Complement opsonization of nanoparticles: Differences between humans and preclinical species

The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ab...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 338; pp. 548 - 556
Main Authors Li, Yue, Wang, Guankui, Griffin, Lynn, Banda, Nirmal K., Saba, Laura M., Groman, Ernest V., Scheinman, Robert, Moghimi, S. Moein, Simberg, Dmitri
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.10.2021
Subjects
Online AccessGet full text
ISSN0168-3659
1873-4995
1873-4995
DOI10.1016/j.jconrel.2021.08.048

Cover

Abstract The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines. [Display omitted]
AbstractList The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines. [Display omitted]
The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n=6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca 2+ -sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6J, and A/J) was only through the Ca 2+ -dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca²⁺-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca²⁺-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and inter-strain differences of complement opsonization in preclinical species can help with translational nanomedicine development and improve our ability to model complement response in humans. Dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles and a wide range of non-magnetic iron oxide nanoparticle formulations are widely used in magnetic resonance imaging and as clinically approved iron supplements. Previously we found that opsonization of SPIO nanoworms (NW) with the third complement protein (C3) proceeds mostly via the alternative pathway in humans, and via the lectin pathway in mice. Here, we studied the pathway and efficiency of opsonization of 106 nm SPIO NW with C3 in different preclinical species and commonly used laboratory strains. In sera of healthy human donors (n = 6), C3 opsonization proceeded exclusively through the alternative pathway. On the other hand, the C3 opsonization in dogs (6 breeds), rats (4 strains) and mice (5 strains) sera was either partially or completely dependent on the complement Ca2+-sensitive pathways (lectin and/or classical). Specifically, C3 opsonization in sera of Long Evans rat strain, and mouse strains widely used in nanomedicine research (BALB/c, C57BL/6 J, and A/J) was only through the Ca2+-dependent pathways. Dogs and humans had the highest between-subject variability in C3 opsonization levels, while rat and mouse sera showed the lowest between-strain variability. Furthermore, using a panel of SPIO nanoparticles of different sizes and dextran coatings, we found that the level of C3 opsonization (C3 molecules per milligram Fe) in human sera was lower than in animal sera. At the same time, there was a strong predictive value of complement opsonization in dog and rat sera; nanoparticles with higher C3 deposition in animals showed higher deposition in humans, and vice versa. Notably, the opsonization decreased with decreasing size in all sera. The studies highlight the importance of the consideration of species and strains for predicting human complement responses (opsonization) towards nanomedicines.
Author Wang, Guankui
Saba, Laura M.
Griffin, Lynn
Banda, Nirmal K.
Moghimi, S. Moein
Li, Yue
Groman, Ernest V.
Simberg, Dmitri
Scheinman, Robert
AuthorAffiliation 2 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
6 School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
7 Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
1 Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
3 Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
4 Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
5 Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA
AuthorAffiliation_xml – name: 7 Translational and Clinical Research Institute, Framlington Place, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
– name: 2 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– name: 6 School of Pharmacy, King George VI Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
– name: 4 Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
– name: 1 Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– name: 3 Colorado Center for Nanomedicine and Nanosafety, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– name: 5 Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA
Author_xml – sequence: 1
  givenname: Yue
  surname: Li
  fullname: Li, Yue
  organization: Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– sequence: 2
  givenname: Guankui
  surname: Wang
  fullname: Wang, Guankui
  organization: Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– sequence: 3
  givenname: Lynn
  surname: Griffin
  fullname: Griffin, Lynn
  organization: Department of Environmental and Radiological Health Sciences, Veterinary Teaching Hospital, Colorado State University, Fort Collins, CO, USA
– sequence: 4
  givenname: Nirmal K.
  surname: Banda
  fullname: Banda, Nirmal K.
  organization: Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, 1775 Aurora Court, Aurora, CO, USA
– sequence: 5
  givenname: Laura M.
  surname: Saba
  fullname: Saba, Laura M.
  organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– sequence: 6
  givenname: Ernest V.
  surname: Groman
  fullname: Groman, Ernest V.
  organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– sequence: 7
  givenname: Robert
  surname: Scheinman
  fullname: Scheinman, Robert
  organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– sequence: 8
  givenname: S. Moein
  surname: Moghimi
  fullname: Moghimi, S. Moein
  organization: Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
– sequence: 9
  givenname: Dmitri
  surname: Simberg
  fullname: Simberg, Dmitri
  email: dmitri.simberg@cuanschutz.edu
  organization: Translational Bio-Nanosciences Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
BookMark eNqFkUFv1DAQhS1URLeFn4CUI5ek4yR2HJBA1UIBqRKX9oZkzToT6pVjBztbVH49Lrsc6GVPc5j3nmbed8ZOfPDE2GsOFQcuL7bV1gQfyVU11LwCVUGrnrEVV11Ttn0vTtgq61TZSNGfsrOUtgAgmrZ7wU6btlW8r9WKfV-HaXY0kV-KMKfg7W9cbPBFGAuPPswYF2scpbfFRzuOFMkbSsWGll9EvrjbTehTgX4o5kjGWW8NuiLNZCyll-z5iC7Rq8M8Z7dXn27WX8rrb5-_ri-vSyPaZil7OQ7YS6FgABpwM5oGkWRXA5jGAO8kRyMJejK9hJoEqkHyDQqEoRVkmnP2fp877zYTDSY_E9HpOdoJ44MOaPX_G2_v9I9wr5UQdcvbHPDmEBDDzx2lRU82GXIOPYVd0rXMLYKqJRyXCtlLLjopsvTdXmpiSCnSqI1d_rabj7BOc9CPKPVWH1DqR5QalM4os1s8cf_755jvw95HufF7S1GnzCJTG2wmtOgh2CMJfwBEn8AZ
CitedBy_id crossref_primary_10_1002_wnan_70004
crossref_primary_10_3389_fimmu_2023_1101387
crossref_primary_10_1038_s41565_023_01514_z
crossref_primary_10_1021_acsnano_2c12193
crossref_primary_10_1021_acsnano_4c05087
crossref_primary_10_1016_j_jconrel_2023_02_022
crossref_primary_10_1016_j_apsb_2024_07_009
crossref_primary_10_3390_jof9020162
crossref_primary_10_1016_j_copbio_2023_103010
crossref_primary_10_1016_j_addr_2023_115114
crossref_primary_10_1021_acsnano_2c02794
crossref_primary_10_1038_s41467_025_57648_2
crossref_primary_10_3389_fimmu_2022_864403
crossref_primary_10_3389_fbioe_2022_868111
crossref_primary_10_1038_s41467_024_54810_0
crossref_primary_10_1165_rcmb_2024_0195ED
crossref_primary_10_1016_j_actbio_2022_10_055
crossref_primary_10_1016_j_ejpb_2023_10_008
crossref_primary_10_1016_j_imbio_2022_152317
crossref_primary_10_1016_j_ejpb_2024_114476
crossref_primary_10_1016_j_jim_2024_113668
crossref_primary_10_1016_j_smim_2024_101922
crossref_primary_10_1016_j_addr_2022_114396
crossref_primary_10_1016_j_nantod_2022_101479
crossref_primary_10_1016_j_nantod_2022_101512
crossref_primary_10_3390_nano13111721
crossref_primary_10_1002_adhm_202405103
crossref_primary_10_1021_acsnano_4c00182
crossref_primary_10_1016_j_addr_2023_114972
crossref_primary_10_1002_mabi_202100460
crossref_primary_10_1016_j_jconrel_2022_09_039
crossref_primary_10_3389_fnano_2024_1500567
Cites_doi 10.1007/s00262-019-02360-6
10.1016/j.jconrel.2013.05.030
10.1634/theoncologist.2018-0707
10.1021/nn505126b
10.1016/j.molimm.2007.11.003
10.1021/nn101990a
10.1016/j.molimm.2005.02.006
10.1023/A:1016010808522
10.1056/NEJMoa022749
10.1016/0005-2736(94)90231-3
10.1046/j.1365-2567.1999.00810.x
10.1016/j.jim.2009.11.003
10.1016/j.bcp.2018.05.010
10.1016/j.addr.2020.04.012
10.1186/s12989-014-0064-2
10.1016/j.jconrel.2019.04.009
10.1016/0730-725X(95)00023-A
10.1021/nn400769e
10.1002/btm2.10003
10.3389/fimmu.2018.02664
10.1073/pnas.1019338108
10.1016/j.nano.2008.08.001
10.2174/187152809788681038
10.1016/j.biomaterials.2013.12.085
10.1096/fj.06-6186fje
10.1016/j.it.2012.06.001
10.1021/nn3055175
10.1038/s41565-018-0273-1
10.1021/acs.bioconjchem.7b00496
10.1021/bc200685a
10.1038/nnano.2016.269
10.1016/j.cell.2005.12.039
10.1016/j.addr.2011.06.002
10.1038/s41565-019-0496-9
10.3389/fimmu.2016.00418
10.1016/j.transproceed.2015.10.066
10.1016/j.nano.2015.03.010
10.3389/fvets.2020.00447
10.1016/j.kint.2016.12.037
10.1146/annurev.immunol.23.021704.115816
10.1016/j.molimm.2014.06.003
10.4049/jimmunol.1200856
10.1016/j.tox.2005.07.023
10.2217/nnm-2018-0064
10.1021/acsnano.8b01806
10.1186/1742-2094-10-76
10.1021/acs.bioconjchem.0c00342
10.4049/jimmunol.0902214
10.1038/s41565-018-0344-3
10.1016/j.molimm.2009.02.028
10.1021/acsnano.5b05061
10.2147/IJN.S138787
10.1016/0161-5890(95)00135-2
10.1021/acs.molpharmaceut.9b00632
10.1038/ni.1923
10.3389/fonc.2019.00096
10.1016/0730-725X(95)00024-B
10.1200/JCO.2005.07.166
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright © 2021 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright © 2021 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
5PM
DOI 10.1016/j.jconrel.2021.08.048
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 556
ExternalDocumentID PMC8552414
10_1016_j_jconrel_2021_08_048
S0168365921004624
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
7X8
EFKBS
7S9
ACLOT
L.6
~HD
5PM
ID FETCH-LOGICAL-c543t-96fda96580d0edabfc3aae67200c3c01761ac6e09ec9602e5a8d61ba5a0d45ec3
IEDL.DBID .~1
ISSN 0168-3659
1873-4995
IngestDate Thu Aug 21 18:39:39 EDT 2025
Sat Sep 27 19:21:25 EDT 2025
Fri Sep 05 14:28:01 EDT 2025
Tue Jul 01 04:10:04 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
Fri Feb 23 02:39:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords iron oxide
Strains
Dogs
Rats
Serum
Complement
Mice
Nanomedicine
Species
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-96fda96580d0edabfc3aae67200c3c01761ac6e09ec9602e5a8d61ba5a0d45ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
equal contribution
DS designed the study, analyzed the data and wrote the manuscript
YL designed and performed the experiments and analyzed data
NKB provided reagents and protocols and edited the manuscript
LG provided reagents and edited the manuscript
GW performed the experiments and analyzed data
LMS analyzed the data
RS designed the experiments
SMM designed experiments, analyzed data and edited the manuscript
Author credits statement
EVG designed the experiments, analyzed the data and edited the manuscript
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8552414
PMID 34481928
PQID 2569615765
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8552414
proquest_miscellaneous_2636508260
proquest_miscellaneous_2569615765
crossref_citationtrail_10_1016_j_jconrel_2021_08_048
crossref_primary_10_1016_j_jconrel_2021_08_048
elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_08_048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-10
PublicationDateYYYYMMDD 2021-10-10
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of controlled release
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chao, Karmali, Mukthavaram, Kesari, Kouznetsova, Tsigelny, Simberg (bb0270) 2013; 7
Wang, Inturi, Serkova, Merkulov, McCrae, Russek, Banda, Simberg (bb0185) 2014; 8
Banda, Mehta, Chao, Wang, Inturi, Fossati-Jimack, Botto, Wu, Moghimi, Simberg (bb0145) 2014; 11
Chen, Wang, Griffin, Brenneman, Banda, Holers, Backos, Wu, Moghimi, Simberg (bb0175) 2017; 12
Hamad, Al-Hanbali, Hunter, Rutt, Andresen, Moghimi (bb0120) 2010; 4
Lachmann (bb0075) 2010; 352
Howell, Soto, Ryan, Graham, Smith, John (bb0245) 2013; 10
Gaikwad, Li, Gifford, Groman, Banda, Saba, Scheinman, Wang, Simberg (bb0205) 2020; 31
Leong, Butler, Brinker, Azzawi, Conlan, Dufes, Owen, Rannard, Scott, Chen, Dobrovolskaia, Kozlov, Prina-Mello, Schmid, Wick, Caputo, Boisseau, Crist, McNeil, Fadeel, Tran, Hansen, Hartmann, Clausen, Skjolding, Baun, Agerstrand, Gu, Lamprou, Hoskins, Huang, Song, Cao, Liu, Jandt, Jiang, Kim, Wheeler, Chetwynd, Lynch, Moghimi, Nel, Xia, Weiss, Sarmento, das Neves, Santos, Santos, Mitragotri, Little, Peer, Amiji, Alonso, Petri-Fink, Balog, Lee, Drasler, Rothen-Rutishauser, Wilhelm, Acar, Harrison, Mao, Mukherjee, Ramesh, McNally, Busatto, Wolfram, Bergese, Ferrari, Fang, Zhang, Zheng, Peng, Du, Yu, Charron, Zheng, Pastore (bb0090) 2019; 14
Jung (bb0265) 1995; 13
Benasutti, Wang, Vu, Scheinman, Groman, Saba, Simberg (bb0140) 2017; 28
Moghimi, Simberg, Papini, Farhangrazi (bb0045) 2020; 157
Klapper, Hamad, Teramura, Leneweit, Nienhaus, Ricklin, Lambris, Ekdahl, Nilsson (bb0195) 2014; 35
Ebanks, Isenman (bb0080) 1996; 33
Wang, Griffin, Inturi, Brenneman, Banda, Holers, Moghimi, Simberg (bb0155) 2017; 8
Vu, Gifford, Chen, Benasutti, Wang, Groman, Scheinman, Saba, Moghimi, Simberg (bb0015) 2019; 14
Heurich, Martinez-Barricarte, Francis, Roberts, Rodriguez de Cordoba, Morgan, Harris (bb0255) 2011; 108
Pedersen, Zhou, Larsen, Sorensen, Kjems, Nygaard, Nyengaard, Meyer, Boesen, Vorup-Jensen (bb0125) 2010; 184
Tavano, Gabrielli, Lubian, Fedeli, Visentin, Polverino De Laureto, Arrigoni, Geffner-Smith, Chen, Simberg, Morgese, Benetti, Wu, Moghimi, Mancin, Papini (bb0085) 2018; 12
Wang, Serkova, Groman, Scheinman, Simberg (bb0170) 2019; 16
Borchard, Kreuter (bb0115) 1996; 13
Harris, Heurich, Rodriguez de Cordoba, Morgan (bb0250) 2012; 33
De Clercq (bb0285) 2018; 154
Zinnen, Karpeisky, Von Hoff, Plekhova, Alexandrov (bb0295) 2019; 24
Sakai, Kitano, Hatanaka, Lo, Matsuura, Deguchi, Eguchi, Maeda, Watanabe, Matsunari, Nagashima, Okuyama, Miyagawa (bb0060) 2016; 48
Ricklin, Hajishengallis, Yang, Lambris (bb0005) 2010; 11
Bexborn, Andersson, Chen, Nilsson, Ekdahl (bb0190) 2008; 45
Ratelade, Verkman (bb0070) 2014; 62
Harisinghani, Barentsz, Hahn, Deserno, Tabatabaei, van de Kaa, de la Rosette, Weissleder (bb0230) 2003; 348
Dobrovolskaia, Patri, Zheng, Clogston, Ayub, Aggarwal, Neun, Hall, McNeil (bb0130) 2009; 5
Manning, Williams, Jelinek, Kostova, Denmeade (bb0200) 2013; 190
Tarone, Barutello, Iussich, Giacobino, Quaglino, Buracco, Cavallo, Riccardo (bb0275) 2019; 68
Szebeni (bb0240) 2005; 216
Inturi, Wang, Chen, Banda, Holers, Wu, Moghimi, Simberg (bb0160) 2015; 9
Andersen, Robinson, Dai, Hunter, Andresen, Moghimi (bb0100) 2013; 7
Salvesen, Mollnes (bb0055) 2009; 46
Zhang, Suankratay, Zhang, Jones, Lint, Gewurz (bb0065) 1999; 97
Robinson, Platt, Bibi, Banovic, Barber, Howerth, Madsen (bb0280) 2020; 7
Taylor, Martinez-Pomares, Stacey, Lin, Brown, Gordon (bb0025) 2005; 23
Chao, Makale, Karmali, Sharikov, Tsigelny, Merkulov, Kesari, Wrasidlo, Ruoslahti, Simberg (bb0165) 2012; 23
Rockall, Sohaib, Harisinghani, Babar, Singh, Jeyarajah, Oram, Jacobs, Shepherd, Reznek (bb0220) 2005; 23
Helmy, Katschke, Gorgani, Kljavin, Elliott, Diehl, Scales, Ghilardi, van Lookeren Campagne (bb0020) 2006; 124
Salvador-Morales, Flahaut, Sim, Sloan, Green, Sim (bb0095) 2006; 43
Hamad, Hunter, Moghimi (bb0105) 2013; 170
Wang, Chen, Banda, Holers, Wu, Moghimi, Simberg (bb0150) 2016; 7
Schlein, Fadl-Alla, Pondenis, Lezmi, Eberhart, LeBlanc, Dickinson, Hergenrother, Fan (bb0290) 2019; 9
Toth, Varallyay, Horvath, Bashir, Choyke, Daldrup-Link, Dosa, Finn, Gahramanov, Harisinghani, Macdougall, Neuwelt, Vasanawala, Ambady, Barajas, Cetas, Ciporen, DeLoughery, Doolittle, Fu, Grinstead, Guimaraes, Hamilton, Li, McConnell, Muldoon, Nesbit, Netto, Petterson, Rooney, Schwartz, Szidonya, Neuwelt (bb0235) 2017; 92
Francian, Mann, Kullberg (bb0215) 2017; 12
Gifford, Vu, Banda, Holers, Wang, Groman, Backos, Scheinman, Moghimi, Simberg (bb0180) 2019; 302
Jung, Jacobs (bb0225) 1995; 13
Moghimi, Simberg (bb0040) 2018; 13
Moghimi, Hamad, Andresen, Jorgensen, Szebeni (bb0050) 2006; 20
Gaya da Costa, Poppelaars, van Kooten, Mollnes, Tedesco, Wurzner, Trouw, Truedsson, Daha, Roos, Seelen (bb0260) 2018; 9
Anselmo, Mitragotri (bb0135) 2016; 1
Moghimi, Andersen, Ahmadvand, Wibroe, Andresen, Hunter (bb0035) 2011; 63
Devine, Wong, Serrano, Chonn, Cullis (bb0110) 1994; 1191
Kullberg, Martinson, Mann, Anchordoquy (bb0210) 2015; 11
Peng, Li, Sacks, Zhou (bb0030) 2009; 8
Szebeni, Simberg, Gonzalez-Fernandez, Barenholz, Dobrovolskaia (bb0010) 2018; 13
Moghimi (10.1016/j.jconrel.2021.08.048_bb0040) 2018; 13
Heurich (10.1016/j.jconrel.2021.08.048_bb0255) 2011; 108
Borchard (10.1016/j.jconrel.2021.08.048_bb0115) 1996; 13
Howell (10.1016/j.jconrel.2021.08.048_bb0245) 2013; 10
Moghimi (10.1016/j.jconrel.2021.08.048_bb0050) 2006; 20
Salvador-Morales (10.1016/j.jconrel.2021.08.048_bb0095) 2006; 43
Harisinghani (10.1016/j.jconrel.2021.08.048_bb0230) 2003; 348
Dobrovolskaia (10.1016/j.jconrel.2021.08.048_bb0130) 2009; 5
Szebeni (10.1016/j.jconrel.2021.08.048_bb0240) 2005; 216
Leong (10.1016/j.jconrel.2021.08.048_bb0090) 2019; 14
Vu (10.1016/j.jconrel.2021.08.048_bb0015) 2019; 14
Jung (10.1016/j.jconrel.2021.08.048_bb0225) 1995; 13
Chen (10.1016/j.jconrel.2021.08.048_bb0175) 2017; 12
Chao (10.1016/j.jconrel.2021.08.048_bb0270) 2013; 7
De Clercq (10.1016/j.jconrel.2021.08.048_bb0285) 2018; 154
Hamad (10.1016/j.jconrel.2021.08.048_bb0120) 2010; 4
Jung (10.1016/j.jconrel.2021.08.048_bb0265) 1995; 13
Ricklin (10.1016/j.jconrel.2021.08.048_bb0005) 2010; 11
Gifford (10.1016/j.jconrel.2021.08.048_bb0180) 2019; 302
Moghimi (10.1016/j.jconrel.2021.08.048_bb0035) 2011; 63
Bexborn (10.1016/j.jconrel.2021.08.048_bb0190) 2008; 45
Inturi (10.1016/j.jconrel.2021.08.048_bb0160) 2015; 9
Lachmann (10.1016/j.jconrel.2021.08.048_bb0075) 2010; 352
Ebanks (10.1016/j.jconrel.2021.08.048_bb0080) 1996; 33
Helmy (10.1016/j.jconrel.2021.08.048_bb0020) 2006; 124
Chao (10.1016/j.jconrel.2021.08.048_bb0165) 2012; 23
Wang (10.1016/j.jconrel.2021.08.048_bb0155) 2017; 8
Pedersen (10.1016/j.jconrel.2021.08.048_bb0125) 2010; 184
Benasutti (10.1016/j.jconrel.2021.08.048_bb0140) 2017; 28
Wang (10.1016/j.jconrel.2021.08.048_bb0150) 2016; 7
Ratelade (10.1016/j.jconrel.2021.08.048_bb0070) 2014; 62
Klapper (10.1016/j.jconrel.2021.08.048_bb0195) 2014; 35
Wang (10.1016/j.jconrel.2021.08.048_bb0185) 2014; 8
Taylor (10.1016/j.jconrel.2021.08.048_bb0025) 2005; 23
Anselmo (10.1016/j.jconrel.2021.08.048_bb0135) 2016; 1
Andersen (10.1016/j.jconrel.2021.08.048_bb0100) 2013; 7
Harris (10.1016/j.jconrel.2021.08.048_bb0250) 2012; 33
Zinnen (10.1016/j.jconrel.2021.08.048_bb0295) 2019; 24
Moghimi (10.1016/j.jconrel.2021.08.048_bb0045) 2020; 157
Devine (10.1016/j.jconrel.2021.08.048_bb0110) 1994; 1191
Zhang (10.1016/j.jconrel.2021.08.048_bb0065) 1999; 97
Tarone (10.1016/j.jconrel.2021.08.048_bb0275) 2019; 68
Tavano (10.1016/j.jconrel.2021.08.048_bb0085) 2018; 12
Banda (10.1016/j.jconrel.2021.08.048_bb0145) 2014; 11
Toth (10.1016/j.jconrel.2021.08.048_bb0235) 2017; 92
Robinson (10.1016/j.jconrel.2021.08.048_bb0280) 2020; 7
Sakai (10.1016/j.jconrel.2021.08.048_bb0060) 2016; 48
Gaya da Costa (10.1016/j.jconrel.2021.08.048_bb0260) 2018; 9
Peng (10.1016/j.jconrel.2021.08.048_bb0030) 2009; 8
Wang (10.1016/j.jconrel.2021.08.048_bb0170) 2019; 16
Rockall (10.1016/j.jconrel.2021.08.048_bb0220) 2005; 23
Schlein (10.1016/j.jconrel.2021.08.048_bb0290) 2019; 9
Szebeni (10.1016/j.jconrel.2021.08.048_bb0010) 2018; 13
Francian (10.1016/j.jconrel.2021.08.048_bb0215) 2017; 12
Hamad (10.1016/j.jconrel.2021.08.048_bb0105) 2013; 170
Kullberg (10.1016/j.jconrel.2021.08.048_bb0210) 2015; 11
Salvesen (10.1016/j.jconrel.2021.08.048_bb0055) 2009; 46
Manning (10.1016/j.jconrel.2021.08.048_bb0200) 2013; 190
Gaikwad (10.1016/j.jconrel.2021.08.048_bb0205) 2020; 31
References_xml – volume: 11
  start-page: 1355
  year: 2015
  end-page: 1363
  ident: bb0210
  article-title: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells
  publication-title: Nanomedicine
– volume: 13
  start-page: 661
  year: 1995
  end-page: 674
  ident: bb0225
  article-title: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil
  publication-title: Magn. Reson. Imaging
– volume: 13
  start-page: 1100
  year: 2018
  end-page: 1108
  ident: bb0010
  article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines
  publication-title: Nat. Nanotechnol.
– volume: 92
  start-page: 47
  year: 2017
  end-page: 66
  ident: bb0235
  article-title: Current and potential imaging applications of ferumoxytol for magnetic resonance imaging
  publication-title: Kidney Int.
– volume: 24
  start-page: 303
  year: 2019
  end-page: e102
  ident: bb0295
  article-title: First-in-human phase I study of MBC-11, a novel bone-targeted Cytarabine-Etidronate conjugate in patients with Cancer-induced bone disease
  publication-title: Oncologist
– volume: 12
  start-page: 5834
  year: 2018
  end-page: 5847
  ident: bb0085
  article-title: C1q-mediated complement activation and C3 opsonization trigger recognition of stealth Poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes
  publication-title: ACS Nano
– volume: 45
  start-page: 2370
  year: 2008
  end-page: 2379
  ident: bb0190
  article-title: The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)bb)
  publication-title: Mol. Immunol.
– volume: 68
  start-page: 1839
  year: 2019
  end-page: 1853
  ident: bb0275
  article-title: Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy
  publication-title: Cancer Immunol. Immunother.
– volume: 62
  start-page: 104
  year: 2014
  end-page: 113
  ident: bb0070
  article-title: Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica
  publication-title: Mol. Immunol.
– volume: 11
  start-page: 64
  year: 2014
  ident: bb0145
  article-title: Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum
  publication-title: Particle Fibre Toxicol.
– volume: 302
  start-page: 181
  year: 2019
  end-page: 189
  ident: bb0180
  article-title: Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55
  publication-title: J. Control. Release
– volume: 20
  start-page: 2591
  year: 2006
  end-page: 2593
  ident: bb0050
  article-title: Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production
  publication-title: FASEB J.
– volume: 352
  start-page: 195
  year: 2010
  end-page: 197
  ident: bb0075
  article-title: Preparing serum for functional complement assays
  publication-title: J. Immunol. Methods
– volume: 5
  start-page: 106
  year: 2009
  end-page: 117
  ident: bb0130
  article-title: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles
  publication-title: Nanomedicine
– volume: 124
  start-page: 915
  year: 2006
  end-page: 927
  ident: bb0020
  article-title: CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens
  publication-title: Cell
– volume: 23
  start-page: 1003
  year: 2012
  end-page: 1009
  ident: bb0165
  article-title: Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains
  publication-title: Bioconjug. Chem.
– volume: 348
  start-page: 2491
  year: 2003
  end-page: 2499
  ident: bb0230
  article-title: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer
  publication-title: N. Engl. J. Med.
– volume: 33
  start-page: 297
  year: 1996
  end-page: 309
  ident: bb0080
  article-title: Mouse complement component C4 is devoid of classical pathway C5 convertase subunit activity
  publication-title: Mol. Immunol.
– volume: 13
  start-page: 973
  year: 2018
  end-page: 975
  ident: bb0040
  article-title: Translational gaps in animal models of human infusion reactions to nanomedicines
  publication-title: Nanomedicine (London)
– volume: 43
  start-page: 193
  year: 2006
  end-page: 201
  ident: bb0095
  article-title: Complement activation and protein adsorption by carbon nanotubes
  publication-title: Mol. Immunol.
– volume: 7
  start-page: 4289
  year: 2013
  end-page: 4298
  ident: bb0270
  article-title: Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI
  publication-title: ACS Nano
– volume: 14
  start-page: 260
  year: 2019
  end-page: 268
  ident: bb0015
  article-title: Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles
  publication-title: Nat. Nanotechnol.
– volume: 1191
  start-page: 43
  year: 1994
  end-page: 51
  ident: bb0110
  article-title: Liposome-complement interactions in rat serum: implications for liposome survival studies
  publication-title: Biochim. Biophys. Acta
– volume: 13
  start-page: 1055
  year: 1996
  end-page: 1058
  ident: bb0115
  article-title: The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement
  publication-title: Pharm. Res.
– volume: 9
  start-page: 10758
  year: 2015
  end-page: 10768
  ident: bb0160
  article-title: Modulatory role of surface coating of Superparamagnetic Iron oxide Nanoworms in complement Opsonization and leukocyte uptake
  publication-title: ACS Nano
– volume: 11
  start-page: 785
  year: 2010
  end-page: 797
  ident: bb0005
  article-title: Complement: a key system for immune surveillance and homeostasis
  publication-title: Nat. Immunol.
– volume: 63
  start-page: 1000
  year: 2011
  end-page: 1007
  ident: bb0035
  article-title: Material properties in complement activation
  publication-title: Adv. Drug Deliv. Rev.
– volume: 7
  start-page: 447
  year: 2020
  ident: bb0280
  article-title: A pilot study on the safety of a novel antioxidant nanoparticle delivery system and its indirect effects on cytokine levels in four dogs
  publication-title: Front. Vet. Sci.
– volume: 33
  start-page: 513
  year: 2012
  end-page: 521
  ident: bb0250
  article-title: The complotype: dictating risk for inflammation and infection
  publication-title: Trends Immunol.
– volume: 97
  start-page: 686
  year: 1999
  end-page: 692
  ident: bb0065
  article-title: Calcium-independent haemolysis via the lectin pathway of complement activation in the guinea-pig and other species*
  publication-title: Immunology
– volume: 8
  start-page: 236
  year: 2009
  end-page: 246
  ident: bb0030
  article-title: The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses
  publication-title: Inflamm. Allergy Drug Targets
– volume: 184
  start-page: 1931
  year: 2010
  end-page: 1945
  ident: bb0125
  article-title: Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation
  publication-title: J. Immunol.
– volume: 7
  start-page: 418
  year: 2016
  ident: bb0150
  article-title: Activation of human complement system by dextran-coated Iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking
  publication-title: Front. Immunol.
– volume: 48
  start-page: 1282
  year: 2016
  end-page: 1284
  ident: bb0060
  article-title: Studies of pig complement: measurement of pig CH50, ACH50, and components
  publication-title: Transplant. Proc.
– volume: 190
  start-page: 2567
  year: 2013
  end-page: 2574
  ident: bb0200
  article-title: Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma
  publication-title: J. Immunol.
– volume: 7
  start-page: 1108
  year: 2013
  end-page: 1119
  ident: bb0100
  article-title: Single-walled carbon nanotube surface control of complement recognition and activation
  publication-title: ACS Nano
– volume: 154
  start-page: 265
  year: 2018
  end-page: 269
  ident: bb0285
  article-title: Tanovea (R) for the treatment of lymphoma in dogs
  publication-title: Biochem. Pharmacol.
– volume: 9
  start-page: 96
  year: 2019
  ident: bb0290
  article-title: Immunohistochemical characterization of Procaspase-3 overexpression as a Druggable target with PAC-1, a Procaspase-3 activator, in canine and human brain cancers
  publication-title: Front. Oncol.
– volume: 8
  start-page: 151
  year: 2017
  ident: bb0155
  article-title: In vitro and in vivo differences in murine third complement component (C3) Opsonization and macrophage/leukocyte responses to antibody-functionalized Iron oxide Nanoworms
  publication-title: Front. Immunol.
– volume: 23
  start-page: 901
  year: 2005
  end-page: 944
  ident: bb0025
  article-title: Macrophage receptors and immune recognition
  publication-title: Annu. Rev. Immunol.
– volume: 4
  start-page: 6629
  year: 2010
  end-page: 6638
  ident: bb0120
  article-title: Distinct polymer architecture mediates switching of complement activation pathways at the Nanosphere-serum Interface: implications for stealth nanoparticle engineering
  publication-title: ACS Nano
– volume: 12
  start-page: 387
  year: 2017
  end-page: 393
  ident: bb0175
  article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
  publication-title: Nat. Nanotechnol.
– volume: 16
  start-page: 4274
  year: 2019
  end-page: 4281
  ident: bb0170
  article-title: Feraheme (Ferumoxytol) is recognized by Proinflammatory and anti-inflammatory macrophages via scavenger receptor type AI/II
  publication-title: Mol. Pharm.
– volume: 46
  start-page: 1620
  year: 2009
  end-page: 1625
  ident: bb0055
  article-title: Pathway-specific complement activity in pigs evaluated with a human functional complement assay
  publication-title: Mol. Immunol.
– volume: 170
  start-page: 167
  year: 2013
  end-page: 174
  ident: bb0105
  article-title: Complement monitoring of Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100
  publication-title: J. Control. Release
– volume: 35
  start-page: 3688
  year: 2014
  end-page: 3696
  ident: bb0195
  article-title: Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles
  publication-title: Biomaterials
– volume: 108
  start-page: 8761
  year: 2011
  end-page: 8766
  ident: bb0255
  article-title: Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 31
  start-page: 1844
  year: 2020
  end-page: 1856
  ident: bb0205
  article-title: Complement inhibitors block complement C3 Opsonization and improve targeting selectivity of nanoparticles in blood
  publication-title: Bioconjug. Chem.
– volume: 157
  start-page: 83
  year: 2020
  end-page: 95
  ident: bb0045
  article-title: Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities
  publication-title: Adv. Drug Deliv. Rev.
– volume: 23
  start-page: 2813
  year: 2005
  end-page: 2821
  ident: bb0220
  article-title: Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer
  publication-title: J. Clin. Oncol.
– volume: 28
  start-page: 2747
  year: 2017
  end-page: 2755
  ident: bb0140
  article-title: Variability of complement response toward preclinical and clinical Nanocarriers in the general population
  publication-title: Bioconjug. Chem.
– volume: 10
  start-page: 76
  year: 2013
  ident: bb0245
  article-title: Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice
  publication-title: J. Neuroinflammation
– volume: 14
  start-page: 629
  year: 2019
  end-page: 635
  ident: bb0090
  article-title: On the issue of transparency and reproducibility in nanomedicine
  publication-title: Nat. Nanotechnol.
– volume: 13
  start-page: 675
  year: 1995
  end-page: 691
  ident: bb0265
  article-title: Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil
  publication-title: Magn. Reson. Imaging
– volume: 1
  start-page: 10
  year: 2016
  end-page: 29
  ident: bb0135
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
– volume: 216
  start-page: 106
  year: 2005
  end-page: 121
  ident: bb0240
  article-title: Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity
  publication-title: Toxicology
– volume: 8
  start-page: 12437
  year: 2014
  end-page: 12449
  ident: bb0185
  article-title: High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties
  publication-title: ACS Nano
– volume: 12
  start-page: 5149
  year: 2017
  end-page: 5161
  ident: bb0215
  article-title: Complement C3-dependent uptake of targeted liposomes into human macrophages, B cells, dendritic cells, neutrophils, and MDSCs
  publication-title: Int. J. Nanomedicine
– volume: 9
  start-page: 2664
  year: 2018
  ident: bb0260
  article-title: Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population
  publication-title: Front. Immunol.
– volume: 68
  start-page: 1839
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0275
  article-title: Naturally occurring cancers in pet dogs as pre-clinical models for cancer immunotherapy
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-019-02360-6
– volume: 170
  start-page: 167
  year: 2013
  ident: 10.1016/j.jconrel.2021.08.048_bb0105
  article-title: Complement monitoring of Pluronic 127 gel and micelles: suppression of copolymer-mediated complement activation by elevated serum levels of HDL, LDL, and apolipoproteins AI and B-100
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.05.030
– volume: 24
  start-page: 303
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0295
  article-title: First-in-human phase I study of MBC-11, a novel bone-targeted Cytarabine-Etidronate conjugate in patients with Cancer-induced bone disease
  publication-title: Oncologist
  doi: 10.1634/theoncologist.2018-0707
– volume: 8
  start-page: 12437
  year: 2014
  ident: 10.1016/j.jconrel.2021.08.048_bb0185
  article-title: High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties
  publication-title: ACS Nano
  doi: 10.1021/nn505126b
– volume: 45
  start-page: 2370
  year: 2008
  ident: 10.1016/j.jconrel.2021.08.048_bb0190
  article-title: The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)bb)
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2007.11.003
– volume: 4
  start-page: 6629
  year: 2010
  ident: 10.1016/j.jconrel.2021.08.048_bb0120
  article-title: Distinct polymer architecture mediates switching of complement activation pathways at the Nanosphere-serum Interface: implications for stealth nanoparticle engineering
  publication-title: ACS Nano
  doi: 10.1021/nn101990a
– volume: 43
  start-page: 193
  year: 2006
  ident: 10.1016/j.jconrel.2021.08.048_bb0095
  article-title: Complement activation and protein adsorption by carbon nanotubes
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2005.02.006
– volume: 13
  start-page: 1055
  year: 1996
  ident: 10.1016/j.jconrel.2021.08.048_bb0115
  article-title: The role of serum complement on the organ distribution of intravenously administered poly (methyl methacrylate) nanoparticles: effects of pre-coating with plasma and with serum complement
  publication-title: Pharm. Res.
  doi: 10.1023/A:1016010808522
– volume: 348
  start-page: 2491
  year: 2003
  ident: 10.1016/j.jconrel.2021.08.048_bb0230
  article-title: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa022749
– volume: 1191
  start-page: 43
  year: 1994
  ident: 10.1016/j.jconrel.2021.08.048_bb0110
  article-title: Liposome-complement interactions in rat serum: implications for liposome survival studies
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(94)90231-3
– volume: 97
  start-page: 686
  year: 1999
  ident: 10.1016/j.jconrel.2021.08.048_bb0065
  article-title: Calcium-independent haemolysis via the lectin pathway of complement activation in the guinea-pig and other species*
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.1999.00810.x
– volume: 352
  start-page: 195
  year: 2010
  ident: 10.1016/j.jconrel.2021.08.048_bb0075
  article-title: Preparing serum for functional complement assays
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2009.11.003
– volume: 154
  start-page: 265
  year: 2018
  ident: 10.1016/j.jconrel.2021.08.048_bb0285
  article-title: Tanovea (R) for the treatment of lymphoma in dogs
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2018.05.010
– volume: 157
  start-page: 83
  year: 2020
  ident: 10.1016/j.jconrel.2021.08.048_bb0045
  article-title: Complement activation by drug carriers and particulate pharmaceuticals: principles, challenges and opportunities
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.04.012
– volume: 11
  start-page: 64
  year: 2014
  ident: 10.1016/j.jconrel.2021.08.048_bb0145
  article-title: Mechanisms of complement activation by dextran-coated superparamagnetic iron oxide (SPIO) nanoworms in mouse versus human serum
  publication-title: Particle Fibre Toxicol.
  doi: 10.1186/s12989-014-0064-2
– volume: 302
  start-page: 181
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0180
  article-title: Complement therapeutics meets nanomedicine: overcoming human complement activation and leukocyte uptake of nanomedicines with soluble domains of CD55
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.04.009
– volume: 13
  start-page: 675
  year: 1995
  ident: 10.1016/j.jconrel.2021.08.048_bb0265
  article-title: Surface properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(95)00023-A
– volume: 7
  start-page: 4289
  year: 2013
  ident: 10.1016/j.jconrel.2021.08.048_bb0270
  article-title: Direct recognition of superparamagnetic nanocrystals by macrophage scavenger receptor SR-AI
  publication-title: ACS Nano
  doi: 10.1021/nn400769e
– volume: 1
  start-page: 10
  year: 2016
  ident: 10.1016/j.jconrel.2021.08.048_bb0135
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10003
– volume: 9
  start-page: 2664
  year: 2018
  ident: 10.1016/j.jconrel.2021.08.048_bb0260
  article-title: Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02664
– volume: 108
  start-page: 8761
  year: 2011
  ident: 10.1016/j.jconrel.2021.08.048_bb0255
  article-title: Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1019338108
– volume: 5
  start-page: 106
  year: 2009
  ident: 10.1016/j.jconrel.2021.08.048_bb0130
  article-title: Interaction of colloidal gold nanoparticles with human blood: effects on particle size and analysis of plasma protein binding profiles
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2008.08.001
– volume: 8
  start-page: 236
  year: 2009
  ident: 10.1016/j.jconrel.2021.08.048_bb0030
  article-title: The role of anaphylatoxins C3a and C5a in regulating innate and adaptive immune responses
  publication-title: Inflamm. Allergy Drug Targets
  doi: 10.2174/187152809788681038
– volume: 35
  start-page: 3688
  year: 2014
  ident: 10.1016/j.jconrel.2021.08.048_bb0195
  article-title: Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.12.085
– volume: 20
  start-page: 2591
  year: 2006
  ident: 10.1016/j.jconrel.2021.08.048_bb0050
  article-title: Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production
  publication-title: FASEB J.
  doi: 10.1096/fj.06-6186fje
– volume: 33
  start-page: 513
  year: 2012
  ident: 10.1016/j.jconrel.2021.08.048_bb0250
  article-title: The complotype: dictating risk for inflammation and infection
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2012.06.001
– volume: 7
  start-page: 1108
  year: 2013
  ident: 10.1016/j.jconrel.2021.08.048_bb0100
  article-title: Single-walled carbon nanotube surface control of complement recognition and activation
  publication-title: ACS Nano
  doi: 10.1021/nn3055175
– volume: 13
  start-page: 1100
  year: 2018
  ident: 10.1016/j.jconrel.2021.08.048_bb0010
  article-title: Roadmap and strategy for overcoming infusion reactions to nanomedicines
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0273-1
– volume: 28
  start-page: 2747
  year: 2017
  ident: 10.1016/j.jconrel.2021.08.048_bb0140
  article-title: Variability of complement response toward preclinical and clinical Nanocarriers in the general population
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.7b00496
– volume: 23
  start-page: 1003
  year: 2012
  ident: 10.1016/j.jconrel.2021.08.048_bb0165
  article-title: Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains
  publication-title: Bioconjug. Chem.
  doi: 10.1021/bc200685a
– volume: 12
  start-page: 387
  year: 2017
  ident: 10.1016/j.jconrel.2021.08.048_bb0175
  article-title: Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.269
– volume: 124
  start-page: 915
  year: 2006
  ident: 10.1016/j.jconrel.2021.08.048_bb0020
  article-title: CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens
  publication-title: Cell
  doi: 10.1016/j.cell.2005.12.039
– volume: 63
  start-page: 1000
  year: 2011
  ident: 10.1016/j.jconrel.2021.08.048_bb0035
  article-title: Material properties in complement activation
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.06.002
– volume: 14
  start-page: 629
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0090
  article-title: On the issue of transparency and reproducibility in nanomedicine
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0496-9
– volume: 7
  start-page: 418
  year: 2016
  ident: 10.1016/j.jconrel.2021.08.048_bb0150
  article-title: Activation of human complement system by dextran-coated Iron oxide nanoparticles is not affected by dextran/Fe ratio, hydroxyl modifications, and crosslinking
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00418
– volume: 48
  start-page: 1282
  year: 2016
  ident: 10.1016/j.jconrel.2021.08.048_bb0060
  article-title: Studies of pig complement: measurement of pig CH50, ACH50, and components
  publication-title: Transplant. Proc.
  doi: 10.1016/j.transproceed.2015.10.066
– volume: 11
  start-page: 1355
  year: 2015
  ident: 10.1016/j.jconrel.2021.08.048_bb0210
  article-title: Complement C3 mediated targeting of liposomes to granulocytic myeloid derived suppressor cells
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2015.03.010
– volume: 7
  start-page: 447
  year: 2020
  ident: 10.1016/j.jconrel.2021.08.048_bb0280
  article-title: A pilot study on the safety of a novel antioxidant nanoparticle delivery system and its indirect effects on cytokine levels in four dogs
  publication-title: Front. Vet. Sci.
  doi: 10.3389/fvets.2020.00447
– volume: 92
  start-page: 47
  year: 2017
  ident: 10.1016/j.jconrel.2021.08.048_bb0235
  article-title: Current and potential imaging applications of ferumoxytol for magnetic resonance imaging
  publication-title: Kidney Int.
  doi: 10.1016/j.kint.2016.12.037
– volume: 23
  start-page: 901
  year: 2005
  ident: 10.1016/j.jconrel.2021.08.048_bb0025
  article-title: Macrophage receptors and immune recognition
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.23.021704.115816
– volume: 8
  start-page: 151
  year: 2017
  ident: 10.1016/j.jconrel.2021.08.048_bb0155
  article-title: In vitro and in vivo differences in murine third complement component (C3) Opsonization and macrophage/leukocyte responses to antibody-functionalized Iron oxide Nanoworms
  publication-title: Front. Immunol.
– volume: 62
  start-page: 104
  year: 2014
  ident: 10.1016/j.jconrel.2021.08.048_bb0070
  article-title: Inhibitor(s) of the classical complement pathway in mouse serum limit the utility of mice as experimental models of neuromyelitis optica
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2014.06.003
– volume: 190
  start-page: 2567
  year: 2013
  ident: 10.1016/j.jconrel.2021.08.048_bb0200
  article-title: Proteolysis of complement factors iC3b and C5 by the serine protease prostate-specific antigen in prostatic fluid and seminal plasma
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1200856
– volume: 216
  start-page: 106
  year: 2005
  ident: 10.1016/j.jconrel.2021.08.048_bb0240
  article-title: Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity
  publication-title: Toxicology
  doi: 10.1016/j.tox.2005.07.023
– volume: 13
  start-page: 973
  year: 2018
  ident: 10.1016/j.jconrel.2021.08.048_bb0040
  article-title: Translational gaps in animal models of human infusion reactions to nanomedicines
  publication-title: Nanomedicine (London)
  doi: 10.2217/nnm-2018-0064
– volume: 12
  start-page: 5834
  year: 2018
  ident: 10.1016/j.jconrel.2021.08.048_bb0085
  article-title: C1q-mediated complement activation and C3 opsonization trigger recognition of stealth Poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01806
– volume: 10
  start-page: 76
  year: 2013
  ident: 10.1016/j.jconrel.2021.08.048_bb0245
  article-title: Deficiency of complement component 5 ameliorates glaucoma in DBA/2J mice
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-10-76
– volume: 31
  start-page: 1844
  year: 2020
  ident: 10.1016/j.jconrel.2021.08.048_bb0205
  article-title: Complement inhibitors block complement C3 Opsonization and improve targeting selectivity of nanoparticles in blood
  publication-title: Bioconjug. Chem.
  doi: 10.1021/acs.bioconjchem.0c00342
– volume: 184
  start-page: 1931
  year: 2010
  ident: 10.1016/j.jconrel.2021.08.048_bb0125
  article-title: Curvature of synthetic and natural surfaces is an important target feature in classical pathway complement activation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902214
– volume: 14
  start-page: 260
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0015
  article-title: Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0344-3
– volume: 46
  start-page: 1620
  year: 2009
  ident: 10.1016/j.jconrel.2021.08.048_bb0055
  article-title: Pathway-specific complement activity in pigs evaluated with a human functional complement assay
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2009.02.028
– volume: 9
  start-page: 10758
  year: 2015
  ident: 10.1016/j.jconrel.2021.08.048_bb0160
  article-title: Modulatory role of surface coating of Superparamagnetic Iron oxide Nanoworms in complement Opsonization and leukocyte uptake
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b05061
– volume: 12
  start-page: 5149
  year: 2017
  ident: 10.1016/j.jconrel.2021.08.048_bb0215
  article-title: Complement C3-dependent uptake of targeted liposomes into human macrophages, B cells, dendritic cells, neutrophils, and MDSCs
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S138787
– volume: 33
  start-page: 297
  year: 1996
  ident: 10.1016/j.jconrel.2021.08.048_bb0080
  article-title: Mouse complement component C4 is devoid of classical pathway C5 convertase subunit activity
  publication-title: Mol. Immunol.
  doi: 10.1016/0161-5890(95)00135-2
– volume: 16
  start-page: 4274
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0170
  article-title: Feraheme (Ferumoxytol) is recognized by Proinflammatory and anti-inflammatory macrophages via scavenger receptor type AI/II
  publication-title: Mol. Pharm.
  doi: 10.1021/acs.molpharmaceut.9b00632
– volume: 11
  start-page: 785
  year: 2010
  ident: 10.1016/j.jconrel.2021.08.048_bb0005
  article-title: Complement: a key system for immune surveillance and homeostasis
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1923
– volume: 9
  start-page: 96
  year: 2019
  ident: 10.1016/j.jconrel.2021.08.048_bb0290
  article-title: Immunohistochemical characterization of Procaspase-3 overexpression as a Druggable target with PAC-1, a Procaspase-3 activator, in canine and human brain cancers
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00096
– volume: 13
  start-page: 661
  year: 1995
  ident: 10.1016/j.jconrel.2021.08.048_bb0225
  article-title: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/0730-725X(95)00024-B
– volume: 23
  start-page: 2813
  year: 2005
  ident: 10.1016/j.jconrel.2021.08.048_bb0220
  article-title: Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2005.07.166
SSID ssj0005347
Score 2.527383
Snippet The complement system plays a key role in opsonization and immune clearance of engineered nanoparticles. Understanding the efficiency, inter-subject, and...
SourceID pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 548
SubjectTerms Complement
dextran
Dogs
humans
iron oxide
iron oxides
lectins
magnetism
Mice
Nanomedicine
Rats
Serum
Species
Strains
Title Complement opsonization of nanoparticles: Differences between humans and preclinical species
URI https://dx.doi.org/10.1016/j.jconrel.2021.08.048
https://www.proquest.com/docview/2569615765
https://www.proquest.com/docview/2636508260
https://pubmed.ncbi.nlm.nih.gov/PMC8552414
Volume 338
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4995
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005347
  issn: 0168-3659
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFy_iE-ujRBBPbrvbPLrrrfigKoigggchpHlgi2xLWw9e_O3O7GZtC6LgcR-BkElmviHffEPIsZOxNyztRRC9dcSdaEXa-iyCreM490lsS5bvnew-8Ztn8bxEzqtaGKRVBt9f-vTCW4c3zbCazVG_33wAsJIyvBVMigpL1ARF9S_Y043POZoH42XJtEwj_HtWxdMcNAaQc44d3kC0SiVPbAP0c3yaw5-L7Mm5cHS1TtYCjqSdcqobZMnlm-TkvhSi_jilj7O6qskpPaH3M4nqjy3ygm6gJI7TIfJBQjUmHXqa6xwS6cCXO6MXoYMK-BMaSF20aOw3oTq3dASrF4orKVZtQuK9TZ6uLh_Pu1HosxAZwdk0yqS3GkVgwDDO6h4YT2sn23CADDNwZGWijXRx5gzkOy0ndGpl0tNCx5YLZ9gOWc6HudslVBhphGcQ8pwBKKjTdmZ94gEFWGk9YzXCq9VVJoiQYy-MN1WxzQYqGEWhURT2yORpjTS-h41KFY6_BqSV6dTCdlIQKf4aelSZWsFRw_sTnbvh-0QBOswAALal-OUfyRDzQpZYI-2FffI9cRT0XvyS918LYe9UCABUfO__k98nq_iEwTWJD8jydPzuDgE1TXv14ljUyUrn-rZ79wUr4h1L
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB9sfLAvYltL40fdQvHJM3fZj9z5Jn4Qqw1CI_ggLJv9oAnlEkx88L93JrdnDIhCX29vYNnZmfkN-5sZgJ9epcHyfJBg9DaJ8LKdGBeKBK-OFyJkqatYvj3VvRG_buXtCpzUtTBEq4y-v_Lpc28dv7TiabYmw2HrD4KVnNOrYDavsBQfYFVI9MkNWD2-uOz2FkwPLqqqaZUnJLAo5GmNDkeYdt57eoRoV808aRLQ6yHqBQRdJlC-iEjnG7AeoSQ7rnb7CVZ8-Rn2r6te1I8HrL8orZoesH12vehS_fgF7sgTVNxxNiZKSCzIZOPASlNiLh0pc0fsNA5RQZfCIq-LzWf7TZkpHZvgAcb6SkaFm5h7b8LN-Vn_pJvEUQuJlYLPkkIFZ6gPDOrGOzNA_RnjVQdtyHKLVqsyY5VPC28x5Wl7aXKnsoGRJnVCesu_QqMcl_4bMGmVlYFj1PMW0aDJO4ULWUAg4JQLnDdB1KerbexDTuMw_umacDbSUSmalKJpTKbIm3D4LDapGnG8J5DXqtNLN0pjsHhP9Eetao3WRk8opvTjh6lGgFggBuwo-cY_ihPsxUSxCZ2le_K8cerpvbxSDv_Oe3vnUiKmElv_v_k9WOv2f1_pq4ve5TZ8pBWKtVm6A43Z_YPfRRA1G3yPRvIEvcIf9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complement+opsonization+of+nanoparticles%3A+Differences+between+humans+and+preclinical+species&rft.jtitle=Journal+of+controlled+release&rft.au=Li%2C+Yue&rft.au=Wang%2C+Guankui&rft.au=Griffin%2C+Lynn&rft.au=Banda%2C+Nirmal+K&rft.date=2021-10-10&rft.issn=1873-4995&rft.eissn=1873-4995&rft.volume=338&rft.spage=548&rft_id=info:doi/10.1016%2Fj.jconrel.2021.08.048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon