Structured feature selection using coordinate descent optimization
Background Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative f...
Saved in:
| Published in | BMC bioinformatics Vol. 17; no. 1; p. 158 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
08.04.2016
BioMed Central Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-016-0954-4 |
Cover
| Abstract | Background
Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one
representative
feature from each group such that the selected features are
jointly
discriminating the classes.
The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm.
Results
In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments.
Conclusion
A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping. |
|---|---|
| AbstractList | Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm.
In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments.
A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping. Background Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm. Results In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments. Conclusion A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping. Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm.BACKGROUNDExisting feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the features are structured based on prior knowledge into groups. The problem addressed in this article is how to select one representative feature from each group such that the selected features are jointly discriminating the classes. The problem is formulated as a binary constrained optimization and the combinatorial optimization is relaxed as a convex-concave problem, which is then transformed into a sequence of convex optimization problems so that the problem can be solved by any standard optimization algorithm. Moreover, a block coordinate gradient descent optimization algorithm is proposed for high dimensional feature selection, which in our experiments was four times faster than using a standard optimization algorithm.In order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments.RESULTSIn order to test the effectiveness of the proposed formulation, we used microarray analysis as a case study, where genes with similar expressions or similar molecular functions were grouped together. In particular, the proposed block coordinate gradient descent feature selection method is evaluated on five benchmark microarray gene expression datasets and evidence is provided that the proposed method gives more accurate results than the state-of-the-art gene selection methods. Out of 25 experiments, the proposed method achieved the highest average AUC in 13 experiments while the other methods achieved higher average AUC in no more than 6 experiments.A method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping.CONCLUSIONA method is developed to select a feature from each group. When the features are grouped based on similarity in gene expression, we showed that the proposed algorithm is more accurate than state-of-the-art gene selection methods that are particularly developed to select highly discriminative and less redundant genes. In addition, the proposed method can exploit any grouping structure among features, while alternative methods are restricted to using similarity based grouping. |
| ArticleNumber | 158 |
| Audience | Academic |
| Author | Ghalwash, Mohamed F. Cao, Xi Hang Stojkovic, Ivan Obradovic, Zoran |
| Author_xml | – sequence: 1 givenname: Mohamed F. surname: Ghalwash fullname: Ghalwash, Mohamed F. email: mohamed.ghalwash@temple.edu organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, Mathematics Department, Faculty of Science, Ain Shams University – sequence: 2 givenname: Xi Hang surname: Cao fullname: Cao, Xi Hang organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University – sequence: 3 givenname: Ivan surname: Stojkovic fullname: Stojkovic, Ivan organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University, Signals and Systems Department, School of Electrical Engineering, University of Belgrade – sequence: 4 givenname: Zoran surname: Obradovic fullname: Obradovic, Zoran organization: Center for Data Analytics and Biomedical Informatics, College of Science and Technology, Temple University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27059502$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkl1v1iAUx4mZcS_6AbwxTbzRi06gQMuNyVx8WbLExOk1ofS0srTwCFS3fXrp-qh7jFkMF5zA73845384RHvOO0DoKcHHhDTiVSS04bLERJRYclayB-iAsJqUlGC-dyfeR4cxXmJM6gbzR2if1phLjukBenORwmzSHKAretBLUEQYwSTrXTFH64bCeB8663SCooNowKXCb5Kd7I1eqMfoYa_HCE-2-xH68u7t59MP5fnH92enJ-el4axKZW2EkKzHLbSiwZTzXtCmw03byapvJSZAqOCEARaNkLUmVVVjagxo3Zmu4tURomve2W309Q89jmoT7KTDtSJYLYao1RCVDVGLIYpl0etVtJnbCbql-KD_CL22avfG2a9q8N8Va3I1TOYEL7YJgv82Q0xqstmDcdQO_BzVraVYVpJm9PmKDnoEZV3vc0az4OqEMUl5lVvL1PE_qLw6mKzJA-5tPt8RvNwRZCbBVRr0HKM6u_i0yz672-7vPn8NPANkBUzwMQbo_8vD-i-Nsel29LlyO96r3I4s5lfcAEFd-jm4_EvuEf0EEEbdPg |
| CitedBy_id | crossref_primary_10_1002_minf_201600099 crossref_primary_10_1186_s12859_016_1423_9 crossref_primary_10_1007_s10489_017_0901_8 crossref_primary_10_1186_s12920_016_0233_2 crossref_primary_10_3389_fninf_2019_00056 crossref_primary_10_1016_j_eswa_2019_112878 crossref_primary_10_1186_s12859_021_04096_6 crossref_primary_10_1016_j_csda_2018_08_015 crossref_primary_10_1186_s12859_017_1578_z crossref_primary_10_1080_00032719_2019_1568447 crossref_primary_10_1109_TCBB_2016_2623605 crossref_primary_10_1186_s12859_018_2023_7 crossref_primary_10_1186_s12859_017_1810_x |
| Cites_doi | 10.1287/inte.1120.0633 10.1093/bioinformatics/btm486 10.1186/gb-2004-5-11-r94 10.1162/089976604773135104 10.1017/CBO9780511804441 10.1016/j.patcog.2006.07.010 10.4161/bioa.20975 10.1007/s10107-007-0170-0 10.1137/0806023 10.1111/j.1467-9868.2007.00627.x 10.1109/TKDE.2004.68 10.1073/pnas.0308531101 10.1504/IJBRA.2009.026423 10.1093/nar/gkn923 10.1002/cpa.20042 10.1186/1471-2105-13-S10-S15 10.1073/pnas.96.12.6745 10.1093/nar/gkt439 10.1186/1753-6561-7-S7-S5 10.1007/s13042-011-0061-9 10.1093/nar/gki475 10.1109/TPAMI.2005.159 10.1162/08997660360581958 10.1038/nprot.2008.211 10.1609/aaai.v25i1.7902 10.1093/bioinformatics/btl673 10.1016/j.ijmedinf.2005.05.002 10.1023/A:1017501703105 10.18637/jss.v033.i01 10.1056/NEJMoa030847 10.1038/nm0102-68 10.1093/bioinformatics/btm344 10.1186/1471-2105-14-101 10.1093/bioinformatics/btg179 10.1109/TCBB.2011.151 10.1016/j.datak.2008.04.004 10.1186/1471-2105-13-195 10.1007/s10589-008-9215-4 10.1109/TSMCC.2012.2209416 10.1023/A:1012487302797 |
| ContentType | Journal Article |
| Copyright | Ghalwash et al. 2016 COPYRIGHT 2016 BioMed Central Ltd. |
| Copyright_xml | – notice: Ghalwash et al. 2016 – notice: COPYRIGHT 2016 BioMed Central Ltd. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 5PM ADTOC UNPAY |
| DOI | 10.1186/s12859-016-0954-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| ExternalDocumentID | 10.1186/s12859-016-0954-4 PMC4826549 A449253068 27059502 10_1186_s12859_016_0954_4 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency (US) grantid: DARPAN66001-11-1-4183 funderid: http://dx.doi.org/10.13039/100000185 – fundername: ; grantid: DARPAN66001-11-1-4183 |
| GroupedDBID | --- 0R~ 23N 2WC 4.4 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 7X8 5PM 123 2VQ ADTOC AFFHD C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c543t-7c6694f0beb680255f628d08bd93fb901e126514e068697a133702cceaadcd353 |
| IEDL.DBID | M48 |
| ISSN | 1471-2105 |
| IngestDate | Wed Oct 29 12:09:12 EDT 2025 Tue Sep 30 16:40:53 EDT 2025 Thu Oct 02 10:59:38 EDT 2025 Mon Oct 20 22:11:21 EDT 2025 Mon Oct 20 16:19:44 EDT 2025 Thu Oct 16 14:20:41 EDT 2025 Thu Apr 03 07:10:06 EDT 2025 Wed Oct 01 04:15:27 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Sat Sep 06 07:21:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Prior knowledge Structured feature selection Block coordinate gradient descent Gene expression Microarray analysis |
| Language | English |
| License | Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c543t-7c6694f0beb680255f628d08bd93fb901e126514e068697a133702cceaadcd353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-016-0954-4 |
| PMID | 27059502 |
| PQID | 1780509392 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1186_s12859_016_0954_4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4826549 proquest_miscellaneous_1780509392 gale_infotracmisc_A449253068 gale_infotracacademiconefile_A449253068 gale_incontextgauss_ISR_A449253068 pubmed_primary_27059502 crossref_primary_10_1186_s12859_016_0954_4 crossref_citationtrail_10_1186_s12859_016_0954_4 springer_journals_10_1186_s12859_016_0954_4 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20160408 2016-04-08 2016-Apr-08 |
| PublicationDateYYYYMMDD | 2016-04-08 |
| PublicationDate_xml | – month: 4 year: 2016 text: 20160408 day: 8 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationSubtitle | BMC series – open, inclusive and trusted |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2016 |
| Publisher | BioMed Central BioMed Central Ltd |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd |
| References | E Tian (954_CR49) 2003; 349 Y Saeys (954_CR4) 2007; 23 I Guyon (954_CR9) 2002; 46 J Wang (954_CR47) 2013; 41 RE Fan (954_CR42) 2008; 9 DW Huang (954_CR44) 2009; 37 MA Shipp (954_CR50) 2002; 8 954_CR41 MF Ghalwash (954_CR7) 2013 A Statnikov (954_CR48) 2005; 74 J Zhou (954_CR15) 2013 JP Brunet (954_CR16) 2004; 101 P Tseng (954_CR31) 2009; 117 S Nagi (954_CR40) 2011 TF Coleman (954_CR27) 1996; 6 K Kira (954_CR34) 1992 S Mitra (954_CR14) 2012; 42 J Friedman (954_CR28) 2010; 33 A Sharma (954_CR12) 2012; 3 P Tseng (954_CR30) 2001; 109 S Swift (954_CR13) 2004; 5 R Collobert (954_CR23) 2006 MJ Fry (954_CR5) 2012; 42 S Boyd (954_CR22) 2004 L Rosasco (954_CR26) 2004; 16 954_CR36 P Tseng (954_CR32) 2010; 47 954_CR35 A Sharma (954_CR11) 2008; 66 GR Lanckriet (954_CR25) 2009 954_CR6 I Daubechies (954_CR29) 2004; 57 L Meier (954_CR33) 2008; 70 M Marczyk (954_CR2) 2013; 14 H Mamitsuka (954_CR10) 2006; 39 WY Adams (954_CR21) 2012 954_CR24 G Yi (954_CR37) 2007; 23 R Loganantharaj (954_CR38) 2009; 5 B Zhang (954_CR46) 2005; 33 M Dramiński (954_CR1) 2008; 24 A Sharma (954_CR20) 2012; 9 D Jiang (954_CR39) 2004; 16 U Alon (954_CR51) 1999; 96 Y Su (954_CR3) 2003; 19 H Peng (954_CR17) 2005; 27 DW Huang (954_CR43) 2008; 4 M Desouza (954_CR45) 2012; 2 954_CR19 954_CR18 M Holec (954_CR8) 2012; 13 18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7 14695408 - N Engl J Med. 2003 Dec 25;349(26):2483-94 15967710 - Int J Med Inform. 2005 Aug;74(7-8):491-503 23703215 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 19525204 - Int J Bioinform Res Appl. 2009;5(3):329-48 23510016 - BMC Bioinformatics. 2013;14:101 22759420 - BMC Bioinformatics. 2012;13 Suppl 10:S15 10359783 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6745-50 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 12689392 - Neural Comput. 2003 Apr;15(4):915-36 15980575 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W741-8 17237058 - Bioinformatics. 2007 May 1;23(9):1053-60 15535870 - Genome Biol. 2004;5(11):R94 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9 22084149 - IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):754-64 20808728 - J Stat Softw. 2010;33(1):1-22 15070510 - Neural Comput. 2004 May;16(5):1063-76 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17 11786909 - Nat Med. 2002 Jan;8(1):68-74 22880146 - Bioarchitecture. 2012 May 1;2(3):75-87 24564944 - BMC Proc. 2013 Dec 20;7(Suppl 7):S5 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 22873729 - BMC Bioinformatics. 2012;13:195 12912841 - Bioinformatics. 2003 Aug 12;19(12):1578-9 19131956 - Nat Protoc. 2009;4(1):44-57 |
| References_xml | – volume: 42 start-page: 105 issue: 2 year: 2012 ident: 954_CR5 publication-title: Interfaces doi: 10.1287/inte.1120.0633 – volume: 24 start-page: 110 issue: 1 year: 2008 ident: 954_CR1 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm486 – volume: 5 start-page: 94 issue: 11 year: 2004 ident: 954_CR13 publication-title: Genome Biol doi: 10.1186/gb-2004-5-11-r94 – volume: 16 start-page: 1063 issue: 5 year: 2004 ident: 954_CR26 publication-title: Neural Comput doi: 10.1162/089976604773135104 – volume-title: Convex Optimization year: 2004 ident: 954_CR22 doi: 10.1017/CBO9780511804441 – volume: 39 start-page: 2393 issue: 12 year: 2006 ident: 954_CR10 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2006.07.010 – volume: 2 start-page: 75 issue: 3 year: 2012 ident: 954_CR45 publication-title: BioArchitecture doi: 10.4161/bioa.20975 – volume: 117 start-page: 387 issue: 1-2 year: 2009 ident: 954_CR31 publication-title: Math Program doi: 10.1007/s10107-007-0170-0 – volume: 6 start-page: 418 year: 1996 ident: 954_CR27 publication-title: SIAM J Optim doi: 10.1137/0806023 – volume: 70 start-page: 53 issue: 1 year: 2008 ident: 954_CR33 publication-title: J R Stat Soc Ser B Stat Methodol. doi: 10.1111/j.1467-9868.2007.00627.x – volume: 16 start-page: 1370 issue: 11 year: 2004 ident: 954_CR39 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2004.68 – volume: 101 start-page: 4164 issue: 12 year: 2004 ident: 954_CR16 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0308531101 – volume: 5 start-page: 329 issue: 3 year: 2009 ident: 954_CR38 publication-title: Int J Bioinforma Res Appl doi: 10.1504/IJBRA.2009.026423 – volume: 37 start-page: 1 issue: 1 year: 2009 ident: 954_CR44 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn923 – ident: 954_CR35 – volume-title: Proceedings of the 29th International Conference on Machine Learning (ICML-12) year: 2012 ident: 954_CR21 – volume-title: IEEE 13th International Conference on Data Mining (ICDM) year: 2013 ident: 954_CR7 – volume: 57 start-page: 1413 issue: 11 year: 2004 ident: 954_CR29 publication-title: Commun Pur Appl Math doi: 10.1002/cpa.20042 – volume: 13 start-page: 15 issue: Suppl 10 year: 2012 ident: 954_CR8 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-S10-S15 – volume: 96 start-page: 6745 issue: 12 year: 1999 ident: 954_CR51 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.96.12.6745 – volume: 41 start-page: 77 issue: W1 year: 2013 ident: 954_CR47 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt439 – ident: 954_CR36 – ident: 954_CR19 doi: 10.1186/1753-6561-7-S7-S5 – volume: 3 start-page: 269 issue: 4 year: 2012 ident: 954_CR12 publication-title: Intl J Mach Learn Cybernet doi: 10.1007/s13042-011-0061-9 – volume: 33 start-page: 741 issue: suppl 2 year: 2005 ident: 954_CR46 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki475 – volume: 27 start-page: 1226 issue: 8 year: 2005 ident: 954_CR17 publication-title: Pattern Anal Mach Intell IEEE Trans doi: 10.1109/TPAMI.2005.159 – ident: 954_CR24 doi: 10.1162/08997660360581958 – volume: 4 start-page: 44 issue: 1 year: 2008 ident: 954_CR43 publication-title: Nat Protoc doi: 10.1038/nprot.2008.211 – ident: 954_CR18 doi: 10.1609/aaai.v25i1.7902 – volume: 23 start-page: 1053 issue: 9 year: 2007 ident: 954_CR37 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl673 – volume: 74 start-page: 491 issue: 7 year: 2005 ident: 954_CR48 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2005.05.002 – volume: 109 start-page: 475 issue: 3 year: 2001 ident: 954_CR30 publication-title: J Optim Theory Appl doi: 10.1023/A:1017501703105 – ident: 954_CR41 – volume: 33 start-page: 1 issue: 1 year: 2010 ident: 954_CR28 publication-title: J Stat Softw doi: 10.18637/jss.v033.i01 – volume: 349 start-page: 2483 issue: 26 year: 2003 ident: 954_CR49 publication-title: N Engl J Med doi: 10.1056/NEJMoa030847 – volume: 8 start-page: 68 issue: 1 year: 2002 ident: 954_CR50 publication-title: Nat Med doi: 10.1038/nm0102-68 – volume-title: 2011 2nd National Conference on Emerging Trends and Applications in Computer Science (NCETACS) year: 2011 ident: 954_CR40 – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 954_CR4 publication-title: bioinformatics doi: 10.1093/bioinformatics/btm344 – volume-title: Advances in Neural Information Processing Systems year: 2009 ident: 954_CR25 – volume: 14 start-page: 101 issue: 1 year: 2013 ident: 954_CR2 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-101 – volume: 19 start-page: 1578 issue: 12 year: 2003 ident: 954_CR3 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg179 – volume: 9 start-page: 754 issue: 3 year: 2012 ident: 954_CR20 publication-title: IEEE/ACM Trans Comput Biol Bioinformatics doi: 10.1109/TCBB.2011.151 – volume: 66 start-page: 338 issue: 2 year: 2008 ident: 954_CR11 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2008.04.004 – volume: 9 start-page: 1871 year: 2008 ident: 954_CR42 publication-title: J Mach Learn Res – ident: 954_CR6 doi: 10.1186/1471-2105-13-195 – volume-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining year: 2013 ident: 954_CR15 – volume: 47 start-page: 179 issue: 2 year: 2010 ident: 954_CR32 publication-title: Comput Optim Appl doi: 10.1007/s10589-008-9215-4 – volume-title: Proceedings of the Ninth International Workshop on Machine Learning year: 1992 ident: 954_CR34 – volume: 42 start-page: 1590 issue: 6 year: 2012 ident: 954_CR14 publication-title: Syst Man Cybernet Part C Appl Rev IEEE Trans doi: 10.1109/TSMCC.2012.2209416 – volume-title: International Conference of Machine Learning year: 2006 ident: 954_CR23 – volume: 46 start-page: 389 issue: 1-3 year: 2002 ident: 954_CR9 publication-title: Mach Learn doi: 10.1023/A:1012487302797 – reference: 22880146 - Bioarchitecture. 2012 May 1;2(3):75-87 – reference: 18048398 - Bioinformatics. 2008 Jan 1;24(1):110-7 – reference: 24564944 - BMC Proc. 2013 Dec 20;7(Suppl 7):S5 – reference: 15980575 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W741-8 – reference: 15967710 - Int J Med Inform. 2005 Aug;74(7-8):491-503 – reference: 23703215 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W77-83 – reference: 19131956 - Nat Protoc. 2009;4(1):44-57 – reference: 10359783 - Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6745-50 – reference: 12912841 - Bioinformatics. 2003 Aug 12;19(12):1578-9 – reference: 15535870 - Genome Biol. 2004;5(11):R94 – reference: 23510016 - BMC Bioinformatics. 2013;14:101 – reference: 17237058 - Bioinformatics. 2007 May 1;23(9):1053-60 – reference: 15016911 - Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):4164-9 – reference: 22084149 - IEEE/ACM Trans Comput Biol Bioinform. 2012 May-Jun;9(3):754-64 – reference: 11786909 - Nat Med. 2002 Jan;8(1):68-74 – reference: 19033363 - Nucleic Acids Res. 2009 Jan;37(1):1-13 – reference: 12689392 - Neural Comput. 2003 Apr;15(4):915-36 – reference: 16119262 - IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226-38 – reference: 15070510 - Neural Comput. 2004 May;16(5):1063-76 – reference: 17720704 - Bioinformatics. 2007 Oct 1;23(19):2507-17 – reference: 19525204 - Int J Bioinform Res Appl. 2009;5(3):329-48 – reference: 22873729 - BMC Bioinformatics. 2012;13:195 – reference: 14695408 - N Engl J Med. 2003 Dec 25;349(26):2483-94 – reference: 22759420 - BMC Bioinformatics. 2012;13 Suppl 10:S15 – reference: 20808728 - J Stat Softw. 2010;33(1):1-22 |
| SSID | ssj0017805 |
| Score | 2.3313994 |
| Snippet | Background
Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study,... Existing feature selection methods typically do not consider prior knowledge in the form of structural relationships among features. In this study, the... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 158 |
| SubjectTerms | Algorithms Analysis Bioinformatics Biomedical and Life Sciences Computational Biology/Bioinformatics Computer Appl. in Life Sciences Computer simulation Computer-generated environments Corneal Neovascularization - diagnosis Corneal Neovascularization - genetics Databases, Genetic DNA microarrays Gene expression Gene Expression Regulation Gene Ontology Genetic Variation Hemoglobinuria - diagnosis Hemoglobinuria - genetics HIV Infections - diagnosis HIV Infections - genetics Humans Knowledge-based analysis Life Sciences Melanoma - diagnosis Melanoma - genetics Methodology Methodology Article Microarray Analysis Microarrays Models, Theoretical Multiple Myeloma - diagnosis Multiple Myeloma - genetics Neuroendocrine Tumors - diagnosis Neuroendocrine Tumors - genetics Nevus - diagnosis Nevus - genetics Stress, Physiological - genetics Virus Diseases - diagnosis Virus Diseases - genetics |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB60IuqDeHe1yiqCYAnm7Gazm8daLFXQB2uhbyGbSy0cd4vbg_TfO5PNWc4WqficyV4mk8x8zMwXgDfKKVuhsTBXLCQTqggMcUjLaopNlBeVMgQUv3yVB0fi83F1nMiiqRdmM3-_aOT7YUEMawh4EfeqSjBxHW6gj5IxLyv3poQBUfOnpOVfp83czuXDd8P7XK6MnNKjd-DWqjszF7_Ncrnhgfbvwd0UOua741rfh2u-ewA3x8skLx7Ch8NIBbv65V0efOTrzId4yw2qPqf69pPc9og1TzuML3M38jjlPZ4ZP1Mz5iM42v_4fe-ApRsSmK1Eec5qK6USgbe-lQ2hgyCLxvGmdaoMLbp6j6rCkMhTI4iqDQLSmhfWemOcdWVVPoatru_8U8ht60RpHEZjjRTcBlMGHiprQmEsIlaZAV8rUNtEH063WCx1hBGN1KPONZWMkc61yODdNOVs5M64Svg1rYomToqOil5OzGoY9KfDb3pXEIMiYpsmg7dJKPT4cmtSDwH-AtFYzSS3Z5K4aexs-NV68TUNUaVZ5_vVoKMlcYVhYwZPRmOYPr6oMRitOI7UMzOZBIirez7Snf6InN0CYRxC8Qx21gal02ExXKWTncnm_q3BZ__17Odwu4jbQzDebMMWmqh_gfHVefsy7qw_drMbEQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9RAFB3qFhEf_NZGqkQRBEu22WRmknlcxVIFi1oX6tMwn3XpNlk2G6T-eu8kk7BZpCL4PDckmZyZOYfcey5Cr5hmigBYIp1MaIRZYiPQITLKHDdhBhMmnFD8dEKPZ_jjGTnbQV-6Whh5qeS89Kahzqh4vFmGvmirHFwXBbM6XGrbLvqcHlYT58QGwhj0MSM4wjfQLiVAz0dod3byefq9qTLKJhFIHOL_bv7xusH5tL1LbxxT2ymU_X_U2-hWXSzF1U-xWGwcVUd30ap7yTZD5WJcr-VY_dryf_yvs3AP3fHENpy2SLyPdkzxAN1sW11ePURvTxuj2npldGhN4yYaVk0PHgBG6LLvz0NVghKeF8B-Q926TIUl7GiXvlT0EZodvf_27jjy_RsiRXC6jjJFKcM2lkbS3GkXS5Ncx7nULLUSiIiZJBQIm3FlKiwTIJezOFHKCKGVTkn6GI2KsjB7KFRS41Ro4Io5xbGyIrWxJUrYRCjQ0zRAcffVuPLm5q7HxoI3IienvJ0a7hLa3NRwHKA3_SXL1tnjuuCXDgrcOWYULiXnXNRVxT-cfuVT7PwdQXnlAXrtg2wJN1fCVzjAKziTrUHk_iASlrQaDL_oEMfdkMuDK0xZV3ziWlDEDEhtgJ60COwfPsmAKpMYRrIBNvsA5yQ-HCnmPxpHcQwik2AWoIMOxdxvZdV1c3LQA_3vM_j0n6L30QhQaZ4B4VvL534J_wbhvVFR priority: 102 providerName: Unpaywall |
| Title | Structured feature selection using coordinate descent optimization |
| URI | https://link.springer.com/article/10.1186/s12859-016-0954-4 https://www.ncbi.nlm.nih.gov/pubmed/27059502 https://www.proquest.com/docview/1780509392 https://pubmed.ncbi.nlm.nih.gov/PMC4826549 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-016-0954-4 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB_6gagP4rfRekQRBEs0l2w22QeR9OhZD3qUngfn07LZbGrhTGrTQ--_dyZfNqXWlwSyE7KZncnOLzv7G4A3IhU6QGNxUm_IHSa8zEEckjghxSbCsEAoAoqHU34wZ5NFsNiAtrxVo8DyWmhH9aTm58v3v3-uP6HDf6wcPuIfyiGxsCEoRmwsAuawTdjGiUpQJYdD9ndRgej7m4XNa28jYuAQw42g-cfSzlJXv9WXJquriZTdaupduL3Kz9T6l1ouL01Y4_twr4k07bg2jQewYfKHcKuuPbl-BHuzijl2dW5SOzMVvaddVkVxcKRsSoc_sXWB0PQ0x3DUTmvaJ7vAT8yPZu_mY5iP97-ODpymoIKjA-ZfOKHmXLDMTUzCIwITGfei1I2SVPhZgpGBGXocIyhD-0ZEqBC_hq6ntVEq1akf-E9gKy9y8wxsnaTMVykGbxFnrs6Un7lZoFXmKY0Al1vgtgqUumEbp6IXS1mhjojLWv2SMsxI_ZJZ8K675aym2rhJ-DWNiiQKi5xyZE7Uqizll9mxjBkRLiIUiix42whlBT5cq2bLAb4CsV71JHd6kuhjutf8qh18SU2UmJabYlXKyqhcgVGmBU9rY-g63xqTBWHPTDoBovbut-Sn3yuKb4aoD5G7BbutQcnWNW7SyW5nc__X4PN_9vcF3PEqr2COG-3AFpqjeYmh10UygM1wEeIxGn8ewHYcT2YTPO_tT4-O8eqIjwbVT41B5XjYMp8exd_-AMKzLc8 |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9RAFD5oi9Q-iHejVaMIgiWYTSaTzONWLNu17YPbQt-GyVxqYU2K6VL67z0nmYSmlIrPcyaXM-f2MWe-AfgkjNAZGktkkgmPmEhchDikjHKqTYRlmVAEFA8O-eyYzU-yE3-Ou-m73fstyTZSt25d8K_NhLjWEPoiAhYZi9h9WKceK_TG9el0vpgPmwdE0-83MG-dOEpBNwPxtUx0s0ty2CrdhI1Vda6uLtVyeS0b7T6GR76MDKfduj-Be7Z6Cg-6iyWvnsHOoqWFXf2xJnS25e4Mm_bGG1yGkHrdT0NdI-48q7DWDE3H6RTWGD9--4OZz-F49_vRt1nkb0uIdMbSiyjXnAvm4tKWvCCk4HhSmLgojUhdiWnfThKO5ZGlQyEiVwhO8zjR2ipltEmz9AWsVXVlX0GoS8NSZbAyKziLtVOpi12mlUuURvTKA4h7BUrtqcTpRoulbCFFwWWnc0ntY6RzyQL4Mkw573g07hL-SKsiiZ-iogaYU7VqGrm3-CmnjNgUEecUAXz2Qq7Gl2vlzxPgLxCl1UhyaySJDqRHwx_6xZc0RF1nla1XjWwtKRZYQgbwsjOG4eOTHAvTLMaRfGQmgwDxdo9HqrNfLX83Q0iHsDyA7d6gpA8czV062R5s7t8afP1fz34PG7Ojg325v3f44w08TFpXYVFcbMEamqt9i3XXRfnO-9lf6bUjag |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEUcfKm5CCwSEhNTKajZxnPixXVi1HBWiVOqb5fgolZZkRXaF-u-ZyaWmQkU8e5xjPLa_Tx5_A_BWWmlSDBZm44lgXMaeIQ8pWEbYRDqeSk1E8cuRODjhH0_T067Oad1nu_dHku2dBlJpKpe7C-vbKZ6L3XpCumtIg5ENy5QzfhNucdzcqITBVEyHYwQS7O-OMv_abbQZXV2SL-1JV_Mlh0PTdbi7Khf64reezy_tS7P7sNEBynCvjYAHcMOVD-F2W2Ly4hHsHzcCsatfzobeNSqeYd3UvsEBCSnr_Sw0FTLQ8xJRZ2hbdaewwpXkZ3dF8zGczD58nx6wrm4CMylPliwzQkjuo8IVIifO4EWc2ygvrEx8gQDATWKBQMnR9RCZaaSpWRQb47S2xiZp8gTWyqp0zyA0heWJtojRcsEj43XiI58a7WNtkMeKAKLegcp0ouJU22KuGnKRC9X6XFEiGflc8QC2hy6LVlHjOuM3NCqKlCpKSoU506u6VofH39QeJ11FZDx5AO86I1_hy43ubhbgL5C41chya2SJU8mMml_3g6-oifLPSletatVEUiQRTAbwtA2G4ePjDCFqGmFLNgqTwYAUvMct5fmPRsmbI7lDgh7ATh9QqltC6ut8sjPE3L89-Py_nv0K7nx9P1OfD48-bcK9uJkpnEX5FqxhtLoXCMCWxctmkv0BWi0mRw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1da9RAFB3qFhEf_NZGqkQRBEu22WRmknlcxVIFi1oX6tMwn3XpNlk2G6T-eu8kk7BZpCL4PDckmZyZOYfcey5Cr5hmigBYIp1MaIRZYiPQITLKHDdhBhMmnFD8dEKPZ_jjGTnbQV-6Whh5qeS89Kahzqh4vFmGvmirHFwXBbM6XGrbLvqcHlYT58QGwhj0MSM4wjfQLiVAz0dod3byefq9qTLKJhFIHOL_bv7xusH5tL1LbxxT2ymU_X_U2-hWXSzF1U-xWGwcVUd30ap7yTZD5WJcr-VY_dryf_yvs3AP3fHENpy2SLyPdkzxAN1sW11ePURvTxuj2npldGhN4yYaVk0PHgBG6LLvz0NVghKeF8B-Q926TIUl7GiXvlT0EZodvf_27jjy_RsiRXC6jjJFKcM2lkbS3GkXS5Ncx7nULLUSiIiZJBQIm3FlKiwTIJezOFHKCKGVTkn6GI2KsjB7KFRS41Ro4Io5xbGyIrWxJUrYRCjQ0zRAcffVuPLm5q7HxoI3IienvJ0a7hLa3NRwHKA3_SXL1tnjuuCXDgrcOWYULiXnXNRVxT-cfuVT7PwdQXnlAXrtg2wJN1fCVzjAKziTrUHk_iASlrQaDL_oEMfdkMuDK0xZV3ziWlDEDEhtgJ60COwfPsmAKpMYRrIBNvsA5yQ-HCnmPxpHcQwik2AWoIMOxdxvZdV1c3LQA_3vM_j0n6L30QhQaZ4B4VvL534J_wbhvVFR |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structured+feature+selection+using+coordinate+descent+optimization&rft.jtitle=BMC+bioinformatics&rft.au=Ghalwash%2C+Mohamed+F&rft.au=Cao%2C+Xi+Hang&rft.au=Stojkovic%2C+Ivan&rft.au=Obradovic%2C+Zoran&rft.date=2016-04-08&rft.eissn=1471-2105&rft.volume=17&rft.spage=158&rft_id=info:doi/10.1186%2Fs12859-016-0954-4&rft_id=info%3Apmid%2F27059502&rft.externalDocID=27059502 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |