Complement opsonization of nanoparticles: Differences between humans and preclinical species
The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ab...
Saved in:
Published in | Journal of controlled release Vol. 338; pp. 548 - 556 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-3659 1873-4995 1873-4995 |
DOI | 10.1016/j.jconrel.2021.08.048 |
Cover
Abstract | The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
[Display omitted] |
---|---|
AbstractList | The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
[Display omitted] The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n=6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca 2+ -sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6J, and A/J) was only through the Ca 2+ -dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines. The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca²⁺-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca²⁺-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines. The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines. |
Author | Wang, Guankui Saba, Laura M. Griffin, Lynn Banda, Nirmal K. Moghimi, S. Moein Li, Yue Groman, Ernest V. Simberg, Dmitri Scheinman, Robert |
AuthorAffiliation | 2 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 6 School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK 7 Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK 1 Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 3 Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA 4 Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA 5 Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA |
AuthorAffiliation_xml | – name: 7 Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK – name: 2 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – name: 6 School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK – name: 4 Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA – name: 1 Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – name: 3 Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – name: 5 Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA |
Author_xml | – sequence: 1 givenname: Yue surname: Li fullname: Li, Yue organization: Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – sequence: 2 givenname: Guankui surname: Wang fullname: Wang, Guankui organization: Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – sequence: 3 givenname: Lynn surname: Griffin fullname: Griffin, Lynn organization: Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA – sequence: 4 givenname: Nirmal K. surname: Banda fullname: Banda, Nirmal K. organization: Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA – sequence: 5 givenname: Laura M. surname: Saba fullname: Saba, Laura M. organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – sequence: 6 givenname: Ernest V. surname: Groman fullname: Groman, Ernest V. organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – sequence: 7 givenname: Robert surname: Scheinman fullname: Scheinman, Robert organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – sequence: 8 givenname: S. Moein surname: Moghimi fullname: Moghimi, S. Moein organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA – sequence: 9 givenname: Dmitri surname: Simberg fullname: Simberg, Dmitri email: dmitri.simberg@cuanschutz.edu organization: Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA |
BookMark | eNqFkUFv1DAQhS1URLeFn4CUI5ek4yR2HJBA1UIBqRKX9oZkzToT6pVjBztbVH49Lrsc6GVPc5j3nmbed8ZOfPDE2GsOFQcuL7bV1gQfyVU11LwCVUGrnrEVV11Ttn0vTtgq61TZSNGfsrOUtgAgmrZ7wU6btlW8r9WKfV-HaXY0kV-KMKfg7W9cbPBFGAuPPswYF2scpbfFRzuOFMkbSsWGll9EvrjbTehTgX4o5kjGWW8NuiLNZCyll-z5iC7Rq8M8Z7dXn27WX8rrb5-_ri-vSyPaZil7OQ7YS6FgABpwM5oGkWRXA5jGAO8kRyMJejK9hJoEqkHyDQqEoRVkmnP2fp877zYTDSY_E9HpOdoJ44MOaPX_G2_v9I9wr5UQdcvbHPDmEBDDzx2lRU82GXIOPYVd0rXMLYKqJRyXCtlLLjopsvTdXmpiSCnSqI1d_rabj7BOc9CPKPVWH1DqR5QalM4os1s8cf_755jvw95HufF7S1GnzCJTG2wmtOgh2CMJfwBEn8AZ |
CitedBy_id | crossref_primary_10_1002_wnan_70004 crossref_primary_10_3389_fimmu_2023_1101387 crossref_primary_10_1038_s41565_023_01514_z crossref_primary_10_1021_acsnano_2c12193 crossref_primary_10_1021_acsnano_4c05087 crossref_primary_10_1016_j_jconrel_2023_02_022 crossref_primary_10_1016_j_apsb_2024_07_009 crossref_primary_10_3390_jof9020162 crossref_primary_10_1016_j_copbio_2023_103010 crossref_primary_10_1016_j_addr_2023_115114 crossref_primary_10_1021_acsnano_2c02794 crossref_primary_10_1038_s41467_025_57648_2 crossref_primary_10_3389_fimmu_2022_864403 crossref_primary_10_3389_fbioe_2022_868111 crossref_primary_10_1038_s41467_024_54810_0 crossref_primary_10_1165_rcmb_2024_0195ED crossref_primary_10_1016_j_actbio_2022_10_055 crossref_primary_10_1016_j_ejpb_2023_10_008 crossref_primary_10_1016_j_imbio_2022_152317 crossref_primary_10_1016_j_ejpb_2024_114476 crossref_primary_10_1016_j_jim_2024_113668 crossref_primary_10_1016_j_smim_2024_101922 crossref_primary_10_1016_j_addr_2022_114396 crossref_primary_10_1016_j_nantod_2022_101479 crossref_primary_10_1016_j_nantod_2022_101512 crossref_primary_10_3390_nano13111721 crossref_primary_10_1002_adhm_202405103 crossref_primary_10_1021_acsnano_4c00182 crossref_primary_10_1016_j_addr_2023_114972 crossref_primary_10_1002_mabi_202100460 crossref_primary_10_1016_j_jconrel_2022_09_039 crossref_primary_10_3389_fnano_2024_1500567 |
Cites_doi | 10.1007/s00262-019-02360-6 10.1016/j.jconrel.2013.05.030 10.1634/theoncologist.2018-0707 10.1021/nn505126b 10.1016/j.molimm.2007.11.003 10.1021/nn101990a 10.1016/j.molimm.2005.02.006 10.1023/A:1016010808522 10.1056/NEJMoa022749 10.1016/0005-2736(94)90231-3 10.1046/j.1365-2567.1999.00810.x 10.1016/j.jim.2009.11.003 10.1016/j.bcp.2018.05.010 10.1016/j.addr.2020.04.012 10.1186/s12989-014-0064-2 10.1016/j.jconrel.2019.04.009 10.1016/0730-725X(95)00023-A 10.1021/nn400769e 10.1002/btm2.10003 10.3389/fimmu.2018.02664 10.1073/pnas.1019338108 10.1016/j.nano.2008.08.001 10.2174/187152809788681038 10.1016/j.biomaterials.2013.12.085 10.1096/fj.06-6186fje 10.1016/j.it.2012.06.001 10.1021/nn3055175 10.1038/s41565-018-0273-1 10.1021/acs.bioconjchem.7b00496 10.1021/bc200685a 10.1038/nnano.2016.269 10.1016/j.cell.2005.12.039 10.1016/j.addr.2011.06.002 10.1038/s41565-019-0496-9 10.3389/fimmu.2016.00418 10.1016/j.transproceed.2015.10.066 10.1016/j.nano.2015.03.010 10.3389/fvets.2020.00447 10.1016/j.kint.2016.12.037 10.1146/annurev.immunol.23.021704.115816 10.1016/j.molimm.2014.06.003 10.4049/jimmunol.1200856 10.1016/j.tox.2005.07.023 10.2217/nnm-2018-0064 10.1021/acsnano.8b01806 10.1186/1742-2094-10-76 10.1021/acs.bioconjchem.0c00342 10.4049/jimmunol.0902214 10.1038/s41565-018-0344-3 10.1016/j.molimm.2009.02.028 10.1021/acsnano.5b05061 10.2147/IJN.S138787 10.1016/0161-5890(95)00135-2 10.1021/acs.molpharmaceut.9b00632 10.1038/ni.1923 10.3389/fonc.2019.00096 10.1016/0730-725X(95)00024-B 10.1200/JCO.2005.07.166 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. Copyright © 2021 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright © 2021 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 5PM |
DOI | 10.1016/j.jconrel.2021.08.048 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 556 |
ExternalDocumentID | PMC8552414 10_1016_j_jconrel_2021_08_048 S0168365921004624 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SPT SSH WUQ 7X8 EFKBS 7S9 ACLOT L.6 ~HD 5PM |
ID | FETCH-LOGICAL-c543t-96fda96580d0edabfc3aae67200c3c01761ac6e09ec9602e5a8d61ba5a0d45ec3 |
IEDL.DBID | .~1 |
ISSN | 0168-3659 1873-4995 |
IngestDate | Thu Aug 21 18:39:39 EDT 2025 Sat Sep 27 19:21:25 EDT 2025 Fri Sep 05 14:28:01 EDT 2025 Tue Jul 01 04:10:04 EDT 2025 Thu Apr 24 22:57:10 EDT 2025 Fri Feb 23 02:39:14 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | iron oxide Strains Dogs Rats Serum Complement Mice Nanomedicine Species |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c543t-96fda96580d0edabfc3aae67200c3c01761ac6e09ec9602e5a8d61ba5a0d45ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 equal contribution DS designed the study, analyzed the data and wrote the manuscript YL designed and performed the experiments and analyzed data NKB provided reagents and protocols and edited the manuscript LG provided reagents and edited the manuscript GW performed the experiments and analyzed data LMS analyzed the data RS designed the experiments SMM designed experiments, analyzed data and edited the manuscript Author credits statement EVG designed the experiments, analyzed the data and edited the manuscript |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8552414 |
PMID | 34481928 |
PQID | 2569615765 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8552414 proquest_miscellaneous_2636508260 proquest_miscellaneous_2569615765 crossref_citationtrail_10_1016_j_jconrel_2021_08_048 crossref_primary_10_1016_j_jconrel_2021_08_048 elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_08_048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-10 |
PublicationDateYYYYMMDD | 2021-10-10 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of controlled release |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chao, Karmali, Mukthavaram, Kesari, Kouznetsova, Tsigelny, Simberg (bb0270) 2013; 7 Wang, Inturi, Serkova, Merkulov, McCrae, Russek, Banda, Simberg (bb0185) 2014; 8 Banda, Mehta, Chao, Wang, Inturi, Fossati-Jimack, Botto, Wu, Moghimi, Simberg (bb0145) 2014; 11 Chen, Wang, Griffin, Brenneman, Banda, Holers, Backos, Wu, Moghimi, Simberg (bb0175) 2017; 12 Hamad, Al-Hanbali, Hunter, Rutt, Andresen, Moghimi (bb0120) 2010; 4 Lachmann (bb0075) 2010; 352 Howell, Soto, Ryan, Graham, Smith, John (bb0245) 2013; 10 Gaikwad, Li, Gifford, Groman, Banda, Saba, Scheinman, Wang, Simberg (bb0205) 2020; 31 Leong, Butler, Brinker, Azzawi, Conlan, Dufes, Owen, Rannard, Scott, Chen, Dobrovolskaia, Kozlov, Prina-Mello, Schmid, Wick, Caputo, Boisseau, Crist, McNeil, Fadeel, Tran, Hansen, Hartmann, Clausen, Skjolding, Baun, Agerstrand, Gu, Lamprou, Hoskins, Huang, Song, Cao, Liu, Jandt, Jiang, Kim, Wheeler, Chetwynd, Lynch, Moghimi, Nel, Xia, Weiss, Sarmento, das Neves, Santos, Santos, Mitragotri, Little, Peer, Amiji, Alonso, Petri-Fink, Balog, Lee, Drasler, Rothen-Rutishauser, Wilhelm, Acar, Harrison, Mao, Mukherjee, Ramesh, McNally, Busatto, Wolfram, Bergese, Ferrari, Fang, Zhang, Zheng, Peng, Du, Yu, Charron, Zheng, Pastore (bb0090) 2019; 14 Jung (bb0265) 1995; 13 Benasutti, Wang, Vu, Scheinman, Groman, Saba, Simberg (bb0140) 2017; 28 Moghimi, Simberg, Papini, Farhangrazi (bb0045) 2020; 157 Klapper, Hamad, Teramura, Leneweit, Nienhaus, Ricklin, Lambris, Ekdahl, Nilsson (bb0195) 2014; 35 Ebanks, Isenman (bb0080) 1996; 33 Wang, Griffin, Inturi, Brenneman, Banda, Holers, Moghimi, Simberg (bb0155) 2017; 8 Vu, Gifford, Chen, Benasutti, Wang, Groman, Scheinman, Saba, Moghimi, Simberg (bb0015) 2019; 14 Heurich, Martinez-Barricarte, Francis, Roberts, Rodriguez de Cordoba, Morgan, Harris (bb0255) 2011; 108 Pedersen, Zhou, Larsen, Sorensen, Kjems, Nygaard, Nyengaard, Meyer, Boesen, Vorup-Jensen (bb0125) 2010; 184 Tavano, Gabrielli, Lubian, Fedeli, Visentin, Polverino De Laureto, Arrigoni, Geffner-Smith, Chen, Simberg, Morgese, Benetti, Wu, Moghimi, Mancin, Papini (bb0085) 2018; 12 Wang, Serkova, Groman, Scheinman, Simberg (bb0170) 2019; 16 Borchard, Kreuter (bb0115) 1996; 13 Harris, Heurich, Rodriguez de Cordoba, Morgan (bb0250) 2012; 33 De Clercq (bb0285) 2018; 154 Zinnen, Karpeisky, Von Hoff, Plekhova, Alexandrov (bb0295) 2019; 24 Sakai, Kitano, Hatanaka, Lo, Matsuura, Deguchi, Eguchi, Maeda, Watanabe, Matsunari, Nagashima, Okuyama, Miyagawa (bb0060) 2016; 48 Ricklin, Hajishengallis, Yang, Lambris (bb0005) 2010; 11 Bexborn, Andersson, Chen, Nilsson, Ekdahl (bb0190) 2008; 45 Ratelade, Verkman (bb0070) 2014; 62 Harisinghani, Barentsz, Hahn, Deserno, Tabatabaei, van de Kaa, de la Rosette, Weissleder (bb0230) 2003; 348 Dobrovolskaia, Patri, Zheng, Clogston, Ayub, Aggarwal, Neun, Hall, McNeil (bb0130) 2009; 5 Manning, Williams, Jelinek, Kostova, Denmeade (bb0200) 2013; 190 Tarone, Barutello, Iussich, Giacobino, Quaglino, Buracco, Cavallo, Riccardo (bb0275) 2019; 68 Szebeni (bb0240) 2005; 216 Inturi, Wang, Chen, Banda, Holers, Wu, Moghimi, Simberg (bb0160) 2015; 9 Andersen, Robinson, Dai, Hunter, Andresen, Moghimi (bb0100) 2013; 7 Salvesen, Mollnes (bb0055) 2009; 46 Zhang, Suankratay, Zhang, Jones, Lint, Gewurz (bb0065) 1999; 97 Robinson, Platt, Bibi, Banovic, Barber, Howerth, Madsen (bb0280) 2020; 7 Taylor, Martinez-Pomares, Stacey, Lin, Brown, Gordon (bb0025) 2005; 23 Chao, Makale, Karmali, Sharikov, Tsigelny, Merkulov, Kesari, Wrasidlo, Ruoslahti, Simberg (bb0165) 2012; 23 Rockall, Sohaib, Harisinghani, Babar, Singh, Jeyarajah, Oram, Jacobs, Shepherd, Reznek (bb0220) 2005; 23 Helmy, Katschke, Gorgani, Kljavin, Elliott, Diehl, Scales, Ghilardi, van Lookeren Campagne (bb0020) 2006; 124 Salvador-Morales, Flahaut, Sim, Sloan, Green, Sim (bb0095) 2006; 43 Hamad, Hunter, Moghimi (bb0105) 2013; 170 Wang, Chen, Banda, Holers, Wu, Moghimi, Simberg (bb0150) 2016; 7 Schlein, Fadl-Alla, Pondenis, Lezmi, Eberhart, LeBlanc, Dickinson, Hergenrother, Fan (bb0290) 2019; 9 Toth, Varallyay, Horvath, Bashir, Choyke, Daldrup-Link, Dosa, Finn, Gahramanov, Harisinghani, Macdougall, Neuwelt, Vasanawala, Ambady, Barajas, Cetas, Ciporen, DeLoughery, Doolittle, Fu, Grinstead, Guimaraes, Hamilton, Li, McConnell, Muldoon, Nesbit, Netto, Petterson, Rooney, Schwartz, Szidonya, Neuwelt (bb0235) 2017; 92 Francian, Mann, Kullberg (bb0215) 2017; 12 Gifford, Vu, Banda, Holers, Wang, Groman, Backos, Scheinman, Moghimi, Simberg (bb0180) 2019; 302 Jung, Jacobs (bb0225) 1995; 13 Moghimi, Simberg (bb0040) 2018; 13 Moghimi, Hamad, Andresen, Jorgensen, Szebeni (bb0050) 2006; 20 Gaya da Costa, Poppelaars, van Kooten, Mollnes, Tedesco, Wurzner, Trouw, Truedsson, Daha, Roos, Seelen (bb0260) 2018; 9 Anselmo, Mitragotri (bb0135) 2016; 1 Moghimi, Andersen, Ahmadvand, Wibroe, Andresen, Hunter (bb0035) 2011; 63 Devine, Wong, Serrano, Chonn, Cullis (bb0110) 1994; 1191 Kullberg, Martinson, Mann, Anchordoquy (bb0210) 2015; 11 Peng, Li, Sacks, Zhou (bb0030) 2009; 8 Szebeni, Simberg, Gonzalez-Fernandez, Barenholz, Dobrovolskaia (bb0010) 2018; 13 Moghimi (10.1016/j.jconrel.2021.08.048_bb0040) 2018; 13 Heurich (10.1016/j.jconrel.2021.08.048_bb0255) 2011; 108 Borchard (10.1016/j.jconrel.2021.08.048_bb0115) 1996; 13 Howell (10.1016/j.jconrel.2021.08.048_bb0245) 2013; 10 Moghimi (10.1016/j.jconrel.2021.08.048_bb0050) 2006; 20 Salvador-Morales (10.1016/j.jconrel.2021.08.048_bb0095) 2006; 43 Harisinghani (10.1016/j.jconrel.2021.08.048_bb0230) 2003; 348 Dobrovolskaia (10.1016/j.jconrel.2021.08.048_bb0130) 2009; 5 Szebeni (10.1016/j.jconrel.2021.08.048_bb0240) 2005; 216 Leong (10.1016/j.jconrel.2021.08.048_bb0090) 2019; 14 Vu (10.1016/j.jconrel.2021.08.048_bb0015) 2019; 14 Jung (10.1016/j.jconrel.2021.08.048_bb0225) 1995; 13 Chen (10.1016/j.jconrel.2021.08.048_bb0175) 2017; 12 Chao (10.1016/j.jconrel.2021.08.048_bb0270) 2013; 7 De Clercq (10.1016/j.jconrel.2021.08.048_bb0285) 2018; 154 Hamad (10.1016/j.jconrel.2021.08.048_bb0120) 2010; 4 Jung (10.1016/j.jconrel.2021.08.048_bb0265) 1995; 13 Ricklin (10.1016/j.jconrel.2021.08.048_bb0005) 2010; 11 Gifford (10.1016/j.jconrel.2021.08.048_bb0180) 2019; 302 Moghimi (10.1016/j.jconrel.2021.08.048_bb0035) 2011; 63 Bexborn (10.1016/j.jconrel.2021.08.048_bb0190) 2008; 45 Inturi (10.1016/j.jconrel.2021.08.048_bb0160) 2015; 9 Lachmann (10.1016/j.jconrel.2021.08.048_bb0075) 2010; 352 Ebanks (10.1016/j.jconrel.2021.08.048_bb0080) 1996; 33 Helmy (10.1016/j.jconrel.2021.08.048_bb0020) 2006; 124 Chao (10.1016/j.jconrel.2021.08.048_bb0165) 2012; 23 Wang (10.1016/j.jconrel.2021.08.048_bb0155) 2017; 8 Pedersen (10.1016/j.jconrel.2021.08.048_bb0125) 2010; 184 Benasutti (10.1016/j.jconrel.2021.08.048_bb0140) 2017; 28 Wang (10.1016/j.jconrel.2021.08.048_bb0150) 2016; 7 Ratelade (10.1016/j.jconrel.2021.08.048_bb0070) 2014; 62 Klapper (10.1016/j.jconrel.2021.08.048_bb0195) 2014; 35 Wang (10.1016/j.jconrel.2021.08.048_bb0185) 2014; 8 Taylor (10.1016/j.jconrel.2021.08.048_bb0025) 2005; 23 Anselmo (10.1016/j.jconrel.2021.08.048_bb0135) 2016; 1 Andersen (10.1016/j.jconrel.2021.08.048_bb0100) 2013; 7 Harris (10.1016/j.jconrel.2021.08.048_bb0250) 2012; 33 Zinnen (10.1016/j.jconrel.2021.08.048_bb0295) 2019; 24 Moghimi (10.1016/j.jconrel.2021.08.048_bb0045) 2020; 157 Devine (10.1016/j.jconrel.2021.08.048_bb0110) 1994; 1191 Zhang (10.1016/j.jconrel.2021.08.048_bb0065) 1999; 97 Tarone (10.1016/j.jconrel.2021.08.048_bb0275) 2019; 68 Tavano (10.1016/j.jconrel.2021.08.048_bb0085) 2018; 12 Banda (10.1016/j.jconrel.2021.08.048_bb0145) 2014; 11 Toth (10.1016/j.jconrel.2021.08.048_bb0235) 2017; 92 Robinson (10.1016/j.jconrel.2021.08.048_bb0280) 2020; 7 Sakai (10.1016/j.jconrel.2021.08.048_bb0060) 2016; 48 Gaya da Costa (10.1016/j.jconrel.2021.08.048_bb0260) 2018; 9 Peng (10.1016/j.jconrel.2021.08.048_bb0030) 2009; 8 Wang (10.1016/j.jconrel.2021.08.048_bb0170) 2019; 16 Rockall (10.1016/j.jconrel.2021.08.048_bb0220) 2005; 23 Schlein (10.1016/j.jconrel.2021.08.048_bb0290) 2019; 9 Szebeni (10.1016/j.jconrel.2021.08.048_bb0010) 2018; 13 Francian (10.1016/j.jconrel.2021.08.048_bb0215) 2017; 12 Hamad (10.1016/j.jconrel.2021.08.048_bb0105) 2013; 170 Kullberg (10.1016/j.jconrel.2021.08.048_bb0210) 2015; 11 Salvesen (10.1016/j.jconrel.2021.08.048_bb0055) 2009; 46 Manning (10.1016/j.jconrel.2021.08.048_bb0200) 2013; 190 Gaikwad (10.1016/j.jconrel.2021.08.048_bb0205) 2020; 31 |
References_xml | – volume: 11 start-page: 1355 year: 2015 end-page: 1363 ident: bb0210 article-title: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells publication-title: Nanomedicine – volume: 13 start-page: 661 year: 1995 end-page: 674 ident: bb0225 article-title: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil publication-title: Magn. Reson. Imaging – volume: 13 start-page: 1100 year: 2018 end-page: 1108 ident: bb0010 article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines publication-title: Nat. Nanotechnol. – volume: 92 start-page: 47 year: 2017 end-page: 66 ident: bb0235 article-title: Current and potential imaging applications of ferumoxytol for magnetic resonance imaging publication-title: Kidney Int. – volume: 24 start-page: 303 year: 2019 end-page: e102 ident: bb0295 article-title: First-in-human phase I study of MBC-11, a novel bone-targeted Cytarabine-Etidronate conjugate in patients with Cancer-induced bone disease publication-title: Oncologist – volume: 12 start-page: 5834 year: 2018 end-page: 5847 ident: bb0085 article-title: C1q-mediated complement activation and C3 opsonization trigger recognition of stealth Poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes publication-title: ACS Nano – volume: 45 start-page: 2370 year: 2008 end-page: 2379 ident: bb0190 article-title: The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)bb) publication-title: Mol. Immunol. – volume: 68 start-page: 1839 year: 2019 end-page: 1853 ident: bb0275 article-title: Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy publication-title: Cancer Immunol. Immunother. – volume: 62 start-page: 104 year: 2014 end-page: 113 ident: bb0070 article-title: Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica publication-title: Mol. Immunol. – volume: 11 start-page: 64 year: 2014 ident: bb0145 article-title: Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum publication-title: Particle Fibre Toxicol. – volume: 302 start-page: 181 year: 2019 end-page: 189 ident: bb0180 article-title: Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55 publication-title: J. Control. Release – volume: 20 start-page: 2591 year: 2006 end-page: 2593 ident: bb0050 article-title: Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production publication-title: FASEB J. – volume: 352 start-page: 195 year: 2010 end-page: 197 ident: bb0075 article-title: Preparing serum for functional complement assays publication-title: J. Immunol. Methods – volume: 5 start-page: 106 year: 2009 end-page: 117 ident: bb0130 article-title: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles publication-title: Nanomedicine – volume: 124 start-page: 915 year: 2006 end-page: 927 ident: bb0020 article-title: CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens publication-title: Cell – volume: 23 start-page: 1003 year: 2012 end-page: 1009 ident: bb0165 article-title: Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains publication-title: Bioconjug. Chem. – volume: 348 start-page: 2491 year: 2003 end-page: 2499 ident: bb0230 article-title: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer publication-title: N. Engl. J. Med. – volume: 33 start-page: 297 year: 1996 end-page: 309 ident: bb0080 article-title: Mouse complement component C4 is devoid of classical pathway C5 convertase subunit activity publication-title: Mol. Immunol. – volume: 13 start-page: 973 year: 2018 end-page: 975 ident: bb0040 article-title: Translational gaps in animal models of human infusion reactions to nanomedicines publication-title: Nanomedicine (London) – volume: 43 start-page: 193 year: 2006 end-page: 201 ident: bb0095 article-title: Complement activation and protein adsorption by carbon nanotubes publication-title: Mol. Immunol. – volume: 7 start-page: 4289 year: 2013 end-page: 4298 ident: bb0270 article-title: Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI publication-title: ACS Nano – volume: 14 start-page: 260 year: 2019 end-page: 268 ident: bb0015 article-title: Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles publication-title: Nat. Nanotechnol. – volume: 1191 start-page: 43 year: 1994 end-page: 51 ident: bb0110 article-title: Liposome-complement interactions in rat serum: implications for liposome survival studies publication-title: Biochim. Biophys. Acta – volume: 13 start-page: 1055 year: 1996 end-page: 1058 ident: bb0115 article-title: The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement publication-title: Pharm. Res. – volume: 9 start-page: 10758 year: 2015 end-page: 10768 ident: bb0160 article-title: Modulatory role of surface coating of Superparamagnetic Iron oxide Nanoworms in complement Opsonization and leukocyte uptake publication-title: ACS Nano – volume: 11 start-page: 785 year: 2010 end-page: 797 ident: bb0005 article-title: Complement: a key system for immune surveillance and homeostasis publication-title: Nat. Immunol. – volume: 63 start-page: 1000 year: 2011 end-page: 1007 ident: bb0035 article-title: Material properties in complement activation publication-title: Adv. Drug Deliv. Rev. – volume: 7 start-page: 447 year: 2020 ident: bb0280 article-title: A pilot study on the safety of a novel antioxidant nanoparticle delivery system and its indirect effects on cytokine levels in four dogs publication-title: Front. Vet. Sci. – volume: 33 start-page: 513 year: 2012 end-page: 521 ident: bb0250 article-title: The complotype: dictating risk for inflammation and infection publication-title: Trends Immunol. – volume: 97 start-page: 686 year: 1999 end-page: 692 ident: bb0065 article-title: Calcium-independent haemolysis via the lectin pathway of complement activation in the guinea-pig and other species* publication-title: Immunology – volume: 8 start-page: 236 year: 2009 end-page: 246 ident: bb0030 article-title: The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses publication-title: Inflamm. Allergy Drug Targets – volume: 184 start-page: 1931 year: 2010 end-page: 1945 ident: bb0125 article-title: Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation publication-title: J. Immunol. – volume: 7 start-page: 418 year: 2016 ident: bb0150 article-title: Activation of human complement system by dextran-coated Iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking publication-title: Front. Immunol. – volume: 48 start-page: 1282 year: 2016 end-page: 1284 ident: bb0060 article-title: Studies of pig complement: measurement of pig CH50, ACH50, and components publication-title: Transplant. Proc. – volume: 190 start-page: 2567 year: 2013 end-page: 2574 ident: bb0200 article-title: Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma publication-title: J. Immunol. – volume: 7 start-page: 1108 year: 2013 end-page: 1119 ident: bb0100 article-title: Single-walled carbon nanotube surface control of complement recognition and activation publication-title: ACS Nano – volume: 154 start-page: 265 year: 2018 end-page: 269 ident: bb0285 article-title: Tanovea (R) for the treatment of lymphoma in dogs publication-title: Biochem. Pharmacol. – volume: 9 start-page: 96 year: 2019 ident: bb0290 article-title: Immunohistochemical characterization of Procaspase-3 overexpression as a Druggable target with PAC-1, a Procaspase-3 activator, in canine and human brain cancers publication-title: Front. Oncol. – volume: 8 start-page: 151 year: 2017 ident: bb0155 article-title: In vitro and in vivo differences in murine third complement component (C3) Opsonization and macrophage/leukocyte responses to antibody-functionalized Iron oxide Nanoworms publication-title: Front. Immunol. – volume: 23 start-page: 901 year: 2005 end-page: 944 ident: bb0025 article-title: Macrophage receptors and immune recognition publication-title: Annu. Rev. Immunol. – volume: 4 start-page: 6629 year: 2010 end-page: 6638 ident: bb0120 article-title: Distinct polymer architecture mediates switching of complement activation pathways at the Nanosphere-serum Interface: implications for stealth nanoparticle engineering publication-title: ACS Nano – volume: 12 start-page: 387 year: 2017 end-page: 393 ident: bb0175 article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo publication-title: Nat. Nanotechnol. – volume: 16 start-page: 4274 year: 2019 end-page: 4281 ident: bb0170 article-title: Feraheme (Ferumoxytol) is recognized by Proinflammatory and anti-inflammatory macrophages via scavenger receptor type AI/II publication-title: Mol. Pharm. – volume: 46 start-page: 1620 year: 2009 end-page: 1625 ident: bb0055 article-title: Pathway-specific complement activity in pigs evaluated with a human functional complement assay publication-title: Mol. Immunol. – volume: 170 start-page: 167 year: 2013 end-page: 174 ident: bb0105 article-title: Complement monitoring of Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100 publication-title: J. Control. Release – volume: 35 start-page: 3688 year: 2014 end-page: 3696 ident: bb0195 article-title: Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles publication-title: Biomaterials – volume: 108 start-page: 8761 year: 2011 end-page: 8766 ident: bb0255 article-title: Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 31 start-page: 1844 year: 2020 end-page: 1856 ident: bb0205 article-title: Complement inhibitors block complement C3 Opsonization and improve targeting selectivity of nanoparticles in blood publication-title: Bioconjug. Chem. – volume: 157 start-page: 83 year: 2020 end-page: 95 ident: bb0045 article-title: Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities publication-title: Adv. Drug Deliv. Rev. – volume: 23 start-page: 2813 year: 2005 end-page: 2821 ident: bb0220 article-title: Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer publication-title: J. Clin. Oncol. – volume: 28 start-page: 2747 year: 2017 end-page: 2755 ident: bb0140 article-title: Variability of complement response toward preclinical and clinical Nanocarriers in the general population publication-title: Bioconjug. Chem. – volume: 10 start-page: 76 year: 2013 ident: bb0245 article-title: Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice publication-title: J. Neuroinflammation – volume: 14 start-page: 629 year: 2019 end-page: 635 ident: bb0090 article-title: On the issue of transparency and reproducibility in nanomedicine publication-title: Nat. Nanotechnol. – volume: 13 start-page: 675 year: 1995 end-page: 691 ident: bb0265 article-title: Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil publication-title: Magn. Reson. Imaging – volume: 1 start-page: 10 year: 2016 end-page: 29 ident: bb0135 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. – volume: 216 start-page: 106 year: 2005 end-page: 121 ident: bb0240 article-title: Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity publication-title: Toxicology – volume: 8 start-page: 12437 year: 2014 end-page: 12449 ident: bb0185 article-title: High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties publication-title: ACS Nano – volume: 12 start-page: 5149 year: 2017 end-page: 5161 ident: bb0215 article-title: Complement C3-dependent uptake of targeted liposomes into human macrophages, B cells, dendritic cells, neutrophils, and MDSCs publication-title: Int. J. Nanomedicine – volume: 9 start-page: 2664 year: 2018 ident: bb0260 article-title: Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population publication-title: Front. Immunol. – volume: 68 start-page: 1839 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0275 article-title: Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02360-6 – volume: 170 start-page: 167 year: 2013 ident: 10.1016/j.jconrel.2021.08.048_bb0105 article-title: Complement monitoring of Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2013.05.030 – volume: 24 start-page: 303 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0295 article-title: First-in-human phase I study of MBC-11, a novel bone-targeted Cytarabine-Etidronate conjugate in patients with Cancer-induced bone disease publication-title: Oncologist doi: 10.1634/theoncologist.2018-0707 – volume: 8 start-page: 12437 year: 2014 ident: 10.1016/j.jconrel.2021.08.048_bb0185 article-title: High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties publication-title: ACS Nano doi: 10.1021/nn505126b – volume: 45 start-page: 2370 year: 2008 ident: 10.1016/j.jconrel.2021.08.048_bb0190 article-title: The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)bb) publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2007.11.003 – volume: 4 start-page: 6629 year: 2010 ident: 10.1016/j.jconrel.2021.08.048_bb0120 article-title: Distinct polymer architecture mediates switching of complement activation pathways at the Nanosphere-serum Interface: implications for stealth nanoparticle engineering publication-title: ACS Nano doi: 10.1021/nn101990a – volume: 43 start-page: 193 year: 2006 ident: 10.1016/j.jconrel.2021.08.048_bb0095 article-title: Complement activation and protein adsorption by carbon nanotubes publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2005.02.006 – volume: 13 start-page: 1055 year: 1996 ident: 10.1016/j.jconrel.2021.08.048_bb0115 article-title: The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement publication-title: Pharm. Res. doi: 10.1023/A:1016010808522 – volume: 348 start-page: 2491 year: 2003 ident: 10.1016/j.jconrel.2021.08.048_bb0230 article-title: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa022749 – volume: 1191 start-page: 43 year: 1994 ident: 10.1016/j.jconrel.2021.08.048_bb0110 article-title: Liposome-complement interactions in rat serum: implications for liposome survival studies publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(94)90231-3 – volume: 97 start-page: 686 year: 1999 ident: 10.1016/j.jconrel.2021.08.048_bb0065 article-title: Calcium-independent haemolysis via the lectin pathway of complement activation in the guinea-pig and other species* publication-title: Immunology doi: 10.1046/j.1365-2567.1999.00810.x – volume: 352 start-page: 195 year: 2010 ident: 10.1016/j.jconrel.2021.08.048_bb0075 article-title: Preparing serum for functional complement assays publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2009.11.003 – volume: 154 start-page: 265 year: 2018 ident: 10.1016/j.jconrel.2021.08.048_bb0285 article-title: Tanovea (R) for the treatment of lymphoma in dogs publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2018.05.010 – volume: 157 start-page: 83 year: 2020 ident: 10.1016/j.jconrel.2021.08.048_bb0045 article-title: Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.04.012 – volume: 11 start-page: 64 year: 2014 ident: 10.1016/j.jconrel.2021.08.048_bb0145 article-title: Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum publication-title: Particle Fibre Toxicol. doi: 10.1186/s12989-014-0064-2 – volume: 302 start-page: 181 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0180 article-title: Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.04.009 – volume: 13 start-page: 675 year: 1995 ident: 10.1016/j.jconrel.2021.08.048_bb0265 article-title: Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(95)00023-A – volume: 7 start-page: 4289 year: 2013 ident: 10.1016/j.jconrel.2021.08.048_bb0270 article-title: Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI publication-title: ACS Nano doi: 10.1021/nn400769e – volume: 1 start-page: 10 year: 2016 ident: 10.1016/j.jconrel.2021.08.048_bb0135 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10003 – volume: 9 start-page: 2664 year: 2018 ident: 10.1016/j.jconrel.2021.08.048_bb0260 article-title: Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02664 – volume: 108 start-page: 8761 year: 2011 ident: 10.1016/j.jconrel.2021.08.048_bb0255 article-title: Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1019338108 – volume: 5 start-page: 106 year: 2009 ident: 10.1016/j.jconrel.2021.08.048_bb0130 article-title: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles publication-title: Nanomedicine doi: 10.1016/j.nano.2008.08.001 – volume: 8 start-page: 236 year: 2009 ident: 10.1016/j.jconrel.2021.08.048_bb0030 article-title: The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses publication-title: Inflamm. Allergy Drug Targets doi: 10.2174/187152809788681038 – volume: 35 start-page: 3688 year: 2014 ident: 10.1016/j.jconrel.2021.08.048_bb0195 article-title: Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.12.085 – volume: 20 start-page: 2591 year: 2006 ident: 10.1016/j.jconrel.2021.08.048_bb0050 article-title: Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production publication-title: FASEB J. doi: 10.1096/fj.06-6186fje – volume: 33 start-page: 513 year: 2012 ident: 10.1016/j.jconrel.2021.08.048_bb0250 article-title: The complotype: dictating risk for inflammation and infection publication-title: Trends Immunol. doi: 10.1016/j.it.2012.06.001 – volume: 7 start-page: 1108 year: 2013 ident: 10.1016/j.jconrel.2021.08.048_bb0100 article-title: Single-walled carbon nanotube surface control of complement recognition and activation publication-title: ACS Nano doi: 10.1021/nn3055175 – volume: 13 start-page: 1100 year: 2018 ident: 10.1016/j.jconrel.2021.08.048_bb0010 article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0273-1 – volume: 28 start-page: 2747 year: 2017 ident: 10.1016/j.jconrel.2021.08.048_bb0140 article-title: Variability of complement response toward preclinical and clinical Nanocarriers in the general population publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.7b00496 – volume: 23 start-page: 1003 year: 2012 ident: 10.1016/j.jconrel.2021.08.048_bb0165 article-title: Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains publication-title: Bioconjug. Chem. doi: 10.1021/bc200685a – volume: 12 start-page: 387 year: 2017 ident: 10.1016/j.jconrel.2021.08.048_bb0175 article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.269 – volume: 124 start-page: 915 year: 2006 ident: 10.1016/j.jconrel.2021.08.048_bb0020 article-title: CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens publication-title: Cell doi: 10.1016/j.cell.2005.12.039 – volume: 63 start-page: 1000 year: 2011 ident: 10.1016/j.jconrel.2021.08.048_bb0035 article-title: Material properties in complement activation publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2011.06.002 – volume: 14 start-page: 629 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0090 article-title: On the issue of transparency and reproducibility in nanomedicine publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0496-9 – volume: 7 start-page: 418 year: 2016 ident: 10.1016/j.jconrel.2021.08.048_bb0150 article-title: Activation of human complement system by dextran-coated Iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00418 – volume: 48 start-page: 1282 year: 2016 ident: 10.1016/j.jconrel.2021.08.048_bb0060 article-title: Studies of pig complement: measurement of pig CH50, ACH50, and components publication-title: Transplant. Proc. doi: 10.1016/j.transproceed.2015.10.066 – volume: 11 start-page: 1355 year: 2015 ident: 10.1016/j.jconrel.2021.08.048_bb0210 article-title: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells publication-title: Nanomedicine doi: 10.1016/j.nano.2015.03.010 – volume: 7 start-page: 447 year: 2020 ident: 10.1016/j.jconrel.2021.08.048_bb0280 article-title: A pilot study on the safety of a novel antioxidant nanoparticle delivery system and its indirect effects on cytokine levels in four dogs publication-title: Front. Vet. Sci. doi: 10.3389/fvets.2020.00447 – volume: 92 start-page: 47 year: 2017 ident: 10.1016/j.jconrel.2021.08.048_bb0235 article-title: Current and potential imaging applications of ferumoxytol for magnetic resonance imaging publication-title: Kidney Int. doi: 10.1016/j.kint.2016.12.037 – volume: 23 start-page: 901 year: 2005 ident: 10.1016/j.jconrel.2021.08.048_bb0025 article-title: Macrophage receptors and immune recognition publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.23.021704.115816 – volume: 8 start-page: 151 year: 2017 ident: 10.1016/j.jconrel.2021.08.048_bb0155 article-title: In vitro and in vivo differences in murine third complement component (C3) Opsonization and macrophage/leukocyte responses to antibody-functionalized Iron oxide Nanoworms publication-title: Front. Immunol. – volume: 62 start-page: 104 year: 2014 ident: 10.1016/j.jconrel.2021.08.048_bb0070 article-title: Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2014.06.003 – volume: 190 start-page: 2567 year: 2013 ident: 10.1016/j.jconrel.2021.08.048_bb0200 article-title: Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma publication-title: J. Immunol. doi: 10.4049/jimmunol.1200856 – volume: 216 start-page: 106 year: 2005 ident: 10.1016/j.jconrel.2021.08.048_bb0240 article-title: Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity publication-title: Toxicology doi: 10.1016/j.tox.2005.07.023 – volume: 13 start-page: 973 year: 2018 ident: 10.1016/j.jconrel.2021.08.048_bb0040 article-title: Translational gaps in animal models of human infusion reactions to nanomedicines publication-title: Nanomedicine (London) doi: 10.2217/nnm-2018-0064 – volume: 12 start-page: 5834 year: 2018 ident: 10.1016/j.jconrel.2021.08.048_bb0085 article-title: C1q-mediated complement activation and C3 opsonization trigger recognition of stealth Poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes publication-title: ACS Nano doi: 10.1021/acsnano.8b01806 – volume: 10 start-page: 76 year: 2013 ident: 10.1016/j.jconrel.2021.08.048_bb0245 article-title: Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-10-76 – volume: 31 start-page: 1844 year: 2020 ident: 10.1016/j.jconrel.2021.08.048_bb0205 article-title: Complement inhibitors block complement C3 Opsonization and improve targeting selectivity of nanoparticles in blood publication-title: Bioconjug. Chem. doi: 10.1021/acs.bioconjchem.0c00342 – volume: 184 start-page: 1931 year: 2010 ident: 10.1016/j.jconrel.2021.08.048_bb0125 article-title: Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation publication-title: J. Immunol. doi: 10.4049/jimmunol.0902214 – volume: 14 start-page: 260 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0015 article-title: Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0344-3 – volume: 46 start-page: 1620 year: 2009 ident: 10.1016/j.jconrel.2021.08.048_bb0055 article-title: Pathway-specific complement activity in pigs evaluated with a human functional complement assay publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2009.02.028 – volume: 9 start-page: 10758 year: 2015 ident: 10.1016/j.jconrel.2021.08.048_bb0160 article-title: Modulatory role of surface coating of Superparamagnetic Iron oxide Nanoworms in complement Opsonization and leukocyte uptake publication-title: ACS Nano doi: 10.1021/acsnano.5b05061 – volume: 12 start-page: 5149 year: 2017 ident: 10.1016/j.jconrel.2021.08.048_bb0215 article-title: Complement C3-dependent uptake of targeted liposomes into human macrophages, B cells, dendritic cells, neutrophils, and MDSCs publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S138787 – volume: 33 start-page: 297 year: 1996 ident: 10.1016/j.jconrel.2021.08.048_bb0080 article-title: Mouse complement component C4 is devoid of classical pathway C5 convertase subunit activity publication-title: Mol. Immunol. doi: 10.1016/0161-5890(95)00135-2 – volume: 16 start-page: 4274 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0170 article-title: Feraheme (Ferumoxytol) is recognized by Proinflammatory and anti-inflammatory macrophages via scavenger receptor type AI/II publication-title: Mol. Pharm. doi: 10.1021/acs.molpharmaceut.9b00632 – volume: 11 start-page: 785 year: 2010 ident: 10.1016/j.jconrel.2021.08.048_bb0005 article-title: Complement: a key system for immune surveillance and homeostasis publication-title: Nat. Immunol. doi: 10.1038/ni.1923 – volume: 9 start-page: 96 year: 2019 ident: 10.1016/j.jconrel.2021.08.048_bb0290 article-title: Immunohistochemical characterization of Procaspase-3 overexpression as a Druggable target with PAC-1, a Procaspase-3 activator, in canine and human brain cancers publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00096 – volume: 13 start-page: 661 year: 1995 ident: 10.1016/j.jconrel.2021.08.048_bb0225 article-title: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil publication-title: Magn. Reson. Imaging doi: 10.1016/0730-725X(95)00024-B – volume: 23 start-page: 2813 year: 2005 ident: 10.1016/j.jconrel.2021.08.048_bb0220 article-title: Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2005.07.166 |
SSID | ssj0005347 |
Score | 2.527383 |
Snippet | The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 548 |
SubjectTerms | Complement dextran Dogs humans iron oxide iron oxides lectins magnetism Mice Nanomedicine Rats Serum Species Strains |
Title | Complement opsonization of nanoparticles: Differences between humans and preclinical species |
URI | https://dx.doi.org/10.1016/j.jconrel.2021.08.048 https://www.proquest.com/docview/2569615765 https://www.proquest.com/docview/2636508260 https://pubmed.ncbi.nlm.nih.gov/PMC8552414 |
Volume | 338 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4995 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4995 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-4995 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4995 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4995 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005347 issn: 0168-3659 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFy_iE-ujRBBPbrvbPLrrrfigKoigggchpHlgi2xLWw9e_O3O7GZtC6LgcR-BkElmviHffEPIsZOxNyztRRC9dcSdaEXa-iyCreM490lsS5bvnew-8Ztn8bxEzqtaGKRVBt9f-vTCW4c3zbCazVG_33wAsJIyvBVMigpL1ARF9S_Y043POZoH42XJtEwj_HtWxdMcNAaQc44d3kC0SiVPbAP0c3yaw5-L7Mm5cHS1TtYCjqSdcqobZMnlm-TkvhSi_jilj7O6qskpPaH3M4nqjy3ygm6gJI7TIfJBQjUmHXqa6xwS6cCXO6MXoYMK-BMaSF20aOw3oTq3dASrF4orKVZtQuK9TZ6uLh_Pu1HosxAZwdk0yqS3GkVgwDDO6h4YT2sn23CADDNwZGWijXRx5gzkOy0ndGpl0tNCx5YLZ9gOWc6HudslVBhphGcQ8pwBKKjTdmZ94gEFWGk9YzXCq9VVJoiQYy-MN1WxzQYqGEWhURT2yORpjTS-h41KFY6_BqSV6dTCdlIQKf4aelSZWsFRw_sTnbvh-0QBOswAALal-OUfyRDzQpZYI-2FffI9cRT0XvyS918LYe9UCABUfO__k98nq_iEwTWJD8jydPzuDgE1TXv14ljUyUrn-rZ79wUr4h1L |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB9sfLAvYltL40fdQvHJM3fZj9z5Jn4Qqw1CI_ggLJv9oAnlEkx88L93JrdnDIhCX29vYNnZmfkN-5sZgJ9epcHyfJBg9DaJ8LKdGBeKBK-OFyJkqatYvj3VvRG_buXtCpzUtTBEq4y-v_Lpc28dv7TiabYmw2HrD4KVnNOrYDavsBQfYFVI9MkNWD2-uOz2FkwPLqqqaZUnJLAo5GmNDkeYdt57eoRoV808aRLQ6yHqBQRdJlC-iEjnG7AeoSQ7rnb7CVZ8-Rn2r6te1I8HrL8orZoesH12vehS_fgF7sgTVNxxNiZKSCzIZOPASlNiLh0pc0fsNA5RQZfCIq-LzWf7TZkpHZvgAcb6SkaFm5h7b8LN-Vn_pJvEUQuJlYLPkkIFZ6gPDOrGOzNA_RnjVQdtyHKLVqsyY5VPC28x5Wl7aXKnsoGRJnVCesu_QqMcl_4bMGmVlYFj1PMW0aDJO4ULWUAg4JQLnDdB1KerbexDTuMw_umacDbSUSmalKJpTKbIm3D4LDapGnG8J5DXqtNLN0pjsHhP9Eetao3WRk8opvTjh6lGgFggBuwo-cY_ihPsxUSxCZ2le_K8cerpvbxSDv_Oe3vnUiKmElv_v_k9WOv2f1_pq4ve5TZ8pBWKtVm6A43Z_YPfRRA1G3yPRvIEvcIf9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complement+opsonization+of+nanoparticles%3A+Differences+between+humans+and+preclinical+species&rft.jtitle=Journal+of+controlled+release&rft.au=Li%2C+Yue&rft.au=Wang%2C+Guankui&rft.au=Griffin%2C+Lynn&rft.au=Banda%2C+Nirmal+K&rft.date=2021-10-10&rft.issn=1873-4995&rft.eissn=1873-4995&rft.volume=338&rft.spage=548&rft_id=info:doi/10.1016%2Fj.jconrel.2021.08.048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |