publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(99)00240-1 – ident: 165_CR1 – volume: 194 start-page: 10 year: 2009 ident: 165_CR14 publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.108.054742 – volume: 161 start-page: 2215 year: 2004 ident: 165_CR7 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.161.12.2215 – volume: 40 start-page: 310 year: 2007 ident: 165_CR19 publication-title: Int J Eat Disord doi: 10.1002/eat.20367 – volume: 470 start-page: 204 year: 2011 ident: 165_CR48 publication-title: Nature doi: 10.1038/nature09764 – volume: 41 start-page: 24 year: 2007 ident: 165_CR9 publication-title: Aust N Z J Psychiatry doi: 10.1080/00048670601057718 – volume: 61 start-page: 425 year: 2010 ident: 165_CR15 publication-title: Annu Rev Med doi: 10.1146/annurev.med.050208.200745 – volume: 94 start-page: 241 year: 2010 ident: 165_CR31 publication-title: Prog Mol Biol Transl Sci doi: 10.1016/B978-0-12-375003-7.00009-1 – volume: 459 start-page: 528 year: 2009 ident: 165_CR59 publication-title: Nature doi: 10.1038/nature07999 – reference: 24514567 - Mol Psychiatry. 2014 Oct;19(10):1085-94 – reference: 20647212 - N Engl J Med. 2010 Jul 8;363(2):166-76 – reference: 23774735 - Nat Rev Genet. 2013 Jul;14(7):507-15 – reference: 11232922 - Psychol Med. 2001 Feb;31(2):361-5 – reference: 23128233 - Nature. 2012 Nov 1;491(7422):119-24 – reference: 8481735 - Br J Psychiatry. 1993 Apr;162:452-62 – reference: 19816555 - PLoS Genet. 2009 Oct;5(10):e1000678 – reference: 21529750 - Am J Hum Genet. 2011 May 13;88(5):548-65 – reference: 21307933 - Nature. 2011 Feb 10;470(7333):204-13 – reference: 19020323 - N Engl J Med. 2008 Nov 20;359(21):2208-19 – reference: 10698815 - Am J Psychiatry. 2000 Mar;157(3):393-401 – reference: 17370290 - Int J Eat Disord. 2007 May;40(4):310-20 – reference: 19404256 - Nature. 2009 May 28;459(7246):528-33 – reference: 15920508 - Neuropsychopharmacology. 2005 Sep;30(9):1703-10 – reference: 22138692 - Nat Genet. 2012 Jan;44(1):78-84 – reference: 23546168 - Mol Psychiatry. 2014 Apr;19(4):405-7 – reference: 19680270 - J Hum Genet. 2009 Sep;54(9):531-7 – reference: 19238176 - Nat Rev Genet. 2009 Apr;10(4):264-9 – reference: 24337655 - Hum Genet. 2014 May;133(5):639-50 – reference: 22752090 - Hum Genet. 2012 Oct;131(10):1639-54 – reference: 21036328 - Prog Mol Biol Transl Sci. 2010;94:241-70 – reference: 15115760 - Hum Mol Genet. 2004 Jun 15;13(12):1205-12 – reference: 21727255 - Arch Gen Psychiatry. 2011 Jul;68(7):724-31 – reference: 10698830 - Am J Psychiatry. 2000 Mar;157(3):469-71 – reference: 21980299 - PLoS Genet. 2011 Sep;7(9):e1002293 – reference: 16806108 - Biol Psychiatry. 2007 Feb 1;61(3):367-73 – reference: 20237344 - N Engl J Med. 2010 Mar 18;362(11):986-93 – reference: 20489179 - Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10584-9 – reference: 23731541 - Am J Hum Genet. 2013 Jun 6;92(6):1008-12 – reference: 18951455 - Int J Eat Disord. 2009 Mar;42(2):97-103 – reference: 17701901 - Am J Hum Genet. 2007 Sep;81(3):559-75 – reference: 16520436 - Arch Gen Psychiatry. 2006 Mar;63(3):305-12 – reference: 16815322 - Biol Psychiatry. 2007 Feb 1;61(3):348-58 – reference: 19828139 - Biol Psychiatry. 2010 Jan 1;67(1):71-7 – reference: 22520966 - Biol Psychiatry. 2012 Oct 15;72(8):707-9 – reference: 22797368 - Obes Facts. 2012;5(3):408-19 – reference: 10812038 - Biol Psychiatry. 2000 May 1;47(9):794-803 – reference: 15609150 - Eur J Health Econ. 2002;3(4):244-50 – reference: 25056061 - Nature. 2014 Jul 24;511(7510):421-7 – reference: 12210640 - Int J Eat Disord. 2002 Nov;32(3):253-70 – reference: 19404257 - Nature. 2009 May 28;459(7246):569-73 – reference: 24619573 - Am J Med Genet C Semin Med Genet. 2014 Mar;166C(1):1-7 – reference: 7793446 - Am J Psychiatry. 1995 Jul;152(7):1073-4 – reference: 21079607 - Mol Psychiatry. 2011 Sep;16(9):949-59 – reference: 17309939 - Circulation. 2007 Feb 20;115(7):928-35 – reference: 25260752 - J Psychiatr Res. 2014 Dec;59:68-76 – reference: 10703806 - Lancet. 2000 Feb 26;355(9205):721-2 – reference: 15852321 - Int J Eat Disord. 2005;37 Suppl:S52-9; discussion S87-9 – reference: 15101071 - Int J Eat Disord. 2004 May;35(4):556-70 – reference: 19603084 - J R Stat Soc Series B Stat Methodol. 2008;70(5):849-911 – reference: 19719398 - Annu Rev Med. 2010;61:425-35 – reference: 21552331 - PLoS Genet. 2011 Apr;7(4):e1002051 – reference: 11352375 - Psychol Med. 2001 May;31(4):737-40 – reference: 15569892 - Am J Psychiatry. 2004 Dec;161(12):2215-21 – reference: 16134111 - Int J Eat Disord. 2005 Sep;38(2):143-6 – reference: 15800149 - Am J Psychiatry. 2005 Apr;162(4):753-7 – reference: 17464678 - Aust N Z J Psychiatry. 2007 Jan;41(1):24-31 – reference: 22965006 - Mol Psychiatry. 2014 Apr;19(4):504-10 – reference: 23999524 - Mol Psychiatry. 2014 Jun;19(6):724-32 – reference: 12740597 - Mol Psychiatry. 2003 Apr;8(4):397-406 – reference: 20468064 - Am J Med Genet B Neuropsychiatr Genet. 2010 Jul;153B(5):1070-80 – reference: 19118319 - Br J Psychiatry. 2009 Jan;194(1):10-7 – reference: 18677311 - Nat Genet. 2008 Sep;40(9):1053-5 – reference: 7814009 - Hum Genet. 1995 Jan;95(1):1-11 – reference: 9672050 - Arch Gen Psychiatry. 1998 Jul;55(7):603-10 – reference: 20808728 - J Stat Softw. 2010;33(1):1-22 |
| SSID | ssj0060591 |
| Score | 2.1745007 |
| Snippet | Background
Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide... Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide association... Background Anorexia nervosa (AN) is a complex psychiatric disease with a moderate to strong genetic contribution. In addition to conventional genome wide... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4 |
| SubjectTerms | Adolescent Adult Anorexia nervosa Anorexia Nervosa - genetics Biomedical and Life Sciences Biomedicine Care and treatment Complications and side effects Databases, Genetic Development and progression Female Gene Expression Genetic Predisposition to Disease Genomics Human Genetics Humans Logistic Models Machine Learning Microarrays Patient outcomes Reproducibility of Results Research Article Risk Factors Sample Size |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDDejg308jH0vWzuyMRishF4cx7FhL6W0dIPbw7ZC34zt2F3hcI7LXdv995MSX7iU0tFnK1-SLP0UyRIhn3LjZOmlyZxnMmM615mRrswADEvAcgW3Hn8NTH_w4xP2_bQ8jc2i8SzMZv4-F3yvzXGcEgS8GPfyMgO4eB98FO_ysvxgbXQBlMs8Ji1vvGzkdq4b3w3vc70yckiPPiYPV2Gu_17q2WzDAx09JU8idEz3e1k_I_dceE4eTGNy_AX5Ou0KI10aJ0GcpTWo14WrU6wfT-cLpEQ5pI1PdWgW7upcpwGMRdPql-Tk6PD3wXEWhyNktmTFMnMT-EIhLDZ0BymIWrBSVJQaa2pJTV3RutCFo4W14I-oNkywuigtAoTCeFm8IluhCe4NSSkeoKbSTDAFC_cUXnrnrcGxVlz6PCGTNe-UjZ3DcYDFTHURhOCqZ7fCajFkt7pKyJfhknnfNuM24o8oEIXtKALWu5zpVduqb79-qn0GAScHVCkS8jkS-QYebnU8PgCfgB2sRpTbI0rYL3a0_GEtd4VLWGQWXLNqVV5xTIIC5knI614PhpenvMJIlSWkGmnIQIBtuscr4fxP166bYZDNioTsrnVJRTvR3saT3UHd_s_Bt3e69zvyiPY7A2zkNtlaLlZuB6DV0rzvNtU_iSwZnQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA7LLCg-eL9UVqkiCC6dnbZJmoAvg7iswgyiDqxPIUmTdXG2HaZTXf315rRpmQ6yIvic09vpl-Q7OTeEXsTKcGK5iozFPMIylpHihkSODHPH5VKqLRwNzOb0ZIHfn5LTPTTvcmHUhb6Ag6QmJ7cab-egL9sUB2ihYNZHq9y2M57RoyqGnkvOKgbjmJLIccp9Shw3H6H9xfzD9EuTFUmIm_oce9fmH68bbE67S_TWHrUbP9k7UW-g63Wxkj9_yOVya586voXK7gvb8JRv43qjxvrXTvHH_6eC2-imp7ThtMXgHbRnirvo2sw77e-h17MmYNOEvkPFWZg72H83eQhx7eFqDZKAj7C0oSzKtbk8l2HhFrGykvfR4vjt5zcnkW_aEGmC001kJu5FGNNQaN6hg-UME5YlidIq54nKsyRPZWqSVGu3TyZSYYbzlGggLqmyPH2ARkVZmEcoTCCxO-FqAq5hd09muTVWK2i3RbmNAzTp_pbQvqI5NNZYisayYVS0WhEQxQZaEZcBetVfsmrLeVwl_BwgIKBMRgFxOGeyrirx7tNHMcXOEKaO7bIAvfRCtnQP19KnNbhPgMpaA8mDgaSbx3ow_KxDmoAhCH4rTFlXIs4oOGcdFwvQwxZ5_csnNAMLGgcoG2CyF4Dy4cOR4vxrU0Ycg_GP0wAddugVfv2qrtLJYQ_wv2vw8T9JH6DRZl2bJ47lbdRTP3V_AwY_TZA priority: 102 providerName: Unpaywall |
| Title | Machine learning derived risk prediction of anorexia nervosa |
| URI | https://link.springer.com/article/10.1186/s12920-016-0165-x https://www.ncbi.nlm.nih.gov/pubmed/26792494 https://www.proquest.com/docview/1760899181 https://pubmed.ncbi.nlm.nih.gov/PMC4721143 https://bmcmedgenomics.biomedcentral.com/counter/pdf/10.1186/s12920-016-0165-x |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMedCentral customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: RBZ dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: ABDBF dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: DIK dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal - Open Access customDbUrl: eissn: 1755-8794 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: M48 dateStart: 20080401 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: AAJSJ dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) customDbUrl: eissn: 1755-8794 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060591 issn: 1755-8794 databaseCode: C6C dateStart: 20080112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9tADBddC3t8GHvXWxe8MRiseIvt8-NgY2ShpQsklHaB7NNxdz63hWBncbKl__0kv6hL130y-GT7rJNOP1myBPDOVYYHKVeOSRl3mHSlo7gJHATDHLGcH-qUPg2MJ-HRlI1mwWwLmvZWNQOLG1076ic1Xc4_bn5dfkWF_1IqfBx-KlxquYROMfnGYeAgpNxBQ8Wpk8OYtUEFBO7crQObN15GhYHDiBwS1rFS1_fqK8bqeiJlG019APfW2UJe_pHz-RWDdfgIHtZI0x5UovEYtkz2BO6O61j6U_g8LvMojV03jjizE5TG3yaxKd3cXiyJkpbNzlNbZvnSbC6kneHekhfyGUwPD34Mj5y6l4KjA-avHNPHl41jTfXfcdHiJGZBHHme0irhnkoiL_GlbzxfazRfnlQsZokfaMITvkq5_xy2szwzu2B79L-1x1WfIrZ4zzjlqUm1oi5YIU9dC_oN74SuC41Tv4u5KB2OOBQV5wUllxHnxcaCD-0li6rKxm3Eb2lBBFWvyCg95kyui0J8Pz0RA4b-aYggNLbgfU2U5vhwLeu_DfAVqOBVh3KvQ4nqpTvDb5p1FzREOWmZydeFcKOQYqYIkSx4UclBO_lGjiyIOhLSElBV7-5IdnFeVvdm5JMz34L9RpZEoxW38WS_Fbf_c_DlP-f7Cu57lULg9rkH26vl2rxG1LVSPbgTzaIe7AwGo9MRHr8dTI5P8OwwHPbKLxm9UttwZDo5Hvz8C7M7K1w |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF-kBasP4rfRVqMIgiX0stkku9CXo7Rcz14fbAt9W3Y3u7VwJMflTut_70yyCU2Ris87-Zqv_U1mdoaQz7G2InVCR9YxETEVq0gLm0YAhgVguSQzDn8NzE6zyQWbXqaX_hx33VW7dynJxlM3Zs2zvTrGwUoQ-mIEnKURAMdNrLECa9wcj6dn084BA0AXsU9g_vXCwRZ01xHf2onuVkn2qdLHZGtdLtTvX2o-v7UbHT0lTzyMDMet3J-RB7Z8Th7OfKL8BdmfNUWSNvRTIa7CAlTtpy1CrCUPF0ukRJmElQtVWS3tzbUKS3AcVa1ekoujw_ODSeQHJUQmZckqsiP4Qs4NNncHifCCs5TnlGqjC0F1kdMiUYmliTGwN1GlGWdFkhoEC4l2InlFNsqqtG9ISPEwNRV6hOlYuCd3wllnNI64yoSLAzLqeCeN7yKOwyzmsokmeCZbdkusHEN2y5uAfO0vWbQtNO4j_oQCkdiaosTalyu1rmt5fPZdjhkEnxkgTB6QL57IVfBwo_xRAvgE7GY1oNweUILtmMHyx07uEpew4Ky01bqWcZ5hQhTwT0Bet3rQvzzNcoxaWUDygYb0BNiye7hSXv9oWnczDLhZEpDdTpek9xn1fTzZ7dXt3xx8-1_3_kC2JuezE3lyfPrtHXlEWysB37lNNlbLtd0ByLXS772J_QHdJCH2 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDI_QkAY8IL4pDCgICYmp2jVN00TiZTo4bcBNCJi0tyhJkzHplJ6udzD-e-xrelonNMRznLR1HPvn2rEJeZ0bJ0svTeY8kxnTuc6MdGUGYFgCliu49fhrYHrED47Zx5PyJPY5bfts9z4k2d1pwCpNYbk3r313xAXfa3NssgRuMHrDvMwARF5nYNywhcGYj3tVDFBd5jGU-ddpA2N0WSVfsEmX8yU3QdNb5MYqzPXvX3o2u2CXJnfI7Qgo0_1OAu6Say7cI9vTGDK_T95N1-mSLo39IU7TGoTup6tTzCpP5wukxN1JG5_q0Czc-ZlOA6iQptUPyPHkw_fxQRZbJmS2ZMUycyP4QiEslnmHvRG1YKWoKDXW1JKauqJ1oQtHC2vBSlFtmGB1UVqEDYXxsnhItkIT3GOSUrxWTaUZYWAW1hReeuetwWZXXPo8IaOed8rGeuLY1mKm1n6F4Kpjt8IcMmS3Ok_I282UeVdM4yriV7ghCotUBMyCOdWrtlWH376qfQZuKAesKRLyJhL5Bh5udbxUAJ-Ada0GlDsDSjhFdjD8st93hUOYehZcs2pVXnEMjQISSsijTg42L095hf4rS0g1kJANARbvHo6Esx_rIt4MXW9WJGS3lyUVtUd7FU92N-L2bw4--a-1X5DtL-8n6vPh0aen5CbtDgko0R2ytVys3DPAXkvzfH2-_gBIMyTT |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA7LLCg-eL9UVqkiCC6dnbZJmoAvg7iswgyiDqxPIUmTdXG2HaZTXf315rRpmQ6yIvic09vpl-Q7OTeEXsTKcGK5iozFPMIylpHihkSODHPH5VKqLRwNzOb0ZIHfn5LTPTTvcmHUhb6Ag6QmJ7cab-egL9sUB2ihYNZHq9y2M57RoyqGnkvOKgbjmJLIccp9Shw3H6H9xfzD9EuTFUmIm_oce9fmH68bbE67S_TWHrUbP9k7UW-g63Wxkj9_yOVya586voXK7gvb8JRv43qjxvrXTvHH_6eC2-imp7ThtMXgHbRnirvo2sw77e-h17MmYNOEvkPFWZg72H83eQhx7eFqDZKAj7C0oSzKtbk8l2HhFrGykvfR4vjt5zcnkW_aEGmC001kJu5FGNNQaN6hg-UME5YlidIq54nKsyRPZWqSVGu3TyZSYYbzlGggLqmyPH2ARkVZmEcoTCCxO-FqAq5hd09muTVWK2i3RbmNAzTp_pbQvqI5NNZYisayYVS0WhEQxQZaEZcBetVfsmrLeVwl_BwgIKBMRgFxOGeyrirx7tNHMcXOEKaO7bIAvfRCtnQP19KnNbhPgMpaA8mDgaSbx3ow_KxDmoAhCH4rTFlXIs4oOGcdFwvQwxZ5_csnNAMLGgcoG2CyF4Dy4cOR4vxrU0Ycg_GP0wAddugVfv2qrtLJYQ_wv2vw8T9JH6DRZl2bJ47lbdRTP3V_AwY_TZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+derived+risk+prediction+of+anorexia+nervosa&rft.jtitle=BMC+medical+genomics&rft.au=Guo%2C+Yiran&rft.au=Wei%2C+Zhi&rft.au=Keating%2C+Brendan+J&rft.au=Hakonarson%2C+Hakon&rft.date=2016-01-20&rft.eissn=1755-8794&rft.volume=9&rft.spage=4&rft_id=info:doi/10.1186%2Fs12920-016-0165-x&rft_id=info%3Apmid%2F26792494&rft.externalDocID=26792494 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-8794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-8794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-8794&client=summon |