Dynamics of Nucleosomal Structures Measured by High-Speed Atomic Force Microscopy
The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current st...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 8; pp. 976 - 984 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
25.02.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1613-6810 1613-6829 1613-6829 |
DOI | 10.1002/smll.201401318 |
Cover
Abstract | The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high‐speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein‐DNA interactions.
Tetrasomes and nucleosomes assembled by NAP1 are imaged at subsecond timescales with atomic force microscopy. Several different pathways of disassembly are found and the spontaneous transition between two rotational states of tetrasomes is confirmed by direct imaging. |
---|---|
AbstractList | The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions.The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions. The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high‐speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein‐DNA interactions. Tetrasomes and nucleosomes assembled by NAP1 are imaged at subsecond timescales with atomic force microscopy. Several different pathways of disassembly are found and the spontaneous transition between two rotational states of tetrasomes is confirmed by direct imaging. The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions. Tetrasomes and nucleosomes assembled by NAP1 are imaged at subsecond timescales with atomic force microscopy. Several different pathways of disassembly are found and the spontaneous transition between two rotational states of tetrasomes is confirmed by direct imaging. The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions. The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions. |
Author | Katan, Allard J. Vlijm, Rifka Dekker, Cees Lusser, Alexandra |
Author_xml | – sequence: 1 givenname: Allard J. surname: Katan fullname: Katan, Allard J. organization: Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ, 2628, The Netherlands – sequence: 2 givenname: Rifka surname: Vlijm fullname: Vlijm, Rifka organization: Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ, 2628, The Netherlands – sequence: 3 givenname: Alexandra surname: Lusser fullname: Lusser, Alexandra organization: Division of Molecular Biology, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria – sequence: 4 givenname: Cees surname: Dekker fullname: Dekker, Cees email: C.Dekker@TUDelft.nl organization: Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ, 2628, The Netherlands |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25336288$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAURi1URF9sWaJIbNhk8DvOsiq0RcoUqmnVpeU4N-CSxFM7Ec2_r0dTRqgSovLC19I51_b9DtHe4AdA6B3BC4Ix_RT7rltQTDgmjKhX6IBIwnKpaLm3qwneR4cx3mHMCOXFG7RPBWOSKnWArj7Pg-mdjZlvs8vJduCj702XrcYw2XEKELMlmJiKJqvn7ML9-Jmv1pBOJ6NPYnbmg4Vs6Wzw0fr1fIxet6aL8PZpP0I3Z1-uTy_y6tv519OTKreCM5WXdWkwtQpIzQEXkhUtLzEooJzWVtpCELA1NLi1xipVy6Zu2lamxUC1VLIj9HHbdx38_QRx1L2LFrrODOCnqIksipIQItUL0DQwgSl_SVehOE3vJQn98Ay981MY0p83lChLSYlI1Psnaqp7aPQ6uN6EWf-JIAGLLbAZYAzQ7hCC9SZjvclY7zJOAn8mWDea0flhDMZ1_9bKrfbbdTD_5xK9WlbV326-dV0c4WHnmvBLy4IVQt9enmv1vRKCL4W-Yo9qhsl1 |
CitedBy_id | crossref_primary_10_1038_s41594_018_0166_x crossref_primary_10_1016_j_semcdb_2017_07_015 crossref_primary_10_1063_5_0054294 crossref_primary_10_1246_bcsj_20160298 crossref_primary_10_1093_nar_gkx933 crossref_primary_10_1016_j_bpj_2022_01_014 crossref_primary_10_1016_j_jmb_2020_11_019 crossref_primary_10_1371_journal_pgen_1007582 crossref_primary_10_1016_j_bbagrm_2018_07_002 crossref_primary_10_1021_acs_jpcb_4c04223 crossref_primary_10_1073_pnas_1611118114 crossref_primary_10_1039_C6NR06245H crossref_primary_10_1063_1_5009100 crossref_primary_10_1021_acs_jpclett_1c00697 crossref_primary_10_1039_D1NR01970H crossref_primary_10_1021_acscentsci_3c00735 crossref_primary_10_1016_j_bpj_2020_02_029 crossref_primary_10_1038_s41467_024_52484_2 crossref_primary_10_1039_D0NR08564B crossref_primary_10_3390_ijms22136922 crossref_primary_10_1016_j_bbagen_2019_03_011 crossref_primary_10_1002_chem_201804010 crossref_primary_10_1007_s12551_016_0212_z crossref_primary_10_1016_j_biochi_2015_11_010 crossref_primary_10_1002_marc_202000017 crossref_primary_10_21769_BioProtoc_4180 crossref_primary_10_1371_journal_pone_0165078 crossref_primary_10_1093_nar_gkad1149 crossref_primary_10_1002_cbic_202000332 |
Cites_doi | 10.1063/1.111795 10.1146/annurev.biochem.77.062706.153223 10.1073/pnas.84.20.7024 10.1146/annurev-biophys-083012-130324 10.1021/la00002a050 10.1006/jmbi.1997.1494 10.2478/s11534-011-0096-2 10.1063/1.1777405 10.1016/j.micron.2010.08.011 10.1016/j.ultramic.2010.02.032 10.1038/sj.emboj.7601196 10.1074/jbc.M101331200 10.1073/pnas.022638399 10.1016/S0006-3495(96)79757-6 10.1016/S0076-6879(99)04003-3 10.1016/j.dnarep.2005.04.012 10.1021/bi047786o 10.1038/nnano.2006.63 10.1103/PhysRevLett.56.930 10.1038/nsmb869 10.1016/S0022-2836(02)00386-8 10.1074/jbc.M111212200 10.1371/journal.pone.0046306 10.1126/science.1225810 10.1021/bi200946z 10.1073/pnas.87.19.7405 10.1021/bi00455a019 10.1016/j.tibs.2005.10.003 10.1016/S0021-9258(19)50656-1 10.2174/138920109788922128 10.1016/j.bpj.2009.07.046 10.1016/j.progsurf.2008.09.001 10.1038/nprot.2012.047 10.1063/1.2336113 10.1038/nmeth.1237 10.1016/j.cell.2011.11.017 10.1073/pnas.93.15.7588 10.1074/jbc.M511619200 10.1038/38444 10.1016/0304-3991(92)90430-R 10.1016/S0959-440X(03)00002-2 10.1038/nsmb884 |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7TM F28 FR3 |
DOI | 10.1002/smll.201401318 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Nucleic Acids Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic Nucleic Acids Abstracts Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | MEDLINE - Academic Materials Research Database Materials Research Database MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | 984 |
ExternalDocumentID | 3595310671 25336288 10_1002_smll_201401318 SMLL201401318 ark_67375_WNG_8PL554M5_Q |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Austrian Science Fund (FWF) funderid: START Y275‐B12 – fundername: ERC Advanced grant NanoforBio funderid: 247072 – fundername: Austrian Science Fund FWF grantid: Y 275 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI BSCLL CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- - 0R A00 AAPBV ABHUG ABWRO ACXME ADAWD ADDAD AEUQT AFPWT AFVGU AGJLS HZ IPNFZ MY P4E RIG RWI S- WYJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7TM F28 FR3 |
ID | FETCH-LOGICAL-c5438-9b9a02c8e1b4e07637f490e8e242bc6c751ecbed0fcac88b6dbdff6f6f3e8f263 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Sep 05 10:18:28 EDT 2025 Wed Oct 01 13:55:14 EDT 2025 Fri Sep 05 03:32:03 EDT 2025 Fri Jul 25 12:09:12 EDT 2025 Mon Jul 21 06:03:01 EDT 2025 Wed Oct 01 02:51:37 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Fri Apr 02 05:00:53 EDT 2021 Sun Sep 21 06:25:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | atomic force microscopy imaging DNA nucleosome dynamics single-molecule studies |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5438-9b9a02c8e1b4e07637f490e8e242bc6c751ecbed0fcac88b6dbdff6f6f3e8f263 |
Notes | ark:/67375/WNG-8PL554M5-Q ArticleID:SMLL201401318 Austrian Science Fund (FWF) - No. START Y275-B12 istex:E38B3F01D4109891A45144E17E644EDF13E607FA ERC Advanced grant NanoforBio - No. 247072 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 25336288 |
PQID | 1655996215 |
PQPubID | 1046358 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1677911168 proquest_miscellaneous_1668250246 proquest_miscellaneous_1658420761 proquest_journals_1655996215 pubmed_primary_25336288 crossref_primary_10_1002_smll_201401318 crossref_citationtrail_10_1002_smll_201401318 wiley_primary_10_1002_smll_201401318_SMLL201401318 istex_primary_ark_67375_WNG_8PL554M5_Q |
ProviderPackageCode | A00 ADOZA BFHJK AMBMR DCZOG ACFBH ACAHQ LEEKS AFGKR 50Y AEUQT AAEVG MRSTM MEWTI ACXME WBKPD AJXKR ADMGS AEIMD GNP ATUGU WOHZO G-S O66 3WU ADEOM MY~ LATKE ZZTAW QRW SUPJJ 52U HHY DRSTM 1L6 HHZ AFPWT DR2 ACPOU AFZJQ ADAWD WFSAM 66C ADIZJ BOGZA AAONW LYRES HBH LUTES ALUQN AAZKR MSFUL AIURR ABWRO AZVAB RWI WYJ ABHUG KQQ RX1 ACXQS BMXJE R.K MXFUL P2W W99 WYISQ WIH WIK MSSTM DPXWK AUFTA 1OC 3SF BRXPI AFVGU ADZMN 8UM ABCUV ADDAD WJL BNHUX 8-0 8-1 AGJLS P4E IX1 BHBCM BMNLL LITHE MXSTM DRFUL 05W XV2 AAESR LOXES MRFUL CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 25, 2015 |
PublicationDateYYYYMMDD | 2015-02-25 |
PublicationDate_xml | – month: 02 year: 2015 text: February 25, 2015 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationTitleAlternate | Small |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | J. J. Hayes, T. D. Tullius, A. P. Wolffe, Proc. Natl. Acad. Sci. 1990, 87(19), 7405-7409. K. E. van Holde, D. E. Lohr, C. Robert, J. Biol. Chem. 1992, 267(5), 2837-2840. D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, T. Ando, Biophys. J. 2009, 97, 2358-2367. G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56(9), 930-933. C. A. Davey, D. F. Sargent, K. Luger, A. W. Maeder, T. J. Richmond, J. Mol. Biol. 2002, 319(5), 1097-1113. H. Kimura, DNA Repair 2005, 4(8), 939-950. V. Levchenko, B. Jackson, V. Jackson, Biochemistry 2005, 44(14), 5357-5372. K.-M. Lee, G. Narlikar, in Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New Jersey, USA 2001. A. J. Katan, C. Dekker, Cell 2011, 147, 979-982. DOI 10.1016/j.cell.2011.11.017. K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, T. J. Richmond, Nature 1997, 389(6648), 251-260. L. F. Liu, J. C. Wang, Proc. Natl. Acad. Sci. USA 1987, 84(20), 7024-7027. A. Bucceri, K. Kapitza, F. Thoma, EMBO J. 2006, 25(13), 3123-3132. V. Jackson, Biochemistry 1990, 29 (3), 719-731. W. Vanderlinden, PhD Thesis, K.U. Leuven 2012. T. Uchihashi, N. Kodera, T. Ando, Nat. Protoc. 2012, 7, 1193-1206. D. Necˇas, P. Klapetek, Cent. Eur. J. Phys. 2012, 10, 181-188. J. Jin, Y. Cai, B. Li, R. C. Conaway, J. L. Workman, J. W. Conaway, T. Kusch, Trends Biochem. Sci. 2005, 30(12), 680-687. J. Vesenka, M. Guthold, C. L. Tang, D. Keller, E. Delaine, C. Bustamante, Ultramicroscopy 1992, 42-44, 1243-1249. J. Schiener, S. Witt, M. Stark, R. Guckenberger, Rev. Sci. Instrum. 2004, 75, 2564. F. T. Chien, J. van Noort, Curr. Pharm. Biotechnol. 2009, 10(5), 474-485. G. Li, M. Levitus, C. Bustamante, J. Widom, Nat. Struct. Mol. Biol. 2005, 12(1), 46-53. K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, Nat. Methods 2008, 5, 695-702. DOI 10.1038/nmeth.1237. T. Nakagawa, M. Bulger, M. Muramatsu, T. Ito, J. Biol. Chem. 2001, 276(29), 27384-27391. M. E. Levenstein, J. T. Kadonaga, J. Biol. Chem. 2002, 277(10), 8749-8754. T. Ando, T. Uchihashi, T. Fukuma, Prog. Surf. Sci. 2008, 83, 337-437. M. Bezanilla, S. Manne, D. E. Laney, Y. L. Lyubchenko, H. G. Hansma, Langmuir 1995, 11, 655-659. M. T. van Loenhout, M. V. de Grunt, C. Dekker, Science 2012, 338(6103), 94-97. P. A. Wiggins, T. van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, P. C. Nelson, Nat. Nanotechnol. 2006, 1(2), 137-141. B. D. Brower-Toland, C. L. Smith, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, Proc. Natl. Acad. Sci. USA 2002, 99(4), 1960-1965. A. Lusser, D. L. Urwin, J. T. Kadonaga, Nat.Struct. Mol. Biol. 2005, 12(2), 160-166. A. Miyagi, T. Ando, Y. L. Lyubchenko, Biochemistry 2011, 50, 7901-7908. C. W. Akey, K. Luger, Curr. Opin. Struct. Biol. 2003, 13(1), 6-14 T. Ando, T. Uchihashi, N. Kodera, Annu. Rev. Biophys. 2013, 42, 393-414. A. Hamiche, V. Carot, M. Alilat, F. De Lucia, M. F. O'Donohue, B. Revet, A. Prunell, Proc. Natl. Acad. Sci. USA 1996, 93(15), 7588-7593. R. Vlijm, J. S. Smitshuijzen, A. Lusser, C. Dekker, PloS one 2012, 7(9), e46306. Y. Suzuki, Y. Higuchi, K. Hizume, M. Yokokawa, S. H. Yoshimura, K. Yoshikawa, K. Takeyasu, Ultramicroscopy 2010, 110(6), 682-688. P. T. Lowary, J. Widom, J. Mol. Biol. 1998, 276(1), 19-42. Y. L. Lyubchenko, Micron 2010, 42, 196-206. N. Kodera, M. Sakashita, T. Ando, Rev. Sci. Instrum. 2006, 77, 083704. C. R. Clapier, B. R. Cairns, Annu. Rev. Biochem. 2009, 78, 273-304. P. K. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. Prater, J. Massie, L. Fukunaga, I. Gurley, V. Elings, Appl. Phys. Lett. 1994, 64, 1738-1740. K. Luger, T. J. Rechsteiner, T. J. Richmond, Methods Enzymol. 1999, 304, 3-19. J. Mazurkiewicz, J. F. Kepert, K. Rippe, J. Biol. Chem. 2006, 281 (24), 16462-16472. H. G. Hansma, D. E. Laney, Biophys. J. 1996, 70, 1933-1939. 2012 2006; 77 1986; 56 1992; 267 2013; 42 1995; 11 2002; 99 2002; 277 2003; 13 1996; 93 2002; 319 2008; 5 2006; 1 1996; 70 1999; 304 1998; 276 2005; 44 2012; 10 1994; 64 2009; 78 2001; 276 1997; 389 1992; 42–44 2011; 147 2004; 75 2010; 42 1990; 87 2009; 10 1987; 84 2009; 97 2001 1990; 29 2006; 25 2011; 50 2010; 110 2005; 30 2005; 4 2006; 281 2008; 83 2012; 7 2012; 338 2005; 12 Li (10.1002/smll.201401318-BIB0004|smll201401318-cit-0004) 2005; 12 Uchihashi (10.1002/smll.201401318-BIB0029|smll201401318-cit-0029) 2012; 7 Miyagi (10.1002/smll.201401318-BIB0021|smll201401318-cit-0021) 2011; 50 Necˇas (10.1002/smll.201401318-BIB0043|smll201401318-cit-0043) 2012; 10 Schiener (10.1002/smll.201401318-BIB0031|smll201401318-cit-0031) 2004; 75 Nakagawa (10.1002/smll.201401318-BIB0010|smll201401318-cit-0010) 2001; 276 Ando (10.1002/smll.201401318-BIB0028|smll201401318-cit-0028) 2008; 83 Lowary (10.1002/smll.201401318-BIB0039|smll201401318-cit-0039) 1998; 276 Bucceri (10.1002/smll.201401318-BIB0017|smll201401318-cit-0017) 2006; 25 Hamiche (10.1002/smll.201401318-BIB0023|smll201401318-cit-0023) 1996; 93 Wiggins (10.1002/smll.201401318-BIB0027|smll201401318-cit-0027) 2006; 1 Jaqaman (10.1002/smll.201401318-BIB0045|smll201401318-cit-0045) 2008; 5 Hayes (10.1002/smll.201401318-BIB0040|smll201401318-cit-0040) 1990; 87 Liu (10.1002/smll.201401318-BIB0025|smll201401318-cit-0025) 1987; 84 Lusser (10.1002/smll.201401318-BIB0042|smll201401318-cit-0042) 2005; 12 Bezanilla (10.1002/smll.201401318-BIB0034|smll201401318-cit-0034) 1995; 11 Kimura (10.1002/smll.201401318-BIB0006|smll201401318-cit-0006) 2005; 4 Ando (10.1002/smll.201401318-BIB0018|smll201401318-cit-0018) 2013; 42 Suzuki (10.1002/smll.201401318-BIB0020|smll201401318-cit-0020) 2010; 110 Yamamoto (10.1002/smll.201401318-BIB0044|smll201401318-cit-0044) 2009; 97 Lyubchenko (10.1002/smll.201401318-BIB0033|smll201401318-cit-0033) 2010; 42 Davey (10.1002/smll.201401318-BIB0022|smll201401318-cit-0022) 2002; 319 Chien (10.1002/smll.201401318-BIB0013|smll201401318-cit-0013) 2009; 10 Mazurkiewicz (10.1002/smll.201401318-BIB0009|smll201401318-cit-0009) 2006; 281 Lee (10.1002/smll.201401318-BIB0038|smll201401318-cit-0038) 2001 Luger (10.1002/smll.201401318-BIB0001|smll201401318-cit-0001) 1997; 389 Jin (10.1002/smll.201401318-BIB0005|smll201401318-cit-0005) 2005; 30 Vanderlinden (10.1002/smll.201401318-BIB0035|smll201401318-cit-0035) 2012 Akey (10.1002/smll.201401318-BIB0002|smll201401318-cit-0002) 2003; 13 Brower-Toland (10.1002/smll.201401318-BIB0012|smll201401318-cit-0012) 2002; 99 Katan (10.1002/smll.201401318-BIB0019|smll201401318-cit-0019) 2011; 147 Clapier (10.1002/smll.201401318-BIB0003|smll201401318-cit-0003) 2009; 78 van Holde (10.1002/smll.201401318-BIB0008|smll201401318-cit-0008) 1992; 267 10.1002/smll.201401318-BIB0026|smll201401318-cit-0026 Vlijm (10.1002/smll.201401318-BIB0011|smll201401318-cit-0011) 2012; 7 Levenstein (10.1002/smll.201401318-BIB0041|smll201401318-cit-0041) 2002; 277 Luger (10.1002/smll.201401318-BIB0037|smll201401318-cit-0037) 1999; 304 Hansma (10.1002/smll.201401318-BIB0016|smll201401318-cit-0016) 1994; 64 Kodera (10.1002/smll.201401318-BIB0030|smll201401318-cit-0030) 2006; 77 Binnig (10.1002/smll.201401318-BIB0015|smll201401318-cit-0015) 1986; 56 Hansma (10.1002/smll.201401318-BIB0032|smll201401318-cit-0032) 1996; 70 Vesenka (10.1002/smll.201401318-BIB0036|smll201401318-cit-0036) 1992; 42-44 Jackson (10.1002/smll.201401318-BIB0007|smll201401318-cit-0007) 1990; 29 Levchenko (10.1002/smll.201401318-BIB0024|smll201401318-cit-0024) 2005; 44 van Loenhout (10.1002/smll.201401318-BIB0014|smll201401318-cit-0014) 2012; 338 |
References_xml | – reference: P. T. Lowary, J. Widom, J. Mol. Biol. 1998, 276(1), 19-42. – reference: G. Li, M. Levitus, C. Bustamante, J. Widom, Nat. Struct. Mol. Biol. 2005, 12(1), 46-53. – reference: K. Luger, T. J. Rechsteiner, T. J. Richmond, Methods Enzymol. 1999, 304, 3-19. – reference: H. G. Hansma, D. E. Laney, Biophys. J. 1996, 70, 1933-1939. – reference: L. F. Liu, J. C. Wang, Proc. Natl. Acad. Sci. USA 1987, 84(20), 7024-7027. – reference: D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, T. Ando, Biophys. J. 2009, 97, 2358-2367. – reference: K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, T. J. Richmond, Nature 1997, 389(6648), 251-260. – reference: J. Vesenka, M. Guthold, C. L. Tang, D. Keller, E. Delaine, C. Bustamante, Ultramicroscopy 1992, 42-44, 1243-1249. – reference: B. D. Brower-Toland, C. L. Smith, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, Proc. Natl. Acad. Sci. USA 2002, 99(4), 1960-1965. – reference: P. K. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. Prater, J. Massie, L. Fukunaga, I. Gurley, V. Elings, Appl. Phys. Lett. 1994, 64, 1738-1740. – reference: A. J. Katan, C. Dekker, Cell 2011, 147, 979-982. DOI 10.1016/j.cell.2011.11.017. – reference: T. Ando, T. Uchihashi, T. Fukuma, Prog. Surf. Sci. 2008, 83, 337-437. – reference: M. Bezanilla, S. Manne, D. E. Laney, Y. L. Lyubchenko, H. G. Hansma, Langmuir 1995, 11, 655-659. – reference: N. Kodera, M. Sakashita, T. Ando, Rev. Sci. Instrum. 2006, 77, 083704. – reference: K. E. van Holde, D. E. Lohr, C. Robert, J. Biol. Chem. 1992, 267(5), 2837-2840. – reference: F. T. Chien, J. van Noort, Curr. Pharm. Biotechnol. 2009, 10(5), 474-485. – reference: K.-M. Lee, G. Narlikar, in Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New Jersey, USA 2001. – reference: Y. L. Lyubchenko, Micron 2010, 42, 196-206. – reference: J. Mazurkiewicz, J. F. Kepert, K. Rippe, J. Biol. Chem. 2006, 281 (24), 16462-16472. – reference: J. J. Hayes, T. D. Tullius, A. P. Wolffe, Proc. Natl. Acad. Sci. 1990, 87(19), 7405-7409. – reference: A. Lusser, D. L. Urwin, J. T. Kadonaga, Nat.Struct. Mol. Biol. 2005, 12(2), 160-166. – reference: C. R. Clapier, B. R. Cairns, Annu. Rev. Biochem. 2009, 78, 273-304. – reference: H. Kimura, DNA Repair 2005, 4(8), 939-950. – reference: C. W. Akey, K. Luger, Curr. Opin. Struct. Biol. 2003, 13(1), 6-14 – reference: D. Necˇas, P. Klapetek, Cent. Eur. J. Phys. 2012, 10, 181-188. – reference: G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56(9), 930-933. – reference: C. A. Davey, D. F. Sargent, K. Luger, A. W. Maeder, T. J. Richmond, J. Mol. Biol. 2002, 319(5), 1097-1113. – reference: T. Nakagawa, M. Bulger, M. Muramatsu, T. Ito, J. Biol. Chem. 2001, 276(29), 27384-27391. – reference: Y. Suzuki, Y. Higuchi, K. Hizume, M. Yokokawa, S. H. Yoshimura, K. Yoshikawa, K. Takeyasu, Ultramicroscopy 2010, 110(6), 682-688. – reference: W. Vanderlinden, PhD Thesis, K.U. Leuven 2012. – reference: T. Uchihashi, N. Kodera, T. Ando, Nat. Protoc. 2012, 7, 1193-1206. – reference: M. E. Levenstein, J. T. Kadonaga, J. Biol. Chem. 2002, 277(10), 8749-8754. – reference: A. Hamiche, V. Carot, M. Alilat, F. De Lucia, M. F. O'Donohue, B. Revet, A. Prunell, Proc. Natl. Acad. Sci. USA 1996, 93(15), 7588-7593. – reference: M. T. van Loenhout, M. V. de Grunt, C. Dekker, Science 2012, 338(6103), 94-97. – reference: A. Bucceri, K. Kapitza, F. Thoma, EMBO J. 2006, 25(13), 3123-3132. – reference: A. Miyagi, T. Ando, Y. L. Lyubchenko, Biochemistry 2011, 50, 7901-7908. – reference: T. Ando, T. Uchihashi, N. Kodera, Annu. Rev. Biophys. 2013, 42, 393-414. – reference: J. Schiener, S. Witt, M. Stark, R. Guckenberger, Rev. Sci. Instrum. 2004, 75, 2564. – reference: J. Jin, Y. Cai, B. Li, R. C. Conaway, J. L. Workman, J. W. Conaway, T. Kusch, Trends Biochem. Sci. 2005, 30(12), 680-687. – reference: R. Vlijm, J. S. Smitshuijzen, A. Lusser, C. Dekker, PloS one 2012, 7(9), e46306. – reference: K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, Nat. Methods 2008, 5, 695-702. DOI 10.1038/nmeth.1237. – reference: V. Jackson, Biochemistry 1990, 29 (3), 719-731. – reference: V. Levchenko, B. Jackson, V. Jackson, Biochemistry 2005, 44(14), 5357-5372. – reference: P. A. Wiggins, T. van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, P. C. Nelson, Nat. Nanotechnol. 2006, 1(2), 137-141. – volume: 12 start-page: 46 issue: 1 year: 2005 end-page: 53 publication-title: Nat. Struct. Mol. Biol. – volume: 277 start-page: 8749 issue: 10 year: 2002 end-page: 8754 publication-title: J. Biol. Chem. – volume: 97 start-page: 2358 year: 2009 end-page: 2367 publication-title: Biophys. J. – volume: 276 start-page: 27384 issue: 29 year: 2001 end-page: 27391 publication-title: J. Biol. Chem. – volume: 56 start-page: 930 issue: 9 year: 1986 end-page: 933 publication-title: Phys. Rev. Lett. – volume: 147 start-page: 979 year: 2011 end-page: 982 publication-title: Cell – volume: 11 start-page: 655 year: 1995 end-page: 659 publication-title: Langmuir – volume: 110 start-page: 682 issue: 6 year: 2010 end-page: 688 publication-title: Ultramicroscopy – volume: 64 start-page: 1738 year: 1994 end-page: 1740 publication-title: Appl. Phys. Lett. – volume: 267 start-page: 2837 issue: 5 year: 1992 end-page: 2840 publication-title: J. Biol. Chem. – volume: 338 start-page: 94 issue: 6103 year: 2012 end-page: 97 publication-title: Science – volume: 25 start-page: 3123 issue: 13 year: 2006 end-page: 3132 publication-title: EMBO J. – volume: 42 start-page: 393 year: 2013 end-page: 414 publication-title: Annu. Rev. Biophys. – volume: 389 start-page: 251 issue: 6648 year: 1997 end-page: 260 publication-title: Nature – year: 2001 – volume: 83 start-page: 337 year: 2008 end-page: 437 publication-title: Prog. Surf. Sci. – volume: 7 start-page: e46306 issue: 9 year: 2012 publication-title: PloS one – volume: 4 start-page: 939 issue: 8 year: 2005 end-page: 950 publication-title: DNA Repair – volume: 44 start-page: 5357 issue: 14 year: 2005 end-page: 5372 publication-title: Biochemistry – volume: 304 start-page: 3 year: 1999 end-page: 19 publication-title: Methods Enzymol. – volume: 30 start-page: 680 issue: 12 year: 2005 end-page: 687 publication-title: Trends Biochem. Sci. – volume: 319 start-page: 1097 issue: 5 year: 2002 end-page: 1113 publication-title: J. Mol. Biol. – volume: 93 start-page: 7588 issue: 15 year: 1996 end-page: 7593 publication-title: Proc. Natl. Acad. Sci. USA – volume: 12 start-page: 160 issue: 2 year: 2005 end-page: 166 publication-title: Nat.Struct. Mol. Biol. – volume: 75 start-page: 2564 year: 2004 publication-title: Rev. Sci. Instrum. – volume: 42–44 start-page: 1243 year: 1992 end-page: 1249 publication-title: Ultramicroscopy – volume: 5 start-page: 695 year: 2008 end-page: 702 publication-title: Nat. Methods – year: 2012 – volume: 70 start-page: 1933 year: 1996 end-page: 1939 publication-title: Biophys. J. – volume: 87 start-page: 7405 issue: 19 year: 1990 end-page: 7409 publication-title: Proc. Natl. Acad. Sci. – volume: 84 start-page: 7024 issue: 20 year: 1987 end-page: 7027 publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 6 issue: 1 year: 2003 end-page: 14 publication-title: Curr. Opin. Struct. Biol. – volume: 29 start-page: 719 issue: 3 year: 1990 end-page: 731 publication-title: Biochemistry – volume: 281 start-page: 16462 issue: 24 year: 2006 end-page: 16472 publication-title: J. Biol. Chem. – volume: 276 start-page: 19 issue: 1 year: 1998 end-page: 42 publication-title: J. Mol. Biol. – volume: 7 start-page: 1193 year: 2012 end-page: 1206 publication-title: Nat. Protoc. – volume: 78 start-page: 273 year: 2009 end-page: 304 publication-title: Annu. Rev. Biochem. – volume: 77 start-page: 083704 year: 2006 publication-title: Rev. Sci. Instrum. – volume: 1 start-page: 137 issue: 2 year: 2006 end-page: 141 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 474 issue: 5 year: 2009 end-page: 485 publication-title: Curr. Pharm. Biotechnol. – volume: 10 start-page: 181 year: 2012 end-page: 188 publication-title: Cent. Eur. J. Phys. – volume: 42 start-page: 196 year: 2010 end-page: 206 publication-title: Micron – volume: 50 start-page: 7901 year: 2011 end-page: 7908 publication-title: Biochemistry – volume: 99 start-page: 1960 issue: 4 year: 2002 end-page: 1965 publication-title: Proc. Natl. Acad. Sci. USA – volume: 64 start-page: 1738 year: 1994 ident: 10.1002/smll.201401318-BIB0016|smll201401318-cit-0016 publication-title: Appl. Phys. Lett. doi: 10.1063/1.111795 – volume: 78 start-page: 273 year: 2009 ident: 10.1002/smll.201401318-BIB0003|smll201401318-cit-0003 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.77.062706.153223 – volume: 84 start-page: 7024 issue: 20 year: 1987 ident: 10.1002/smll.201401318-BIB0025|smll201401318-cit-0025 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.84.20.7024 – volume: 42 start-page: 393 year: 2013 ident: 10.1002/smll.201401318-BIB0018|smll201401318-cit-0018 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-083012-130324 – volume: 11 start-page: 655 year: 1995 ident: 10.1002/smll.201401318-BIB0034|smll201401318-cit-0034 publication-title: Langmuir doi: 10.1021/la00002a050 – volume: 276 start-page: 19 issue: 1 year: 1998 ident: 10.1002/smll.201401318-BIB0039|smll201401318-cit-0039 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1494 – volume: 10 start-page: 181 year: 2012 ident: 10.1002/smll.201401318-BIB0043|smll201401318-cit-0043 publication-title: Cent. Eur. J. Phys. doi: 10.2478/s11534-011-0096-2 – volume: 75 start-page: 2564 year: 2004 ident: 10.1002/smll.201401318-BIB0031|smll201401318-cit-0031 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1777405 – volume: 42 start-page: 196 year: 2010 ident: 10.1002/smll.201401318-BIB0033|smll201401318-cit-0033 publication-title: Micron doi: 10.1016/j.micron.2010.08.011 – volume: 110 start-page: 682 issue: 6 year: 2010 ident: 10.1002/smll.201401318-BIB0020|smll201401318-cit-0020 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2010.02.032 – volume: 25 start-page: 3123 issue: 13 year: 2006 ident: 10.1002/smll.201401318-BIB0017|smll201401318-cit-0017 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601196 – volume-title: Current Protocols in Molecular Biology year: 2001 ident: 10.1002/smll.201401318-BIB0038|smll201401318-cit-0038 – volume: 276 start-page: 27384 issue: 29 year: 2001 ident: 10.1002/smll.201401318-BIB0010|smll201401318-cit-0010 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M101331200 – volume: 99 start-page: 1960 issue: 4 year: 2002 ident: 10.1002/smll.201401318-BIB0012|smll201401318-cit-0012 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.022638399 – volume-title: PhD Thesis year: 2012 ident: 10.1002/smll.201401318-BIB0035|smll201401318-cit-0035 – volume: 70 start-page: 1933 year: 1996 ident: 10.1002/smll.201401318-BIB0032|smll201401318-cit-0032 publication-title: Biophys. J. doi: 10.1016/S0006-3495(96)79757-6 – volume: 304 start-page: 3 year: 1999 ident: 10.1002/smll.201401318-BIB0037|smll201401318-cit-0037 publication-title: Methods Enzymol. doi: 10.1016/S0076-6879(99)04003-3 – volume: 4 start-page: 939 issue: 8 year: 2005 ident: 10.1002/smll.201401318-BIB0006|smll201401318-cit-0006 publication-title: DNA Repair doi: 10.1016/j.dnarep.2005.04.012 – volume: 44 start-page: 5357 issue: 14 year: 2005 ident: 10.1002/smll.201401318-BIB0024|smll201401318-cit-0024 publication-title: Biochemistry doi: 10.1021/bi047786o – volume: 1 start-page: 137 issue: 2 year: 2006 ident: 10.1002/smll.201401318-BIB0027|smll201401318-cit-0027 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.63 – volume: 56 start-page: 930 issue: 9 year: 1986 ident: 10.1002/smll.201401318-BIB0015|smll201401318-cit-0015 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.930 – volume: 12 start-page: 46 issue: 1 year: 2005 ident: 10.1002/smll.201401318-BIB0004|smll201401318-cit-0004 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb869 – volume: 319 start-page: 1097 issue: 5 year: 2002 ident: 10.1002/smll.201401318-BIB0022|smll201401318-cit-0022 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00386-8 – volume: 277 start-page: 8749 issue: 10 year: 2002 ident: 10.1002/smll.201401318-BIB0041|smll201401318-cit-0041 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111212200 – volume: 7 start-page: e46306 issue: 9 year: 2012 ident: 10.1002/smll.201401318-BIB0011|smll201401318-cit-0011 publication-title: PloS one doi: 10.1371/journal.pone.0046306 – volume: 338 start-page: 94 issue: 6103 year: 2012 ident: 10.1002/smll.201401318-BIB0014|smll201401318-cit-0014 publication-title: Science doi: 10.1126/science.1225810 – volume: 50 start-page: 7901 year: 2011 ident: 10.1002/smll.201401318-BIB0021|smll201401318-cit-0021 publication-title: Biochemistry doi: 10.1021/bi200946z – volume: 87 start-page: 7405 issue: 19 year: 1990 ident: 10.1002/smll.201401318-BIB0040|smll201401318-cit-0040 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.87.19.7405 – volume: 29 start-page: 719 issue: 3 year: 1990 ident: 10.1002/smll.201401318-BIB0007|smll201401318-cit-0007 publication-title: Biochemistry doi: 10.1021/bi00455a019 – volume: 30 start-page: 680 issue: 12 year: 2005 ident: 10.1002/smll.201401318-BIB0005|smll201401318-cit-0005 publication-title: Trends Biochem. Sci. doi: 10.1016/j.tibs.2005.10.003 – volume: 267 start-page: 2837 issue: 5 year: 1992 ident: 10.1002/smll.201401318-BIB0008|smll201401318-cit-0008 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)50656-1 – volume: 10 start-page: 474 issue: 5 year: 2009 ident: 10.1002/smll.201401318-BIB0013|smll201401318-cit-0013 publication-title: Curr. Pharm. Biotechnol. doi: 10.2174/138920109788922128 – ident: 10.1002/smll.201401318-BIB0026|smll201401318-cit-0026 – volume: 97 start-page: 2358 year: 2009 ident: 10.1002/smll.201401318-BIB0044|smll201401318-cit-0044 publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.07.046 – volume: 83 start-page: 337 year: 2008 ident: 10.1002/smll.201401318-BIB0028|smll201401318-cit-0028 publication-title: Prog. Surf. Sci. doi: 10.1016/j.progsurf.2008.09.001 – volume: 7 start-page: 1193 year: 2012 ident: 10.1002/smll.201401318-BIB0029|smll201401318-cit-0029 publication-title: Nat. Protoc. doi: 10.1038/nprot.2012.047 – volume: 77 start-page: 083704 year: 2006 ident: 10.1002/smll.201401318-BIB0030|smll201401318-cit-0030 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2336113 – volume: 5 start-page: 695 year: 2008 ident: 10.1002/smll.201401318-BIB0045|smll201401318-cit-0045 publication-title: Nat. Methods doi: 10.1038/nmeth.1237 – volume: 147 start-page: 979 year: 2011 ident: 10.1002/smll.201401318-BIB0019|smll201401318-cit-0019 publication-title: Cell doi: 10.1016/j.cell.2011.11.017 – volume: 93 start-page: 7588 issue: 15 year: 1996 ident: 10.1002/smll.201401318-BIB0023|smll201401318-cit-0023 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.93.15.7588 – volume: 281 start-page: 16462 issue: 24 year: 2006 ident: 10.1002/smll.201401318-BIB0009|smll201401318-cit-0009 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M511619200 – volume: 389 start-page: 251 issue: 6648 year: 1997 ident: 10.1002/smll.201401318-BIB0001|smll201401318-cit-0001 publication-title: Nature doi: 10.1038/38444 – volume: 42-44 start-page: 1243 year: 1992 ident: 10.1002/smll.201401318-BIB0036|smll201401318-cit-0036 publication-title: Ultramicroscopy doi: 10.1016/0304-3991(92)90430-R – volume: 13 start-page: 6 issue: 1 year: 2003 ident: 10.1002/smll.201401318-BIB0002|smll201401318-cit-0002 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/S0959-440X(03)00002-2 – volume: 12 start-page: 160 issue: 2 year: 2005 ident: 10.1002/smll.201401318-BIB0042|smll201401318-cit-0042 publication-title: Nat.Struct. Mol. Biol. doi: 10.1038/nsmb884 |
SSID | ssj0031247 |
Score | 2.3167088 |
Snippet | The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 976 |
SubjectTerms | Animals Atomic force microscopy Atomic structure Buffers Chromatin Deoxyribonucleic acid Disassembly Dismantling DNA DNA - chemistry Drosophila Dynamics Escherichia coli - metabolism High speed Histones Histones - chemistry imaging Ions Microscopy Microscopy, Atomic Force Nanotechnology Nanotechnology - methods nucleosome dynamics Nucleosomes - chemistry Nucleosomes - ultrastructure Proteins Proteins - chemistry Salts - chemistry single-molecule studies Surface Properties |
Title | Dynamics of Nucleosomal Structures Measured by High-Speed Atomic Force Microscopy |
URI | https://api.istex.fr/ark:/67375/WNG-8PL554M5-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201401318 https://www.ncbi.nlm.nih.gov/pubmed/25336288 https://www.proquest.com/docview/1655996215 https://www.proquest.com/docview/1658420761 https://www.proquest.com/docview/1668250246 https://www.proquest.com/docview/1677911168 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1613-6810 databaseCode: DR2 dateStart: 20050101 customDbUrl: isFulltext: true eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucAByrOhLTISglNK4sSPPVaUpUKbFbBU9GbFjn1pu6maXantiZ_Ab-SXMGNnI8qjSFUuiTKWHGfG89me-YaQl6ow3ubOYzYOS0uumlSZEOHoa58XTvoRJgpXU7F_UH445If9hhvmwkR-iGHDDS0jzNdo4LXp-nN99qY7OcaDg7A8yDHXNy94OKX9PLBHFeC6Qm0V8Fgp0m6tOBv_aH7FJ93G4T3_G-C8il-DAxrfJ3rV9Rh3crSzXJgde_kbq-PNv22d3OuxKd2NyvSA3HLzh-TuL4yFj8hsL1aw72jr6RS5kNuuPYFGs8BDu4TFO63itmNDzQXFMJIf377PTsFJ0t0FpkDTcXtmHa0wEhBzYi4ek4Pxuy9v99O-LkNqeYnzoxnVGbPK5aZ0GUxQ0pejzCkH7t5YYSXPnTWuybytrVJGNKbxXsBVOOWZKJ6QtXk7dxuEcu4KnguARU6Wquam5F6oxhuZGSaZSUi6-jPa9qTlWDvjWEe6ZaZxsPQwWAl5PcifRrqOf0q-Cj96EKvPjjDITXL9dfpeq48TAFoV158SsrXSBN3bd6dzgUxtAvBSQl4Mr8Ey8bilnrt2GWRUyXCf6DoZAUt0wEniOhkp0SUJ6PPTqIlDpxmgdSwYnRAW9Ok_H61n1WQyPD27SaNNcgfuY1Y_3yJroF1uG3DZwjwP1vcTTzUv4w |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Nucleosomal+Structures+Measured+by+High-Speed+Atomic+Force+Microscopy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Katan%2C+Allard+J&rft.au=Vlijm%2C+Rifka&rft.au=Lusser%2C+Alexandra&rft.au=Dekker%2C+Cees&rft.date=2015-02-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=8&rft.spage=976&rft_id=info:doi/10.1002%2Fsmll.201401318&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3595310671 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |