Hierarchical embedding attention for overall survival prediction in lung cancer from unstructured EHRs

The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured...

Full description

Saved in:
Bibliographic Details
Published inBMC medical informatics and decision making Vol. 25; no. 1; pp. 169 - 16
Main Authors Paolo, Domenico, Greco, Carlo, Cortellini, Alessio, Ramella, Sara, Soda, Paolo, Bria, Alessandro, Sicilia, Rosa
Format Journal Article
LanguageEnglish
Published London BioMed Central 18.04.2025
BioMed Central Ltd
BMC
Subjects
Online AccessGet full text
ISSN1472-6947
1472-6947
DOI10.1186/s12911-025-02998-6

Cover

Abstract The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features.
AbstractList The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features.
Abstract The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features.
The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features.The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features.
The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features. Keywords: Attention mechanism, Transformer, NER, Unstructured EHRs, Survival analysis, Lung cancer
ArticleNumber 169
Audience Academic
Author Ramella, Sara
Cortellini, Alessio
Paolo, Domenico
Greco, Carlo
Soda, Paolo
Sicilia, Rosa
Bria, Alessandro
Author_xml – sequence: 1
  givenname: Domenico
  surname: Paolo
  fullname: Paolo, Domenico
  organization: Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico di Roma
– sequence: 2
  givenname: Carlo
  surname: Greco
  fullname: Greco, Carlo
  organization: Research Unit of Radiation Oncology, Department of Medicine and Surgery, University Campus Bio-Medico di Roma, Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico
– sequence: 3
  givenname: Alessio
  surname: Cortellini
  fullname: Cortellini, Alessio
  organization: Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico
– sequence: 4
  givenname: Sara
  surname: Ramella
  fullname: Ramella, Sara
  organization: Research Unit of Radiation Oncology, Department of Medicine and Surgery, University Campus Bio-Medico di Roma, Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico
– sequence: 5
  givenname: Paolo
  surname: Soda
  fullname: Soda, Paolo
  email: paolo.soda@umu.se
  organization: Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico di Roma, Department of Diagnostics and Intervention, Radiation Physics, Umeå University
– sequence: 6
  givenname: Alessandro
  surname: Bria
  fullname: Bria, Alessandro
  organization: Department of Electrical and Information Engineering, University of Cassino and Southern Latium
– sequence: 7
  givenname: Rosa
  surname: Sicilia
  fullname: Sicilia, Rosa
  organization: Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico di Roma
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40251623$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-238588$$DView record from Swedish Publication Index
BookMark eNp9kl1vFCEUhiemxn7oH_DCTOKNN1MHGD7mclNbt0kTE6PeEmAOK5sZWGFY478v-2FrjTGEQOB5Xzgn73l14oOHqnqN2kuEBHufEO4RalpMy-x70bBn1RnqOG5Y3_GTP_an1XlK67ZFXBD6ojrtigYxTM4qu3QQVTTfnVFjDZOGYXB-Vat5Bj-74GsbYh22BRrHOuW4ddsCbiIMzuzvna_HXBRGeQOxtjFMdfZpjtnMuWD19fJzelk9t2pM8Oq4XlRfb66_XC2bu08fb68Wd42hHZkbxdtBW2qsHQZrYeDUEqs0A4q50URZolrdaqy51soISjUjtmfUattS2llyUd0efIeg1nIT3aTiLxmUk_uDEFdSxdmZEWSn-ADQAwHBO9QzjQCBwlZhTgkTuHg1B6_0EzZZP3H74L4t9m55yhITQYUo_LsDv4nhR4Y0y8klA-OoPIScJEE9Yohzwgv69i90HXL0pTOS4BZRJFrePVIrVf7rvA1zVGZnKheCMMQ6RnfPXv6DKmOAyZmSGOvK-RPBm-PjWU8wPNT1OxQFwAfAxJBSBPuAoFbukicPyZNFIPfJk6yIyLFbBfYriI8l_Ud1Dwx624Y
Cites_doi 10.1001/jama.1982.03320430047030
10.18653/v1/2022.findings-emnlp.144
10.1038/sdata.2016.35
10.1007/978-981-10-7359-5
10.1093/jamia/ocac040
10.1016/j.artmed.2023.102625
10.1007/s10579-015-9330-7
10.1162/dint_a_00093
10.1162/neco.1997.9.8.1735
10.1016/j.artmed.2022.102282
10.18653/v1/2022.bionlp-1.12
10.3390/jimaging8110298
10.1016/j.simpa.2022.100373
10.1016/j.jbi.2015.06.007
10.1016/j.jksuci.2023.101654
10.1609/aaai.v32i1.11842
10.1136/amiajnl-2011-000203
10.1002/wics.1549
10.1186/s12874-018-0482-1
10.1016/j.jbi.2021.103960
10.1016/j.cmpb.2024.108308
10.1136/amiajnl-2013-001628
10.1186/s12911-021-01695-4
10.18653/v1/2022.bionlp-1.15
10.1093/jamia/ocz166
10.1136/jamia.2010.003939
10.1186/s12911-020-01362-0
10.1109/BIBM58861.2023.10385778
10.1197/jamia.M1733
10.1016/j.ijmedinf.2023.105122
10.1371/journal.pone.0207455
10.1109/ICCV.2017.324
10.1007/978-3-319-78503-5
10.1016/j.ijmedinf.2022.104805
10.1007/978-981-15-1956-7
10.1016/j.jbi.2023.104431
10.1007/978-981-13-3146-6
10.1093/jamiaopen/ooab025
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
COPYRIGHT 2025 BioMed Central Ltd.
2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: COPYRIGHT 2025 BioMed Central Ltd.
– notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88C
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M0T
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
DOA
DOI 10.1186/s12911-025-02998-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Health Management
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef

MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1472-6947
EndPage 16
ExternalDocumentID oai_doaj_org_article_4a7dee9e3e874196b1e1ea2fa2753682
oai_DiVA_org_umu_238588
A836164658
40251623
10_1186_s12911_025_02998_6
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: Umea University
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
6PF
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
AAWTL
ABDBF
ABUWG
ACGFO
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
ADUKV
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AQUVI
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
INH
INR
ITC
K6V
K7-
KQ8
LK8
M0T
M1P
M7P
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SMD
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
M48
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
123
2VQ
4.4
ADHXS
ADRAZ
ADTPV
AHSBF
AOWAS
C1A
D8T
D93
EJD
H13
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c543t-a70dbf5cffddffed75f3fab6e527cb3af3a0b0b2b7bbac855b63f965fbf0554f3
IEDL.DBID DOA
ISSN 1472-6947
IngestDate Wed Aug 27 01:28:04 EDT 2025
Tue Sep 09 23:13:39 EDT 2025
Fri Sep 05 17:33:15 EDT 2025
Fri Jul 25 10:35:05 EDT 2025
Tue Jun 17 21:56:15 EDT 2025
Tue Jun 10 20:59:50 EDT 2025
Tue Apr 22 01:20:48 EDT 2025
Sun Jul 06 05:03:13 EDT 2025
Sat Sep 06 07:30:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Attention mechanism
Survival analysis
NER
Unstructured EHRs
Transformer
Lung cancer
Language English
License 2025. The Author(s).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-a70dbf5cffddffed75f3fab6e527cb3af3a0b0b2b7bbac855b63f965fbf0554f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/4a7dee9e3e874196b1e1ea2fa2753682
PMID 40251623
PQID 3201518074
PQPubID 42572
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_4a7dee9e3e874196b1e1ea2fa2753682
swepub_primary_oai_DiVA_org_umu_238588
proquest_miscellaneous_3191617737
proquest_journals_3201518074
gale_infotracmisc_A836164658
gale_infotracacademiconefile_A836164658
pubmed_primary_40251623
crossref_primary_10_1186_s12911_025_02998_6
springer_journals_10_1186_s12911_025_02998_6
PublicationCentury 2000
PublicationDate 2025-04-18
PublicationDateYYYYMMDD 2025-04-18
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC medical informatics and decision making
PublicationTitleAbbrev BMC Med Inform Decis Mak
PublicationTitleAlternate BMC Med Inform Decis Mak
PublicationYear 2025
Publisher BioMed Central
BioMed Central Ltd
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: BMC
References 2998_CR49
2998_CR48
2998_CR45
2998_CR44
2998_CR47
S Zhou (2998_CR22) 2022; 29
2998_CR46
2998_CR43
X Li (2998_CR27) 2021; 3
P Chen (2998_CR4) 2022; 22
Y An (2998_CR12) 2022; 127
G Hripcsak (2998_CR38) 2005; 12
2998_CR37
S Henry (2998_CR11) 2020; 27
S Hochreiter (2998_CR31) 1997; 9
W Sun (2998_CR16) 2013; 20
2998_CR33
M Tayefi (2998_CR3) 2021; 13
2998_CR30
2998_CR32
Ö Uzuner (2998_CR9) 2011; 18
JL Katzman (2998_CR34) 2018; 18
A Stubbs (2998_CR10) 2015; 58
S Narayanan (2998_CR14) 2022; 125
2998_CR23
M Kittner (2998_CR41) 2021; 4
2998_CR25
V Kocaman (2998_CR8) 2022; 13
O Solarte-Pabón (2998_CR29) 2023; 143
2998_CR2
AE Johnson (2998_CR24) 2016; 3
2998_CR21
2998_CR20
2998_CR7
2998_CR6
2998_CR5
A Kaplar (2998_CR28) 2022; 164
CM Caruso (2998_CR36) 2022; 8
A Savkov (2998_CR40) 2016; 50
H Dalianis (2998_CR1) 2018
2998_CR18
2998_CR17
TM Buonocore (2998_CR42) 2023; 144
2998_CR13
J Zhang (2998_CR26) 2023; 35
S Ramella (2998_CR35) 2018; 13
J Patrick (2998_CR15) 2010; 17
FE Harrell (2998_CR50) 1982; 247
L Campillos-Llanos (2998_CR39) 2021; 21
2998_CR19
References_xml – volume: 247
  start-page: 2543
  issue: 18
  year: 1982
  ident: 2998_CR50
  publication-title: Jama.
  doi: 10.1001/jama.1982.03320430047030
– ident: 2998_CR49
– ident: 2998_CR25
  doi: 10.18653/v1/2022.findings-emnlp.144
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 2998_CR24
  publication-title: Sci Data.
  doi: 10.1038/sdata.2016.35
– ident: 2998_CR5
  doi: 10.1007/978-981-10-7359-5
– volume: 29
  start-page: 1208
  issue: 7
  year: 2022
  ident: 2998_CR22
  publication-title: J Am Med Inf Assoc.
  doi: 10.1093/jamia/ocac040
– ident: 2998_CR7
– volume: 143
  start-page: 102625
  year: 2023
  ident: 2998_CR29
  publication-title: Artif Intell Med.
  doi: 10.1016/j.artmed.2023.102625
– volume: 50
  start-page: 523
  year: 2016
  ident: 2998_CR40
  publication-title: Lang Resour Eval.
  doi: 10.1007/s10579-015-9330-7
– volume: 3
  start-page: 376
  issue: 3
  year: 2021
  ident: 2998_CR27
  publication-title: Data Intell.
  doi: 10.1162/dint_a_00093
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 2998_CR31
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 127
  start-page: 102282
  year: 2022
  ident: 2998_CR12
  publication-title: Artif Intell Med.
  doi: 10.1016/j.artmed.2022.102282
– ident: 2998_CR46
– ident: 2998_CR19
– ident: 2998_CR20
  doi: 10.18653/v1/2022.bionlp-1.12
– ident: 2998_CR21
– volume: 8
  start-page: 298
  year: 2022
  ident: 2998_CR36
  publication-title: J Imaging.
  doi: 10.3390/jimaging8110298
– volume: 13
  start-page: 100373
  year: 2022
  ident: 2998_CR8
  publication-title: Software Impacts.
  doi: 10.1016/j.simpa.2022.100373
– volume: 58
  start-page: 11
  year: 2015
  ident: 2998_CR10
  publication-title: J Biomed Inf.
  doi: 10.1016/j.jbi.2015.06.007
– volume: 35
  start-page: 101654
  issue: 8
  year: 2023
  ident: 2998_CR26
  publication-title: J King Saud Univ Comput Inf Sci.
  doi: 10.1016/j.jksuci.2023.101654
– ident: 2998_CR33
  doi: 10.1609/aaai.v32i1.11842
– volume: 18
  start-page: 552
  issue: 5
  year: 2011
  ident: 2998_CR9
  publication-title: J Am Med Inf Assoc.
  doi: 10.1136/amiajnl-2011-000203
– volume: 13
  start-page: 1549
  issue: 6
  year: 2021
  ident: 2998_CR3
  publication-title: Wiley Interdiscip Rev Comput Stat.
  doi: 10.1002/wics.1549
– volume: 18
  start-page: 1
  year: 2018
  ident: 2998_CR34
  publication-title: BMC Med Res Method.
  doi: 10.1186/s12874-018-0482-1
– volume: 125
  start-page: 103960
  year: 2022
  ident: 2998_CR14
  publication-title: J Biomed Inf.
  doi: 10.1016/j.jbi.2021.103960
– ident: 2998_CR48
  doi: 10.1016/j.cmpb.2024.108308
– ident: 2998_CR47
– volume: 20
  start-page: 806
  issue: 5
  year: 2013
  ident: 2998_CR16
  publication-title: J Am Med Inf Assoc.
  doi: 10.1136/amiajnl-2013-001628
– volume: 22
  start-page: 1
  issue: 1
  year: 2022
  ident: 2998_CR4
  publication-title: BMC Med Inf Decis Making.
  doi: 10.1186/s12911-021-01695-4
– ident: 2998_CR30
– ident: 2998_CR18
  doi: 10.18653/v1/2022.bionlp-1.15
– ident: 2998_CR2
– volume: 27
  start-page: 3
  issue: 1
  year: 2020
  ident: 2998_CR11
  publication-title: J Am Med Inf Assoc.
  doi: 10.1093/jamia/ocz166
– volume: 17
  start-page: 524
  issue: 5
  year: 2010
  ident: 2998_CR15
  publication-title: J Am Med Inf Assoc.
  doi: 10.1136/jamia.2010.003939
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 2998_CR39
  publication-title: BMC Med Inf Decis Making.
  doi: 10.1186/s12911-020-01362-0
– ident: 2998_CR45
  doi: 10.1109/BIBM58861.2023.10385778
– ident: 2998_CR23
– volume: 12
  start-page: 296
  issue: 3
  year: 2005
  ident: 2998_CR38
  publication-title: J Am Med Inf Assoc.
  doi: 10.1197/jamia.M1733
– ident: 2998_CR32
  doi: 10.1016/j.ijmedinf.2023.105122
– ident: 2998_CR44
– volume: 13
  start-page: 0207455
  year: 2018
  ident: 2998_CR35
  publication-title: PLoS One.
  doi: 10.1371/journal.pone.0207455
– ident: 2998_CR17
– ident: 2998_CR43
  doi: 10.1109/ICCV.2017.324
– volume-title: Clinical Text Mining: secondary Use of Electronic Patient Records
  year: 2018
  ident: 2998_CR1
  doi: 10.1007/978-3-319-78503-5
– volume: 164
  start-page: 104805
  year: 2022
  ident: 2998_CR28
  publication-title: Int J Med Inf.
  doi: 10.1016/j.ijmedinf.2022.104805
– ident: 2998_CR6
  doi: 10.1007/978-981-15-1956-7
– volume: 144
  start-page: 104431
  year: 2023
  ident: 2998_CR42
  publication-title: J Biomed Inf.
  doi: 10.1016/j.jbi.2023.104431
– ident: 2998_CR37
– ident: 2998_CR13
  doi: 10.1007/978-981-13-3146-6
– volume: 4
  start-page: 25
  year: 2021
  ident: 2998_CR41
  publication-title: JAMIA Open.
  doi: 10.1093/jamiaopen/ooab025
SSID ssj0017835
Score 2.3926663
Snippet The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized...
Abstract The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet...
SourceID doaj
swepub
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 169
SubjectTerms Attention mechanism
Automation
Carcinoma, Non-Small-Cell Lung - mortality
Cell survival
Decision making
Deep learning
Effectiveness
Electronic health records
Electronic Health Records - statistics & numerical data
Electronic medical records
Electronic records
Embedding
Feature extraction
Female
Health aspects
Health Informatics
Humans
Information processing
Information Systems and Communication Service
Lung cancer
Lung cancer, Non-small cell
Lung Neoplasms - mortality
Male
Management of Computing and Information Systems
Medical history
Medical prognosis
Medical records
Medicine
Medicine & Public Health
Methods
Natural Language Processing
Natural language processing in medical informatics
NER
Non-small cell lung carcinoma
Patient outcomes
Patients
Prediction models
Prognosis
Representations
Small cell lung carcinoma
Statistical analysis
Statistical models
Subject specialists
Survival
Survival Analysis
Transformer
Unstructured data
Unstructured EHRs
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Ni9QwNOgK4kX8trpKBNGDlm3TJE1PMuqOg7AexJW9hXzKwGxnnE7_v--lna6jsNcmLen7_sh7j5DXYNFb7yXPRVOKnEdjcyO5yKMEZ8Qo1TiB9c5n3-TinH-9EBdjwK0br1XuZWIS1H7tMEZ-UoGmEiW2bvmw-Z3j1CjMro4jNG6SWyUDXYuV4vMvUxYBoxr7QhklTzrQbRgQZFiTjKVl8kAZpZ79_0vmv1TTlCv9p69o0kXze-TuaETS2YD1--RGaB-Q22djmvwhiYsl1hWnMScrGi5t8KiiKPbSTLcbKZiqFC9vmtWKdj2ICyA4utniF9L6sqUrEAPUIVFsKRah0H5sNtvDNnq6-N49Iufz0x-fFvk4UCF3gle73NSFt1G4GL2PMfhaxAqwI4NgtbOViZUpbGGZra01TglhZRUbKaKNBZgdsXpMjtp1G54SymwRvFSyNC5y6ZltIs5WUJW0vuFRZeTdHrJ6M_TN0MnfUFIPeNCAB53woGVGPiLwp53Y8zo9WG9_6ZGFNDe1D6EJVVBgBjXSlqEMhkXDwOWSimXkLaJOI2futsaZscAADow9rvQMDofd1AQc7vhgJ3CUO1zeI1-PHN3pK_rLyKtpGd_EW2ptWPewB5xfsAjrqs7Ik4Fopl_i6MyBrZmR93squvr4dZB5M1DaAWw-L3_OEmz6y14zzO2qZ9cf-jm5wxLh87xUx-QI6CW8AHNqZ18mnvkDWCUeHw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4t20BRkJwQEiEr_iHJel1QqpHBBFvVl-Sitt02p38_-ZcbKhCwiJa_yQMw_PjMfzmZA34NG7EJQoZVvLUiTrSquELJOCYMRq3XqJ9c7nX9XiQny5lJcjTA7WwtzO39dafdyAPcJDPIZ1xFgOpu6SexI2XpTmuZpPGQM8wdgVxfx13J7hyfj8f-7Ct8zQlBf9DUM0252zR-Th6DDS2cDhx-RO7J6Q--djSvwpSYsl1hDnJ01WNF65GNAcUcTNzDcZKbilFC9q2tWKbnrYGkC46M0aZ8jty46uQOWpRwFYUyw4of0ILNtDN3q6-LZ5Ri7OTr_PF-X4eELppeDb0jZVcEn6lEJIKYZGJg6cUFGyxjtuE7eVqxxzjXPWaymd4qlVMrlUgYuR-HNy0F138ZBQ5qoYlFa19UmowFyb8B0FzZULrUi6IO93lDU3A0aGybGFVmbggwE-mMwHowryCYk_9UR86_wB2G5GdTHCNiHGNvKoweVplatjHS1LlkF4pTQryDtknUEt3K6tt2MxASwY8azMDBaHyGkSFney1xO0x-8375hvRu3dGA5ekawRJqggr6dmHIk30rp43UMfCHTB-2t4U5AXg9BMvyQwcAO_siAfdlL0a_J_UebtIGl7tPm8_DHLtOmvesMwj6uP_m_eY_KAZUUQZa1PyAHIT3wJrtTWvco69BNzNhch
  priority: 102
  providerName: Springer Nature
Title Hierarchical embedding attention for overall survival prediction in lung cancer from unstructured EHRs
URI https://link.springer.com/article/10.1186/s12911-025-02998-6
https://www.ncbi.nlm.nih.gov/pubmed/40251623
https://www.proquest.com/docview/3201518074
https://www.proquest.com/docview/3191617737
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-238588
https://doaj.org/article/4a7dee9e3e874196b1e1ea2fa2753682
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbB2MvY_d67YIGY3vYTG3rYvkxyZKFQcsI6wh7EZIlQSB1SxL__54jO1mzwfayF0Ms2SjnovMdS-cTIe8A0VvnJE9FlYuUB2NTI7lIg4RkxChV1QLrnc8v5OySf12IxZ2jvnBPWEcP3AnujJvSeV955hUEv0ra3OfeFMEUALSlirNvVmW7ZKpfP8DvGbsSGSXPNhDV8FNggdXIWFQmD8JQZOv_c06-E5T2q6S_MYrGKDR9Qh738JEOu2E_Jfd884w8PO8XyJ-TMFtiRXE84GRF_ZX1DoMTRRbNuK-RAkiluG3TrFZ008JEAaZGb9b4hti-bOgKJgBaozmsKZaf0LanmW2hG53M5psX5HI6-T6epf1RCmktONumpsycDaIOwbkQvCtFYKAX6UVR1paZwExmM1vY0lpTKyGsZKGSItiQAeAI7CU5aq4bf0xoYTPvpJK5qQOXrrBVwFMVFJPWVTyohHzcSVbfdIwZOmYaSupODxr0oKMetEzICIW_74ls1_EG2IDubUD_ywYS8gFVp9Ent2tTm760AAaM7FZ6CINDHjUBgzs96Am-VB8275Sve1_eaAYYSeRIGpSQt_tmfBL3pzX-uoU-kPYCFixZmZBXndHs_xLHNA5QZkI-7azo18v_Jpn3naUdyObz8scwyqa9anWBq7rq9f8Q4Ql5VET34GmuTskRWJV_A3Brawfkfrko4aqmXwbkwWhy8W0Ov8ZyPIg-B9f56Oct8F8sNQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdBLwgvskYYCQ-HiBa48SO8zChjnXq2FqhaUN7M3ZsT5W6trSNEH-O38adm3QUpL3ttXas632fz3dHyBvw6I21Iot5kfA489rEWmQ89gKCES1lUXKsd-4PRO8s-3LOzzfI76YWBp9VNjoxKGo7KfGOfCcFS8UTbN3yafojxqlRmF1tRmjoerSC3Q0txurCjiP36yeEcPPdw32g91vGDrqnn3txPWUgLnmWLmKdt63xvPTeWu-dzblPAWThOMtLk2qf6rZpG2ZyY3QpOTci9YXg3vg22GKfwrm3yGaGFygtsrnXHXw9WeUx8F6lKdWRYmcO1hWvJBlWRWNxm1gzh2FqwP-24S_juMrW_tPZNFjDg_vkXu3G0s6S7x6QDTd-SG7360T9I-J7Q6xsDoNWRtRdGmfRSFLs5hneV1Jwlik-H9WjEZ1XoLCA5el0hieE9eGYjkAR0RLZckaxDIZWdbvbCrbRbu9k_pic3Qiyn5DWeDJ2zwhlpu2skCLRpc-EZabwON1BpsLYIvMyIh8azKrpsnOHChGPFGpJBwV0UIEOSkRkD5G_2oldt8MPk9mFqoVYZTq3zhUudRIcsUKYxCVOM68ZBH1Csoi8R9Ip1A2LmS51XeIAAGOXLdUB4LCfGwfgttd2gkyX68sN8VWtU-bqSgIi8nq1jF_iO7mxm1SwB8Jv8EnzNI_I0yXTrP5ShuEkeLsR-dhw0dXh12Hm3ZLT1nCzP_zWCbipLivFMLsst64H-hW50zvtH6vjw8HRc3KXBSHI4kRukxbwjnsBzt3CvKwliJLvNy20fwAxPmXQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglSouiHcDBYyE4ABRkzh2nGOgXS0LrRBQ1JtlxzZaaZtd7W7-PzPOgy4gJK7xQ848PDMez2dCXoJHb6wVeczLlMe51ybWIuexFxCMaCnLmmO989m5mF7ks0t-ea2KP9x2H1KSXU0DojQ12-OV9Z2KS3G8ASuFR3sZVhdjkZi4SfYlL0sIv_aravZ1NmYS8GRjKJb568gdgxRw-__cna-ZpzFf-hu2aLBHkzvkdu9I0qrj_F1ywzX3yMFZnyq_T_x0jrXF4amTBXVXxlk0UxTxNMMNRwruKsULnHqxoJsWtgwQOrpa4wyhfd7QBWwFtEbBWFMsRKFtDzjbQjd6Ov2yeUAuJqff3k_j_lGFuOY528a6SKzxvPbeWu-dLbhnwCHheFbUhmnPdGISk5nCGF1Lzo1gvhTcG5-A6-HZQ7LXLBt3SGhmEmeFFKmufS5sZkqP7ytIJowtcy8j8magrFp12BkqxBxSqI4PCvigAh-UiMg7JP7YE3Gvw4fl-ofq1UjlurDOlY45Ca5QKUzqUqczrzMIu4TMIvIaWadQO7drXeu-yAAWjDhXqoLFIaIah8Ud7fQErap3mwfmq16rN4qBt8RThA-KyIuxGUfiTbXGLVvoAwEweIUFKyLyqBOa8ZdyDOjA34zI20GKfk3-L8q86iRthzYn8-9VoE171aoM87vy8f_N-5wcfD6ZqE8fzj8-IbeyoBN5nMojsgei5J6Ct7U1z3qF-gmrySPO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+embedding+attention+for+overall+survival+prediction+in+lung+cancer+from+unstructured+EHRs&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Domenico+Paolo&rft.au=Carlo+Greco&rft.au=Alessio+Cortellini&rft.au=Sara+Ramella&rft.date=2025-04-18&rft.pub=BMC&rft.eissn=1472-6947&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12911-025-02998-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a7dee9e3e874196b1e1ea2fa2753682
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon