Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders
Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestim...
        Saved in:
      
    
          | Published in | Human brain mapping Vol. 40; no. 11; pp. 3143 - 3152 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, USA
          John Wiley & Sons, Inc
    
        01.08.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1065-9471 1097-0193 1097-0193  | 
| DOI | 10.1002/hbm.24588 | 
Cover
| Abstract | Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6–89 years of age) from multiple shared datasets, we show this bias is neither data‐dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi‐modal neuroimaging data (N = 804; 8–21 years of age) for both healthy controls and post‐traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort. | 
    
|---|---|
| AbstractList | Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6–89 years of age) from multiple shared datasets, we show this bias is neither data‐dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi‐modal neuroimaging data (N = 804; 8–21 years of age) for both healthy controls and post‐traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort. Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long-standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6-89 years of age) from multiple shared datasets, we show this bias is neither data-dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi-modal neuroimaging data (N = 804; 8-21 years of age) for both healthy controls and post-traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long-standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6-89 years of age) from multiple shared datasets, we show this bias is neither data-dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi-modal neuroimaging data (N = 804; 8-21 years of age) for both healthy controls and post-traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort. Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset ( N = 2,026; 6–89 years of age) from multiple shared datasets, we show this bias is neither data‐dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi‐modal neuroimaging data ( N = 804; 8–21 years of age) for both healthy controls and post‐traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.  | 
    
| Audience | Academic | 
    
| Author | Niu, Xin Liang, Hualou Zhang, Fengqing  | 
    
| AuthorAffiliation | 1 School of Biomedical Engineering, Science & Health Systems Drexel University Philadelphia Pennsylvania 2 Department of Psychology Drexel University Philadelphia Pennsylvania  | 
    
| AuthorAffiliation_xml | – name: 2 Department of Psychology Drexel University Philadelphia Pennsylvania – name: 1 School of Biomedical Engineering, Science & Health Systems Drexel University Philadelphia Pennsylvania  | 
    
| Author_xml | – sequence: 1 givenname: Hualou orcidid: 0000-0002-3805-1837 surname: Liang fullname: Liang, Hualou email: hualou.liang@drexel.edu organization: Drexel University – sequence: 2 givenname: Fengqing surname: Zhang fullname: Zhang, Fengqing organization: Drexel University – sequence: 3 givenname: Xin surname: Niu fullname: Niu, Xin organization: Drexel University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30924225$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9ks1u1DAUhS1URNuBBS-AIrEBpExt58fxplKpgFYqYgNry3HsjEtiBzvpaHY8As_Ik3DTFEorqCIllv2d43tP7iHac95phJ4TvCYY06NN3a9pXlTVI3RAMGcpJjzbm9dlkfKckX10GOMlxoQUmDxB-xnmNKe0OEBfz92VjqNt5Whdm8RdHHUPa5XUVsbEuqQOEt6y1cnMzWfeJVs7bhI5DJ1Vy8bok8HH8ef3H2OQ0-IQx6BjTBobfWh0iE_RYyO7qJ_dfFfoy_t3n0_P0otPH85PTy5SVeRZlTYkz_Imy2pFpal5mTGeZ6bCFButeM5l3RjFuGGlMSXhnNYAG2Ik43U5K1fozeI7uUHutrLrxBCg8rATBIs5MQGJievEAD5e4GGqe90o7aCBW4GXVtw9cXYjWn8lyqosGCZg8OrGIPhvE2QkehuV7jrptJ-ioBRjxkhVMEBf3kMv_RQcZAFUXtIMfkl5S7Wy08I64-FeNZuKE0ZwwQsCgazQ-h8UPI3urYL5MBb27whe_N3onw5_zwIArxdABR9j0ObB1I7uscqO15MAVdjuIcUW6tr931qcvf24KH4Br9nkzg | 
    
| CitedBy_id | crossref_primary_10_1002_hbm_25792 crossref_primary_10_3390_s22208077 crossref_primary_10_1016_j_neuroimage_2022_119521 crossref_primary_10_1016_j_jadohealth_2022_08_022 crossref_primary_10_1016_j_nicl_2022_102949 crossref_primary_10_1093_braincomms_fcab191 crossref_primary_10_3389_fnagi_2021_729635 crossref_primary_10_1016_j_nicl_2022_103239 crossref_primary_10_1111_add_16088 crossref_primary_10_1016_j_bpsc_2020_07_014 crossref_primary_10_1016_j_neuroimage_2021_118036 crossref_primary_10_1162_imag_a_00245 crossref_primary_10_3389_fgene_2022_1031806 crossref_primary_10_1109_TMI_2022_3231730 crossref_primary_10_1093_cercor_bhaa161 crossref_primary_10_1002_hbm_25660 crossref_primary_10_1038_s41598_023_42414_5 crossref_primary_10_1089_neu_2020_7551 crossref_primary_10_1057_s41599_023_01999_y crossref_primary_10_3389_fnrgo_2024_1340732 crossref_primary_10_1002_elps_8133 crossref_primary_10_3174_ajnr_A8059 crossref_primary_10_1002_sim_9553 crossref_primary_10_1186_s13229_023_00573_2 crossref_primary_10_1093_cercor_bhab019 crossref_primary_10_1093_cercor_bhab530 crossref_primary_10_1080_02699052_2022_2033844 crossref_primary_10_1002_hbm_26144 crossref_primary_10_1016_j_neuroimage_2023_119947 crossref_primary_10_1016_j_nicl_2022_103301 crossref_primary_10_3389_fpsyt_2021_598518 crossref_primary_10_1109_TMI_2021_3085948 crossref_primary_10_3390_math11051229 crossref_primary_10_3389_fneur_2020_00244 crossref_primary_10_3389_fpsyt_2021_615754 crossref_primary_10_1038_s41598_023_42354_0 crossref_primary_10_1002_hbm_25680 crossref_primary_10_1093_cercor_bhad331 crossref_primary_10_1002_hbm_25323 crossref_primary_10_1002_brb3_2413 crossref_primary_10_1016_j_neuroimage_2022_119415 crossref_primary_10_1093_schizbullopen_sgac030 crossref_primary_10_3389_fninf_2024_1496143 crossref_primary_10_1007_s00401_023_02636_3 crossref_primary_10_1016_j_neurobiolaging_2020_03_014 crossref_primary_10_1186_s13195_022_01049_w crossref_primary_10_1002_hbm_26768 crossref_primary_10_1162_imag_a_00079 crossref_primary_10_1002_hbm_25837 crossref_primary_10_1038_s43588_024_00659_8 crossref_primary_10_1002_aur_70008 crossref_primary_10_1093_cercor_bhac490 crossref_primary_10_3390_brainsci10060364 crossref_primary_10_1016_j_ebiom_2021_103600 crossref_primary_10_7554_eLife_87297_4 crossref_primary_10_1093_cercor_bhae030 crossref_primary_10_3389_fnagi_2023_1274061 crossref_primary_10_1016_j_nicl_2020_102229 crossref_primary_10_1016_j_nicl_2021_102620 crossref_primary_10_1016_j_pnpbp_2021_110471 crossref_primary_10_1038_s43587_021_00044_4 crossref_primary_10_1016_j_neuroimage_2021_117822 crossref_primary_10_1016_j_brainres_2023_148668 crossref_primary_10_1002_hbm_24899 crossref_primary_10_1016_j_neurobiolaging_2021_08_020 crossref_primary_10_3389_fnagi_2023_1303036 crossref_primary_10_1002_hbm_25748 crossref_primary_10_1093_jamia_ocac204 crossref_primary_10_1016_j_neurobiolaging_2021_10_004 crossref_primary_10_1109_TMI_2022_3161739 crossref_primary_10_1007_s11357_024_01112_4 crossref_primary_10_1016_j_neurobiolaging_2021_04_015 crossref_primary_10_3390_brainsci14121263 crossref_primary_10_1016_j_neurobiolaging_2022_02_005 crossref_primary_10_3389_fnagi_2022_941864 crossref_primary_10_1016_j_cortex_2023_11_015 crossref_primary_10_1016_j_nicl_2020_102183 crossref_primary_10_3389_fneur_2022_979774 crossref_primary_10_1017_S0954579423000676 crossref_primary_10_3389_fdata_2021_637724 crossref_primary_10_1002_hbm_25533 crossref_primary_10_1038_s41598_022_22313_x crossref_primary_10_1126_sciadv_adp3743 crossref_primary_10_1038_s41380_023_02316_4 crossref_primary_10_1016_j_neuroimage_2019_06_017 crossref_primary_10_1016_j_neuroimage_2022_119621 crossref_primary_10_3389_fpsyt_2022_966439 crossref_primary_10_2196_53564 crossref_primary_10_1016_j_neuroimage_2022_119228 crossref_primary_10_1109_RBME_2021_3107372 crossref_primary_10_1016_j_neurobiolaging_2023_09_003 crossref_primary_10_1017_S0033291723001812 crossref_primary_10_1007_s11357_023_00864_9 crossref_primary_10_7554_eLife_81869 crossref_primary_10_7554_eLife_81067 crossref_primary_10_1109_JBHI_2023_3341629 crossref_primary_10_1002_hbm_25805 crossref_primary_10_1002_hbm_25882 crossref_primary_10_3389_fnagi_2022_872867 crossref_primary_10_1016_j_jclinepi_2024_111606 crossref_primary_10_1016_j_neuroimage_2023_119911 crossref_primary_10_1097_j_pain_0000000000002818 crossref_primary_10_1111_pcn_13612 crossref_primary_10_1093_schbul_sbae074 crossref_primary_10_7554_eLife_87297 crossref_primary_10_1016_j_bpsc_2024_11_003 crossref_primary_10_1016_j_dcn_2024_101493 crossref_primary_10_1038_s41380_019_0626_7 crossref_primary_10_3389_fnagi_2019_00348 crossref_primary_10_3389_fneur_2020_584682 crossref_primary_10_1016_j_biopsych_2024_07_019 crossref_primary_10_1093_ijnp_pyac080  | 
    
| Cites_doi | 10.1093/ije/dyh299 10.1016/0021-9681(73)90013-1 10.1001/jamapsychiatry.2018.1543 10.3389/fnins.2012.00152 10.1038/nature14539 10.1016/j.neuroimage.2017.07.059 10.1007/s12021-017-9346-9 10.1016/j.neuroimage.2010.01.005 10.3389/fnagi.2018.00317 10.1016/S0140-6736(96)90410-9 10.1093/cercor/bhw157 10.1016/j.neuroimage.2012.08.001 10.1111/jcpp.12963 10.1016/j.neuroimage.2016.11.005 10.1093/oxfordjournals.aje.a112321 10.1016/j.jneumeth.2009.11.017 10.1212/WNL.0b013e318245d295 10.1016/j.neuroimage.2013.07.064 10.1002/hbm.24312 10.1126/science.1194144 10.1177/096228029700600202 10.7551/mitpress/3206.001.0001 10.1038/sdata.2014.49 10.1093/cercor/bht425 10.1038/mp.2013.78 10.1073/pnas.200033797 10.1016/j.tins.2017.10.001 10.32470/CCN.2018.1121-0 10.2307/2529681 10.1023/B:STCO.0000035301.49549.88 10.1002/ana.24367  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Wiley Periodicals, Inc. COPYRIGHT 2019 John Wiley & Sons, Inc.  | 
    
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1002/hbm.24588 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| DocumentTitleAlternate | Liang et al | 
    
| EISSN | 1097-0193 | 
    
| EndPage | 3152 | 
    
| ExternalDocumentID | 10.1002/hbm.24588 PMC6865701 A710595194 30924225 10_1002_hbm_24588 HBM24588  | 
    
| Genre | technicalNote Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: Philadelphia Neurodevelopmental Cohort funderid: RC2MH089924; RC2MH089983 – fundername: Philadelphia Neurodevelopmental Cohort grantid: RC2MH089924 – fundername: Philadelphia Neurodevelopmental Cohort grantid: RC2MH089983 – fundername: Philadelphia Neurodevelopmental Cohort grantid: RC2MH089924; RC2MH089983  | 
    
| GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAYCA AAZKR ABCQN ABCUV ABIJN ABIVO ABPVW ACCFJ ACGFS ACIWK ACPOU ACPRK ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HBH HHY HHZ HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K ROL RPM RWD RWI RX1 RYL SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT .Y3 31~ 7X7 8FI 8FJ AAFWJ AAMMB AANHP AAYXX ABEML ABJNI ABUWG ACBWZ ACCMX ACRPL ACSCC ACYXJ ADNMO AEFGJ AFKRA AFPKN AGQPQ AGXDD AIDQK AIDYY AIQQE ASPBG AVWKF AZFZN BENPR CCPQU CITATION FEDTE FYUFA GAKWD HF~ HMCUK HVGLF LW6 M6M PHGZM PHGZT PUEGO RIWAO RJQFR SAMSI UKHRP WXSBR CGR CUY CVF ECM EIF NPM 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c5438-d1434d33bc2afb9637943f8020fec949abdfc79f76ff61992bd33f1fa79b634d3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 1065-9471 1097-0193  | 
    
| IngestDate | Sun Oct 26 04:13:58 EDT 2025 Tue Sep 30 16:03:08 EDT 2025 Thu Oct 02 12:12:10 EDT 2025 Tue Oct 07 06:05:54 EDT 2025 Mon Oct 20 22:25:12 EDT 2025 Mon Oct 20 16:47:35 EDT 2025 Mon Jul 21 06:01:45 EDT 2025 Wed Oct 01 01:55:39 EDT 2025 Thu Apr 24 23:06:02 EDT 2025 Wed Jan 22 16:40:29 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 11 | 
    
| Keywords | PTSD machine-learning regression to the mean bias brain age prediction  | 
    
| Language | English | 
    
| License | 2019 Wiley Periodicals, Inc. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c5438-d1434d33bc2afb9637943f8020fec949abdfc79f76ff61992bd33f1fa79b634d3 | 
    
| Notes | Funding information Philadelphia Neurodevelopmental Cohort, Grant/Award Numbers: RC2MH089924, RC2MH089983 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information Philadelphia Neurodevelopmental Cohort, Grant/Award Numbers: RC2MH089924, RC2MH089983  | 
    
| ORCID | 0000-0002-3805-1837 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24588 | 
    
| PMID | 30924225 | 
    
| PQID | 2246232256 | 
    
| PQPubID | 996345 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1002_hbm_24588 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865701 proquest_miscellaneous_2200771857 proquest_journals_2246232256 gale_infotracmisc_A710595194 gale_infotracacademiconefile_A710595194 pubmed_primary_30924225 crossref_primary_10_1002_hbm_24588 crossref_citationtrail_10_1002_hbm_24588 wiley_primary_10_1002_hbm_24588_HBM24588  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 1, 2019 | 
    
| PublicationDateYYYYMMDD | 2019-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2019 text: August 1, 2019 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hoboken, USA | 
    
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: San Antonio  | 
    
| PublicationTitle | Human brain mapping | 
    
| PublicationTitleAlternate | Hum Brain Mapp | 
    
| PublicationYear | 2019 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2017; 40 2010; 329 2015; 521 2015; 77 1976; 104 2010; 187 2005 2011; 12 2003 2013; 7 1997; 6 2012; 78 2014; 86 1996; 347 2014; 1 2018; 39 2015; 25 2019; 60 1973; 26 2004; 14 2000; 97 1973; 29 2018 2016 2017; 163 2014; 19 2014 2012; 6 2018; 10 2018; 75 2016; 26 2010; 4 2017; 148 2018; 16 2005; 34 2012; 63 2010; 50 Pedregosa F. (e_1_2_6_31_1) 2011; 12 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_30_1 Twisk J. W. R. (e_1_2_6_37_1) 2003 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 Cui Z. (e_1_2_6_12_1) 2013; 7 e_1_2_6_14_1 e_1_2_6_35_1 Al Zoubi O. (e_1_2_6_3_1) 2018; 10 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_40_1 Yan C. (e_1_2_6_38_1) 2010; 4 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 Aycheh H. M. (e_1_2_6_4_1) 2018; 10 e_1_2_6_26_1  | 
    
| References_xml | – volume: 6 start-page: 152 year: 2012 article-title: The nki‐rockland sample: A model for accelerating the pace of discovery science in psychiatry publication-title: Frontiers in Neuroscience – volume: 16 start-page: 43 issue: 1 year: 2018 end-page: 49 article-title: NAPR: A cloud‐based framework for neuroanatomical age prediction publication-title: Neuroinformatics – volume: 329 start-page: 1358 issue: 5997 year: 2010 end-page: 1361 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 148 start-page: 179 year: 2017 end-page: 188 article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage – volume: 86 start-page: 544 year: 2014 end-page: 553 article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort publication-title: NeuroImage – volume: 14 start-page: 199 issue: 3 year: 2004 end-page: 222 article-title: A tutorial on support vector regression publication-title: Statistics and Computing – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 article-title: Deep learning publication-title: Nature – volume: 19 start-page: 659 year: 2014 end-page: 667 article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism publication-title: Molecular Psychiatry – volume: 50 start-page: 883 year: 2010 end-page: 892 article-title: Alzheimer's disease neuroimaging initiative. Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage – volume: 25 start-page: 1676 issue: 6 year: 2015 end-page: 1684 article-title: Imaging patterns of brain development and their relationship to cognition publication-title: Cerebral Cortex – year: 2005 – volume: 10 start-page: 317 year: 2018 article-title: Tulsa 1000 investigators. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE publication-title: Frontiers in Aging Neuroscience – volume: 10 start-page: 1 issue: 184 year: 2018 end-page: 12 article-title: Predicting age from brain EEG signals‐a machine learning approach publication-title: Frontiers in Aging Neuroscience – volume: 97 start-page: 11050 year: 2000 end-page: 11055 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2003 – volume: 34 start-page: 215 issue: 1 year: 2005 end-page: 220 article-title: Regression to the mean: What it is and how to deal with it publication-title: International Journal of Epidemiology – volume: 39 start-page: 4663 year: 2018 end-page: 4677 article-title: Structure‐function multi‐scale connectomics reveals a major role of the fronto‐striato‐thalamic circuit in brain aging publication-title: Human Brain Mapping – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – volume: 60 start-page: 216 issue: 2 year: 2019 end-page: 224 article-title: Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms publication-title: Journal of Child Psychology and Psychiatry – volume: 77 start-page: 571 year: 2015 end-page: 581 article-title: Alzheimer's disease neuroimaging initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury publication-title: Annals of Neurology – year: 2016 – volume: 104 start-page: 493 year: 1976 end-page: 498 article-title: The effect of regression to the mean in epidemiologic and clinical studies publication-title: American Journal of Epidemiology – year: 2014 – volume: 63 start-page: 1305 issue: 3 year: 2012 end-page: 1312 article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI publication-title: NeuroImage – volume: 26 start-page: 3508 issue: 8 year: 2016 end-page: 3526 article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture publication-title: Cerebral Cortex – volume: 26 start-page: 781 year: 1973 end-page: 795 article-title: Some effects of within‐person variability in epidemiologic studies publication-title: Journal of Chronic Diseases – volume: 7 start-page: 1 issue: 42 year: 2013 end-page: 16 article-title: PANDA: A pipeline toolbox for analyzing brain diffusion images publication-title: Frontiers in Human Neuroscience – volume: 1 year: 2014 article-title: An open science resource for establishing reliability and reproducibility in functional connectomics publication-title: Scientific Data – volume: 75 start-page: 960 issue: 9 year: 2018 end-page: 968 article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk publication-title: JAMA Psychiatry – volume: 78 start-page: 387 year: 2012 end-page: 395 article-title: β‐Amyloid burden in healthy aging: Regional distribution and cognitive consequences publication-title: Neurology – volume: 4 start-page: 1 issue: 13 year: 2010 end-page: 7 article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Frontiers in Systems Neuroscience – volume: 347 start-page: 241 year: 1996 end-page: 243 article-title: How to deal with regression to the mean in intervention studies publication-title: Lancet – volume: 29 start-page: 121 year: 1973 end-page: 130 article-title: Regression towards the mean in uncontrolled clinical studies publication-title: Biometrics – volume: 40 start-page: 681 issue: 12 year: 2017 end-page: 690 article-title: Predicting age using neuroimaging: Innovative brain ageing biomarkers publication-title: Trends in Neurosciences – volume: 163 start-page: 115 year: 2017 end-page: 124 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage – volume: 10 start-page: 1 issue: 252 year: 2018 end-page: 14 article-title: Biological brain age prediction using cortical thickness data: A large scale cohort study publication-title: Frontiers in Aging Neuroscience – volume: 6 start-page: 103 year: 1997 end-page: 114 article-title: Regression towards the mean, historically considered publication-title: Statistical Methods in Medical Research – volume: 187 start-page: 254 year: 2010 end-page: 262 article-title: A cognitive neuroscience‐based computerized battery for efficient mea‐ surement of individual differences: Standardization and initial construct validation publication-title: Journal of Neuroscience Methods – start-page: 1121 year: 2018 – ident: e_1_2_6_5_1 doi: 10.1093/ije/dyh299 – ident: e_1_2_6_22_1 doi: 10.1016/0021-9681(73)90013-1 – volume: 4 start-page: 1 issue: 13 year: 2010 ident: e_1_2_6_38_1 article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI publication-title: Frontiers in Systems Neuroscience – ident: e_1_2_6_8_1 doi: 10.1001/jamapsychiatry.2018.1543 – ident: e_1_2_6_29_1 doi: 10.3389/fnins.2012.00152 – volume: 10 start-page: 1 issue: 184 year: 2018 ident: e_1_2_6_3_1 article-title: Predicting age from brain EEG signals‐a machine learning approach publication-title: Frontiers in Aging Neuroscience – ident: e_1_2_6_26_1 doi: 10.1038/nature14539 – ident: e_1_2_6_11_1 doi: 10.1016/j.neuroimage.2017.07.059 – ident: e_1_2_6_30_1 doi: 10.1007/s12021-017-9346-9 – volume: 10 start-page: 1 issue: 252 year: 2018 ident: e_1_2_6_4_1 article-title: Biological brain age prediction using cortical thickness data: A large scale cohort study publication-title: Frontiers in Aging Neuroscience – volume: 7 start-page: 1 issue: 42 year: 2013 ident: e_1_2_6_12_1 article-title: PANDA: A pipeline toolbox for analyzing brain diffusion images publication-title: Frontiers in Human Neuroscience – ident: e_1_2_6_21_1 doi: 10.1016/j.neuroimage.2010.01.005 – ident: e_1_2_6_25_1 doi: 10.3389/fnagi.2018.00317 – ident: e_1_2_6_39_1 doi: 10.1016/S0140-6736(96)90410-9 – ident: e_1_2_6_18_1 doi: 10.1093/cercor/bhw157 – ident: e_1_2_6_20_1 doi: 10.1016/j.neuroimage.2012.08.001 – ident: e_1_2_6_7_1 doi: 10.1111/jcpp.12963 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_6_31_1 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – ident: e_1_2_6_27_1 doi: 10.1016/j.neuroimage.2016.11.005 – ident: e_1_2_6_13_1 doi: 10.1093/oxfordjournals.aje.a112321 – ident: e_1_2_6_23_1 doi: 10.1016/j.jneumeth.2009.11.017 – ident: e_1_2_6_2_1 – ident: e_1_2_6_33_1 doi: 10.1212/WNL.0b013e318245d295 – ident: e_1_2_6_34_1 doi: 10.1016/j.neuroimage.2013.07.064 – volume-title: Applied longitudinal data analysis for epidemiology: A practical guide year: 2003 ident: e_1_2_6_37_1 – ident: e_1_2_6_6_1 doi: 10.1002/hbm.24312 – ident: e_1_2_6_16_1 doi: 10.1126/science.1194144 – ident: e_1_2_6_36_1 doi: 10.1177/096228029700600202 – ident: e_1_2_6_32_1 doi: 10.7551/mitpress/3206.001.0001 – ident: e_1_2_6_40_1 doi: 10.1038/sdata.2014.49 – ident: e_1_2_6_17_1 doi: 10.1093/cercor/bht425 – ident: e_1_2_6_14_1 doi: 10.1038/mp.2013.78 – ident: e_1_2_6_15_1 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.200033797 – ident: e_1_2_6_9_1 doi: 10.1016/j.tins.2017.10.001 – ident: e_1_2_6_28_1 doi: 10.32470/CCN.2018.1121-0 – ident: e_1_2_6_24_1 doi: 10.2307/2529681 – ident: e_1_2_6_35_1 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: e_1_2_6_10_1 doi: 10.1002/ana.24367  | 
    
| SSID | ssj0011501 | 
    
| Score | 2.6116362 | 
    
| Snippet | Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for... Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for...  | 
    
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3143 | 
    
| SubjectTerms | Adolescent Adult Age Age determination Aged Aged, 80 and over Aging Anatomy Artificial neural networks Bias Biomarkers Brain Brain - diagnostic imaging brain age prediction Brain architecture Child Chronology Datasets Disorders Evaluation Humans Learning algorithms Machine Learning Magnetic Resonance Imaging Medical imaging Mental disorders Middle Aged Nervous system diseases Neural networks Neurodevelopmental disorders Neuroimaging Neuroimaging - methods Neurology Post-traumatic stress disorder Predictions PTSD regression to the mean Stress Disorders, Post-Traumatic - diagnostic imaging Traumatic brain injury Young Adult  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1BV4K98LELbGBB5kOwl5Q2TZz6WBCrCqkrDlRaTsF2YrbablrRRGg58RP4jfwSZmw3NBUgJG6RPLYSZ_z8bM88AzxLjTZDpPWhEBEP4yLCIWVkL0x1mitDGxeKcocnJ3w8jd-eJqf-nlPKhXH6EM2GG40Mi9c0wJe5cTjvT_ejl2fqohtRruVV2OEJkvEO7ExP3o0-2DNOnoTCL7l6pDmKXGWtLbRZtzUjbePyxsS0HTR5vS6X8vKLnM_bxNbOTMc34eP6m1xAynm3rlRXf92Se_yPj74FNzxrZSPnZrfhSlHuwf6oxBX7xSV7zmwcqd2g34NrE39cvw_nGyoe5Sf2SzWaqZlcsVnJFN1QwRDTGNm5NEpGe8Ns42SdVQu2XKyqH9--Y5_UrgWX5MJyrx66ugPT4zfvX49Df7tDqJMYUTZHphbng4HSkTQKcYCk6swQ6asptIiFVLnRqTApN4ZTkKxCY9M3MhWKU8270CkXZXEALMkRt4pEGTk0cSRjbCQRfSN6RV9pk6sAjtZ_ONNe-pxu4JhnTrQ5yrBPM9unATxpTJdO7-N3Ri_ITTLCAGxHS5_KgG9DalrZKCXWitw4DuCwZYljV7eL146WeexYZSTxFxHO8gAeN8VUk-LhymJRkw3pMJGOVwD3nF82rzvo4ZoaqweQtjy2MSBF8XZJOTuzyuJ8SJFQ_QCeNr79t144sq76Z4ts_GpiH-7_U4MPYBfpqHDhlYfQqT7XxUOkfJV65If1T3OcWBk priority: 102 providerName: Unpaywall  | 
    
| Title | Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24588 https://www.ncbi.nlm.nih.gov/pubmed/30924225 https://www.proquest.com/docview/2246232256 https://www.proquest.com/docview/2200771857 https://pubmed.ncbi.nlm.nih.gov/PMC6865701 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24588  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: RPM dateStart: 19980101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1097-0193 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011501 issn: 1097-0193 databaseCode: OVEED dateStart: 19930101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0193 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0193 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011501 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UDra97NLu4q0t2oWtL05jx5eIPmVjJQxSxligg4GRZGsNTZ0w24zuaT-hv7G_ZOdIthuHbYy9BXQkbOWcT5_kcz4BvIy10kOk9S7nfuQGmY8hpUXfjVWcSk0HF5JqhyfH0XgavD8JTzbgsKmFsfoQ7YEbRYbBawpwIYuDa9HQU3ne86nOEvHXG0RmO_WxlY4iomM2W7jEuhwRuFEV6vsHbc_OWrSOyCtL0nq65K0qX4qL72I-71JasyYd3YUvzdvYVJSzXlXKnvqxJvT4n697D-7UXJWNrHPdh40s34LtUY779PML9oqZ7FFzLL8FNyf1R_ptOFvR7si_smutaCZnomCznEm6l4IhkjGys8WTjE6E2cr3dFYu2HJRlFc_L3E-KjuCLW1haa0ZWjyA6dG7T2_Hbn2ng6vCALE1RX4WpIOBVL7QEqOfBOr0EEmrzhQPuJCpVjHXcaR1RKmxEo21p0XMZUQ9H8Jmvsizx8DCFNEqC6UWQx34IsBBQu5p3s88qXQqHdhv_t1E1YLndO_GPLFSzX6Cc5qYOXXgeWu6tCofvzN6TS6SUOTjOErUBQz4NKShlYxi4qrIiAMHdjqWGLGq29w4WVIjRpGQsJ9P6Bo58Kxtpp6UBZdni4psSH2J1LsceGR9sn3cQR930tjdgbjjra0B6Yh3W_LZqdETj4aU_-Q58KL167_Nwr5x0z9bJOM3E_Pjyb-bPoXbyES5zazcgc3yW5XtItsr5Z4J6z24MT3-MPr8C4vlVUM | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlEuPFoegQLmIegl291sHmuJy4KoFuj2gFqpl8qynZiuus2u2ESonPgJ_EZ-CTN2km5WgBC3SB5biTMz_jye-QzwIjHaDBDW-5wHsR9mAZqUkV0_0UmqDAUuFNUOjw_i0VH44Tg6XoPXdS2M44doAm5kGdZfk4FTQHr3kjX0VJ13Aiq0vAJXwxj3KQSJPjXkUQR17HYLF1mfow-ueYW6wW7TtbUarfrkpUVpNWFyo8zn8uKrnE7boNauSns34aT-HpeMctYpC9XR31aoHv_3g2_BjQqusqHTr9uwluWbsDXMcat-fsFeMptAaiPzm3BtXJ3Tb8HZEn1H_pld0kUzNZELNsmZoqspGDozRnKufpJRUJgtHamzYsbms0Xx8_sPnJDSjeCqW1ha0YYu7sDR3rvDtyO_utbB11GI7jVFiBam_b7SgTQKHQBx1JkB4laTaR5yqVKjE26S2JiYsmMVCpuekQlXMfW8C-v5LM_uA4tSdFhZpIwcmDCQIQ4S8Z7h3ayntEmVBzv17xW64jynqzemwrE1BwLnVNg59eBZIzp3RB-_E3pFOiLI-HEcLasaBnwbotESw4TgKoLi0IPtliQarW4311omKqexEMTtF5CDjT142jRTT0qEy7NZSTJEwEQEXh7cc0rZvG6_i5tp7O5B0lLXRoCoxNst-eTUUorHA0qB6nnwvFHsv83CjtXTP0uI0ZuxfXjw76JPYGN0ON4X--8PPj6E6whMuUu03Ib14kuZPULwV6jH1sZ_Afk2V7Q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQxq8cNm4BDYwF8Fe0rVpbpb2UhhVuXRCiEl7QVbsxKxal1Y0ERpP_AR-I7-Ec-wkaypAiLdK_mwl7jnHn51zPgM8jbTSMdJ6l3MvdP3MQ5fSSdeNVJRKTQcXkmqHx4fh6Mh_cxwcr8F-XQtj9SGaAzfyDBOvycGzear3LlRDT-RZx6NCy0tw2Q94TAl9Bx8a8SiiOma7hYusyzEG17pCXW-v6dpajVZj8tKitJoweaXM58n512Q6bZNasyoNr8On-n1sMspppyxkR31bkXr83xe-AdcqusoG1r5uwlqWb8LWIMet-tk5e8ZMAqk5md-EjXH1nX4LTpfkO_LP7EIumslJsmCTnEm6moJhMGOEs_WTjA6F2dIndVbM2Hy2KH5-_4ETUtoRbHULSyvZ0MUtOBq--vhy5FbXOrgq8DG8pkjR_LTfl8pLtMQAQBp1OkbeqjPFfZ7IVKuI6yjUOqTsWIlg3dNJxGVIPW_Dej7Ls7vAghQDVhZIncTa9xIfBwl4T_Nu1pNKp9KB3frvFarSPKerN6bCqjV7AudUmDl14HEDnVuhj9-BnpONCHJ-HEclVQ0DPg3JaIlBRHQVSbHvwHYLiU6r2s21lYkqaCwEaft5FGBDBx41zdSTEuHybFYShgSYSMDLgTvWKJvH7XdxM43dHYha5toASEq83ZJPToykeBhTClTPgSeNYf9tFnaNnf4ZIUYvxubHvX-HPoSN9wdD8e714dv7cBV5Kbd5ltuwXnwpsx3kfoV8YFz8Fy0RVzg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1BV4K98LELbGBB5kOwl5Q2TZz6WBCrCqkrDlRaTsF2YrbablrRRGg58RP4jfwSZmw3NBUgJG6RPLYSZ_z8bM88AzxLjTZDpPWhEBEP4yLCIWVkL0x1mitDGxeKcocnJ3w8jd-eJqf-nlPKhXH6EM2GG40Mi9c0wJe5cTjvT_ejl2fqohtRruVV2OEJkvEO7ExP3o0-2DNOnoTCL7l6pDmKXGWtLbRZtzUjbePyxsS0HTR5vS6X8vKLnM_bxNbOTMc34eP6m1xAynm3rlRXf92Se_yPj74FNzxrZSPnZrfhSlHuwf6oxBX7xSV7zmwcqd2g34NrE39cvw_nGyoe5Sf2SzWaqZlcsVnJFN1QwRDTGNm5NEpGe8Ns42SdVQu2XKyqH9--Y5_UrgWX5MJyrx66ugPT4zfvX49Df7tDqJMYUTZHphbng4HSkTQKcYCk6swQ6asptIiFVLnRqTApN4ZTkKxCY9M3MhWKU8270CkXZXEALMkRt4pEGTk0cSRjbCQRfSN6RV9pk6sAjtZ_ONNe-pxu4JhnTrQ5yrBPM9unATxpTJdO7-N3Ri_ITTLCAGxHS5_KgG9DalrZKCXWitw4DuCwZYljV7eL146WeexYZSTxFxHO8gAeN8VUk-LhymJRkw3pMJGOVwD3nF82rzvo4ZoaqweQtjy2MSBF8XZJOTuzyuJ8SJFQ_QCeNr79t144sq76Z4ts_GpiH-7_U4MPYBfpqHDhlYfQqT7XxUOkfJV65If1T3OcWBk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+systematic+bias+in+brain+age+estimation+with+application+to+post%E2%80%90traumatic+stress+disorders&rft.jtitle=Human+brain+mapping&rft.au=Liang%2C+Hualou&rft.au=Zhang%2C+Fengqing&rft.au=Niu%2C+Xin&rft.date=2019-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=11&rft.spage=3143&rft.epage=3152&rft_id=info:doi/10.1002%2Fhbm.24588&rft_id=info%3Apmid%2F30924225&rft.externalDocID=PMC6865701 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |