Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders

Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestim...

Full description

Saved in:
Bibliographic Details
Published inHuman brain mapping Vol. 40; no. 11; pp. 3143 - 3152
Main Authors Liang, Hualou, Zhang, Fengqing, Niu, Xin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.08.2019
Subjects
Online AccessGet full text
ISSN1065-9471
1097-0193
1097-0193
DOI10.1002/hbm.24588

Cover

Abstract Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6–89 years of age) from multiple shared datasets, we show this bias is neither data‐dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi‐modal neuroimaging data (N = 804; 8–21 years of age) for both healthy controls and post‐traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.
AbstractList Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6–89 years of age) from multiple shared datasets, we show this bias is neither data‐dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi‐modal neuroimaging data (N = 804; 8–21 years of age) for both healthy controls and post‐traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.
Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long-standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6-89 years of age) from multiple shared datasets, we show this bias is neither data-dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi-modal neuroimaging data (N = 804; 8-21 years of age) for both healthy controls and post-traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long-standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset (N = 2,026; 6-89 years of age) from multiple shared datasets, we show this bias is neither data-dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi-modal neuroimaging data (N = 804; 8-21 years of age) for both healthy controls and post-traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.
Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for characterizing the typical brain development and neuropsychiatric disorders. Yet one long‐standing problem is that the predicted brain age is overestimated in younger subjects and underestimated in older. There is a plethora of claims as to the bias origins, both methodologically and in data itself. With a large neuroanatomical dataset ( N  = 2,026; 6–89 years of age) from multiple shared datasets, we show this bias is neither data‐dependent nor specific to particular method including deep neural network. We present an alternative account that offers a statistical explanation for the bias and describe a simple, yet efficient, method using general linear model to adjust the bias. We demonstrate the effectiveness of bias adjustment with a large multi‐modal neuroimaging data ( N  = 804; 8–21 years of age) for both healthy controls and post‐traumatic stress disorders patients obtained from the Philadelphia Neurodevelopmental Cohort.
Audience Academic
Author Niu, Xin
Liang, Hualou
Zhang, Fengqing
AuthorAffiliation 1 School of Biomedical Engineering, Science & Health Systems Drexel University Philadelphia Pennsylvania
2 Department of Psychology Drexel University Philadelphia Pennsylvania
AuthorAffiliation_xml – name: 2 Department of Psychology Drexel University Philadelphia Pennsylvania
– name: 1 School of Biomedical Engineering, Science & Health Systems Drexel University Philadelphia Pennsylvania
Author_xml – sequence: 1
  givenname: Hualou
  orcidid: 0000-0002-3805-1837
  surname: Liang
  fullname: Liang, Hualou
  email: hualou.liang@drexel.edu
  organization: Drexel University
– sequence: 2
  givenname: Fengqing
  surname: Zhang
  fullname: Zhang, Fengqing
  organization: Drexel University
– sequence: 3
  givenname: Xin
  surname: Niu
  fullname: Niu, Xin
  organization: Drexel University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30924225$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URNuBBS-AIrEBpExt58fxplKpgFYqYgNry3HsjEtiBzvpaHY8As_Ik3DTFEorqCIllv2d43tP7iHac95phJ4TvCYY06NN3a9pXlTVI3RAMGcpJjzbm9dlkfKckX10GOMlxoQUmDxB-xnmNKe0OEBfz92VjqNt5Whdm8RdHHUPa5XUVsbEuqQOEt6y1cnMzWfeJVs7bhI5DJ1Vy8bok8HH8ef3H2OQ0-IQx6BjTBobfWh0iE_RYyO7qJ_dfFfoy_t3n0_P0otPH85PTy5SVeRZlTYkz_Imy2pFpal5mTGeZ6bCFButeM5l3RjFuGGlMSXhnNYAG2Ik43U5K1fozeI7uUHutrLrxBCg8rATBIs5MQGJievEAD5e4GGqe90o7aCBW4GXVtw9cXYjWn8lyqosGCZg8OrGIPhvE2QkehuV7jrptJ-ioBRjxkhVMEBf3kMv_RQcZAFUXtIMfkl5S7Wy08I64-FeNZuKE0ZwwQsCgazQ-h8UPI3urYL5MBb27whe_N3onw5_zwIArxdABR9j0ObB1I7uscqO15MAVdjuIcUW6tr931qcvf24KH4Br9nkzg
CitedBy_id crossref_primary_10_1002_hbm_25792
crossref_primary_10_3390_s22208077
crossref_primary_10_1016_j_neuroimage_2022_119521
crossref_primary_10_1016_j_jadohealth_2022_08_022
crossref_primary_10_1016_j_nicl_2022_102949
crossref_primary_10_1093_braincomms_fcab191
crossref_primary_10_3389_fnagi_2021_729635
crossref_primary_10_1016_j_nicl_2022_103239
crossref_primary_10_1111_add_16088
crossref_primary_10_1016_j_bpsc_2020_07_014
crossref_primary_10_1016_j_neuroimage_2021_118036
crossref_primary_10_1162_imag_a_00245
crossref_primary_10_3389_fgene_2022_1031806
crossref_primary_10_1109_TMI_2022_3231730
crossref_primary_10_1093_cercor_bhaa161
crossref_primary_10_1002_hbm_25660
crossref_primary_10_1038_s41598_023_42414_5
crossref_primary_10_1089_neu_2020_7551
crossref_primary_10_1057_s41599_023_01999_y
crossref_primary_10_3389_fnrgo_2024_1340732
crossref_primary_10_1002_elps_8133
crossref_primary_10_3174_ajnr_A8059
crossref_primary_10_1002_sim_9553
crossref_primary_10_1186_s13229_023_00573_2
crossref_primary_10_1093_cercor_bhab019
crossref_primary_10_1093_cercor_bhab530
crossref_primary_10_1080_02699052_2022_2033844
crossref_primary_10_1002_hbm_26144
crossref_primary_10_1016_j_neuroimage_2023_119947
crossref_primary_10_1016_j_nicl_2022_103301
crossref_primary_10_3389_fpsyt_2021_598518
crossref_primary_10_1109_TMI_2021_3085948
crossref_primary_10_3390_math11051229
crossref_primary_10_3389_fneur_2020_00244
crossref_primary_10_3389_fpsyt_2021_615754
crossref_primary_10_1038_s41598_023_42354_0
crossref_primary_10_1002_hbm_25680
crossref_primary_10_1093_cercor_bhad331
crossref_primary_10_1002_hbm_25323
crossref_primary_10_1002_brb3_2413
crossref_primary_10_1016_j_neuroimage_2022_119415
crossref_primary_10_1093_schizbullopen_sgac030
crossref_primary_10_3389_fninf_2024_1496143
crossref_primary_10_1007_s00401_023_02636_3
crossref_primary_10_1016_j_neurobiolaging_2020_03_014
crossref_primary_10_1186_s13195_022_01049_w
crossref_primary_10_1002_hbm_26768
crossref_primary_10_1162_imag_a_00079
crossref_primary_10_1002_hbm_25837
crossref_primary_10_1038_s43588_024_00659_8
crossref_primary_10_1002_aur_70008
crossref_primary_10_1093_cercor_bhac490
crossref_primary_10_3390_brainsci10060364
crossref_primary_10_1016_j_ebiom_2021_103600
crossref_primary_10_7554_eLife_87297_4
crossref_primary_10_1093_cercor_bhae030
crossref_primary_10_3389_fnagi_2023_1274061
crossref_primary_10_1016_j_nicl_2020_102229
crossref_primary_10_1016_j_nicl_2021_102620
crossref_primary_10_1016_j_pnpbp_2021_110471
crossref_primary_10_1038_s43587_021_00044_4
crossref_primary_10_1016_j_neuroimage_2021_117822
crossref_primary_10_1016_j_brainres_2023_148668
crossref_primary_10_1002_hbm_24899
crossref_primary_10_1016_j_neurobiolaging_2021_08_020
crossref_primary_10_3389_fnagi_2023_1303036
crossref_primary_10_1002_hbm_25748
crossref_primary_10_1093_jamia_ocac204
crossref_primary_10_1016_j_neurobiolaging_2021_10_004
crossref_primary_10_1109_TMI_2022_3161739
crossref_primary_10_1007_s11357_024_01112_4
crossref_primary_10_1016_j_neurobiolaging_2021_04_015
crossref_primary_10_3390_brainsci14121263
crossref_primary_10_1016_j_neurobiolaging_2022_02_005
crossref_primary_10_3389_fnagi_2022_941864
crossref_primary_10_1016_j_cortex_2023_11_015
crossref_primary_10_1016_j_nicl_2020_102183
crossref_primary_10_3389_fneur_2022_979774
crossref_primary_10_1017_S0954579423000676
crossref_primary_10_3389_fdata_2021_637724
crossref_primary_10_1002_hbm_25533
crossref_primary_10_1038_s41598_022_22313_x
crossref_primary_10_1126_sciadv_adp3743
crossref_primary_10_1038_s41380_023_02316_4
crossref_primary_10_1016_j_neuroimage_2019_06_017
crossref_primary_10_1016_j_neuroimage_2022_119621
crossref_primary_10_3389_fpsyt_2022_966439
crossref_primary_10_2196_53564
crossref_primary_10_1016_j_neuroimage_2022_119228
crossref_primary_10_1109_RBME_2021_3107372
crossref_primary_10_1016_j_neurobiolaging_2023_09_003
crossref_primary_10_1017_S0033291723001812
crossref_primary_10_1007_s11357_023_00864_9
crossref_primary_10_7554_eLife_81869
crossref_primary_10_7554_eLife_81067
crossref_primary_10_1109_JBHI_2023_3341629
crossref_primary_10_1002_hbm_25805
crossref_primary_10_1002_hbm_25882
crossref_primary_10_3389_fnagi_2022_872867
crossref_primary_10_1016_j_jclinepi_2024_111606
crossref_primary_10_1016_j_neuroimage_2023_119911
crossref_primary_10_1097_j_pain_0000000000002818
crossref_primary_10_1111_pcn_13612
crossref_primary_10_1093_schbul_sbae074
crossref_primary_10_7554_eLife_87297
crossref_primary_10_1016_j_bpsc_2024_11_003
crossref_primary_10_1016_j_dcn_2024_101493
crossref_primary_10_1038_s41380_019_0626_7
crossref_primary_10_3389_fnagi_2019_00348
crossref_primary_10_3389_fneur_2020_584682
crossref_primary_10_1016_j_biopsych_2024_07_019
crossref_primary_10_1093_ijnp_pyac080
Cites_doi 10.1093/ije/dyh299
10.1016/0021-9681(73)90013-1
10.1001/jamapsychiatry.2018.1543
10.3389/fnins.2012.00152
10.1038/nature14539
10.1016/j.neuroimage.2017.07.059
10.1007/s12021-017-9346-9
10.1016/j.neuroimage.2010.01.005
10.3389/fnagi.2018.00317
10.1016/S0140-6736(96)90410-9
10.1093/cercor/bhw157
10.1016/j.neuroimage.2012.08.001
10.1111/jcpp.12963
10.1016/j.neuroimage.2016.11.005
10.1093/oxfordjournals.aje.a112321
10.1016/j.jneumeth.2009.11.017
10.1212/WNL.0b013e318245d295
10.1016/j.neuroimage.2013.07.064
10.1002/hbm.24312
10.1126/science.1194144
10.1177/096228029700600202
10.7551/mitpress/3206.001.0001
10.1038/sdata.2014.49
10.1093/cercor/bht425
10.1038/mp.2013.78
10.1073/pnas.200033797
10.1016/j.tins.2017.10.001
10.32470/CCN.2018.1121-0
10.2307/2529681
10.1023/B:STCO.0000035301.49549.88
10.1002/ana.24367
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
COPYRIGHT 2019 John Wiley & Sons, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/hbm.24588
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic

CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Liang et al
EISSN 1097-0193
EndPage 3152
ExternalDocumentID 10.1002/hbm.24588
PMC6865701
A710595194
30924225
10_1002_hbm_24588
HBM24588
Genre technicalNote
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Philadelphia Neurodevelopmental Cohort
  funderid: RC2MH089924; RC2MH089983
– fundername: Philadelphia Neurodevelopmental Cohort
  grantid: RC2MH089924
– fundername: Philadelphia Neurodevelopmental Cohort
  grantid: RC2MH089983
– fundername: Philadelphia Neurodevelopmental Cohort
  grantid: RC2MH089924; RC2MH089983
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABPVW
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HHY
HHZ
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RPM
RWD
RWI
RX1
RYL
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
.Y3
31~
7X7
8FI
8FJ
AAFWJ
AAMMB
AANHP
AAYXX
ABEML
ABJNI
ABUWG
ACBWZ
ACCMX
ACRPL
ACSCC
ACYXJ
ADNMO
AEFGJ
AFKRA
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BENPR
CCPQU
CITATION
FEDTE
FYUFA
GAKWD
HF~
HMCUK
HVGLF
LW6
M6M
PHGZM
PHGZT
PUEGO
RIWAO
RJQFR
SAMSI
UKHRP
WXSBR
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c5438-d1434d33bc2afb9637943f8020fec949abdfc79f76ff61992bd33f1fa79b634d3
IEDL.DBID DR2
ISSN 1065-9471
1097-0193
IngestDate Sun Oct 26 04:13:58 EDT 2025
Tue Sep 30 16:03:08 EDT 2025
Thu Oct 02 12:12:10 EDT 2025
Tue Oct 07 06:05:54 EDT 2025
Mon Oct 20 22:25:12 EDT 2025
Mon Oct 20 16:47:35 EDT 2025
Mon Jul 21 06:01:45 EDT 2025
Wed Oct 01 01:55:39 EDT 2025
Thu Apr 24 23:06:02 EDT 2025
Wed Jan 22 16:40:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords PTSD
machine-learning
regression to the mean
bias
brain age prediction
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5438-d1434d33bc2afb9637943f8020fec949abdfc79f76ff61992bd33f1fa79b634d3
Notes Funding information
Philadelphia Neurodevelopmental Cohort, Grant/Award Numbers: RC2MH089924, RC2MH089983
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Funding information Philadelphia Neurodevelopmental Cohort, Grant/Award Numbers: RC2MH089924, RC2MH089983
ORCID 0000-0002-3805-1837
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24588
PMID 30924225
PQID 2246232256
PQPubID 996345
PageCount 10
ParticipantIDs unpaywall_primary_10_1002_hbm_24588
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6865701
proquest_miscellaneous_2200771857
proquest_journals_2246232256
gale_infotracmisc_A710595194
gale_infotracacademiconefile_A710595194
pubmed_primary_30924225
crossref_primary_10_1002_hbm_24588
crossref_citationtrail_10_1002_hbm_24588
wiley_primary_10_1002_hbm_24588_HBM24588
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 1, 2019
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 1, 2019
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum Brain Mapp
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2017; 40
2010; 329
2015; 521
2015; 77
1976; 104
2010; 187
2005
2011; 12
2003
2013; 7
1997; 6
2012; 78
2014; 86
1996; 347
2014; 1
2018; 39
2015; 25
2019; 60
1973; 26
2004; 14
2000; 97
1973; 29
2018
2016
2017; 163
2014; 19
2014
2012; 6
2018; 10
2018; 75
2016; 26
2010; 4
2017; 148
2018; 16
2005; 34
2012; 63
2010; 50
Pedregosa F. (e_1_2_6_31_1) 2011; 12
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_30_1
Twisk J. W. R. (e_1_2_6_37_1) 2003
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
Cui Z. (e_1_2_6_12_1) 2013; 7
e_1_2_6_14_1
e_1_2_6_35_1
Al Zoubi O. (e_1_2_6_3_1) 2018; 10
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_40_1
Yan C. (e_1_2_6_38_1) 2010; 4
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
Aycheh H. M. (e_1_2_6_4_1) 2018; 10
e_1_2_6_26_1
References_xml – volume: 6
  start-page: 152
  year: 2012
  article-title: The nki‐rockland sample: A model for accelerating the pace of discovery science in psychiatry
  publication-title: Frontiers in Neuroscience
– volume: 16
  start-page: 43
  issue: 1
  year: 2018
  end-page: 49
  article-title: NAPR: A cloud‐based framework for neuroanatomical age prediction
  publication-title: Neuroinformatics
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  end-page: 1361
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  article-title: Predicting brain‐age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
– volume: 86
  start-page: 544
  year: 2014
  end-page: 553
  article-title: Neuroimaging of the Philadelphia neurodevelopmental cohort
  publication-title: NeuroImage
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  article-title: A tutorial on support vector regression
  publication-title: Statistics and Computing
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 19
  start-page: 659
  year: 2014
  end-page: 667
  article-title: The autism brain imaging data exchange: Towards a large‐scale evaluation of the intrinsic brain architecture in autism
  publication-title: Molecular Psychiatry
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  article-title: Alzheimer's disease neuroimaging initiative. Estimating the age of healthy subjects from T1‐weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
– volume: 25
  start-page: 1676
  issue: 6
  year: 2015
  end-page: 1684
  article-title: Imaging patterns of brain development and their relationship to cognition
  publication-title: Cerebral Cortex
– year: 2005
– volume: 10
  start-page: 317
  year: 2018
  article-title: Tulsa 1000 investigators. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE
  publication-title: Frontiers in Aging Neuroscience
– volume: 10
  start-page: 1
  issue: 184
  year: 2018
  end-page: 12
  article-title: Predicting age from brain EEG signals‐a machine learning approach
  publication-title: Frontiers in Aging Neuroscience
– volume: 97
  start-page: 11050
  year: 2000
  end-page: 11055
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2003
– volume: 34
  start-page: 215
  issue: 1
  year: 2005
  end-page: 220
  article-title: Regression to the mean: What it is and how to deal with it
  publication-title: International Journal of Epidemiology
– volume: 39
  start-page: 4663
  year: 2018
  end-page: 4677
  article-title: Structure‐function multi‐scale connectomics reveals a major role of the fronto‐striato‐thalamic circuit in brain aging
  publication-title: Human Brain Mapping
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– volume: 60
  start-page: 216
  issue: 2
  year: 2019
  end-page: 224
  article-title: Sex differences in global and local connectivity of adolescent posttraumatic stress disorder symptoms
  publication-title: Journal of Child Psychology and Psychiatry
– volume: 77
  start-page: 571
  year: 2015
  end-page: 581
  article-title: Alzheimer's disease neuroimaging initiative. Prediction of brain age suggests accelerated atrophy after traumatic brain injury
  publication-title: Annals of Neurology
– year: 2016
– volume: 104
  start-page: 493
  year: 1976
  end-page: 498
  article-title: The effect of regression to the mean in epidemiologic and clinical studies
  publication-title: American Journal of Epidemiology
– year: 2014
– volume: 63
  start-page: 1305
  issue: 3
  year: 2012
  end-page: 1312
  article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI
  publication-title: NeuroImage
– volume: 26
  start-page: 3508
  issue: 8
  year: 2016
  end-page: 3526
  article-title: The human Brainnetome atlas: A new brain atlas based on connectional architecture
  publication-title: Cerebral Cortex
– volume: 26
  start-page: 781
  year: 1973
  end-page: 795
  article-title: Some effects of within‐person variability in epidemiologic studies
  publication-title: Journal of Chronic Diseases
– volume: 7
  start-page: 1
  issue: 42
  year: 2013
  end-page: 16
  article-title: PANDA: A pipeline toolbox for analyzing brain diffusion images
  publication-title: Frontiers in Human Neuroscience
– volume: 1
  year: 2014
  article-title: An open science resource for establishing reliability and reproducibility in functional connectomics
  publication-title: Scientific Data
– volume: 75
  start-page: 960
  issue: 9
  year: 2018
  end-page: 968
  article-title: Use of machine learning to determine deviance in neuroanatomical maturity associated with future psychosis in youths at clinically high risk
  publication-title: JAMA Psychiatry
– volume: 78
  start-page: 387
  year: 2012
  end-page: 395
  article-title: β‐Amyloid burden in healthy aging: Regional distribution and cognitive consequences
  publication-title: Neurology
– volume: 4
  start-page: 1
  issue: 13
  year: 2010
  end-page: 7
  article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Frontiers in Systems Neuroscience
– volume: 347
  start-page: 241
  year: 1996
  end-page: 243
  article-title: How to deal with regression to the mean in intervention studies
  publication-title: Lancet
– volume: 29
  start-page: 121
  year: 1973
  end-page: 130
  article-title: Regression towards the mean in uncontrolled clinical studies
  publication-title: Biometrics
– volume: 40
  start-page: 681
  issue: 12
  year: 2017
  end-page: 690
  article-title: Predicting age using neuroimaging: Innovative brain ageing biomarkers
  publication-title: Trends in Neurosciences
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
– volume: 10
  start-page: 1
  issue: 252
  year: 2018
  end-page: 14
  article-title: Biological brain age prediction using cortical thickness data: A large scale cohort study
  publication-title: Frontiers in Aging Neuroscience
– volume: 6
  start-page: 103
  year: 1997
  end-page: 114
  article-title: Regression towards the mean, historically considered
  publication-title: Statistical Methods in Medical Research
– volume: 187
  start-page: 254
  year: 2010
  end-page: 262
  article-title: A cognitive neuroscience‐based computerized battery for efficient mea‐ surement of individual differences: Standardization and initial construct validation
  publication-title: Journal of Neuroscience Methods
– start-page: 1121
  year: 2018
– ident: e_1_2_6_5_1
  doi: 10.1093/ije/dyh299
– ident: e_1_2_6_22_1
  doi: 10.1016/0021-9681(73)90013-1
– volume: 4
  start-page: 1
  issue: 13
  year: 2010
  ident: e_1_2_6_38_1
  article-title: DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting‐state fMRI
  publication-title: Frontiers in Systems Neuroscience
– ident: e_1_2_6_8_1
  doi: 10.1001/jamapsychiatry.2018.1543
– ident: e_1_2_6_29_1
  doi: 10.3389/fnins.2012.00152
– volume: 10
  start-page: 1
  issue: 184
  year: 2018
  ident: e_1_2_6_3_1
  article-title: Predicting age from brain EEG signals‐a machine learning approach
  publication-title: Frontiers in Aging Neuroscience
– ident: e_1_2_6_26_1
  doi: 10.1038/nature14539
– ident: e_1_2_6_11_1
  doi: 10.1016/j.neuroimage.2017.07.059
– ident: e_1_2_6_30_1
  doi: 10.1007/s12021-017-9346-9
– volume: 10
  start-page: 1
  issue: 252
  year: 2018
  ident: e_1_2_6_4_1
  article-title: Biological brain age prediction using cortical thickness data: A large scale cohort study
  publication-title: Frontiers in Aging Neuroscience
– volume: 7
  start-page: 1
  issue: 42
  year: 2013
  ident: e_1_2_6_12_1
  article-title: PANDA: A pipeline toolbox for analyzing brain diffusion images
  publication-title: Frontiers in Human Neuroscience
– ident: e_1_2_6_21_1
  doi: 10.1016/j.neuroimage.2010.01.005
– ident: e_1_2_6_25_1
  doi: 10.3389/fnagi.2018.00317
– ident: e_1_2_6_39_1
  doi: 10.1016/S0140-6736(96)90410-9
– ident: e_1_2_6_18_1
  doi: 10.1093/cercor/bhw157
– ident: e_1_2_6_20_1
  doi: 10.1016/j.neuroimage.2012.08.001
– ident: e_1_2_6_7_1
  doi: 10.1111/jcpp.12963
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_6_31_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_6_27_1
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: e_1_2_6_13_1
  doi: 10.1093/oxfordjournals.aje.a112321
– ident: e_1_2_6_23_1
  doi: 10.1016/j.jneumeth.2009.11.017
– ident: e_1_2_6_2_1
– ident: e_1_2_6_33_1
  doi: 10.1212/WNL.0b013e318245d295
– ident: e_1_2_6_34_1
  doi: 10.1016/j.neuroimage.2013.07.064
– volume-title: Applied longitudinal data analysis for epidemiology: A practical guide
  year: 2003
  ident: e_1_2_6_37_1
– ident: e_1_2_6_6_1
  doi: 10.1002/hbm.24312
– ident: e_1_2_6_16_1
  doi: 10.1126/science.1194144
– ident: e_1_2_6_36_1
  doi: 10.1177/096228029700600202
– ident: e_1_2_6_32_1
  doi: 10.7551/mitpress/3206.001.0001
– ident: e_1_2_6_40_1
  doi: 10.1038/sdata.2014.49
– ident: e_1_2_6_17_1
  doi: 10.1093/cercor/bht425
– ident: e_1_2_6_14_1
  doi: 10.1038/mp.2013.78
– ident: e_1_2_6_15_1
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.200033797
– ident: e_1_2_6_9_1
  doi: 10.1016/j.tins.2017.10.001
– ident: e_1_2_6_28_1
  doi: 10.32470/CCN.2018.1121-0
– ident: e_1_2_6_24_1
  doi: 10.2307/2529681
– ident: e_1_2_6_35_1
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: e_1_2_6_10_1
  doi: 10.1002/ana.24367
SSID ssj0011501
Score 2.6116362
Snippet Brain age prediction using machine‐learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for...
Brain age prediction using machine-learning techniques has recently attracted growing attention, as it has the potential to serve as a biomarker for...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3143
SubjectTerms Adolescent
Adult
Age
Age determination
Aged
Aged, 80 and over
Aging
Anatomy
Artificial neural networks
Bias
Biomarkers
Brain
Brain - diagnostic imaging
brain age prediction
Brain architecture
Child
Chronology
Datasets
Disorders
Evaluation
Humans
Learning algorithms
Machine Learning
Magnetic Resonance Imaging
Medical imaging
Mental disorders
Middle Aged
Nervous system diseases
Neural networks
Neurodevelopmental disorders
Neuroimaging
Neuroimaging - methods
Neurology
Post-traumatic stress disorder
Predictions
PTSD
regression to the mean
Stress Disorders, Post-Traumatic - diagnostic imaging
Traumatic brain injury
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1BV4K98LELbGBB5kOwl5Q2TZz6WBCrCqkrDlRaTsF2YrbablrRRGg58RP4jfwSZmw3NBUgJG6RPLYSZ_z8bM88AzxLjTZDpPWhEBEP4yLCIWVkL0x1mitDGxeKcocnJ3w8jd-eJqf-nlPKhXH6EM2GG40Mi9c0wJe5cTjvT_ejl2fqohtRruVV2OEJkvEO7ExP3o0-2DNOnoTCL7l6pDmKXGWtLbRZtzUjbePyxsS0HTR5vS6X8vKLnM_bxNbOTMc34eP6m1xAynm3rlRXf92Se_yPj74FNzxrZSPnZrfhSlHuwf6oxBX7xSV7zmwcqd2g34NrE39cvw_nGyoe5Sf2SzWaqZlcsVnJFN1QwRDTGNm5NEpGe8Ns42SdVQu2XKyqH9--Y5_UrgWX5MJyrx66ugPT4zfvX49Df7tDqJMYUTZHphbng4HSkTQKcYCk6swQ6asptIiFVLnRqTApN4ZTkKxCY9M3MhWKU8270CkXZXEALMkRt4pEGTk0cSRjbCQRfSN6RV9pk6sAjtZ_ONNe-pxu4JhnTrQ5yrBPM9unATxpTJdO7-N3Ri_ITTLCAGxHS5_KgG9DalrZKCXWitw4DuCwZYljV7eL146WeexYZSTxFxHO8gAeN8VUk-LhymJRkw3pMJGOVwD3nF82rzvo4ZoaqweQtjy2MSBF8XZJOTuzyuJ8SJFQ_QCeNr79t144sq76Z4ts_GpiH-7_U4MPYBfpqHDhlYfQqT7XxUOkfJV65If1T3OcWBk
  priority: 102
  providerName: Unpaywall
Title Investigating systematic bias in brain age estimation with application to post‐traumatic stress disorders
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.24588
https://www.ncbi.nlm.nih.gov/pubmed/30924225
https://www.proquest.com/docview/2246232256
https://www.proquest.com/docview/2200771857
https://pubmed.ncbi.nlm.nih.gov/PMC6865701
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.24588
UnpaywallVersion publishedVersion
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: RPM
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011501
  issn: 1097-0193
  databaseCode: OVEED
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0193
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0193
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011501
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFD6UDra97NLu4q0t2oWtL05jx5eIPmVjJQxSxligg4GRZGsNTZ0w24zuaT-hv7G_ZOdIthuHbYy9BXQkbOWcT5_kcz4BvIy10kOk9S7nfuQGmY8hpUXfjVWcSk0HF5JqhyfH0XgavD8JTzbgsKmFsfoQ7YEbRYbBawpwIYuDa9HQU3ne86nOEvHXG0RmO_WxlY4iomM2W7jEuhwRuFEV6vsHbc_OWrSOyCtL0nq65K0qX4qL72I-71JasyYd3YUvzdvYVJSzXlXKnvqxJvT4n697D-7UXJWNrHPdh40s34LtUY779PML9oqZ7FFzLL8FNyf1R_ptOFvR7si_smutaCZnomCznEm6l4IhkjGys8WTjE6E2cr3dFYu2HJRlFc_L3E-KjuCLW1haa0ZWjyA6dG7T2_Hbn2ng6vCALE1RX4WpIOBVL7QEqOfBOr0EEmrzhQPuJCpVjHXcaR1RKmxEo21p0XMZUQ9H8Jmvsizx8DCFNEqC6UWQx34IsBBQu5p3s88qXQqHdhv_t1E1YLndO_GPLFSzX6Cc5qYOXXgeWu6tCofvzN6TS6SUOTjOErUBQz4NKShlYxi4qrIiAMHdjqWGLGq29w4WVIjRpGQsJ9P6Bo58Kxtpp6UBZdni4psSH2J1LsceGR9sn3cQR930tjdgbjjra0B6Yh3W_LZqdETj4aU_-Q58KL167_Nwr5x0z9bJOM3E_Pjyb-bPoXbyES5zazcgc3yW5XtItsr5Z4J6z24MT3-MPr8C4vlVUM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlEuPFoegQLmIegl291sHmuJy4KoFuj2gFqpl8qynZiuus2u2ESonPgJ_EZ-CTN2km5WgBC3SB5biTMz_jye-QzwIjHaDBDW-5wHsR9mAZqUkV0_0UmqDAUuFNUOjw_i0VH44Tg6XoPXdS2M44doAm5kGdZfk4FTQHr3kjX0VJ13Aiq0vAJXwxj3KQSJPjXkUQR17HYLF1mfow-ueYW6wW7TtbUarfrkpUVpNWFyo8zn8uKrnE7boNauSns34aT-HpeMctYpC9XR31aoHv_3g2_BjQqusqHTr9uwluWbsDXMcat-fsFeMptAaiPzm3BtXJ3Tb8HZEn1H_pld0kUzNZELNsmZoqspGDozRnKufpJRUJgtHamzYsbms0Xx8_sPnJDSjeCqW1ha0YYu7sDR3rvDtyO_utbB11GI7jVFiBam_b7SgTQKHQBx1JkB4laTaR5yqVKjE26S2JiYsmMVCpuekQlXMfW8C-v5LM_uA4tSdFhZpIwcmDCQIQ4S8Z7h3ayntEmVBzv17xW64jynqzemwrE1BwLnVNg59eBZIzp3RB-_E3pFOiLI-HEcLasaBnwbotESw4TgKoLi0IPtliQarW4311omKqexEMTtF5CDjT142jRTT0qEy7NZSTJEwEQEXh7cc0rZvG6_i5tp7O5B0lLXRoCoxNst-eTUUorHA0qB6nnwvFHsv83CjtXTP0uI0ZuxfXjw76JPYGN0ON4X--8PPj6E6whMuUu03Ib14kuZPULwV6jH1sZ_Afk2V7Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aQxq8cNm4BDYwF8Fe0rVpbpb2UhhVuXRCiEl7QVbsxKxal1Y0ERpP_AR-I7-Ec-wkaypAiLdK_mwl7jnHn51zPgM8jbTSMdJ6l3MvdP3MQ5fSSdeNVJRKTQcXkmqHx4fh6Mh_cxwcr8F-XQtj9SGaAzfyDBOvycGzear3LlRDT-RZx6NCy0tw2Q94TAl9Bx8a8SiiOma7hYusyzEG17pCXW-v6dpajVZj8tKitJoweaXM58n512Q6bZNasyoNr8On-n1sMspppyxkR31bkXr83xe-AdcqusoG1r5uwlqWb8LWIMet-tk5e8ZMAqk5md-EjXH1nX4LTpfkO_LP7EIumslJsmCTnEm6moJhMGOEs_WTjA6F2dIndVbM2Hy2KH5-_4ETUtoRbHULSyvZ0MUtOBq--vhy5FbXOrgq8DG8pkjR_LTfl8pLtMQAQBp1OkbeqjPFfZ7IVKuI6yjUOqTsWIlg3dNJxGVIPW_Dej7Ls7vAghQDVhZIncTa9xIfBwl4T_Nu1pNKp9KB3frvFarSPKerN6bCqjV7AudUmDl14HEDnVuhj9-BnpONCHJ-HEclVQ0DPg3JaIlBRHQVSbHvwHYLiU6r2s21lYkqaCwEaft5FGBDBx41zdSTEuHybFYShgSYSMDLgTvWKJvH7XdxM43dHYha5toASEq83ZJPToykeBhTClTPgSeNYf9tFnaNnf4ZIUYvxubHvX-HPoSN9wdD8e714dv7cBV5Kbd5ltuwXnwpsx3kfoV8YFz8Fy0RVzg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nj9MwEB1BV4K98LELbGBB5kOwl5Q2TZz6WBCrCqkrDlRaTsF2YrbablrRRGg58RP4jfwSZmw3NBUgJG6RPLYSZ_z8bM88AzxLjTZDpPWhEBEP4yLCIWVkL0x1mitDGxeKcocnJ3w8jd-eJqf-nlPKhXH6EM2GG40Mi9c0wJe5cTjvT_ejl2fqohtRruVV2OEJkvEO7ExP3o0-2DNOnoTCL7l6pDmKXGWtLbRZtzUjbePyxsS0HTR5vS6X8vKLnM_bxNbOTMc34eP6m1xAynm3rlRXf92Se_yPj74FNzxrZSPnZrfhSlHuwf6oxBX7xSV7zmwcqd2g34NrE39cvw_nGyoe5Sf2SzWaqZlcsVnJFN1QwRDTGNm5NEpGe8Ns42SdVQu2XKyqH9--Y5_UrgWX5MJyrx66ugPT4zfvX49Df7tDqJMYUTZHphbng4HSkTQKcYCk6swQ6asptIiFVLnRqTApN4ZTkKxCY9M3MhWKU8270CkXZXEALMkRt4pEGTk0cSRjbCQRfSN6RV9pk6sAjtZ_ONNe-pxu4JhnTrQ5yrBPM9unATxpTJdO7-N3Ri_ITTLCAGxHS5_KgG9DalrZKCXWitw4DuCwZYljV7eL146WeexYZSTxFxHO8gAeN8VUk-LhymJRkw3pMJGOVwD3nF82rzvo4ZoaqweQtjy2MSBF8XZJOTuzyuJ8SJFQ_QCeNr79t144sq76Z4ts_GpiH-7_U4MPYBfpqHDhlYfQqT7XxUOkfJV65If1T3OcWBk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+systematic+bias+in+brain+age+estimation+with+application+to+post%E2%80%90traumatic+stress+disorders&rft.jtitle=Human+brain+mapping&rft.au=Liang%2C+Hualou&rft.au=Zhang%2C+Fengqing&rft.au=Niu%2C+Xin&rft.date=2019-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=40&rft.issue=11&rft.spage=3143&rft.epage=3152&rft_id=info:doi/10.1002%2Fhbm.24588&rft_id=info%3Apmid%2F30924225&rft.externalDocID=PMC6865701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon