Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow
It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms hav...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 114; no. 41; pp. E8675 - E8684 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
10.10.2017
|
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1702223114 |
Cover
Abstract | It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins tomaintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. |
---|---|
AbstractList | Atherosclerotic plaques tend to develop preferentially in areas of the vasculature exposed to low and disturbed shear stress (SS), but the mechanisms are not fully understood. In this study, we demonstrate that inefficient autophagy contributes to the development of atherosclerotic plaques in low-SS areas. Defective endothelial autophagy not only curbs endothelial alignment with the direction of blood flow, but also promotes an inflammatory, apoptotic, and senescent phenotype. Furthermore, genetic inactivation of endothelial autophagy in a murine model of atherosclerosis increases plaque burden exclusively in high-SS areas that are normally resistant to atherosclerotic plaque development. Altogether, these findings underline the role of endothelial autophagic flux activation by SS as an atheroprotective mechanism. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. Atherosclerotic plaques tend to develop preferentially in areas of the vasculature exposed to low and disturbed shear stress (SS), but the mechanisms are not fully understood. In this study, we demonstrate that inefficient autophagy contributes to the development of atherosclerotic plaques in low-SS areas. Defective endothelial autophagy not only curbs endothelial alignment with the direction of blood flow, but also promotes an inflammatory, apoptotic, and senescent phenotype. Furthermore, genetic inactivation of endothelial autophagy in a murine model of atherosclerosis increases plaque burden exclusively in high-SS areas that are normally resistant to atherosclerotic plaque development. Altogether, these findings underline the role of endothelial autophagic flux activation by SS as an atheroprotective mechanism. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKa inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α--induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation.It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins to maintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α-induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory, apoptotic, and senescent endothelial phenotype. Conversely, areas exposed to high SS are protected from plaque development, but the mechanisms have remained elusive. Autophagy is a protective mechanism that allows recycling of defective organelles and proteins tomaintain cellular homeostasis. We aimed to understand the role of endothelial autophagy in the atheroprotective effect of high SS. Atheroprotective high SS stimulated endothelial autophagic flux in human and murine arteries. On the contrary, endothelial cells exposed to atheroprone low SS were characterized by inefficient autophagy as a result of mammalian target of rapamycin (mTOR) activation, AMPKα inhibition, and blockade of the autophagic flux. In hypercholesterolemic mice, deficiency in endothelial autophagy increased plaque burden only in the atheroresistant areas exposed to high SS; plaque size was unchanged in atheroprone areas, in which endothelial autophagy flux is already blocked. In cultured cells and in transgenic mice, deficiency in endothelial autophagy was characterized by defects in endothelial alignment with flow direction, a hallmark of endothelial cell health. This effect was associated with an increase in endothelial apoptosis and senescence in high-SS regions. Deficiency in endothelial autophagy also increased TNF-α–induced inflammation under high-SS conditions and decreased expression of the antiinflammatory factor KLF-2. Altogether, these results show that adequate endothelial autophagic flux under high SS limits atherosclerotic plaque formation by preventing endothelial apoptosis, senescence, and inflammation. |
Author | Dupont, Nicolas Pic, Isabelle Lafaurie-Janvore, Julie Boulanger, Chantal M. Souyri, Michele Codogno, Patrice Hammoutene, Adel Busse, Johanna Kheloufi, Marouane Barakat, Abdul I. Julia, Pierre Viollet, Benoit Loyer, Xavier Rautou, Pierre-Emmanuel Vion, Anne-Clemence Lasselin, Juliette Poisson, Johanne Tedgui, Alain Devue, Cecile Stark, Konstantin |
Author_xml | – sequence: 1 givenname: Anne-Clemence surname: Vion fullname: Vion, Anne-Clemence organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 2 givenname: Marouane surname: Kheloufi fullname: Kheloufi, Marouane organization: Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France – sequence: 3 givenname: Adel surname: Hammoutene fullname: Hammoutene, Adel organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 4 givenname: Johanne surname: Poisson fullname: Poisson, Johanne organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 5 givenname: Juliette surname: Lasselin fullname: Lasselin, Juliette organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 6 givenname: Cecile surname: Devue fullname: Devue, Cecile organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 7 givenname: Isabelle surname: Pic fullname: Pic, Isabelle organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 8 givenname: Nicolas surname: Dupont fullname: Dupont, Nicolas organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 9 givenname: Johanna surname: Busse fullname: Busse, Johanna organization: Medizinische Klinik I, Klinikum der Universität München, 81377 Munich, Germany – sequence: 10 givenname: Konstantin surname: Stark fullname: Stark, Konstantin organization: Medizinische Klinik I, Klinikum der Universität München, 81377 Munich, Germany – sequence: 11 givenname: Julie surname: Lafaurie-Janvore fullname: Lafaurie-Janvore, Julie organization: Mechanics & Living Systems, Cardiovascular Cellular Engineering, Laboratoire d’Hydrodynamique, Ecole Polytechnique, UMR 7646, 91128 Palaiseau, France – sequence: 12 givenname: Abdul I. surname: Barakat fullname: Barakat, Abdul I. organization: Mechanics & Living Systems, Cardiovascular Cellular Engineering, Laboratoire d’Hydrodynamique, Ecole Polytechnique, UMR 7646, 91128 Palaiseau, France – sequence: 13 givenname: Xavier surname: Loyer fullname: Loyer, Xavier organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 14 givenname: Michele surname: Souyri fullname: Souyri, Michele organization: INSERM UMR_S1131/IHU/Université Paris Diderot, 75013 Paris, France – sequence: 15 givenname: Benoit surname: Viollet fullname: Viollet, Benoit organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 16 givenname: Pierre surname: Julia fullname: Julia, Pierre organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 17 givenname: Alain surname: Tedgui fullname: Tedgui, Alain organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 18 givenname: Patrice surname: Codogno fullname: Codogno, Patrice organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 19 givenname: Chantal M. surname: Boulanger fullname: Boulanger, Chantal M. organization: Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France – sequence: 20 givenname: Pierre-Emmanuel surname: Rautou fullname: Rautou, Pierre-Emmanuel organization: Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28973855$$D View this record in MEDLINE/PubMed https://nantes-universite.hal.science/hal-03367419$$DView record in HAL |
BookMark | eNp9kr1vEzEYxi1URNPCzASyxAJDWn_7vFSKKqBIkVhgthyfL-fIsa_2XVH-e3xKaSEDk6XXv-d5Py_AWUzRAfAWoyuMJL0eoilXWCJCCMWYvQALjBReCqbQGVggROSyYYSdg4tSdgghxRv0CpyTRknacL4A_Woa09Cb7QH6ArO7n3x2LexShi62aexd8CZA60KAJvht3Ls4QhNbaOpfTkNOo7OjTxFOsXUZDv2h-BTS1tuq24SUqltIv16Dl50Jxb15fC_Bzy-ff9zeLdffv367Xa2XljM6LsUGE8sRcY7aDWFCdqbhtO0aLJQhlBJhjLVIWGulVaSrESqJbRFrlWy4oJfg5ug7TJu9a20tN5ugh-z3Jh90Ml7_-xN9r7fpQXPBiJCqGnw6GvQnsrvVWs8xRKmQDKsHXNmPj8lyup9cGfXel3lWJro0FY0Vk0iJOuqKfjhBd2nKsY6iUhLV9iSfqfd_V_-U_8_CKnB9BGxOpWTXPSEY6fkk9HwS-vkkqoKfKKwfzbyx2r4P_9G9O-p2ZUz5uRLBmkZW5jddjsXg |
CitedBy_id | crossref_primary_10_1186_s12951_023_02248_9 crossref_primary_10_1007_s00018_018_2987_5 crossref_primary_10_1007_s13105_024_01039_6 crossref_primary_10_3389_fcell_2024_1446964 crossref_primary_10_1007_s10557_022_07414_z crossref_primary_10_1177_0271678X241245557 crossref_primary_10_3389_fphar_2021_647350 crossref_primary_10_1096_fj_202002790RR crossref_primary_10_31083_j_rcm2403081 crossref_primary_10_1007_s00395_020_0802_6 crossref_primary_10_1038_s41418_019_0287_8 crossref_primary_10_1111_jcmm_15476 crossref_primary_10_3390_ijms25116047 crossref_primary_10_1080_15384101_2024_2344943 crossref_primary_10_1007_s10237_022_01632_y crossref_primary_10_1161_ATVBAHA_120_314291 crossref_primary_10_1242_jcs_258589 crossref_primary_10_1007_s12072_023_10606_w crossref_primary_10_1007_s11883_025_01291_1 crossref_primary_10_1186_s13287_018_1060_5 crossref_primary_10_1186_s12916_020_01749_w crossref_primary_10_3390_antiox10030387 crossref_primary_10_3389_fcvm_2021_733248 crossref_primary_10_1161_ATVBAHA_120_314975 crossref_primary_10_7570_jomes21096 crossref_primary_10_1016_j_bbamcr_2021_118969 crossref_primary_10_1016_j_niox_2024_04_002 crossref_primary_10_1111_eci_14199 crossref_primary_10_3390_cells10030625 crossref_primary_10_1161_CIRCRESAHA_119_315248 crossref_primary_10_1126_scitranslmed_aaz2294 crossref_primary_10_3389_fcvm_2022_831847 crossref_primary_10_1186_s13578_019_0327_6 crossref_primary_10_1161_ATVBAHA_123_319978 crossref_primary_10_1155_2018_7687083 crossref_primary_10_1007_s11684_022_0931_4 crossref_primary_10_1161_ATVBAHA_119_313692 crossref_primary_10_1111_apha_13757 crossref_primary_10_15252_embr_201948192 crossref_primary_10_3390_cells7100149 crossref_primary_10_3389_fphys_2024_1464678 crossref_primary_10_3389_fphar_2023_1083875 crossref_primary_10_1002_1873_3468_14744 crossref_primary_10_1155_2020_8345246 crossref_primary_10_1080_02648725_2023_2193061 crossref_primary_10_1161_CIRCRESAHA_117_312500 crossref_primary_10_1161_ATVBAHA_120_314944 crossref_primary_10_1038_s41419_020_02849_4 crossref_primary_10_18632_aging_103786 crossref_primary_10_1038_s41419_020_2602_1 crossref_primary_10_1038_s41569_022_00680_2 crossref_primary_10_1186_s12950_019_0212_4 crossref_primary_10_1161_ATVBAHA_123_319283 crossref_primary_10_1016_j_biopha_2019_108866 crossref_primary_10_1080_27694127_2022_2119743 crossref_primary_10_1016_j_phrs_2020_105169 crossref_primary_10_1016_j_isci_2024_111406 crossref_primary_10_1111_febs_15143 crossref_primary_10_20900_immunometab20210020 crossref_primary_10_1093_cvr_cvac061 crossref_primary_10_1161_ATVBAHA_120_314159 crossref_primary_10_1016_j_mito_2020_12_013 crossref_primary_10_3390_ijms20174132 crossref_primary_10_1016_j_jbiomech_2021_110917 crossref_primary_10_1016_j_pharmthera_2019_107430 crossref_primary_10_4049_jimmunol_2100050 crossref_primary_10_1161_JAHA_124_037460 crossref_primary_10_1161_CIRCRESAHA_118_314032 crossref_primary_10_1016_j_immuni_2021_07_012 crossref_primary_10_3390_ijms252011188 crossref_primary_10_3892_etm_2023_12053 crossref_primary_10_12677_ACM_2022_12121632 crossref_primary_10_1016_j_yexcr_2024_114071 crossref_primary_10_3892_etm_2019_8317 crossref_primary_10_3389_fcell_2021_782736 crossref_primary_10_1111_jnc_15721 crossref_primary_10_1111_jre_13069 crossref_primary_10_1002_adma_201904476 crossref_primary_10_3390_biomedicines10050992 crossref_primary_10_1002_jev2_12414 crossref_primary_10_3389_fcell_2021_809955 crossref_primary_10_4103_cjp_cjp_84_21 crossref_primary_10_15252_embj_2021108863 crossref_primary_10_3389_fcell_2020_602901 crossref_primary_10_1159_000537772 crossref_primary_10_1007_s00018_023_04859_9 crossref_primary_10_1021_acsbiomaterials_9b01067 crossref_primary_10_1002_adhm_202401150 crossref_primary_10_1016_j_vph_2024_107368 crossref_primary_10_14814_phy2_14058 crossref_primary_10_3390_ijms21082685 crossref_primary_10_3389_fimmu_2022_902945 crossref_primary_10_3389_fphar_2024_1445349 crossref_primary_10_15252_embr_202357042 crossref_primary_10_3389_fcell_2022_1046248 crossref_primary_10_18632_aging_102183 crossref_primary_10_1083_jcb_202305005 crossref_primary_10_1016_j_biopha_2022_114198 crossref_primary_10_3390_cells9030687 crossref_primary_10_1161_CIRCULATIONAHA_118_034598 crossref_primary_10_1080_01478885_2024_2429855 crossref_primary_10_1016_j_biopha_2023_114333 crossref_primary_10_1016_j_vph_2022_107110 crossref_primary_10_1039_D0LC00523A crossref_primary_10_3389_fphar_2024_1393534 crossref_primary_10_2491_jjsth_35_682 crossref_primary_10_1016_j_cophys_2023_100673 crossref_primary_10_1016_j_abb_2021_109098 crossref_primary_10_4103_JMAU_JMAU_33_20 crossref_primary_10_1111_febs_15873 crossref_primary_10_3390_cells13100825 crossref_primary_10_1093_cvr_cvab158 crossref_primary_10_3389_fphys_2020_00403 crossref_primary_10_1016_j_jhep_2019_10_028 crossref_primary_10_3390_cells14030183 crossref_primary_10_1016_j_bbrc_2019_12_022 crossref_primary_10_1021_acsabm_4c00504 crossref_primary_10_1111_bph_14801 crossref_primary_10_3390_cells10092346 crossref_primary_10_1016_j_yjmcc_2019_02_014 crossref_primary_10_1038_s42003_022_03392_y crossref_primary_10_1161_CIRCULATIONAHA_124_068726 crossref_primary_10_1089_ars_2019_7817 crossref_primary_10_1098_rsos_211088 crossref_primary_10_1016_j_bbamcr_2020_118855 crossref_primary_10_1083_jcb_202109144 crossref_primary_10_1080_14728222_2020_1723079 crossref_primary_10_3390_cells12060947 crossref_primary_10_1016_j_cca_2020_10_025 crossref_primary_10_1183_13993003_00261_2020 crossref_primary_10_1161_ATVBAHA_122_318110 crossref_primary_10_1186_s12974_022_02551_6 crossref_primary_10_2491_jjsth_35_702 crossref_primary_10_1038_s41419_022_04923_5 crossref_primary_10_1042_BST20210810 crossref_primary_10_2174_0118746098260689231002044435 crossref_primary_10_1155_2023_8817431 crossref_primary_10_3390_jcdd10080352 crossref_primary_10_1083_jcb_202206033 crossref_primary_10_1016_j_actbio_2022_03_040 crossref_primary_10_1038_s41598_023_35447_3 crossref_primary_10_12997_jla_2024_13_3_292 crossref_primary_10_3390_biom14121557 crossref_primary_10_3390_biomedicines10020254 crossref_primary_10_3390_ijms251810097 crossref_primary_10_3390_ijms242015160 crossref_primary_10_3390_cells11132081 crossref_primary_10_1161_ATVBAHA_124_321332 crossref_primary_10_1111_liv_15665 crossref_primary_10_1080_14728222_2023_2177151 crossref_primary_10_1016_j_biopha_2022_113712 crossref_primary_10_1038_s41419_020_2343_1 crossref_primary_10_1016_j_isci_2021_102076 crossref_primary_10_1096_fj_202400689RR crossref_primary_10_1016_j_abb_2023_109755 crossref_primary_10_1089_ars_2021_0126 crossref_primary_10_1172_jci_insight_131092 crossref_primary_10_1038_s41419_021_03671_2 crossref_primary_10_3389_fcell_2021_658995 crossref_primary_10_1016_j_atherosclerosis_2022_07_014 crossref_primary_10_3389_fcell_2020_00034 crossref_primary_10_1002_adma_201802579 crossref_primary_10_1042_CS20181092 crossref_primary_10_1016_j_biopha_2024_116192 crossref_primary_10_1146_annurev_pharmtox_010919_023229 |
Cites_doi | 10.1161/ATVBAHA.111.243980 10.1038/nature04724 10.1126/scisignal.2000143 10.1038/cdd.2014.171 10.1152/physrev.00047.2009 10.1161/CIRCRESAHA.109.204040 10.1161/01.RES.0000259561.23876.c5 10.1038/ncb3360 10.1182/blood.V93.11.3831.411a35_3831_3838 10.1038/35025203 10.1038/cddis.2015.193 10.1161/CIRCRESAHA.114.303788 10.1111/acel.12423 10.1161/CIRCRESAHA.116.303804 10.1161/01.ATV.5.3.293 10.1074/jbc.M306205200 10.4049/jimmunol.162.5.3022 10.1161/01.CIR.0000013836.85741.17 10.1113/jphysiol.2012.229690 10.1161/CIRCULATIONAHA.112.118778 10.1083/jcb.200412022 10.1016/j.diff.2011.11.007 10.1016/j.cmet.2012.02.011 10.1182/blood-2010-03-272625 10.1016/j.ijcard.2015.01.065 10.1152/ajpheart.01047.2006 10.1016/j.jcmg.2015.04.024 10.1161/01.RES.53.4.502 10.1139/cjpp-2014-0017 10.1016/S0014-5793(96)01289-6 10.1002/stem.2015 10.1016/j.bbamcr.2014.07.003 10.1161/ATVBAHA.113.301826 10.1093/cvr/cvt101 10.1038/nrm2596 10.1056/NEJMra1205406 10.1161/01.ATV.0000221230.08596.98 10.1016/j.bbamcr.2013.08.023 10.1016/j.carpath.2012.06.006 10.4161/auto.8.1.18174 10.1089/ars.2014.5896 10.1016/j.jacc.2017.01.064 10.4161/auto.6.5.12112 10.4161/auto.1.1.1270 10.1038/nature03952 10.1016/j.cmet.2012.01.022 10.1007/s10439-014-1033-5 10.1161/CIRCRESAHA.116.303787 10.1161/ATVBAHA.114.303415 10.1161/01.CIR.101.21.2450 10.1089/dna.2015.3041 10.1080/15548627.2015.1100356 10.1080/15548627.2015.1096485 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Oct 10, 2017 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Oct 10, 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES 5PM |
DOI | 10.1073/pnas.1702223114 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Virology and AIDS Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Shear stress and endothelial autophagy |
EISSN | 1091-6490 |
EndPage | E8684 |
ExternalDocumentID | PMC5642679 oai_HAL_hal_03367419v1 28973855 10_1073_pnas_1702223114 26488722 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche (ANR) grantid: ANR-16-CE14-0015-01; ANR-14-CE12-0011; ANR-14-CE35-0022 – fundername: Association Française pour l'Etude du Foie (AFEF) grantid: AFEF 2014 – fundername: Fondation pour la Recherche Médicale (FRM) grantid: DPC20111122979; FDT20160435690 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES 5PM |
ID | FETCH-LOGICAL-c543t-6b12c502ee3cb2467fa853df8169a23326aacc06ccc7c92f332372cd04d978563 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Tue Sep 30 16:35:44 EDT 2025 Fri Sep 12 12:54:15 EDT 2025 Thu Sep 04 18:06:00 EDT 2025 Mon Jun 30 07:36:14 EDT 2025 Mon Jul 21 05:52:00 EDT 2025 Wed Oct 01 04:00:12 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Fri May 30 11:47:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 41 |
Keywords | atherosclerosis autophagy shear stress inflammation endothelial |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c543t-6b12c502ee3cb2467fa853df8169a23326aacc06ccc7c92f332372cd04d978563 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: A.-C.V., M.K., C.M.B., and P.-E.R. designed research; A.-C.V., M.K., A.H., J.P., J.L., C.D., I.P., J.B., K.S., J.L.-J., X.L., and C.M.B. performed research; N.D., K.S., J.L.-J., A.I.B., M.S., B.V., P.J., and P.C. contributed new reagents/analytic tools; A.-C.V., M.K., X.L., A.T., P.C., C.M.B., and P.-E.R. analyzed data; and A.-C.V., M.K., A.T., P.C., C.M.B., and P.-E.R. wrote the paper. 1A.-C.V. and M.K. contributed equally to this work. Edited by Beth Levine, The University of Texas Southwestern Medical Center, Dallas, TX, and approved August 23, 2017 (received for review February 10, 2017) 2C.M.B. and P.-E.R. contributed equally to this work. |
ORCID | 0000-0002-3687-651X 0000-0002-2411-4497 0000-0003-4294-3608 0000-0002-7551-3631 0000-0001-9567-1859 0000-0002-5492-3180 0000-0002-2788-2512 0000-0002-0121-0224 |
OpenAccessLink | https://nantes-universite.hal.science/hal-03367419 |
PMID | 28973855 |
PQID | 1970169755 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5642679 hal_primary_oai_HAL_hal_03367419v1 proquest_miscellaneous_1947096385 proquest_journals_1970169755 pubmed_primary_28973855 crossref_primary_10_1073_pnas_1702223114 crossref_citationtrail_10_1073_pnas_1702223114 jstor_primary_26488722 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-10-10 |
PublicationDateYYYYMMDD | 2017-10-10 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2017 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 Duncan GS (e_1_3_3_53_2) 1999; 162 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 22440612 - Cell Metab. 2012 Apr 4;15(4):534-44 25826782 - Stem Cells. 2015 Jul;33(7):2343-50 26780888 - Aging Cell. 2016 Feb;15(1):187-91 22539595 - Arterioscler Thromb Vasc Biol. 2012 Jul;32(7):1632-41 17272808 - Circ Res. 2007 Mar 2;100(4):564-71 26363834 - JACC Cardiovasc Imaging. 2015 Oct;8(10 ):1156-66 22818581 - Cardiovasc Pathol. 2013 Jan-Feb;22(1):9-15 8980122 - FEBS Lett. 1996 Dec 9;399(1-2):71-4 16601232 - Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1281-7 23814115 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2130-6 24838486 - Ann Biomed Eng. 2014 Sep;42(9):1978-88 24021264 - Biochim Biophys Acta. 2013 Dec;1833(12 ):3124-3133 20693433 - Blood. 2010 Nov 25;116(22):4444-55 28408026 - J Am Coll Cardiol. 2017 Apr 18;69(15):1952-1967 26716952 - DNA Cell Biol. 2016 Mar;35(3):118-23 19293429 - Sci Signal. 2009 Mar 17;2(62):ra11 22570377 - J Physiol. 2012 Jul 15;590(14):3305-16 23619421 - Cardiovasc Res. 2013 Jul 15;99(2):315-27 10339490 - Blood. 1999 Jun 1;93(11):3831-8 25697875 - Int J Cardiol. 2015 Apr 1;184:86-95 14573616 - J Biol Chem. 2004 Jan 9;279(2):1070-9 16874026 - Autophagy. 2005 Apr;1(1):1-10 22753194 - Circulation. 2012 Aug 7;126(6):729-40 26181207 - Cell Death Dis. 2015 Jul 16;6:e1827 24941409 - Can J Physiol Pharmacol. 2014 Jul;92 (7):605-12 15866887 - J Cell Biol. 2005 May 9;169(3):425-34 17098825 - Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1209-24 26120766 - Antioxid Redox Signal. 2015 Nov 20;23(15):1207-19 26391655 - Autophagy. 2015 Nov 2;11(11):2014-2032 11927518 - Circulation. 2002 Apr 2;105(13):1541-4 20458170 - Autophagy. 2010 Jul;6(5):634-41 22170153 - Autophagy. 2012 Jan;8(1):47-62 10831515 - Circulation. 2000 May 30;101(21):2450-3 24651677 - Arterioscler Thromb Vasc Biol. 2014 May;34(5):985-95 19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62 11001066 - Nature. 2000 Sep 14;407(6801):233-41 22445600 - Cell Metab. 2012 Apr 4;15(4):545-53 25038307 - Biochim Biophys Acta. 2014 Nov;1843(11):2403-13 6627609 - Circ Res. 1983 Oct;53(4):502-14 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302 25634970 - Circ Res. 2015 Jan 30;116(3):468-79 25634973 - Circ Res. 2015 Jan 30;116(3):504-14 25361082 - Cell Death Differ. 2015 Mar;22(3):389-97 19762680 - Circ Res. 2009 Oct 23;105(9):869-75 26799652 - Autophagy. 2016;12 (1):1-222 10072554 - J Immunol. 1999 Mar 1;162(5):3022-30 21248169 - Physiol Rev. 2011 Jan;91(1):327-87 23656658 - N Engl J Med. 2013 May 9;368(19):1845-6 25634969 - Circ Res. 2015 Jan 30;116(3):456-67 27214279 - Nat Cell Biol. 2016 Jun;18(6):657-67 22169885 - Differentiation. 2012 Feb;83(2):S56-61 16625204 - Nature. 2006 Jun 15;441(7095):885-9 16163360 - Nature. 2005 Sep 15;437(7057):426-31 |
References_xml | – ident: e_1_3_3_28_2 doi: 10.1161/ATVBAHA.111.243980 – ident: e_1_3_3_49_2 doi: 10.1038/nature04724 – ident: e_1_3_3_34_2 doi: 10.1126/scisignal.2000143 – ident: e_1_3_3_33_2 doi: 10.1038/cdd.2014.171 – ident: e_1_3_3_1_2 doi: 10.1152/physrev.00047.2009 – ident: e_1_3_3_45_2 doi: 10.1161/CIRCRESAHA.109.204040 – ident: e_1_3_3_26_2 doi: 10.1161/01.RES.0000259561.23876.c5 – ident: e_1_3_3_51_2 doi: 10.1038/ncb3360 – ident: e_1_3_3_5_2 doi: 10.1182/blood.V93.11.3831.411a35_3831_3838 – ident: e_1_3_3_4_2 doi: 10.1038/35025203 – ident: e_1_3_3_14_2 doi: 10.1038/cddis.2015.193 – ident: e_1_3_3_25_2 doi: 10.1161/CIRCRESAHA.114.303788 – ident: e_1_3_3_13_2 doi: 10.1111/acel.12423 – ident: e_1_3_3_41_2 doi: 10.1161/CIRCRESAHA.116.303804 – ident: e_1_3_3_23_2 doi: 10.1161/01.ATV.5.3.293 – ident: e_1_3_3_52_2 doi: 10.1074/jbc.M306205200 – volume: 162 start-page: 3022 year: 1999 ident: e_1_3_3_53_2 article-title: Genetic evidence for functional redundancy of platelet/endothelial cell adhesion molecule-1 (PECAM-1): CD31-deficient mice reveal PECAM-1-dependent and PECAM-1-independent functions publication-title: J Immunol doi: 10.4049/jimmunol.162.5.3022 – ident: e_1_3_3_8_2 doi: 10.1161/01.CIR.0000013836.85741.17 – ident: e_1_3_3_36_2 doi: 10.1113/jphysiol.2012.229690 – ident: e_1_3_3_10_2 doi: 10.1161/CIRCULATIONAHA.112.118778 – ident: e_1_3_3_50_2 doi: 10.1083/jcb.200412022 – ident: e_1_3_3_32_2 doi: 10.1016/j.diff.2011.11.007 – ident: e_1_3_3_42_2 doi: 10.1016/j.cmet.2012.02.011 – ident: e_1_3_3_48_2 doi: 10.1182/blood-2010-03-272625 – ident: e_1_3_3_18_2 doi: 10.1016/j.ijcard.2015.01.065 – ident: e_1_3_3_29_2 doi: 10.1152/ajpheart.01047.2006 – ident: e_1_3_3_44_2 doi: 10.1016/j.jcmg.2015.04.024 – ident: e_1_3_3_24_2 doi: 10.1161/01.RES.53.4.502 – ident: e_1_3_3_19_2 doi: 10.1139/cjpp-2014-0017 – ident: e_1_3_3_6_2 doi: 10.1016/S0014-5793(96)01289-6 – ident: e_1_3_3_21_2 doi: 10.1002/stem.2015 – ident: e_1_3_3_38_2 doi: 10.1016/j.bbamcr.2014.07.003 – ident: e_1_3_3_30_2 doi: 10.1161/ATVBAHA.113.301826 – ident: e_1_3_3_11_2 doi: 10.1093/cvr/cvt101 – ident: e_1_3_3_3_2 doi: 10.1038/nrm2596 – ident: e_1_3_3_12_2 doi: 10.1056/NEJMra1205406 – ident: e_1_3_3_27_2 doi: 10.1161/01.ATV.0000221230.08596.98 – ident: e_1_3_3_15_2 doi: 10.1016/j.bbamcr.2013.08.023 – ident: e_1_3_3_2_2 doi: 10.1016/j.carpath.2012.06.006 – ident: e_1_3_3_37_2 doi: 10.4161/auto.8.1.18174 – ident: e_1_3_3_16_2 doi: 10.1089/ars.2014.5896 – ident: e_1_3_3_39_2 doi: 10.1016/j.jacc.2017.01.064 – ident: e_1_3_3_47_2 doi: 10.4161/auto.6.5.12112 – ident: e_1_3_3_46_2 doi: 10.4161/auto.1.1.1270 – ident: e_1_3_3_31_2 doi: 10.1038/nature03952 – ident: e_1_3_3_43_2 doi: 10.1016/j.cmet.2012.01.022 – ident: e_1_3_3_17_2 doi: 10.1007/s10439-014-1033-5 – ident: e_1_3_3_35_2 doi: 10.1161/CIRCRESAHA.116.303787 – ident: e_1_3_3_9_2 doi: 10.1161/ATVBAHA.114.303415 – ident: e_1_3_3_7_2 doi: 10.1161/01.CIR.101.21.2450 – ident: e_1_3_3_20_2 doi: 10.1089/dna.2015.3041 – ident: e_1_3_3_22_2 doi: 10.1080/15548627.2015.1100356 – ident: e_1_3_3_40_2 doi: 10.1080/15548627.2015.1096485 – reference: 23814115 - Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2130-6 – reference: 22570377 - J Physiol. 2012 Jul 15;590(14):3305-16 – reference: 24838486 - Ann Biomed Eng. 2014 Sep;42(9):1978-88 – reference: 11001066 - Nature. 2000 Sep 14;407(6801):233-41 – reference: 26363834 - JACC Cardiovasc Imaging. 2015 Oct;8(10 ):1156-66 – reference: 25826782 - Stem Cells. 2015 Jul;33(7):2343-50 – reference: 23656658 - N Engl J Med. 2013 May 9;368(19):1845-6 – reference: 26391655 - Autophagy. 2015 Nov 2;11(11):2014-2032 – reference: 26780888 - Aging Cell. 2016 Feb;15(1):187-91 – reference: 22170153 - Autophagy. 2012 Jan;8(1):47-62 – reference: 22753194 - Circulation. 2012 Aug 7;126(6):729-40 – reference: 25361082 - Cell Death Differ. 2015 Mar;22(3):389-97 – reference: 10072554 - J Immunol. 1999 Mar 1;162(5):3022-30 – reference: 26716952 - DNA Cell Biol. 2016 Mar;35(3):118-23 – reference: 24651677 - Arterioscler Thromb Vasc Biol. 2014 May;34(5):985-95 – reference: 14573616 - J Biol Chem. 2004 Jan 9;279(2):1070-9 – reference: 10339490 - Blood. 1999 Jun 1;93(11):3831-8 – reference: 28408026 - J Am Coll Cardiol. 2017 Apr 18;69(15):1952-1967 – reference: 27214279 - Nat Cell Biol. 2016 Jun;18(6):657-67 – reference: 17098825 - Am J Physiol Heart Circ Physiol. 2007 Mar;292(3):H1209-24 – reference: 25634970 - Circ Res. 2015 Jan 30;116(3):468-79 – reference: 20458170 - Autophagy. 2010 Jul;6(5):634-41 – reference: 19293429 - Sci Signal. 2009 Mar 17;2(62):ra11 – reference: 11927518 - Circulation. 2002 Apr 2;105(13):1541-4 – reference: 22445600 - Cell Metab. 2012 Apr 4;15(4):545-53 – reference: 19197332 - Nat Rev Mol Cell Biol. 2009 Jan;10(1):53-62 – reference: 16601232 - Arterioscler Thromb Vasc Biol. 2006 Jun;26(6):1281-7 – reference: 6627609 - Circ Res. 1983 Oct;53(4):502-14 – reference: 26181207 - Cell Death Dis. 2015 Jul 16;6:e1827 – reference: 23619421 - Cardiovasc Res. 2013 Jul 15;99(2):315-27 – reference: 26120766 - Antioxid Redox Signal. 2015 Nov 20;23(15):1207-19 – reference: 25038307 - Biochim Biophys Acta. 2014 Nov;1843(11):2403-13 – reference: 26799652 - Autophagy. 2016;12 (1):1-222 – reference: 22440612 - Cell Metab. 2012 Apr 4;15(4):534-44 – reference: 24021264 - Biochim Biophys Acta. 2013 Dec;1833(12 ):3124-3133 – reference: 20693433 - Blood. 2010 Nov 25;116(22):4444-55 – reference: 19762680 - Circ Res. 2009 Oct 23;105(9):869-75 – reference: 16163360 - Nature. 2005 Sep 15;437(7057):426-31 – reference: 22539595 - Arterioscler Thromb Vasc Biol. 2012 Jul;32(7):1632-41 – reference: 8980122 - FEBS Lett. 1996 Dec 9;399(1-2):71-4 – reference: 25634973 - Circ Res. 2015 Jan 30;116(3):504-14 – reference: 15866887 - J Cell Biol. 2005 May 9;169(3):425-34 – reference: 17272808 - Circ Res. 2007 Mar 2;100(4):564-71 – reference: 16874026 - Autophagy. 2005 Apr;1(1):1-10 – reference: 3994585 - Arteriosclerosis. 1985 May-Jun;5(3):293-302 – reference: 24941409 - Can J Physiol Pharmacol. 2014 Jul;92 (7):605-12 – reference: 21248169 - Physiol Rev. 2011 Jan;91(1):327-87 – reference: 25634969 - Circ Res. 2015 Jan 30;116(3):456-67 – reference: 16625204 - Nature. 2006 Jun 15;441(7095):885-9 – reference: 25697875 - Int J Cardiol. 2015 Apr 1;184:86-95 – reference: 22818581 - Cardiovasc Pathol. 2013 Jan-Feb;22(1):9-15 – reference: 22169885 - Differentiation. 2012 Feb;83(2):S56-61 – reference: 10831515 - Circulation. 2000 May 30;101(21):2450-3 |
SSID | ssj0009580 |
Score | 2.6115553 |
Snippet | It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to lowSS and are characterized by a proinflammatory,... Atherosclerotic plaques tend to develop preferentially in areas of the vasculature exposed to low and disturbed shear stress (SS), but the mechanisms are not... It has been known for some time that atherosclerotic lesions preferentially develop in areas exposed to low SS and are characterized by a proinflammatory,... |
SourceID | pubmedcentral hal proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E8675 |
SubjectTerms | Alignment Apoptosis Arteries Arteriosclerosis Atherosclerosis Biological Sciences Blood flow Cardiology and cardiovascular system Cellular Biology Endothelial cells Endothelium Exposure Fluctuations Flux Homeostasis Human health and pathology Inflammation Lesions Life Sciences Mice Organelles Phagocytosis PNAS Plus Proteins Rapamycin Senescence Shear stress TOR protein Transgenic mice Tumor necrosis factor-α |
Title | Autophagy is required for endothelial cell alignment and atheroprotection under physiological blood flow |
URI | https://www.jstor.org/stable/26488722 https://www.ncbi.nlm.nih.gov/pubmed/28973855 https://www.proquest.com/docview/1970169755 https://www.proquest.com/docview/1947096385 https://nantes-universite.hal.science/hal-03367419 https://pubmed.ncbi.nlm.nih.gov/PMC5642679 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Colorado Digital library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (WRLC) customDbUrl: eissn: 1091-6490 dateEnd: 20250401 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELa68cILYsCgMJBBCA1VKWmc2MljNXVUo5Q-dKhvUeIktFKVjLUBif_If-Iudpy0jAl4iarEdd3cl7vz5e47Ql4HvsxSN8gsL3JTy5VJYgVgRq2M2YG0s9jzqlqYj1M-vnQvFt6i0_nZyloqt3Ff_rixruR_pArnQK5YJfsPkjWTwgn4DPKFI0gYjn8l42GJtAAR1u5h9B-TesF_rEi88wRLq9YYD8fYfA_c7S-5SSiv3L5CczQgALCU7FqFOYw2rHLae9m6-N72YGfG4m3q_IJpHVAcNuUpWmdselZvNm2aHX9e6R7WoN6tsyp1vYHWB1hwUWYrXUNUlFHzzh8j7EUJDr4KwCapyQyZFYAdNetFsYxy_R0dyQDriIkhdpPoccti2yrcAbPqqsLrfqq0Njg9FndV31Gj1lVxqsavYtfSWnrkc9Wu5Tf7AQoPmx7n0aY_ELgXZvU0O0zd00_h-eVkEs5Hi_mbq68WNjHDl_26o8sBueMIzrGhxvvFoMUB7auKKP0PaqYpwd7t_eKOk3SwxBRdlS170z5oP5235R_N75N7emNDhwqlR6ST5g_IUX1n6anmN3_7kCwNbOlqQ2vYUoAtbcGWImypgS0F2NJ92NIKtnQHtrSCLUXYPiKX56P52djSDT8s6blsa_F44EjPdtKUydgBE55F4E0mmT_gQeQw2GlEkZQ2l1IKGTgZnGHCkYntJoHwPc6OyWFe5OkTQn0eBRi8SGOZuqCNYukz5ieZcOyUxdztkn59h0Op2fCxKcs6rLIyBAtRJGEjki45NV-4UkQwfx76CkRmRiGB-3g4CfGczRgHHz74NuiS40qiZhimmvrCcbrkpBZxqHUNTB4IpE0SntclL81lsAQoC3gYixLHuMJGewpjHitENJP7AdJWwRWxg5WdRe5eyVfLim3e4-DEi-Dp7ct6Ru42j_QJOdxel-lzcNe38YvqIfgF0YLyiw |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+is+required+for+endothelial+cell+alignment+and+atheroprotection+under+physiological+blood+flow&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Vion%2C+Anne-Clemence&rft.au=Kheloufi%2C+Marouane&rft.au=Hammoutene%2C+Adel&rft.au=Poisson%2C+Johanne&rft.date=2017-10-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=114&rft.issue=41&rft.spage=E8675&rft_id=info:doi/10.1073%2Fpnas.1702223114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |