Structured feature selection using coordinate descent optimization

Background Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative f...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 17; no. 1; p. 158
Main Authors Ghalwash, Mohamed F., Cao, Xi Hang, Stojkovic, Ivan, Obradovic, Zoran
Format Journal Article
LanguageEnglish
Published London BioMed Central 08.04.2016
BioMed Central Ltd
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-016-0954-4

Cover

Abstract Background Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm. Results In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments. Conclusion A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping.
AbstractList Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm. In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments. A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping.
Background Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm. Results In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments. Conclusion A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping.
Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm.BACKGROUNDExisting feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm.In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments.RESULTSIn order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments.A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping.CONCLUSIONA method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping.
ArticleNumber 158
Audience Academic
Author Ghalwash, Mohamed F.
Cao, Xi Hang
Stojkovic, Ivan
Obradovic, Zoran
Author_xml – sequence: 1
  givenname: Mohamed F.
  surname: Ghalwash
  fullname: Ghalwash, Mohamed F.
  email: mohamed.ghalwash@temple.edu
  organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, Mathematics Department, Faculty of Science, Ain Shams University
– sequence: 2
  givenname: Xi Hang
  surname: Cao
  fullname: Cao, Xi Hang
  organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University
– sequence: 3
  givenname: Ivan
  surname: Stojkovic
  fullname: Stojkovic, Ivan
  organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, Signals and Systems Department, School of Electrical Engineering, University of Belgrade
– sequence: 4
  givenname: Zoran
  surname: Obradovic
  fullname: Obradovic, Zoran
  organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27059502$$D View this record in MEDLINE/PubMed
BookMark eNqNkl1v1iAUx4mZcS_6AbwxTbzRi06gQMuNyVx8WbLExOk1ofS0srTwCFS3fXrp-qh7jFkMF5zA73845384RHvOO0DoKcHHhDTiVSS04bLERJRYclayB-iAsJqUlGC-dyfeR4cxXmJM6gbzR2if1phLjukBenORwmzSHKAretBLUEQYwSTrXTFH64bCeB8663SCooNowKXCb5Kd7I1eqMfoYa_HCE-2-xH68u7t59MP5fnH92enJ-el4axKZW2EkKzHLbSiwZTzXtCmw03byapvJSZAqOCEARaNkLUmVVVjagxo3Zmu4tURomve2W309Q89jmoT7KTDtSJYLYao1RCVDVGLIYpl0etVtJnbCbql-KD_CL22avfG2a9q8N8Va3I1TOYEL7YJgv82Q0xqstmDcdQO_BzVraVYVpJm9PmKDnoEZV3vc0az4OqEMUl5lVvL1PE_qLw6mKzJA-5tPt8RvNwRZCbBVRr0HKM6u_i0yz672-7vPn8NPANkBUzwMQbo_8vD-i-Nsel29LlyO96r3I4s5lfcAEFd-jm4_EvuEf0EEEbdPg
CitedBy_id crossref_primary_10_1002_minf_201600099
crossref_primary_10_1186_s12859_016_1423_9
crossref_primary_10_1007_s10489_017_0901_8
crossref_primary_10_1186_s12920_016_0233_2
crossref_primary_10_3389_fninf_2019_00056
crossref_primary_10_1016_j_eswa_2019_112878
crossref_primary_10_1186_s12859_021_04096_6
crossref_primary_10_1016_j_csda_2018_08_015
crossref_primary_10_1186_s12859_017_1578_z
crossref_primary_10_1080_00032719_2019_1568447
crossref_primary_10_1109_TCBB_2016_2623605
crossref_primary_10_1186_s12859_018_2023_7
crossref_primary_10_1186_s12859_017_1810_x
Cites_doi 10.1287/inte.1120.0633
10.1093/bioinformatics/btm486
10.1186/gb-2004-5-11-r94
10.1162/089976604773135104
10.1017/CBO9780511804441
10.1016/j.patcog.2006.07.010
10.4161/bioa.20975
10.1007/s10107-007-0170-0
10.1137/0806023
10.1111/j.1467-9868.2007.00627.x
10.1109/TKDE.2004.68
10.1073/pnas.0308531101
10.1504/IJBRA.2009.026423
10.1093/nar/gkn923
10.1002/cpa.20042
10.1186/1471-2105-13-S10-S15
10.1073/pnas.96.12.6745
10.1093/nar/gkt439
10.1186/1753-6561-7-S7-S5
10.1007/s13042-011-0061-9
10.1093/nar/gki475
10.1109/TPAMI.2005.159
10.1162/08997660360581958
10.1038/nprot.2008.211
10.1609/aaai.v25i1.7902
10.1093/bioinformatics/btl673
10.1016/j.ijmedinf.2005.05.002
10.1023/A:1017501703105
10.18637/jss.v033.i01
10.1056/NEJMoa030847
10.1038/nm0102-68
10.1093/bioinformatics/btm344
10.1186/1471-2105-14-101
10.1093/bioinformatics/btg179
10.1109/TCBB.2011.151
10.1016/j.datak.2008.04.004
10.1186/1471-2105-13-195
10.1007/s10589-008-9215-4
10.1109/TSMCC.2012.2209416
10.1023/A:1012487302797
ContentType Journal Article
Copyright Ghalwash et al. 2016
COPYRIGHT 2016 BioMed Central Ltd.
Copyright_xml – notice: Ghalwash et al. 2016
– notice: COPYRIGHT 2016 BioMed Central Ltd.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ISR
7X8
5PM
ADTOC
UNPAY
DOI 10.1186/s12859-016-0954-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Science
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
ExternalDocumentID 10.1186/s12859-016-0954-4
PMC4826549
A449253068
27059502
10_1186_s12859_016_0954_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency (US)
  grantid: DARPAN66001-11-1-4183
  funderid: http://dx.doi.org/10.13039/100000185
– fundername: ;
  grantid: DARPAN66001-11-1-4183
GroupedDBID ---
0R~
23N
2WC
4.4
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
123
2VQ
ADTOC
AFFHD
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c543t-7c6694f0beb680255f628d08bd93fb901e126514e068697a133702cceaadcd353
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Oct 29 12:09:12 EDT 2025
Tue Sep 30 16:40:53 EDT 2025
Thu Oct 02 10:59:38 EDT 2025
Mon Oct 20 22:11:21 EDT 2025
Mon Oct 20 16:19:44 EDT 2025
Thu Oct 16 14:20:41 EDT 2025
Thu Apr 03 07:10:06 EDT 2025
Wed Oct 01 04:15:27 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Sat Sep 06 07:21:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Prior knowledge
Structured feature selection
Block coordinate gradient descent
Gene expression
Microarray analysis
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c543t-7c6694f0beb680255f628d08bd93fb901e126514e068697a133702cceaadcd353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-016-0954-4
PMID 27059502
PQID 1780509392
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1186_s12859_016_0954_4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826549
proquest_miscellaneous_1780509392
gale_infotracmisc_A449253068
gale_infotracacademiconefile_A449253068
gale_incontextgauss_ISR_A449253068
pubmed_primary_27059502
crossref_primary_10_1186_s12859_016_0954_4
crossref_citationtrail_10_1186_s12859_016_0954_4
springer_journals_10_1186_s12859_016_0954_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160408
2016-04-08
2016-Apr-08
PublicationDateYYYYMMDD 2016-04-08
PublicationDate_xml – month: 4
  year: 2016
  text: 20160408
  day: 8
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle BMC series – open, inclusive and trusted
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2016
Publisher BioMed Central
BioMed Central Ltd
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
References E Tian (954_CR49) 2003; 349
Y Saeys (954_CR4) 2007; 23
I Guyon (954_CR9) 2002; 46
J Wang (954_CR47) 2013; 41
RE Fan (954_CR42) 2008; 9
DW Huang (954_CR44) 2009; 37
MA Shipp (954_CR50) 2002; 8
954_CR41
MF Ghalwash (954_CR7) 2013
A Statnikov (954_CR48) 2005; 74
J Zhou (954_CR15) 2013
JP Brunet (954_CR16) 2004; 101
P Tseng (954_CR31) 2009; 117
S Nagi (954_CR40) 2011
TF Coleman (954_CR27) 1996; 6
K Kira (954_CR34) 1992
S Mitra (954_CR14) 2012; 42
J Friedman (954_CR28) 2010; 33
A Sharma (954_CR12) 2012; 3
P Tseng (954_CR30) 2001; 109
S Swift (954_CR13) 2004; 5
R Collobert (954_CR23) 2006
MJ Fry (954_CR5) 2012; 42
S Boyd (954_CR22) 2004
L Rosasco (954_CR26) 2004; 16
954_CR36
P Tseng (954_CR32) 2010; 47
954_CR35
A Sharma (954_CR11) 2008; 66
GR Lanckriet (954_CR25) 2009
954_CR6
I Daubechies (954_CR29) 2004; 57
L Meier (954_CR33) 2008; 70
M Marczyk (954_CR2) 2013; 14
H Mamitsuka (954_CR10) 2006; 39
WY Adams (954_CR21) 2012
954_CR24
G Yi (954_CR37) 2007; 23
R Loganantharaj (954_CR38) 2009; 5
B Zhang (954_CR46) 2005; 33
M Dramiński (954_CR1) 2008; 24
A Sharma (954_CR20) 2012; 9
D Jiang (954_CR39) 2004; 16
U Alon (954_CR51) 1999; 96
Y Su (954_CR3) 2003; 19
H Peng (954_CR17) 2005; 27
DW Huang (954_CR43) 2008; 4
M Desouza (954_CR45) 2012; 2
954_CR19
954_CR18
M Holec (954_CR8) 2012; 13
18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7
14695408 - N Engl J Med. 2003 Dec 25;349(26):2483-94
15967710 - Int J Med Inform. 2005 Aug;74(7-8):491-503
23703215 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83
19525204 - Int J Bioinform Res Appl. 2009;5(3):329-48
23510016 - BMC Bioinformatics. 2013;14:101
22759420 - BMC Bioinformatics. 2012;13 Suppl 10:S15
10359783 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6745-50
19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13
12689392 - Neural Comput. 2003 Apr;15(4):915-36
15980575 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W741-8
17237058 - Bioinformatics. 2007 May 1;23(9):1053-60
15535870 - Genome Biol. 2004;5(11):R94
15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9
22084149 - IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):754-64
20808728 - J Stat Softw. 2010;33(1):1-22
15070510 - Neural Comput. 2004 May;16(5):1063-76
17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17
11786909 - Nat Med. 2002 Jan;8(1):68-74
22880146 - Bioarchitecture. 2012 May 1;2(3):75-87
24564944 - BMC Proc. 2013 Dec 20;7(Suppl 7):S5
16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
22873729 - BMC Bioinformatics. 2012;13:195
12912841 - Bioinformatics. 2003 Aug 12;19(12):1578-9
19131956 - Nat Protoc. 2009;4(1):44-57
References_xml – volume: 42
  start-page: 105
  issue: 2
  year: 2012
  ident: 954_CR5
  publication-title: Interfaces
  doi: 10.1287/inte.1120.0633
– volume: 24
  start-page: 110
  issue: 1
  year: 2008
  ident: 954_CR1
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm486
– volume: 5
  start-page: 94
  issue: 11
  year: 2004
  ident: 954_CR13
  publication-title: Genome Biol
  doi: 10.1186/gb-2004-5-11-r94
– volume: 16
  start-page: 1063
  issue: 5
  year: 2004
  ident: 954_CR26
  publication-title: Neural Comput
  doi: 10.1162/089976604773135104
– volume-title: Convex Optimization
  year: 2004
  ident: 954_CR22
  doi: 10.1017/CBO9780511804441
– volume: 39
  start-page: 2393
  issue: 12
  year: 2006
  ident: 954_CR10
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2006.07.010
– volume: 2
  start-page: 75
  issue: 3
  year: 2012
  ident: 954_CR45
  publication-title: BioArchitecture
  doi: 10.4161/bioa.20975
– volume: 117
  start-page: 387
  issue: 1-2
  year: 2009
  ident: 954_CR31
  publication-title: Math Program
  doi: 10.1007/s10107-007-0170-0
– volume: 6
  start-page: 418
  year: 1996
  ident: 954_CR27
  publication-title: SIAM J Optim
  doi: 10.1137/0806023
– volume: 70
  start-page: 53
  issue: 1
  year: 2008
  ident: 954_CR33
  publication-title: J R Stat Soc Ser B Stat Methodol.
  doi: 10.1111/j.1467-9868.2007.00627.x
– volume: 16
  start-page: 1370
  issue: 11
  year: 2004
  ident: 954_CR39
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2004.68
– volume: 101
  start-page: 4164
  issue: 12
  year: 2004
  ident: 954_CR16
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0308531101
– volume: 5
  start-page: 329
  issue: 3
  year: 2009
  ident: 954_CR38
  publication-title: Int J Bioinforma Res Appl
  doi: 10.1504/IJBRA.2009.026423
– volume: 37
  start-page: 1
  issue: 1
  year: 2009
  ident: 954_CR44
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn923
– ident: 954_CR35
– volume-title: Proceedings of the 29th International Conference on Machine Learning (ICML-12)
  year: 2012
  ident: 954_CR21
– volume-title: IEEE 13th International Conference on Data Mining (ICDM)
  year: 2013
  ident: 954_CR7
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: 954_CR29
  publication-title: Commun Pur Appl Math
  doi: 10.1002/cpa.20042
– volume: 13
  start-page: 15
  issue: Suppl 10
  year: 2012
  ident: 954_CR8
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-13-S10-S15
– volume: 96
  start-page: 6745
  issue: 12
  year: 1999
  ident: 954_CR51
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.96.12.6745
– volume: 41
  start-page: 77
  issue: W1
  year: 2013
  ident: 954_CR47
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt439
– ident: 954_CR36
– ident: 954_CR19
  doi: 10.1186/1753-6561-7-S7-S5
– volume: 3
  start-page: 269
  issue: 4
  year: 2012
  ident: 954_CR12
  publication-title: Intl J Mach Learn Cybernet
  doi: 10.1007/s13042-011-0061-9
– volume: 33
  start-page: 741
  issue: suppl 2
  year: 2005
  ident: 954_CR46
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki475
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 954_CR17
  publication-title: Pattern Anal Mach Intell IEEE Trans
  doi: 10.1109/TPAMI.2005.159
– ident: 954_CR24
  doi: 10.1162/08997660360581958
– volume: 4
  start-page: 44
  issue: 1
  year: 2008
  ident: 954_CR43
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2008.211
– ident: 954_CR18
  doi: 10.1609/aaai.v25i1.7902
– volume: 23
  start-page: 1053
  issue: 9
  year: 2007
  ident: 954_CR37
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl673
– volume: 74
  start-page: 491
  issue: 7
  year: 2005
  ident: 954_CR48
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2005.05.002
– volume: 109
  start-page: 475
  issue: 3
  year: 2001
  ident: 954_CR30
  publication-title: J Optim Theory Appl
  doi: 10.1023/A:1017501703105
– ident: 954_CR41
– volume: 33
  start-page: 1
  issue: 1
  year: 2010
  ident: 954_CR28
  publication-title: J Stat Softw
  doi: 10.18637/jss.v033.i01
– volume: 349
  start-page: 2483
  issue: 26
  year: 2003
  ident: 954_CR49
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa030847
– volume: 8
  start-page: 68
  issue: 1
  year: 2002
  ident: 954_CR50
  publication-title: Nat Med
  doi: 10.1038/nm0102-68
– volume-title: 2011 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS)
  year: 2011
  ident: 954_CR40
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 954_CR4
  publication-title: bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume-title: Advances in Neural Information Processing Systems
  year: 2009
  ident: 954_CR25
– volume: 14
  start-page: 101
  issue: 1
  year: 2013
  ident: 954_CR2
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-101
– volume: 19
  start-page: 1578
  issue: 12
  year: 2003
  ident: 954_CR3
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg179
– volume: 9
  start-page: 754
  issue: 3
  year: 2012
  ident: 954_CR20
  publication-title: IEEE/ACM Trans Comput Biol Bioinformatics
  doi: 10.1109/TCBB.2011.151
– volume: 66
  start-page: 338
  issue: 2
  year: 2008
  ident: 954_CR11
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2008.04.004
– volume: 9
  start-page: 1871
  year: 2008
  ident: 954_CR42
  publication-title: J Mach Learn Res
– ident: 954_CR6
  doi: 10.1186/1471-2105-13-195
– volume-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2013
  ident: 954_CR15
– volume: 47
  start-page: 179
  issue: 2
  year: 2010
  ident: 954_CR32
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-008-9215-4
– volume-title: Proceedings of the Ninth International Workshop on Machine Learning
  year: 1992
  ident: 954_CR34
– volume: 42
  start-page: 1590
  issue: 6
  year: 2012
  ident: 954_CR14
  publication-title: Syst Man Cybernet Part C Appl Rev IEEE Trans
  doi: 10.1109/TSMCC.2012.2209416
– volume-title: International Conference of Machine Learning
  year: 2006
  ident: 954_CR23
– volume: 46
  start-page: 389
  issue: 1-3
  year: 2002
  ident: 954_CR9
  publication-title: Mach Learn
  doi: 10.1023/A:1012487302797
– reference: 22880146 - Bioarchitecture. 2012 May 1;2(3):75-87
– reference: 18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7
– reference: 24564944 - BMC Proc. 2013 Dec 20;7(Suppl 7):S5
– reference: 15980575 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W741-8
– reference: 15967710 - Int J Med Inform. 2005 Aug;74(7-8):491-503
– reference: 23703215 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83
– reference: 19131956 - Nat Protoc. 2009;4(1):44-57
– reference: 10359783 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6745-50
– reference: 12912841 - Bioinformatics. 2003 Aug 12;19(12):1578-9
– reference: 15535870 - Genome Biol. 2004;5(11):R94
– reference: 23510016 - BMC Bioinformatics. 2013;14:101
– reference: 17237058 - Bioinformatics. 2007 May 1;23(9):1053-60
– reference: 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9
– reference: 22084149 - IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):754-64
– reference: 11786909 - Nat Med. 2002 Jan;8(1):68-74
– reference: 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13
– reference: 12689392 - Neural Comput. 2003 Apr;15(4):915-36
– reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38
– reference: 15070510 - Neural Comput. 2004 May;16(5):1063-76
– reference: 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17
– reference: 19525204 - Int J Bioinform Res Appl. 2009;5(3):329-48
– reference: 22873729 - BMC Bioinformatics. 2012;13:195
– reference: 14695408 - N Engl J Med. 2003 Dec 25;349(26):2483-94
– reference: 22759420 - BMC Bioinformatics. 2012;13 Suppl 10:S15
– reference: 20808728 - J Stat Softw. 2010;33(1):1-22
SSID ssj0017805
Score 2.3313994
Snippet Background Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study,...
Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms Algorithms
Analysis
Bioinformatics
Biomedical and Life Sciences
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Computer simulation
Computer-generated environments
Corneal Neovascularization - diagnosis
Corneal Neovascularization - genetics
Databases, Genetic
DNA microarrays
Gene expression
Gene Expression Regulation
Gene Ontology
Genetic Variation
Hemoglobinuria - diagnosis
Hemoglobinuria - genetics
HIV Infections - diagnosis
HIV Infections - genetics
Humans
Knowledge-based analysis
Life Sciences
Melanoma - diagnosis
Melanoma - genetics
Methodology
Methodology Article
Microarray Analysis
Microarrays
Models, Theoretical
Multiple Myeloma - diagnosis
Multiple Myeloma - genetics
Neuroendocrine Tumors - diagnosis
Neuroendocrine Tumors - genetics
Nevus - diagnosis
Nevus - genetics
Stress, Physiological - genetics
Virus Diseases - diagnosis
Virus Diseases - genetics
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB60IuqDeHe1yiqCYAnm7Gazm8daLFXQB2uhbyGbSy0cd4vbg_TfO5PNWc4WqficyV4mk8x8zMwXgDfKKVuhsTBXLCQTqggMcUjLaopNlBeVMgQUv3yVB0fi83F1nMiiqRdmM3-_aOT7YUEMawh4EfeqSjBxHW6gj5IxLyv3poQBUfOnpOVfp83czuXDd8P7XK6MnNKjd-DWqjszF7_Ncrnhgfbvwd0UOua741rfh2u-ewA3x8skLx7Ch8NIBbv65V0efOTrzId4yw2qPqf69pPc9og1TzuML3M38jjlPZ4ZP1Mz5iM42v_4fe-ApRsSmK1Eec5qK6USgbe-lQ2hgyCLxvGmdaoMLbp6j6rCkMhTI4iqDQLSmhfWemOcdWVVPoatru_8U8ht60RpHEZjjRTcBlMGHiprQmEsIlaZAV8rUNtEH063WCx1hBGN1KPONZWMkc61yODdNOVs5M64Svg1rYomToqOil5OzGoY9KfDb3pXEIMiYpsmg7dJKPT4cmtSDwH-AtFYzSS3Z5K4aexs-NV68TUNUaVZ5_vVoKMlcYVhYwZPRmOYPr6oMRitOI7UMzOZBIirez7Snf6InN0CYRxC8Qx21gal02ExXKWTncnm_q3BZ__17Odwu4jbQzDebMMWmqh_gfHVefsy7qw_drMbEQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9RAFB3qFhEf_NZGqkQRBEu22WRmknlcxVIFi1oX6tMwn3XpNlk2G6T-eu8kk7BZpCL4PDckmZyZOYfcey5Cr5hmigBYIp1MaIRZYiPQITLKHDdhBhMmnFD8dEKPZ_jjGTnbQV-6Whh5qeS89Kahzqh4vFmGvmirHFwXBbM6XGrbLvqcHlYT58QGwhj0MSM4wjfQLiVAz0dod3byefq9qTLKJhFIHOL_bv7xusH5tL1LbxxT2ymU_X_U2-hWXSzF1U-xWGwcVUd30ap7yTZD5WJcr-VY_dryf_yvs3AP3fHENpy2SLyPdkzxAN1sW11ePURvTxuj2npldGhN4yYaVk0PHgBG6LLvz0NVghKeF8B-Q926TIUl7GiXvlT0EZodvf_27jjy_RsiRXC6jjJFKcM2lkbS3GkXS5Ncx7nULLUSiIiZJBQIm3FlKiwTIJezOFHKCKGVTkn6GI2KsjB7KFRS41Ro4Io5xbGyIrWxJUrYRCjQ0zRAcffVuPLm5q7HxoI3IienvJ0a7hLa3NRwHKA3_SXL1tnjuuCXDgrcOWYULiXnXNRVxT-cfuVT7PwdQXnlAXrtg2wJN1fCVzjAKziTrUHk_iASlrQaDL_oEMfdkMuDK0xZV3ziWlDEDEhtgJ60COwfPsmAKpMYRrIBNvsA5yQ-HCnmPxpHcQwik2AWoIMOxdxvZdV1c3LQA_3vM_j0n6L30QhQaZ4B4VvL534J_wbhvVFR
  priority: 102
  providerName: Unpaywall
Title Structured feature selection using coordinate descent optimization
URI https://link.springer.com/article/10.1186/s12859-016-0954-4
https://www.ncbi.nlm.nih.gov/pubmed/27059502
https://www.proquest.com/docview/1780509392
https://pubmed.ncbi.nlm.nih.gov/PMC4826549
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-016-0954-4
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_6gagP4rfRekQRBEs0l2w22QeR9OhZD3qUngfn07LZbGrhTGrTQ--_dyZfNqXWlwSyE7KZncnOLzv7G4A3IhU6QGNxUm_IHSa8zEEckjghxSbCsEAoAoqHU34wZ5NFsNiAtrxVo8DyWmhH9aTm58v3v3-uP6HDf6wcPuIfyiGxsCEoRmwsAuawTdjGiUpQJYdD9ndRgej7m4XNa28jYuAQw42g-cfSzlJXv9WXJquriZTdaupduL3Kz9T6l1ouL01Y4_twr4k07bg2jQewYfKHcKuuPbl-BHuzijl2dW5SOzMVvaddVkVxcKRsSoc_sXWB0PQ0x3DUTmvaJ7vAT8yPZu_mY5iP97-ODpymoIKjA-ZfOKHmXLDMTUzCIwITGfei1I2SVPhZgpGBGXocIyhD-0ZEqBC_hq6ntVEq1akf-E9gKy9y8wxsnaTMVykGbxFnrs6Un7lZoFXmKY0Al1vgtgqUumEbp6IXS1mhjojLWv2SMsxI_ZJZ8K675aym2rhJ-DWNiiQKi5xyZE7Uqizll9mxjBkRLiIUiix42whlBT5cq2bLAb4CsV71JHd6kuhjutf8qh18SU2UmJabYlXKyqhcgVGmBU9rY-g63xqTBWHPTDoBovbut-Sn3yuKb4aoD5G7BbutQcnWNW7SyW5nc__X4PN_9vcF3PEqr2COG-3AFpqjeYmh10UygM1wEeIxGn8ewHYcT2YTPO_tT4-O8eqIjwbVT41B5XjYMp8exd_-AMKzLc8
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD5oi9Q-iHejVaMIgiWYTSaTzONWLNu17YPbQt-GyVxqYU2K6VL67z0nmYSmlIrPcyaXM-f2MWe-AfgkjNAZGktkkgmPmEhchDikjHKqTYRlmVAEFA8O-eyYzU-yE3-Ou-m73fstyTZSt25d8K_NhLjWEPoiAhYZi9h9WKceK_TG9el0vpgPmwdE0-83MG-dOEpBNwPxtUx0s0ty2CrdhI1Vda6uLtVyeS0b7T6GR76MDKfduj-Be7Z6Cg-6iyWvnsHOoqWFXf2xJnS25e4Mm_bGG1yGkHrdT0NdI-48q7DWDE3H6RTWGD9--4OZz-F49_vRt1nkb0uIdMbSiyjXnAvm4tKWvCCk4HhSmLgojUhdiWnfThKO5ZGlQyEiVwhO8zjR2ipltEmz9AWsVXVlX0GoS8NSZbAyKziLtVOpi12mlUuURvTKA4h7BUrtqcTpRoulbCFFwWWnc0ntY6RzyQL4Mkw573g07hL-SKsiiZ-iogaYU7VqGrm3-CmnjNgUEecUAXz2Qq7Gl2vlzxPgLxCl1UhyaySJDqRHwx_6xZc0RF1nla1XjWwtKRZYQgbwsjOG4eOTHAvTLMaRfGQmgwDxdo9HqrNfLX83Q0iHsDyA7d6gpA8czV062R5s7t8afP1fz34PG7Ojg325v3f44w08TFpXYVFcbMEamqt9i3XXRfnO-9lf6bUjag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEUcfKm5CCwSEhNTKajZxnPixXVi1HBWiVOqb5fgolZZkRXaF-u-ZyaWmQkU8e5xjPLa_Tx5_A_BWWmlSDBZm44lgXMaeIQ8pWEbYRDqeSk1E8cuRODjhH0_T067Oad1nu_dHku2dBlJpKpe7C-vbKZ6L3XpCumtIg5ENy5QzfhNucdzcqITBVEyHYwQS7O-OMv_abbQZXV2SL-1JV_Mlh0PTdbi7Khf64reezy_tS7P7sNEBynCvjYAHcMOVD-F2W2Ly4hHsHzcCsatfzobeNSqeYd3UvsEBCSnr_Sw0FTLQ8xJRZ2hbdaewwpXkZ3dF8zGczD58nx6wrm4CMylPliwzQkjuo8IVIifO4EWc2ygvrEx8gQDATWKBQMnR9RCZaaSpWRQb47S2xiZp8gTWyqp0zyA0heWJtojRcsEj43XiI58a7WNtkMeKAKLegcp0ouJU22KuGnKRC9X6XFEiGflc8QC2hy6LVlHjOuM3NCqKlCpKSoU506u6VofH39QeJ11FZDx5AO86I1_hy43ubhbgL5C41chya2SJU8mMml_3g6-oifLPSletatVEUiQRTAbwtA2G4ePjDCFqGmFLNgqTwYAUvMct5fmPRsmbI7lDgh7ATh9QqltC6ut8sjPE3L89-Py_nv0K7nx9P1OfD48-bcK9uJkpnEX5FqxhtLoXCMCWxctmkv0BWi0mRw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9RAFB3qFhEf_NZGqkQRBEu22WRmknlcxVIFi1oX6tMwn3XpNlk2G6T-eu8kk7BZpCL4PDckmZyZOYfcey5Cr5hmigBYIp1MaIRZYiPQITLKHDdhBhMmnFD8dEKPZ_jjGTnbQV-6Whh5qeS89Kahzqh4vFmGvmirHFwXBbM6XGrbLvqcHlYT58QGwhj0MSM4wjfQLiVAz0dod3byefq9qTLKJhFIHOL_bv7xusH5tL1LbxxT2ymU_X_U2-hWXSzF1U-xWGwcVUd30ap7yTZD5WJcr-VY_dryf_yvs3AP3fHENpy2SLyPdkzxAN1sW11ePURvTxuj2npldGhN4yYaVk0PHgBG6LLvz0NVghKeF8B-Q926TIUl7GiXvlT0EZodvf_27jjy_RsiRXC6jjJFKcM2lkbS3GkXS5Ncx7nULLUSiIiZJBQIm3FlKiwTIJezOFHKCKGVTkn6GI2KsjB7KFRS41Ro4Io5xbGyIrWxJUrYRCjQ0zRAcffVuPLm5q7HxoI3IienvJ0a7hLa3NRwHKA3_SXL1tnjuuCXDgrcOWYULiXnXNRVxT-cfuVT7PwdQXnlAXrtg2wJN1fCVzjAKziTrUHk_iASlrQaDL_oEMfdkMuDK0xZV3ziWlDEDEhtgJ60COwfPsmAKpMYRrIBNvsA5yQ-HCnmPxpHcQwik2AWoIMOxdxvZdV1c3LQA_3vM_j0n6L30QhQaZ4B4VvL534J_wbhvVFR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+feature+selection+using+coordinate+descent+optimization&rft.jtitle=BMC+bioinformatics&rft.au=Ghalwash%2C+Mohamed+F&rft.au=Cao%2C+Xi+Hang&rft.au=Stojkovic%2C+Ivan&rft.au=Obradovic%2C+Zoran&rft.date=2016-04-08&rft.eissn=1471-2105&rft.volume=17&rft.spage=158&rft_id=info:doi/10.1186%2Fs12859-016-0954-4&rft_id=info%3Apmid%2F27059502&rft.externalDocID=27059502
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon