Hierarchical embedding attention for overall survival prediction in lung cancer from unstructured EHRs
The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured...
Saved in:
Published in | BMC medical informatics and decision making Vol. 25; no. 1; pp. 169 - 16 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
18.04.2025
BioMed Central Ltd BMC |
Subjects | |
Online Access | Get full text |
ISSN | 1472-6947 1472-6947 |
DOI | 10.1186/s12911-025-02998-6 |
Cover
Abstract | The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features. |
---|---|
AbstractList | The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features. Abstract The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features. The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features.The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features. The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized information. Natural Language Processing (NLP), particularly Named Entity Recognition (NER), has been instrumental in extracting structured information from EHR data. However, existing literature primarly focuses on extracting handcrafted clinical features through NLP and NER methods without delving into their learned representations. In this work, we explore the untapped potential of these representations by considering their contextual richness and entity-specific information. Our proposed methodology extracts representations generated by a transformer-based NER model on EHRs data, combines them using a hierarchical attention mechanism, and employs the obtained enriched representation as input for a clinical prediction model. Specifically, this study addresses Overall Survival (OS) in Non-Small Cell Lung Cancer (NSCLC) using unstructured EHRs data collected from an Italian clinical centre encompassing 838 records from 231 lung cancer patients. Whilst our study is applied on EHRs written in Italian, it serves as use case to prove the effectiveness of extracting and employing high level textual representations that capture relevant information as named entities. Our methodology is interpretable because the hierarchical attention mechanism highlights the information in EHRs that the model considers the most crucial during the decision-making process. We validated this interpretability by measuring the agreement of domain experts on the importance assigned by the hierarchical attention mechanism to EHRs information through a questionnaire. Results demonstrate the effectiveness of our method, showcasing statistically significant improvements over traditional manually extracted clinical features. Keywords: Attention mechanism, Transformer, NER, Unstructured EHRs, Survival analysis, Lung cancer |
ArticleNumber | 169 |
Audience | Academic |
Author | Ramella, Sara Cortellini, Alessio Paolo, Domenico Greco, Carlo Soda, Paolo Sicilia, Rosa Bria, Alessandro |
Author_xml | – sequence: 1 givenname: Domenico surname: Paolo fullname: Paolo, Domenico organization: Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico di Roma – sequence: 2 givenname: Carlo surname: Greco fullname: Greco, Carlo organization: Research Unit of Radiation Oncology, Department of Medicine and Surgery, University Campus Bio-Medico di Roma, Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico – sequence: 3 givenname: Alessio surname: Cortellini fullname: Cortellini, Alessio organization: Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico – sequence: 4 givenname: Sara surname: Ramella fullname: Ramella, Sara organization: Research Unit of Radiation Oncology, Department of Medicine and Surgery, University Campus Bio-Medico di Roma, Operative Research Unit of Radiation Oncology, Fondazione Policlinico Universitario Campus Bio-Medico – sequence: 5 givenname: Paolo surname: Soda fullname: Soda, Paolo email: paolo.soda@umu.se organization: Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico di Roma, Department of Diagnostics and Intervention, Radiation Physics, Umeå University – sequence: 6 givenname: Alessandro surname: Bria fullname: Bria, Alessandro organization: Department of Electrical and Information Engineering, University of Cassino and Southern Latium – sequence: 7 givenname: Rosa surname: Sicilia fullname: Sicilia, Rosa organization: Unit of Computer Systems & Bioinformatics, Department of Engineering, University Campus Bio-Medico di Roma |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40251623$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-238588$$DView record from Swedish Publication Index |
BookMark | eNp9kl1vFCEUhiemxn7oH_DCTOKNN1MHGD7mclNbt0kTE6PeEmAOK5sZWGFY478v-2FrjTGEQOB5Xzgn73l14oOHqnqN2kuEBHufEO4RalpMy-x70bBn1RnqOG5Y3_GTP_an1XlK67ZFXBD6ojrtigYxTM4qu3QQVTTfnVFjDZOGYXB-Vat5Bj-74GsbYh22BRrHOuW4ddsCbiIMzuzvna_HXBRGeQOxtjFMdfZpjtnMuWD19fJzelk9t2pM8Oq4XlRfb66_XC2bu08fb68Wd42hHZkbxdtBW2qsHQZrYeDUEqs0A4q50URZolrdaqy51soISjUjtmfUattS2llyUd0efIeg1nIT3aTiLxmUk_uDEFdSxdmZEWSn-ADQAwHBO9QzjQCBwlZhTgkTuHg1B6_0EzZZP3H74L4t9m55yhITQYUo_LsDv4nhR4Y0y8klA-OoPIScJEE9Yohzwgv69i90HXL0pTOS4BZRJFrePVIrVf7rvA1zVGZnKheCMMQ6RnfPXv6DKmOAyZmSGOvK-RPBm-PjWU8wPNT1OxQFwAfAxJBSBPuAoFbukicPyZNFIPfJk6yIyLFbBfYriI8l_Ud1Dwx624Y |
Cites_doi | 10.1001/jama.1982.03320430047030 10.18653/v1/2022.findings-emnlp.144 10.1038/sdata.2016.35 10.1007/978-981-10-7359-5 10.1093/jamia/ocac040 10.1016/j.artmed.2023.102625 10.1007/s10579-015-9330-7 10.1162/dint_a_00093 10.1162/neco.1997.9.8.1735 10.1016/j.artmed.2022.102282 10.18653/v1/2022.bionlp-1.12 10.3390/jimaging8110298 10.1016/j.simpa.2022.100373 10.1016/j.jbi.2015.06.007 10.1016/j.jksuci.2023.101654 10.1609/aaai.v32i1.11842 10.1136/amiajnl-2011-000203 10.1002/wics.1549 10.1186/s12874-018-0482-1 10.1016/j.jbi.2021.103960 10.1016/j.cmpb.2024.108308 10.1136/amiajnl-2013-001628 10.1186/s12911-021-01695-4 10.18653/v1/2022.bionlp-1.15 10.1093/jamia/ocz166 10.1136/jamia.2010.003939 10.1186/s12911-020-01362-0 10.1109/BIBM58861.2023.10385778 10.1197/jamia.M1733 10.1016/j.ijmedinf.2023.105122 10.1371/journal.pone.0207455 10.1109/ICCV.2017.324 10.1007/978-3-319-78503-5 10.1016/j.ijmedinf.2022.104805 10.1007/978-981-15-1956-7 10.1016/j.jbi.2023.104431 10.1007/978-981-13-3146-6 10.1093/jamiaopen/ooab025 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). COPYRIGHT 2025 BioMed Central Ltd. 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: COPYRIGHT 2025 BioMed Central Ltd. – notice: 2025. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88C 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M0T M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 ADHXS ADTPV AOWAS D8T D93 ZZAVC DOA |
DOI | 10.1186/s12911-025-02998-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Healthcare Administration Database Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Health Management ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1472-6947 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_4a7dee9e3e874196b1e1ea2fa2753682 oai_DiVA_org_umu_238588 A836164658 40251623 10_1186_s12911_025_02998_6 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GrantInformation_xml | – fundername: Umea University |
GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 6PF 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML AAWTL ABDBF ABUWG ACGFO ACGFS ACIWK ACPRK ACUHS ADBBV ADUKV AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS AQUVI ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ITC K6V K7- KQ8 LK8 M0T M1P M7P M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SMD SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM PMFND 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N M48 P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 123 2VQ 4.4 ADHXS ADRAZ ADTPV AHSBF AOWAS C1A D8T D93 EJD H13 IPNFZ RIG ZZAVC |
ID | FETCH-LOGICAL-c543t-a70dbf5cffddffed75f3fab6e527cb3af3a0b0b2b7bbac855b63f965fbf0554f3 |
IEDL.DBID | DOA |
ISSN | 1472-6947 |
IngestDate | Wed Aug 27 01:28:04 EDT 2025 Tue Sep 09 23:13:39 EDT 2025 Fri Sep 05 17:33:15 EDT 2025 Fri Jul 25 10:35:05 EDT 2025 Tue Jun 17 21:56:15 EDT 2025 Tue Jun 10 20:59:50 EDT 2025 Tue Apr 22 01:20:48 EDT 2025 Sun Jul 06 05:03:13 EDT 2025 Sat Sep 06 07:30:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Attention mechanism Survival analysis NER Unstructured EHRs Transformer Lung cancer |
Language | English |
License | 2025. The Author(s). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-a70dbf5cffddffed75f3fab6e527cb3af3a0b0b2b7bbac855b63f965fbf0554f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/4a7dee9e3e874196b1e1ea2fa2753682 |
PMID | 40251623 |
PQID | 3201518074 |
PQPubID | 42572 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a7dee9e3e874196b1e1ea2fa2753682 swepub_primary_oai_DiVA_org_umu_238588 proquest_miscellaneous_3191617737 proquest_journals_3201518074 gale_infotracmisc_A836164658 gale_infotracacademiconefile_A836164658 pubmed_primary_40251623 crossref_primary_10_1186_s12911_025_02998_6 springer_journals_10_1186_s12911_025_02998_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-18 |
PublicationDateYYYYMMDD | 2025-04-18 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | BMC medical informatics and decision making |
PublicationTitleAbbrev | BMC Med Inform Decis Mak |
PublicationTitleAlternate | BMC Med Inform Decis Mak |
PublicationYear | 2025 |
Publisher | BioMed Central BioMed Central Ltd BMC |
Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: BMC |
References | 2998_CR49 2998_CR48 2998_CR45 2998_CR44 2998_CR47 S Zhou (2998_CR22) 2022; 29 2998_CR46 2998_CR43 X Li (2998_CR27) 2021; 3 P Chen (2998_CR4) 2022; 22 Y An (2998_CR12) 2022; 127 G Hripcsak (2998_CR38) 2005; 12 2998_CR37 S Henry (2998_CR11) 2020; 27 S Hochreiter (2998_CR31) 1997; 9 W Sun (2998_CR16) 2013; 20 2998_CR33 M Tayefi (2998_CR3) 2021; 13 2998_CR30 2998_CR32 Ö Uzuner (2998_CR9) 2011; 18 JL Katzman (2998_CR34) 2018; 18 A Stubbs (2998_CR10) 2015; 58 S Narayanan (2998_CR14) 2022; 125 2998_CR23 M Kittner (2998_CR41) 2021; 4 2998_CR25 V Kocaman (2998_CR8) 2022; 13 O Solarte-Pabón (2998_CR29) 2023; 143 2998_CR2 AE Johnson (2998_CR24) 2016; 3 2998_CR21 2998_CR20 2998_CR7 2998_CR6 2998_CR5 A Kaplar (2998_CR28) 2022; 164 CM Caruso (2998_CR36) 2022; 8 A Savkov (2998_CR40) 2016; 50 H Dalianis (2998_CR1) 2018 2998_CR18 2998_CR17 TM Buonocore (2998_CR42) 2023; 144 2998_CR13 J Zhang (2998_CR26) 2023; 35 S Ramella (2998_CR35) 2018; 13 J Patrick (2998_CR15) 2010; 17 FE Harrell (2998_CR50) 1982; 247 L Campillos-Llanos (2998_CR39) 2021; 21 2998_CR19 |
References_xml | – volume: 247 start-page: 2543 issue: 18 year: 1982 ident: 2998_CR50 publication-title: Jama. doi: 10.1001/jama.1982.03320430047030 – ident: 2998_CR49 – ident: 2998_CR25 doi: 10.18653/v1/2022.findings-emnlp.144 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 2998_CR24 publication-title: Sci Data. doi: 10.1038/sdata.2016.35 – ident: 2998_CR5 doi: 10.1007/978-981-10-7359-5 – volume: 29 start-page: 1208 issue: 7 year: 2022 ident: 2998_CR22 publication-title: J Am Med Inf Assoc. doi: 10.1093/jamia/ocac040 – ident: 2998_CR7 – volume: 143 start-page: 102625 year: 2023 ident: 2998_CR29 publication-title: Artif Intell Med. doi: 10.1016/j.artmed.2023.102625 – volume: 50 start-page: 523 year: 2016 ident: 2998_CR40 publication-title: Lang Resour Eval. doi: 10.1007/s10579-015-9330-7 – volume: 3 start-page: 376 issue: 3 year: 2021 ident: 2998_CR27 publication-title: Data Intell. doi: 10.1162/dint_a_00093 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 2998_CR31 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 127 start-page: 102282 year: 2022 ident: 2998_CR12 publication-title: Artif Intell Med. doi: 10.1016/j.artmed.2022.102282 – ident: 2998_CR46 – ident: 2998_CR19 – ident: 2998_CR20 doi: 10.18653/v1/2022.bionlp-1.12 – ident: 2998_CR21 – volume: 8 start-page: 298 year: 2022 ident: 2998_CR36 publication-title: J Imaging. doi: 10.3390/jimaging8110298 – volume: 13 start-page: 100373 year: 2022 ident: 2998_CR8 publication-title: Software Impacts. doi: 10.1016/j.simpa.2022.100373 – volume: 58 start-page: 11 year: 2015 ident: 2998_CR10 publication-title: J Biomed Inf. doi: 10.1016/j.jbi.2015.06.007 – volume: 35 start-page: 101654 issue: 8 year: 2023 ident: 2998_CR26 publication-title: J King Saud Univ Comput Inf Sci. doi: 10.1016/j.jksuci.2023.101654 – ident: 2998_CR33 doi: 10.1609/aaai.v32i1.11842 – volume: 18 start-page: 552 issue: 5 year: 2011 ident: 2998_CR9 publication-title: J Am Med Inf Assoc. doi: 10.1136/amiajnl-2011-000203 – volume: 13 start-page: 1549 issue: 6 year: 2021 ident: 2998_CR3 publication-title: Wiley Interdiscip Rev Comput Stat. doi: 10.1002/wics.1549 – volume: 18 start-page: 1 year: 2018 ident: 2998_CR34 publication-title: BMC Med Res Method. doi: 10.1186/s12874-018-0482-1 – volume: 125 start-page: 103960 year: 2022 ident: 2998_CR14 publication-title: J Biomed Inf. doi: 10.1016/j.jbi.2021.103960 – ident: 2998_CR48 doi: 10.1016/j.cmpb.2024.108308 – ident: 2998_CR47 – volume: 20 start-page: 806 issue: 5 year: 2013 ident: 2998_CR16 publication-title: J Am Med Inf Assoc. doi: 10.1136/amiajnl-2013-001628 – volume: 22 start-page: 1 issue: 1 year: 2022 ident: 2998_CR4 publication-title: BMC Med Inf Decis Making. doi: 10.1186/s12911-021-01695-4 – ident: 2998_CR30 – ident: 2998_CR18 doi: 10.18653/v1/2022.bionlp-1.15 – ident: 2998_CR2 – volume: 27 start-page: 3 issue: 1 year: 2020 ident: 2998_CR11 publication-title: J Am Med Inf Assoc. doi: 10.1093/jamia/ocz166 – volume: 17 start-page: 524 issue: 5 year: 2010 ident: 2998_CR15 publication-title: J Am Med Inf Assoc. doi: 10.1136/jamia.2010.003939 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: 2998_CR39 publication-title: BMC Med Inf Decis Making. doi: 10.1186/s12911-020-01362-0 – ident: 2998_CR45 doi: 10.1109/BIBM58861.2023.10385778 – ident: 2998_CR23 – volume: 12 start-page: 296 issue: 3 year: 2005 ident: 2998_CR38 publication-title: J Am Med Inf Assoc. doi: 10.1197/jamia.M1733 – ident: 2998_CR32 doi: 10.1016/j.ijmedinf.2023.105122 – ident: 2998_CR44 – volume: 13 start-page: 0207455 year: 2018 ident: 2998_CR35 publication-title: PLoS One. doi: 10.1371/journal.pone.0207455 – ident: 2998_CR17 – ident: 2998_CR43 doi: 10.1109/ICCV.2017.324 – volume-title: Clinical Text Mining: secondary Use of Electronic Patient Records year: 2018 ident: 2998_CR1 doi: 10.1007/978-3-319-78503-5 – volume: 164 start-page: 104805 year: 2022 ident: 2998_CR28 publication-title: Int J Med Inf. doi: 10.1016/j.ijmedinf.2022.104805 – ident: 2998_CR6 doi: 10.1007/978-981-15-1956-7 – volume: 144 start-page: 104431 year: 2023 ident: 2998_CR42 publication-title: J Biomed Inf. doi: 10.1016/j.jbi.2023.104431 – ident: 2998_CR37 – ident: 2998_CR13 doi: 10.1007/978-981-13-3146-6 – volume: 4 start-page: 25 year: 2021 ident: 2998_CR41 publication-title: JAMIA Open. doi: 10.1093/jamiaopen/ooab025 |
SSID | ssj0017835 |
Score | 2.3926663 |
Snippet | The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet disorganized... Abstract The automated processing of Electronic Health Records (EHRs) poses a significant challenge due to their unstructured nature, rich in valuable, yet... |
SourceID | doaj swepub proquest gale pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 169 |
SubjectTerms | Attention mechanism Automation Carcinoma, Non-Small-Cell Lung - mortality Cell survival Decision making Deep learning Effectiveness Electronic health records Electronic Health Records - statistics & numerical data Electronic medical records Electronic records Embedding Feature extraction Female Health aspects Health Informatics Humans Information processing Information Systems and Communication Service Lung cancer Lung cancer, Non-small cell Lung Neoplasms - mortality Male Management of Computing and Information Systems Medical history Medical prognosis Medical records Medicine Medicine & Public Health Methods Natural Language Processing Natural language processing in medical informatics NER Non-small cell lung carcinoma Patient outcomes Patients Prediction models Prognosis Representations Small cell lung carcinoma Statistical analysis Statistical models Subject specialists Survival Survival Analysis Transformer Unstructured data Unstructured EHRs |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1Ni9QwNOgK4kX8trpKBNGDlm3TJE1PMuqOg7AexJW9hXzKwGxnnE7_v--lna6jsNcmLen7_sh7j5DXYNFb7yXPRVOKnEdjcyO5yKMEZ8Qo1TiB9c5n3-TinH-9EBdjwK0br1XuZWIS1H7tMEZ-UoGmEiW2bvmw-Z3j1CjMro4jNG6SWyUDXYuV4vMvUxYBoxr7QhklTzrQbRgQZFiTjKVl8kAZpZ79_0vmv1TTlCv9p69o0kXze-TuaETS2YD1--RGaB-Q22djmvwhiYsl1hWnMScrGi5t8KiiKPbSTLcbKZiqFC9vmtWKdj2ICyA4utniF9L6sqUrEAPUIVFsKRah0H5sNtvDNnq6-N49Iufz0x-fFvk4UCF3gle73NSFt1G4GL2PMfhaxAqwI4NgtbOViZUpbGGZra01TglhZRUbKaKNBZgdsXpMjtp1G54SymwRvFSyNC5y6ZltIs5WUJW0vuFRZeTdHrJ6M_TN0MnfUFIPeNCAB53woGVGPiLwp53Y8zo9WG9_6ZGFNDe1D6EJVVBgBjXSlqEMhkXDwOWSimXkLaJOI2futsaZscAADow9rvQMDofd1AQc7vhgJ3CUO1zeI1-PHN3pK_rLyKtpGd_EW2ptWPewB5xfsAjrqs7Ik4Fopl_i6MyBrZmR93squvr4dZB5M1DaAWw-L3_OEmz6y14zzO2qZ9cf-jm5wxLh87xUx-QI6CW8AHNqZ18mnvkDWCUeHw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIgL4t20BRkJwQEiEr_iHJel1QqpHBBFvVl-Sitt02p38_-ZcbKhCwiJa_yQMw_PjMfzmZA34NG7EJQoZVvLUiTrSquELJOCYMRq3XqJ9c7nX9XiQny5lJcjTA7WwtzO39dafdyAPcJDPIZ1xFgOpu6SexI2XpTmuZpPGQM8wdgVxfx13J7hyfj8f-7Ct8zQlBf9DUM0252zR-Th6DDS2cDhx-RO7J6Q--djSvwpSYsl1hDnJ01WNF65GNAcUcTNzDcZKbilFC9q2tWKbnrYGkC46M0aZ8jty46uQOWpRwFYUyw4of0ILNtDN3q6-LZ5Ri7OTr_PF-X4eELppeDb0jZVcEn6lEJIKYZGJg6cUFGyxjtuE7eVqxxzjXPWaymd4qlVMrlUgYuR-HNy0F138ZBQ5qoYlFa19UmowFyb8B0FzZULrUi6IO93lDU3A0aGybGFVmbggwE-mMwHowryCYk_9UR86_wB2G5GdTHCNiHGNvKoweVplatjHS1LlkF4pTQryDtknUEt3K6tt2MxASwY8azMDBaHyGkSFney1xO0x-8375hvRu3dGA5ekawRJqggr6dmHIk30rp43UMfCHTB-2t4U5AXg9BMvyQwcAO_siAfdlL0a_J_UebtIGl7tPm8_DHLtOmvesMwj6uP_m_eY_KAZUUQZa1PyAHIT3wJrtTWvco69BNzNhch priority: 102 providerName: Springer Nature |
Title | Hierarchical embedding attention for overall survival prediction in lung cancer from unstructured EHRs |
URI | https://link.springer.com/article/10.1186/s12911-025-02998-6 https://www.ncbi.nlm.nih.gov/pubmed/40251623 https://www.proquest.com/docview/3201518074 https://www.proquest.com/docview/3191617737 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-238588 https://doaj.org/article/4a7dee9e3e874196b1e1ea2fa2753682 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbB2MvY_d67YIGY3vYTG3rYvkxyZKFQcsI6wh7EZIlQSB1SxL__54jO1mzwfayF0Ms2SjnovMdS-cTIe8A0VvnJE9FlYuUB2NTI7lIg4RkxChV1QLrnc8v5OySf12IxZ2jvnBPWEcP3AnujJvSeV955hUEv0ra3OfeFMEUALSlirNvVmW7ZKpfP8DvGbsSGSXPNhDV8FNggdXIWFQmD8JQZOv_c06-E5T2q6S_MYrGKDR9Qh738JEOu2E_Jfd884w8PO8XyJ-TMFtiRXE84GRF_ZX1DoMTRRbNuK-RAkiluG3TrFZ008JEAaZGb9b4hti-bOgKJgBaozmsKZaf0LanmW2hG53M5psX5HI6-T6epf1RCmktONumpsycDaIOwbkQvCtFYKAX6UVR1paZwExmM1vY0lpTKyGsZKGSItiQAeAI7CU5aq4bf0xoYTPvpJK5qQOXrrBVwFMVFJPWVTyohHzcSVbfdIwZOmYaSupODxr0oKMetEzICIW_74ls1_EG2IDubUD_ywYS8gFVp9Ent2tTm760AAaM7FZ6CINDHjUBgzs96Am-VB8275Sve1_eaAYYSeRIGpSQt_tmfBL3pzX-uoU-kPYCFixZmZBXndHs_xLHNA5QZkI-7azo18v_Jpn3naUdyObz8scwyqa9anWBq7rq9f8Q4Ql5VET34GmuTskRWJV_A3Brawfkfrko4aqmXwbkwWhy8W0Ov8ZyPIg-B9f56Oct8F8sNQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0BqdBLwgvskYYCQ-HiBa48SO8zChjnXq2FqhaUN7M3ZsT5W6trSNEH-O38adm3QUpL3ttXas632fz3dHyBvw6I21Iot5kfA489rEWmQ89gKCES1lUXKsd-4PRO8s-3LOzzfI76YWBp9VNjoxKGo7KfGOfCcFS8UTbN3yafojxqlRmF1tRmjoerSC3Q0txurCjiP36yeEcPPdw32g91vGDrqnn3txPWUgLnmWLmKdt63xvPTeWu-dzblPAWThOMtLk2qf6rZpG2ZyY3QpOTci9YXg3vg22GKfwrm3yGaGFygtsrnXHXw9WeUx8F6lKdWRYmcO1hWvJBlWRWNxm1gzh2FqwP-24S_juMrW_tPZNFjDg_vkXu3G0s6S7x6QDTd-SG7360T9I-J7Q6xsDoNWRtRdGmfRSFLs5hneV1Jwlik-H9WjEZ1XoLCA5el0hieE9eGYjkAR0RLZckaxDIZWdbvbCrbRbu9k_pic3Qiyn5DWeDJ2zwhlpu2skCLRpc-EZabwON1BpsLYIvMyIh8azKrpsnOHChGPFGpJBwV0UIEOSkRkD5G_2oldt8MPk9mFqoVYZTq3zhUudRIcsUKYxCVOM68ZBH1Csoi8R9Ip1A2LmS51XeIAAGOXLdUB4LCfGwfgttd2gkyX68sN8VWtU-bqSgIi8nq1jF_iO7mxm1SwB8Jv8EnzNI_I0yXTrP5ShuEkeLsR-dhw0dXh12Hm3ZLT1nCzP_zWCbipLivFMLsst64H-hW50zvtH6vjw8HRc3KXBSHI4kRukxbwjnsBzt3CvKwliJLvNy20fwAxPmXQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglSouiHcDBYyE4ABRkzh2nGOgXS0LrRBQ1JtlxzZaaZtd7W7-PzPOgy4gJK7xQ848PDMez2dCXoJHb6wVeczLlMe51ybWIuexFxCMaCnLmmO989m5mF7ks0t-ea2KP9x2H1KSXU0DojQ12-OV9Z2KS3G8ASuFR3sZVhdjkZi4SfYlL0sIv_aravZ1NmYS8GRjKJb568gdgxRw-__cna-ZpzFf-hu2aLBHkzvkdu9I0qrj_F1ywzX3yMFZnyq_T_x0jrXF4amTBXVXxlk0UxTxNMMNRwruKsULnHqxoJsWtgwQOrpa4wyhfd7QBWwFtEbBWFMsRKFtDzjbQjd6Ov2yeUAuJqff3k_j_lGFuOY528a6SKzxvPbeWu-dLbhnwCHheFbUhmnPdGISk5nCGF1Lzo1gvhTcG5-A6-HZQ7LXLBt3SGhmEmeFFKmufS5sZkqP7ytIJowtcy8j8magrFp12BkqxBxSqI4PCvigAh-UiMg7JP7YE3Gvw4fl-ofq1UjlurDOlY45Ca5QKUzqUqczrzMIu4TMIvIaWadQO7drXeu-yAAWjDhXqoLFIaIah8Ud7fQErap3mwfmq16rN4qBt8RThA-KyIuxGUfiTbXGLVvoAwEweIUFKyLyqBOa8ZdyDOjA34zI20GKfk3-L8q86iRthzYn8-9VoE171aoM87vy8f_N-5wcfD6ZqE8fzj8-IbeyoBN5nMojsgei5J6Ct7U1z3qF-gmrySPO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+embedding+attention+for+overall+survival+prediction+in+lung+cancer+from+unstructured+EHRs&rft.jtitle=BMC+medical+informatics+and+decision+making&rft.au=Domenico+Paolo&rft.au=Carlo+Greco&rft.au=Alessio+Cortellini&rft.au=Sara+Ramella&rft.date=2025-04-18&rft.pub=BMC&rft.eissn=1472-6947&rft.volume=25&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs12911-025-02998-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a7dee9e3e874196b1e1ea2fa2753682 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-6947&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-6947&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-6947&client=summon |