Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow

It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms hav...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 114; no. 41; pp. E8675 - E8684
Main Authors Vion, Anne-Clemence, Kheloufi, Marouane, Hammoutene, Adel, Poisson, Johanne, Lasselin, Juliette, Devue, Cecile, Pic, Isabelle, Dupont, Nicolas, Busse, Johanna, Stark, Konstantin, Lafaurie-Janvore, Julie, Barakat, Abdul I., Loyer, Xavier, Souyri, Michele, Viollet, Benoit, Julia, Pierre, Tedgui, Alain, Codogno, Patrice, Boulanger, Chantal M., Rautou, Pierre-Emmanuel
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.10.2017
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1702223114

Cover

Abstract It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins tomaintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
AbstractList Atherosclerotic plaques tend to develop preferentially in areas of the vasculature exposed to low and disturbed shear stress (SS), but the mechanisms are not fully understood. In this study, we demonstrate that inefficient autophagy contributes to the development of atherosclerotic plaques in low-SS areas. Defective endothelial autophagy not only curbs endothelial alignment with the direction of blood flow, but also promotes an inflammatory, apoptotic, and senescent phenotype. Furthermore, genetic inactivation of endothelial autophagy in a murine model of atherosclerosis increases plaque burden exclusively in high-SS areas that are normally resistant to atherosclerotic plaque development. Altogether, these findings underline the role of endothelial autophagic flux activation by SS as an atheroprotective mechanism. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
Atherosclerotic plaques tend to develop preferentially in areas of the vasculature exposed to low and disturbed shear stress (SS), but the mechanisms are not fully understood. In this study, we demonstrate that inefficient autophagy contributes to the development of atherosclerotic plaques in low-SS areas. Defective endothelial autophagy not only curbs endothelial alignment with the direction of blood flow, but also promotes an inflammatory, apoptotic, and senescent phenotype. Furthermore, genetic inactivation of endothelial autophagy in a murine model of atherosclerosis increases plaque burden exclusively in high-SS areas that are normally resistant to atherosclerotic plaque development. Altogether, these findings underline the role of endothelial autophagic flux activation by SS as an atheroprotective mechanism. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKa inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α--induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins tomaintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.
Author Dupont, Nicolas
Pic, Isabelle
Lafaurie-Janvore, Julie
Boulanger, Chantal M.
Souyri, Michele
Codogno, Patrice
Hammoutene, Adel
Busse, Johanna
Kheloufi, Marouane
Barakat, Abdul I.
Julia, Pierre
Viollet, Benoit
Loyer, Xavier
Rautou, Pierre-Emmanuel
Vion, Anne-Clemence
Lasselin, Juliette
Poisson, Johanne
Tedgui, Alain
Devue, Cecile
Stark, Konstantin
Author_xml – sequence: 1
  givenname: Anne-Clemence
  surname: Vion
  fullname: Vion, Anne-Clemence
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 2
  givenname: Marouane
  surname: Kheloufi
  fullname: Kheloufi, Marouane
  organization: Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
– sequence: 3
  givenname: Adel
  surname: Hammoutene
  fullname: Hammoutene, Adel
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 4
  givenname: Johanne
  surname: Poisson
  fullname: Poisson, Johanne
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 5
  givenname: Juliette
  surname: Lasselin
  fullname: Lasselin, Juliette
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 6
  givenname: Cecile
  surname: Devue
  fullname: Devue, Cecile
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 7
  givenname: Isabelle
  surname: Pic
  fullname: Pic, Isabelle
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 8
  givenname: Nicolas
  surname: Dupont
  fullname: Dupont, Nicolas
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 9
  givenname: Johanna
  surname: Busse
  fullname: Busse, Johanna
  organization: Medizinische Klinik I, Klinikum der Universität München, 81377 Munich, Germany
– sequence: 10
  givenname: Konstantin
  surname: Stark
  fullname: Stark, Konstantin
  organization: Medizinische Klinik I, Klinikum der Universität München, 81377 Munich, Germany
– sequence: 11
  givenname: Julie
  surname: Lafaurie-Janvore
  fullname: Lafaurie-Janvore, Julie
  organization: Mechanics & Living Systems, Cardiovascular Cellular Engineering, Laboratoire d’Hydrodynamique, Ecole Polytechnique, UMR 7646, 91128 Palaiseau, France
– sequence: 12
  givenname: Abdul I.
  surname: Barakat
  fullname: Barakat, Abdul I.
  organization: Mechanics & Living Systems, Cardiovascular Cellular Engineering, Laboratoire d’Hydrodynamique, Ecole Polytechnique, UMR 7646, 91128 Palaiseau, France
– sequence: 13
  givenname: Xavier
  surname: Loyer
  fullname: Loyer, Xavier
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 14
  givenname: Michele
  surname: Souyri
  fullname: Souyri, Michele
  organization: INSERM UMR_S1131/IHU/Université Paris Diderot, 75013 Paris, France
– sequence: 15
  givenname: Benoit
  surname: Viollet
  fullname: Viollet, Benoit
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 16
  givenname: Pierre
  surname: Julia
  fullname: Julia, Pierre
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 17
  givenname: Alain
  surname: Tedgui
  fullname: Tedgui, Alain
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 18
  givenname: Patrice
  surname: Codogno
  fullname: Codogno, Patrice
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 19
  givenname: Chantal M.
  surname: Boulanger
  fullname: Boulanger, Chantal M.
  organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
– sequence: 20
  givenname: Pierre-Emmanuel
  surname: Rautou
  fullname: Rautou, Pierre-Emmanuel
  organization: Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28973855$$D View this record in MEDLINE/PubMed
https://nantes-universite.hal.science/hal-03367419$$DView record in HAL
BookMark eNp9kr1vEzEYxi1URNPCzASyxAJDWn_7vFSKKqBIkVhgthyfL-fIsa_2XVH-e3xKaSEDk6XXv-d5Py_AWUzRAfAWoyuMJL0eoilXWCJCCMWYvQALjBReCqbQGVggROSyYYSdg4tSdgghxRv0CpyTRknacL4A_Woa09Cb7QH6ArO7n3x2LexShi62aexd8CZA60KAJvht3Ls4QhNbaOpfTkNOo7OjTxFOsXUZDv2h-BTS1tuq24SUqltIv16Dl50Jxb15fC_Bzy-ff9zeLdffv367Xa2XljM6LsUGE8sRcY7aDWFCdqbhtO0aLJQhlBJhjLVIWGulVaSrESqJbRFrlWy4oJfg5ug7TJu9a20tN5ugh-z3Jh90Ml7_-xN9r7fpQXPBiJCqGnw6GvQnsrvVWs8xRKmQDKsHXNmPj8lyup9cGfXel3lWJro0FY0Vk0iJOuqKfjhBd2nKsY6iUhLV9iSfqfd_V_-U_8_CKnB9BGxOpWTXPSEY6fkk9HwS-vkkqoKfKKwfzbyx2r4P_9G9O-p2ZUz5uRLBmkZW5jddjsXg
CitedBy_id crossref_primary_10_1186_s12951_023_02248_9
crossref_primary_10_1007_s00018_018_2987_5
crossref_primary_10_1007_s13105_024_01039_6
crossref_primary_10_3389_fcell_2024_1446964
crossref_primary_10_1007_s10557_022_07414_z
crossref_primary_10_1177_0271678X241245557
crossref_primary_10_3389_fphar_2021_647350
crossref_primary_10_1096_fj_202002790RR
crossref_primary_10_31083_j_rcm2403081
crossref_primary_10_1007_s00395_020_0802_6
crossref_primary_10_1038_s41418_019_0287_8
crossref_primary_10_1111_jcmm_15476
crossref_primary_10_3390_ijms25116047
crossref_primary_10_1080_15384101_2024_2344943
crossref_primary_10_1007_s10237_022_01632_y
crossref_primary_10_1161_ATVBAHA_120_314291
crossref_primary_10_1242_jcs_258589
crossref_primary_10_1007_s12072_023_10606_w
crossref_primary_10_1007_s11883_025_01291_1
crossref_primary_10_1186_s13287_018_1060_5
crossref_primary_10_1186_s12916_020_01749_w
crossref_primary_10_3390_antiox10030387
crossref_primary_10_3389_fcvm_2021_733248
crossref_primary_10_1161_ATVBAHA_120_314975
crossref_primary_10_7570_jomes21096
crossref_primary_10_1016_j_bbamcr_2021_118969
crossref_primary_10_1016_j_niox_2024_04_002
crossref_primary_10_1111_eci_14199
crossref_primary_10_3390_cells10030625
crossref_primary_10_1161_CIRCRESAHA_119_315248
crossref_primary_10_1126_scitranslmed_aaz2294
crossref_primary_10_3389_fcvm_2022_831847
crossref_primary_10_1186_s13578_019_0327_6
crossref_primary_10_1161_ATVBAHA_123_319978
crossref_primary_10_1155_2018_7687083
crossref_primary_10_1007_s11684_022_0931_4
crossref_primary_10_1161_ATVBAHA_119_313692
crossref_primary_10_1111_apha_13757
crossref_primary_10_15252_embr_201948192
crossref_primary_10_3390_cells7100149
crossref_primary_10_3389_fphys_2024_1464678
crossref_primary_10_3389_fphar_2023_1083875
crossref_primary_10_1002_1873_3468_14744
crossref_primary_10_1155_2020_8345246
crossref_primary_10_1080_02648725_2023_2193061
crossref_primary_10_1161_CIRCRESAHA_117_312500
crossref_primary_10_1161_ATVBAHA_120_314944
crossref_primary_10_1038_s41419_020_02849_4
crossref_primary_10_18632_aging_103786
crossref_primary_10_1038_s41419_020_2602_1
crossref_primary_10_1038_s41569_022_00680_2
crossref_primary_10_1186_s12950_019_0212_4
crossref_primary_10_1161_ATVBAHA_123_319283
crossref_primary_10_1016_j_biopha_2019_108866
crossref_primary_10_1080_27694127_2022_2119743
crossref_primary_10_1016_j_phrs_2020_105169
crossref_primary_10_1016_j_isci_2024_111406
crossref_primary_10_1111_febs_15143
crossref_primary_10_20900_immunometab20210020
crossref_primary_10_1093_cvr_cvac061
crossref_primary_10_1161_ATVBAHA_120_314159
crossref_primary_10_1016_j_mito_2020_12_013
crossref_primary_10_3390_ijms20174132
crossref_primary_10_1016_j_jbiomech_2021_110917
crossref_primary_10_1016_j_pharmthera_2019_107430
crossref_primary_10_4049_jimmunol_2100050
crossref_primary_10_1161_JAHA_124_037460
crossref_primary_10_1161_CIRCRESAHA_118_314032
crossref_primary_10_1016_j_immuni_2021_07_012
crossref_primary_10_3390_ijms252011188
crossref_primary_10_3892_etm_2023_12053
crossref_primary_10_12677_ACM_2022_12121632
crossref_primary_10_1016_j_yexcr_2024_114071
crossref_primary_10_3892_etm_2019_8317
crossref_primary_10_3389_fcell_2021_782736
crossref_primary_10_1111_jnc_15721
crossref_primary_10_1111_jre_13069
crossref_primary_10_1002_adma_201904476
crossref_primary_10_3390_biomedicines10050992
crossref_primary_10_1002_jev2_12414
crossref_primary_10_3389_fcell_2021_809955
crossref_primary_10_4103_cjp_cjp_84_21
crossref_primary_10_15252_embj_2021108863
crossref_primary_10_3389_fcell_2020_602901
crossref_primary_10_1159_000537772
crossref_primary_10_1007_s00018_023_04859_9
crossref_primary_10_1021_acsbiomaterials_9b01067
crossref_primary_10_1002_adhm_202401150
crossref_primary_10_1016_j_vph_2024_107368
crossref_primary_10_14814_phy2_14058
crossref_primary_10_3390_ijms21082685
crossref_primary_10_3389_fimmu_2022_902945
crossref_primary_10_3389_fphar_2024_1445349
crossref_primary_10_15252_embr_202357042
crossref_primary_10_3389_fcell_2022_1046248
crossref_primary_10_18632_aging_102183
crossref_primary_10_1083_jcb_202305005
crossref_primary_10_1016_j_biopha_2022_114198
crossref_primary_10_3390_cells9030687
crossref_primary_10_1161_CIRCULATIONAHA_118_034598
crossref_primary_10_1080_01478885_2024_2429855
crossref_primary_10_1016_j_biopha_2023_114333
crossref_primary_10_1016_j_vph_2022_107110
crossref_primary_10_1039_D0LC00523A
crossref_primary_10_3389_fphar_2024_1393534
crossref_primary_10_2491_jjsth_35_682
crossref_primary_10_1016_j_cophys_2023_100673
crossref_primary_10_1016_j_abb_2021_109098
crossref_primary_10_4103_JMAU_JMAU_33_20
crossref_primary_10_1111_febs_15873
crossref_primary_10_3390_cells13100825
crossref_primary_10_1093_cvr_cvab158
crossref_primary_10_3389_fphys_2020_00403
crossref_primary_10_1016_j_jhep_2019_10_028
crossref_primary_10_3390_cells14030183
crossref_primary_10_1016_j_bbrc_2019_12_022
crossref_primary_10_1021_acsabm_4c00504
crossref_primary_10_1111_bph_14801
crossref_primary_10_3390_cells10092346
crossref_primary_10_1016_j_yjmcc_2019_02_014
crossref_primary_10_1038_s42003_022_03392_y
crossref_primary_10_1161_CIRCULATIONAHA_124_068726
crossref_primary_10_1089_ars_2019_7817
crossref_primary_10_1098_rsos_211088
crossref_primary_10_1016_j_bbamcr_2020_118855
crossref_primary_10_1083_jcb_202109144
crossref_primary_10_1080_14728222_2020_1723079
crossref_primary_10_3390_cells12060947
crossref_primary_10_1016_j_cca_2020_10_025
crossref_primary_10_1183_13993003_00261_2020
crossref_primary_10_1161_ATVBAHA_122_318110
crossref_primary_10_1186_s12974_022_02551_6
crossref_primary_10_2491_jjsth_35_702
crossref_primary_10_1038_s41419_022_04923_5
crossref_primary_10_1042_BST20210810
crossref_primary_10_2174_0118746098260689231002044435
crossref_primary_10_1155_2023_8817431
crossref_primary_10_3390_jcdd10080352
crossref_primary_10_1083_jcb_202206033
crossref_primary_10_1016_j_actbio_2022_03_040
crossref_primary_10_1038_s41598_023_35447_3
crossref_primary_10_12997_jla_2024_13_3_292
crossref_primary_10_3390_biom14121557
crossref_primary_10_3390_biomedicines10020254
crossref_primary_10_3390_ijms251810097
crossref_primary_10_3390_ijms242015160
crossref_primary_10_3390_cells11132081
crossref_primary_10_1161_ATVBAHA_124_321332
crossref_primary_10_1111_liv_15665
crossref_primary_10_1080_14728222_2023_2177151
crossref_primary_10_1016_j_biopha_2022_113712
crossref_primary_10_1038_s41419_020_2343_1
crossref_primary_10_1016_j_isci_2021_102076
crossref_primary_10_1096_fj_202400689RR
crossref_primary_10_1016_j_abb_2023_109755
crossref_primary_10_1089_ars_2021_0126
crossref_primary_10_1172_jci_insight_131092
crossref_primary_10_1038_s41419_021_03671_2
crossref_primary_10_3389_fcell_2021_658995
crossref_primary_10_1016_j_atherosclerosis_2022_07_014
crossref_primary_10_3389_fcell_2020_00034
crossref_primary_10_1002_adma_201802579
crossref_primary_10_1042_CS20181092
crossref_primary_10_1016_j_biopha_2024_116192
crossref_primary_10_1146_annurev_pharmtox_010919_023229
Cites_doi 10.1161/ATVBAHA.111.243980
10.1038/nature04724
10.1126/scisignal.2000143
10.1038/cdd.2014.171
10.1152/physrev.00047.2009
10.1161/CIRCRESAHA.109.204040
10.1161/01.RES.0000259561.23876.c5
10.1038/ncb3360
10.1182/blood.V93.11.3831.411a35_3831_3838
10.1038/35025203
10.1038/cddis.2015.193
10.1161/CIRCRESAHA.114.303788
10.1111/acel.12423
10.1161/CIRCRESAHA.116.303804
10.1161/01.ATV.5.3.293
10.1074/jbc.M306205200
10.4049/jimmunol.162.5.3022
10.1161/01.CIR.0000013836.85741.17
10.1113/jphysiol.2012.229690
10.1161/CIRCULATIONAHA.112.118778
10.1083/jcb.200412022
10.1016/j.diff.2011.11.007
10.1016/j.cmet.2012.02.011
10.1182/blood-2010-03-272625
10.1016/j.ijcard.2015.01.065
10.1152/ajpheart.01047.2006
10.1016/j.jcmg.2015.04.024
10.1161/01.RES.53.4.502
10.1139/cjpp-2014-0017
10.1016/S0014-5793(96)01289-6
10.1002/stem.2015
10.1016/j.bbamcr.2014.07.003
10.1161/ATVBAHA.113.301826
10.1093/cvr/cvt101
10.1038/nrm2596
10.1056/NEJMra1205406
10.1161/01.ATV.0000221230.08596.98
10.1016/j.bbamcr.2013.08.023
10.1016/j.carpath.2012.06.006
10.4161/auto.8.1.18174
10.1089/ars.2014.5896
10.1016/j.jacc.2017.01.064
10.4161/auto.6.5.12112
10.4161/auto.1.1.1270
10.1038/nature03952
10.1016/j.cmet.2012.01.022
10.1007/s10439-014-1033-5
10.1161/CIRCRESAHA.116.303787
10.1161/ATVBAHA.114.303415
10.1161/01.CIR.101.21.2450
10.1089/dna.2015.3041
10.1080/15548627.2015.1100356
10.1080/15548627.2015.1096485
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Oct 10, 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Oct 10, 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
DOI 10.1073/pnas.1702223114
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed

Virology and AIDS Abstracts
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Shear stress and endothelial autophagy
EISSN 1091-6490
EndPage E8684
ExternalDocumentID PMC5642679
oai_HAL_hal_03367419v1
28973855
10_1073_pnas_1702223114
26488722
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Agence Nationale de la Recherche (ANR)
  grantid: ANR-16-CE14-0015-01; ANR-14-CE12-0011; ANR-14-CE35-0022
– fundername: Association Française pour l'Etude du Foie (AFEF)
  grantid: AFEF 2014
– fundername: Fondation pour la Recherche Médicale (FRM)
  grantid: DPC20111122979; FDT20160435690
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
5PM
ID FETCH-LOGICAL-c543t-6b12c502ee3cb2467fa853df8169a23326aacc06ccc7c92f332372cd04d978563
ISSN 0027-8424
1091-6490
IngestDate Tue Sep 30 16:35:44 EDT 2025
Fri Sep 12 12:54:15 EDT 2025
Thu Sep 04 18:06:00 EDT 2025
Mon Jun 30 07:36:14 EDT 2025
Mon Jul 21 05:52:00 EDT 2025
Wed Oct 01 04:00:12 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Fri May 30 11:47:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords atherosclerosis
autophagy
shear stress
inflammation
endothelial
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c543t-6b12c502ee3cb2467fa853df8169a23326aacc06ccc7c92f332372cd04d978563
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: A.-C.V., M.K., C.M.B., and P.-E.R. designed research; A.-C.V., M.K., A.H., J.P., J.L., C.D., I.P., J.B., K.S., J.L.-J., X.L., and C.M.B. performed research; N.D., K.S., J.L.-J., A.I.B., M.S., B.V., P.J., and P.C. contributed new reagents/analytic tools; A.-C.V., M.K., X.L., A.T., P.C., C.M.B., and P.-E.R. analyzed data; and A.-C.V., M.K., A.T., P.C., C.M.B., and P.-E.R. wrote the paper.
1A.-C.V. and M.K. contributed equally to this work.
Edited by Beth Levine, The University of Texas Southwestern Medical Center, Dallas, TX, and approved August 23, 2017 (received for review February 10, 2017)
2C.M.B. and P.-E.R. contributed equally to this work.
ORCID 0000-0002-3687-651X
0000-0002-2411-4497
0000-0003-4294-3608
0000-0002-7551-3631
0000-0001-9567-1859
0000-0002-5492-3180
0000-0002-2788-2512
0000-0002-0121-0224
OpenAccessLink https://nantes-universite.hal.science/hal-03367419
PMID 28973855
PQID 1970169755
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5642679
hal_primary_oai_HAL_hal_03367419v1
proquest_miscellaneous_1947096385
proquest_journals_1970169755
pubmed_primary_28973855
crossref_primary_10_1073_pnas_1702223114
crossref_citationtrail_10_1073_pnas_1702223114
jstor_primary_26488722
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-10
PublicationDateYYYYMMDD 2017-10-10
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2017
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
Duncan GS (e_1_3_3_53_2) 1999; 162
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
22440612 - Cell Metab. 2012 Apr 4;15(4):534-44
25826782 - Stem Cells. 2015 Jul;33(7):2343-50
26780888 - Aging Cell. 2016 Feb;15(1):187-91
22539595 - Arterioscler Thromb Vasc Biol. 2012 Jul;32(7):1632-41
17272808 - Circ Res. 2007 Mar 2;100(4):564-71
26363834 - JACC Cardiovasc Imaging. 2015 Oct;8(10 ):1156-66
22818581 - Cardiovasc Pathol. 2013 Jan-Feb;22(1):9-15
8980122 - FEBS Lett. 1996 Dec 9;399(1-2):71-4
16601232 - Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1281-7
23814115 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2130-6
24838486 - Ann Biomed Eng. 2014 Sep;42(9):1978-88
24021264 - Biochim Biophys Acta. 2013 Dec;1833(12 ):3124-3133
20693433 - Blood. 2010 Nov 25;116(22):4444-55
28408026 - J Am Coll Cardiol. 2017 Apr 18;69(15):1952-1967
26716952 - DNA Cell Biol. 2016 Mar;35(3):118-23
19293429 - Sci Signal. 2009 Mar 17;2(62):ra11
22570377 - J Physiol. 2012 Jul 15;590(14):3305-16
23619421 - Cardiovasc Res. 2013 Jul 15;99(2):315-27
10339490 - Blood. 1999 Jun 1;93(11):3831-8
25697875 - Int J Cardiol. 2015 Apr 1;184:86-95
14573616 - J Biol Chem. 2004 Jan 9;279(2):1070-9
16874026 - Autophagy. 2005 Apr;1(1):1-10
22753194 - Circulation. 2012 Aug 7;126(6):729-40
26181207 - Cell Death Dis. 2015 Jul 16;6:e1827
24941409 - Can J Physiol Pharmacol. 2014 Jul;92 (7):605-12
15866887 - J Cell Biol. 2005 May 9;169(3):425-34
17098825 - Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1209-24
26120766 - Antioxid Redox Signal. 2015 Nov 20;23(15):1207-19
26391655 - Autophagy. 2015 Nov 2;11(11):2014-2032
11927518 - Circulation. 2002 Apr 2;105(13):1541-4
20458170 - Autophagy. 2010 Jul;6(5):634-41
22170153 - Autophagy. 2012 Jan;8(1):47-62
10831515 - Circulation. 2000 May 30;101(21):2450-3
24651677 - Arterioscler Thromb Vasc Biol. 2014 May;34(5):985-95
19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62
11001066 - Nature. 2000 Sep 14;407(6801):233-41
22445600 - Cell Metab. 2012 Apr 4;15(4):545-53
25038307 - Biochim Biophys Acta. 2014 Nov;1843(11):2403-13
6627609 - Circ Res. 1983 Oct;53(4):502-14
3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302
25634970 - Circ Res. 2015 Jan 30;116(3):468-79
25634973 - Circ Res. 2015 Jan 30;116(3):504-14
25361082 - Cell Death Differ. 2015 Mar;22(3):389-97
19762680 - Circ Res. 2009 Oct 23;105(9):869-75
26799652 - Autophagy. 2016;12 (1):1-222
10072554 - J Immunol. 1999 Mar 1;162(5):3022-30
21248169 - Physiol Rev. 2011 Jan;91(1):327-87
23656658 - N Engl J Med. 2013 May 9;368(19):1845-6
25634969 - Circ Res. 2015 Jan 30;116(3):456-67
27214279 - Nat Cell Biol. 2016 Jun;18(6):657-67
22169885 - Differentiation. 2012 Feb;83(2):S56-61
16625204 - Nature. 2006 Jun 15;441(7095):885-9
16163360 - Nature. 2005 Sep 15;437(7057):426-31
References_xml – ident: e_1_3_3_28_2
  doi: 10.1161/ATVBAHA.111.243980
– ident: e_1_3_3_49_2
  doi: 10.1038/nature04724
– ident: e_1_3_3_34_2
  doi: 10.1126/scisignal.2000143
– ident: e_1_3_3_33_2
  doi: 10.1038/cdd.2014.171
– ident: e_1_3_3_1_2
  doi: 10.1152/physrev.00047.2009
– ident: e_1_3_3_45_2
  doi: 10.1161/CIRCRESAHA.109.204040
– ident: e_1_3_3_26_2
  doi: 10.1161/01.RES.0000259561.23876.c5
– ident: e_1_3_3_51_2
  doi: 10.1038/ncb3360
– ident: e_1_3_3_5_2
  doi: 10.1182/blood.V93.11.3831.411a35_3831_3838
– ident: e_1_3_3_4_2
  doi: 10.1038/35025203
– ident: e_1_3_3_14_2
  doi: 10.1038/cddis.2015.193
– ident: e_1_3_3_25_2
  doi: 10.1161/CIRCRESAHA.114.303788
– ident: e_1_3_3_13_2
  doi: 10.1111/acel.12423
– ident: e_1_3_3_41_2
  doi: 10.1161/CIRCRESAHA.116.303804
– ident: e_1_3_3_23_2
  doi: 10.1161/01.ATV.5.3.293
– ident: e_1_3_3_52_2
  doi: 10.1074/jbc.M306205200
– volume: 162
  start-page: 3022
  year: 1999
  ident: e_1_3_3_53_2
  article-title: Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions
  publication-title: J Immunol
  doi: 10.4049/jimmunol.162.5.3022
– ident: e_1_3_3_8_2
  doi: 10.1161/01.CIR.0000013836.85741.17
– ident: e_1_3_3_36_2
  doi: 10.1113/jphysiol.2012.229690
– ident: e_1_3_3_10_2
  doi: 10.1161/CIRCULATIONAHA.112.118778
– ident: e_1_3_3_50_2
  doi: 10.1083/jcb.200412022
– ident: e_1_3_3_32_2
  doi: 10.1016/j.diff.2011.11.007
– ident: e_1_3_3_42_2
  doi: 10.1016/j.cmet.2012.02.011
– ident: e_1_3_3_48_2
  doi: 10.1182/blood-2010-03-272625
– ident: e_1_3_3_18_2
  doi: 10.1016/j.ijcard.2015.01.065
– ident: e_1_3_3_29_2
  doi: 10.1152/ajpheart.01047.2006
– ident: e_1_3_3_44_2
  doi: 10.1016/j.jcmg.2015.04.024
– ident: e_1_3_3_24_2
  doi: 10.1161/01.RES.53.4.502
– ident: e_1_3_3_19_2
  doi: 10.1139/cjpp-2014-0017
– ident: e_1_3_3_6_2
  doi: 10.1016/S0014-5793(96)01289-6
– ident: e_1_3_3_21_2
  doi: 10.1002/stem.2015
– ident: e_1_3_3_38_2
  doi: 10.1016/j.bbamcr.2014.07.003
– ident: e_1_3_3_30_2
  doi: 10.1161/ATVBAHA.113.301826
– ident: e_1_3_3_11_2
  doi: 10.1093/cvr/cvt101
– ident: e_1_3_3_3_2
  doi: 10.1038/nrm2596
– ident: e_1_3_3_12_2
  doi: 10.1056/NEJMra1205406
– ident: e_1_3_3_27_2
  doi: 10.1161/01.ATV.0000221230.08596.98
– ident: e_1_3_3_15_2
  doi: 10.1016/j.bbamcr.2013.08.023
– ident: e_1_3_3_2_2
  doi: 10.1016/j.carpath.2012.06.006
– ident: e_1_3_3_37_2
  doi: 10.4161/auto.8.1.18174
– ident: e_1_3_3_16_2
  doi: 10.1089/ars.2014.5896
– ident: e_1_3_3_39_2
  doi: 10.1016/j.jacc.2017.01.064
– ident: e_1_3_3_47_2
  doi: 10.4161/auto.6.5.12112
– ident: e_1_3_3_46_2
  doi: 10.4161/auto.1.1.1270
– ident: e_1_3_3_31_2
  doi: 10.1038/nature03952
– ident: e_1_3_3_43_2
  doi: 10.1016/j.cmet.2012.01.022
– ident: e_1_3_3_17_2
  doi: 10.1007/s10439-014-1033-5
– ident: e_1_3_3_35_2
  doi: 10.1161/CIRCRESAHA.116.303787
– ident: e_1_3_3_9_2
  doi: 10.1161/ATVBAHA.114.303415
– ident: e_1_3_3_7_2
  doi: 10.1161/01.CIR.101.21.2450
– ident: e_1_3_3_20_2
  doi: 10.1089/dna.2015.3041
– ident: e_1_3_3_22_2
  doi: 10.1080/15548627.2015.1100356
– ident: e_1_3_3_40_2
  doi: 10.1080/15548627.2015.1096485
– reference: 23814115 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2130-6
– reference: 22570377 - J Physiol. 2012 Jul 15;590(14):3305-16
– reference: 24838486 - Ann Biomed Eng. 2014 Sep;42(9):1978-88
– reference: 11001066 - Nature. 2000 Sep 14;407(6801):233-41
– reference: 26363834 - JACC Cardiovasc Imaging. 2015 Oct;8(10 ):1156-66
– reference: 25826782 - Stem Cells. 2015 Jul;33(7):2343-50
– reference: 23656658 - N Engl J Med. 2013 May 9;368(19):1845-6
– reference: 26391655 - Autophagy. 2015 Nov 2;11(11):2014-2032
– reference: 26780888 - Aging Cell. 2016 Feb;15(1):187-91
– reference: 22170153 - Autophagy. 2012 Jan;8(1):47-62
– reference: 22753194 - Circulation. 2012 Aug 7;126(6):729-40
– reference: 25361082 - Cell Death Differ. 2015 Mar;22(3):389-97
– reference: 10072554 - J Immunol. 1999 Mar 1;162(5):3022-30
– reference: 26716952 - DNA Cell Biol. 2016 Mar;35(3):118-23
– reference: 24651677 - Arterioscler Thromb Vasc Biol. 2014 May;34(5):985-95
– reference: 14573616 - J Biol Chem. 2004 Jan 9;279(2):1070-9
– reference: 10339490 - Blood. 1999 Jun 1;93(11):3831-8
– reference: 28408026 - J Am Coll Cardiol. 2017 Apr 18;69(15):1952-1967
– reference: 27214279 - Nat Cell Biol. 2016 Jun;18(6):657-67
– reference: 17098825 - Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1209-24
– reference: 25634970 - Circ Res. 2015 Jan 30;116(3):468-79
– reference: 20458170 - Autophagy. 2010 Jul;6(5):634-41
– reference: 19293429 - Sci Signal. 2009 Mar 17;2(62):ra11
– reference: 11927518 - Circulation. 2002 Apr 2;105(13):1541-4
– reference: 22445600 - Cell Metab. 2012 Apr 4;15(4):545-53
– reference: 19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62
– reference: 16601232 - Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1281-7
– reference: 6627609 - Circ Res. 1983 Oct;53(4):502-14
– reference: 26181207 - Cell Death Dis. 2015 Jul 16;6:e1827
– reference: 23619421 - Cardiovasc Res. 2013 Jul 15;99(2):315-27
– reference: 26120766 - Antioxid Redox Signal. 2015 Nov 20;23(15):1207-19
– reference: 25038307 - Biochim Biophys Acta. 2014 Nov;1843(11):2403-13
– reference: 26799652 - Autophagy. 2016;12 (1):1-222
– reference: 22440612 - Cell Metab. 2012 Apr 4;15(4):534-44
– reference: 24021264 - Biochim Biophys Acta. 2013 Dec;1833(12 ):3124-3133
– reference: 20693433 - Blood. 2010 Nov 25;116(22):4444-55
– reference: 19762680 - Circ Res. 2009 Oct 23;105(9):869-75
– reference: 16163360 - Nature. 2005 Sep 15;437(7057):426-31
– reference: 22539595 - Arterioscler Thromb Vasc Biol. 2012 Jul;32(7):1632-41
– reference: 8980122 - FEBS Lett. 1996 Dec 9;399(1-2):71-4
– reference: 25634973 - Circ Res. 2015 Jan 30;116(3):504-14
– reference: 15866887 - J Cell Biol. 2005 May 9;169(3):425-34
– reference: 17272808 - Circ Res. 2007 Mar 2;100(4):564-71
– reference: 16874026 - Autophagy. 2005 Apr;1(1):1-10
– reference: 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302
– reference: 24941409 - Can J Physiol Pharmacol. 2014 Jul;92 (7):605-12
– reference: 21248169 - Physiol Rev. 2011 Jan;91(1):327-87
– reference: 25634969 - Circ Res. 2015 Jan 30;116(3):456-67
– reference: 16625204 - Nature. 2006 Jun 15;441(7095):885-9
– reference: 25697875 - Int J Cardiol. 2015 Apr 1;184:86-95
– reference: 22818581 - Cardiovasc Pathol. 2013 Jan-Feb;22(1):9-15
– reference: 22169885 - Differentiation. 2012 Feb;83(2):S56-61
– reference: 10831515 - Circulation. 2000 May 30;101(21):2450-3
SSID ssj0009580
Score 2.6115553
Snippet It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory,...
Atherosclerotic plaques tend to develop preferentially in areas of the vasculature exposed to low and disturbed shear stress (SS), but the mechanisms are not...
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory,...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E8675
SubjectTerms Alignment
Apoptosis
Arteries
Arteriosclerosis
Atherosclerosis
Biological Sciences
Blood flow
Cardiology and cardiovascular system
Cellular Biology
Endothelial cells
Endothelium
Exposure
Fluctuations
Flux
Homeostasis
Human health and pathology
Inflammation
Lesions
Life Sciences
Mice
Organelles
Phagocytosis
PNAS Plus
Proteins
Rapamycin
Senescence
Shear stress
TOR protein
Transgenic mice
Tumor necrosis factor-α
Title Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow
URI https://www.jstor.org/stable/26488722
https://www.ncbi.nlm.nih.gov/pubmed/28973855
https://www.proquest.com/docview/1970169755
https://www.proquest.com/docview/1947096385
https://nantes-universite.hal.science/hal-03367419
https://pubmed.ncbi.nlm.nih.gov/PMC5642679
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Colorado Digital library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (WRLC)
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250401
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cILYsCgMJBBCA1VKWmc2MljNXVUo5Q-dKhvUeIktFKVjLUBif_If-Iudpy0jAl4iarEdd3cl7vz5e47Ql4HvsxSN8gsL3JTy5VJYgVgRq2M2YG0s9jzqlqYj1M-vnQvFt6i0_nZyloqt3Ff_rixruR_pArnQK5YJfsPkjWTwgn4DPKFI0gYjn8l42GJtAAR1u5h9B-TesF_rEi88wRLq9YYD8fYfA_c7S-5SSiv3L5CczQgALCU7FqFOYw2rHLae9m6-N72YGfG4m3q_IJpHVAcNuUpWmdselZvNm2aHX9e6R7WoN6tsyp1vYHWB1hwUWYrXUNUlFHzzh8j7EUJDr4KwCapyQyZFYAdNetFsYxy_R0dyQDriIkhdpPoccti2yrcAbPqqsLrfqq0Njg9FndV31Gj1lVxqsavYtfSWnrkc9Wu5Tf7AQoPmx7n0aY_ELgXZvU0O0zd00_h-eVkEs5Hi_mbq68WNjHDl_26o8sBueMIzrGhxvvFoMUB7auKKP0PaqYpwd7t_eKOk3SwxBRdlS170z5oP5235R_N75N7emNDhwqlR6ST5g_IUX1n6anmN3_7kCwNbOlqQ2vYUoAtbcGWImypgS0F2NJ92NIKtnQHtrSCLUXYPiKX56P52djSDT8s6blsa_F44EjPdtKUydgBE55F4E0mmT_gQeQw2GlEkZQ2l1IKGTgZnGHCkYntJoHwPc6OyWFe5OkTQn0eBRi8SGOZuqCNYukz5ieZcOyUxdztkn59h0Op2fCxKcs6rLIyBAtRJGEjki45NV-4UkQwfx76CkRmRiGB-3g4CfGczRgHHz74NuiS40qiZhimmvrCcbrkpBZxqHUNTB4IpE0SntclL81lsAQoC3gYixLHuMJGewpjHitENJP7AdJWwRWxg5WdRe5eyVfLim3e4-DEi-Dp7ct6Ru42j_QJOdxel-lzcNe38YvqIfgF0YLyiw
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+is+required+for+endothelial+cell+alignment+and+atheroprotection+under+physiological+blood+flow&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vion%2C+Anne-Clemence&rft.au=Kheloufi%2C+Marouane&rft.au=Hammoutene%2C+Adel&rft.au=Poisson%2C+Johanne&rft.date=2017-10-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=41&rft.spage=E8675&rft_id=info:doi/10.1073%2Fpnas.1702223114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon