Dynamics of Nucleosomal Structures Measured by High-Speed Atomic Force Microscopy

The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current st...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 8; pp. 976 - 984
Main Authors Katan, Allard J., Vlijm, Rifka, Lusser, Alexandra, Dekker, Cees
Format Journal Article
LanguageEnglish
Published Germany Blackwell Publishing Ltd 25.02.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1613-6810
1613-6829
1613-6829
DOI10.1002/smll.201401318

Cover

Abstract The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high‐speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein‐DNA interactions. Tetrasomes and nucleosomes assembled by NAP1 are imaged at subsecond timescales with atomic force microscopy. Several different pathways of disassembly are found and the spontaneous transition between two rotational states of tetrasomes is confirmed by direct imaging.
AbstractList The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions.The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions.
The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high‐speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein‐DNA interactions. Tetrasomes and nucleosomes assembled by NAP1 are imaged at subsecond timescales with atomic force microscopy. Several different pathways of disassembly are found and the spontaneous transition between two rotational states of tetrasomes is confirmed by direct imaging.
The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions. Tetrasomes and nucleosomes assembled by NAP1 are imaged at subsecond timescales with atomic force microscopy. Several different pathways of disassembly are found and the spontaneous transition between two rotational states of tetrasomes is confirmed by direct imaging.
The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions.
The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA wrapped around it. Since the structure and dynamics of nucleosomes affects essential cellular processes, they are the subject of many current studies. Here, high-speed atomic force microscopy is used to visualize dynamic processes in nucleosomes and tetrasomes (subnucleosomal structures that contain 4 rather than 8 histones in the protein core). Nucleosomes can spontaneously disassemble in a process (at a 1 second timescale). For tetrasomes, multiple dynamic phenomena are observed. For example, during disassembly the formation of a DNA loop (∼25 nm in length) is seen, which remains stable for several minutes. For intact tetrasomes, dynamics in the form of sliding and reversible hopping between stable positions along the DNA are observed. The data emphasize that tetrasomes are not merely static objects but highly dynamic. Since tetrasomes (in contrast to nucleosomes) can stay on the DNA during transcription, the observed tetrasome dynamics is relevant for an understanding of the nucleosomal dynamics during transcription. These results illustrate the diversity of nucleosome dynamics and demonstrate the ability of high speed AFM to characterize protein-DNA interactions.
Author Katan, Allard J.
Vlijm, Rifka
Dekker, Cees
Lusser, Alexandra
Author_xml – sequence: 1
  givenname: Allard J.
  surname: Katan
  fullname: Katan, Allard J.
  organization: Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ, 2628, The Netherlands
– sequence: 2
  givenname: Rifka
  surname: Vlijm
  fullname: Vlijm, Rifka
  organization: Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ, 2628, The Netherlands
– sequence: 3
  givenname: Alexandra
  surname: Lusser
  fullname: Lusser, Alexandra
  organization: Division of Molecular Biology, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria
– sequence: 4
  givenname: Cees
  surname: Dekker
  fullname: Dekker, Cees
  email: C.Dekker@TUDelft.nl
  organization: Bionanoscience Department, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, CJ, 2628, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25336288$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAURi1URF9sWaJIbNhk8DvOsiq0RcoUqmnVpeU4N-CSxFM7Ec2_r0dTRqgSovLC19I51_b9DtHe4AdA6B3BC4Ix_RT7rltQTDgmjKhX6IBIwnKpaLm3qwneR4cx3mHMCOXFG7RPBWOSKnWArj7Pg-mdjZlvs8vJduCj702XrcYw2XEKELMlmJiKJqvn7ML9-Jmv1pBOJ6NPYnbmg4Vs6Wzw0fr1fIxet6aL8PZpP0I3Z1-uTy_y6tv519OTKreCM5WXdWkwtQpIzQEXkhUtLzEooJzWVtpCELA1NLi1xipVy6Zu2lamxUC1VLIj9HHbdx38_QRx1L2LFrrODOCnqIksipIQItUL0DQwgSl_SVehOE3vJQn98Ay981MY0p83lChLSYlI1Psnaqp7aPQ6uN6EWf-JIAGLLbAZYAzQ7hCC9SZjvclY7zJOAn8mWDea0flhDMZ1_9bKrfbbdTD_5xK9WlbV326-dV0c4WHnmvBLy4IVQt9enmv1vRKCL4W-Yo9qhsl1
CitedBy_id crossref_primary_10_1038_s41594_018_0166_x
crossref_primary_10_1016_j_semcdb_2017_07_015
crossref_primary_10_1063_5_0054294
crossref_primary_10_1246_bcsj_20160298
crossref_primary_10_1093_nar_gkx933
crossref_primary_10_1016_j_bpj_2022_01_014
crossref_primary_10_1016_j_jmb_2020_11_019
crossref_primary_10_1371_journal_pgen_1007582
crossref_primary_10_1016_j_bbagrm_2018_07_002
crossref_primary_10_1021_acs_jpcb_4c04223
crossref_primary_10_1073_pnas_1611118114
crossref_primary_10_1039_C6NR06245H
crossref_primary_10_1063_1_5009100
crossref_primary_10_1021_acs_jpclett_1c00697
crossref_primary_10_1039_D1NR01970H
crossref_primary_10_1021_acscentsci_3c00735
crossref_primary_10_1016_j_bpj_2020_02_029
crossref_primary_10_1038_s41467_024_52484_2
crossref_primary_10_1039_D0NR08564B
crossref_primary_10_3390_ijms22136922
crossref_primary_10_1016_j_bbagen_2019_03_011
crossref_primary_10_1002_chem_201804010
crossref_primary_10_1007_s12551_016_0212_z
crossref_primary_10_1016_j_biochi_2015_11_010
crossref_primary_10_1002_marc_202000017
crossref_primary_10_21769_BioProtoc_4180
crossref_primary_10_1371_journal_pone_0165078
crossref_primary_10_1093_nar_gkad1149
crossref_primary_10_1002_cbic_202000332
Cites_doi 10.1063/1.111795
10.1146/annurev.biochem.77.062706.153223
10.1073/pnas.84.20.7024
10.1146/annurev-biophys-083012-130324
10.1021/la00002a050
10.1006/jmbi.1997.1494
10.2478/s11534-011-0096-2
10.1063/1.1777405
10.1016/j.micron.2010.08.011
10.1016/j.ultramic.2010.02.032
10.1038/sj.emboj.7601196
10.1074/jbc.M101331200
10.1073/pnas.022638399
10.1016/S0006-3495(96)79757-6
10.1016/S0076-6879(99)04003-3
10.1016/j.dnarep.2005.04.012
10.1021/bi047786o
10.1038/nnano.2006.63
10.1103/PhysRevLett.56.930
10.1038/nsmb869
10.1016/S0022-2836(02)00386-8
10.1074/jbc.M111212200
10.1371/journal.pone.0046306
10.1126/science.1225810
10.1021/bi200946z
10.1073/pnas.87.19.7405
10.1021/bi00455a019
10.1016/j.tibs.2005.10.003
10.1016/S0021-9258(19)50656-1
10.2174/138920109788922128
10.1016/j.bpj.2009.07.046
10.1016/j.progsurf.2008.09.001
10.1038/nprot.2012.047
10.1063/1.2336113
10.1038/nmeth.1237
10.1016/j.cell.2011.11.017
10.1073/pnas.93.15.7588
10.1074/jbc.M511619200
10.1038/38444
10.1016/0304-3991(92)90430-R
10.1016/S0959-440X(03)00002-2
10.1038/nsmb884
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7TM
F28
FR3
DOI 10.1002/smll.201401318
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Nucleic Acids Abstracts
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
Nucleic Acids Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList MEDLINE - Academic

Materials Research Database
Materials Research Database
MEDLINE
Nucleic Acids Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 984
ExternalDocumentID 3595310671
25336288
10_1002_smll_201401318
SMLL201401318
ark_67375_WNG_8PL554M5_Q
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Fund (FWF)
  funderid: START Y275‐B12
– fundername: ERC Advanced grant NanoforBio
  funderid: 247072
– fundername: Austrian Science Fund FWF
  grantid: Y 275
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
AAESR
AAEVG
AAHQN
AAIHA
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
XV2
Y6R
ZZTAW
~S-
-
0R
A00
AAPBV
ABHUG
ABWRO
ACXME
ADAWD
ADDAD
AEUQT
AFPWT
AFVGU
AGJLS
HZ
IPNFZ
MY
P4E
RIG
RWI
S-
WYJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7TM
F28
FR3
ID FETCH-LOGICAL-c5438-9b9a02c8e1b4e07637f490e8e242bc6c751ecbed0fcac88b6dbdff6f6f3e8f263
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Sep 05 10:18:28 EDT 2025
Wed Oct 01 13:55:14 EDT 2025
Fri Sep 05 03:32:03 EDT 2025
Fri Jul 25 12:09:12 EDT 2025
Mon Jul 21 06:03:01 EDT 2025
Wed Oct 01 02:51:37 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Fri Apr 02 05:00:53 EDT 2021
Sun Sep 21 06:25:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords atomic force microscopy
imaging
DNA
nucleosome dynamics
single-molecule studies
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5438-9b9a02c8e1b4e07637f490e8e242bc6c751ecbed0fcac88b6dbdff6f6f3e8f263
Notes ark:/67375/WNG-8PL554M5-Q
ArticleID:SMLL201401318
Austrian Science Fund (FWF) - No. START Y275-B12
istex:E38B3F01D4109891A45144E17E644EDF13E607FA
ERC Advanced grant NanoforBio - No. 247072
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 25336288
PQID 1655996215
PQPubID 1046358
PageCount 9
ParticipantIDs proquest_miscellaneous_1677911168
proquest_miscellaneous_1668250246
proquest_miscellaneous_1658420761
proquest_journals_1655996215
pubmed_primary_25336288
crossref_primary_10_1002_smll_201401318
crossref_citationtrail_10_1002_smll_201401318
wiley_primary_10_1002_smll_201401318_SMLL201401318
istex_primary_ark_67375_WNG_8PL554M5_Q
ProviderPackageCode A00
ADOZA
BFHJK
AMBMR
DCZOG
ACFBH
ACAHQ
LEEKS
AFGKR
50Y
AEUQT
AAEVG
MRSTM
MEWTI
ACXME
WBKPD
AJXKR
ADMGS
AEIMD
GNP
ATUGU
WOHZO
G-S
O66
3WU
ADEOM
MY~
LATKE
ZZTAW
QRW
SUPJJ
52U
HHY
DRSTM
1L6
HHZ
AFPWT
DR2
ACPOU
AFZJQ
ADAWD
WFSAM
66C
ADIZJ
BOGZA
AAONW
LYRES
HBH
LUTES
ALUQN
AAZKR
MSFUL
AIURR
ABWRO
AZVAB
RWI
WYJ
ABHUG
KQQ
RX1
ACXQS
BMXJE
R.K
MXFUL
P2W
W99
WYISQ
WIH
WIK
MSSTM
DPXWK
AUFTA
1OC
3SF
BRXPI
AFVGU
ADZMN
8UM
ABCUV
ADDAD
WJL
BNHUX
8-0
8-1
AGJLS
P4E
IX1
BHBCM
BMNLL
LITHE
MXSTM
DRFUL
05W
XV2
AAESR
LOXES
MRFUL
CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 25, 2015
PublicationDateYYYYMMDD 2015-02-25
PublicationDate_xml – month: 02
  year: 2015
  text: February 25, 2015
  day: 25
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References J. J. Hayes, T. D. Tullius, A. P. Wolffe, Proc. Natl. Acad. Sci. 1990, 87(19), 7405-7409.
K. E. van Holde, D. E. Lohr, C. Robert, J. Biol. Chem. 1992, 267(5), 2837-2840.
D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, T. Ando, Biophys. J. 2009, 97, 2358-2367.
G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56(9), 930-933.
C. A. Davey, D. F. Sargent, K. Luger, A. W. Maeder, T. J. Richmond, J. Mol. Biol. 2002, 319(5), 1097-1113.
H. Kimura, DNA Repair 2005, 4(8), 939-950.
V. Levchenko, B. Jackson, V. Jackson, Biochemistry 2005, 44(14), 5357-5372.
K.-M. Lee, G. Narlikar, in Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New Jersey, USA 2001.
A. J. Katan, C. Dekker, Cell 2011, 147, 979-982. DOI 10.1016/j.cell.2011.11.017.
K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, T. J. Richmond, Nature 1997, 389(6648), 251-260.
L. F. Liu, J. C. Wang, Proc. Natl. Acad. Sci. USA 1987, 84(20), 7024-7027.
A. Bucceri, K. Kapitza, F. Thoma, EMBO J. 2006, 25(13), 3123-3132.
V. Jackson, Biochemistry 1990, 29 (3), 719-731.
W. Vanderlinden, PhD Thesis, K.U. Leuven 2012.
T. Uchihashi, N. Kodera, T. Ando, Nat. Protoc. 2012, 7, 1193-1206.
D. Necˇas, P. Klapetek, Cent. Eur. J. Phys. 2012, 10, 181-188.
J. Jin, Y. Cai, B. Li, R. C. Conaway, J. L. Workman, J. W. Conaway, T. Kusch, Trends Biochem. Sci. 2005, 30(12), 680-687.
J. Vesenka, M. Guthold, C. L. Tang, D. Keller, E. Delaine, C. Bustamante, Ultramicroscopy 1992, 42-44, 1243-1249.
J. Schiener, S. Witt, M. Stark, R. Guckenberger, Rev. Sci. Instrum. 2004, 75, 2564.
F. T. Chien, J. van Noort, Curr. Pharm. Biotechnol. 2009, 10(5), 474-485.
G. Li, M. Levitus, C. Bustamante, J. Widom, Nat. Struct. Mol. Biol. 2005, 12(1), 46-53.
K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, Nat. Methods 2008, 5, 695-702. DOI 10.1038/nmeth.1237.
T. Nakagawa, M. Bulger, M. Muramatsu, T. Ito, J. Biol. Chem. 2001, 276(29), 27384-27391.
M. E. Levenstein, J. T. Kadonaga, J. Biol. Chem. 2002, 277(10), 8749-8754.
T. Ando, T. Uchihashi, T. Fukuma, Prog. Surf. Sci. 2008, 83, 337-437.
M. Bezanilla, S. Manne, D. E. Laney, Y. L. Lyubchenko, H. G. Hansma, Langmuir 1995, 11, 655-659.
M. T. van Loenhout, M. V. de Grunt, C. Dekker, Science 2012, 338(6103), 94-97.
P. A. Wiggins, T. van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, P. C. Nelson, Nat. Nanotechnol. 2006, 1(2), 137-141.
B. D. Brower-Toland, C. L. Smith, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, Proc. Natl. Acad. Sci. USA 2002, 99(4), 1960-1965.
A. Lusser, D. L. Urwin, J. T. Kadonaga, Nat.Struct. Mol. Biol. 2005, 12(2), 160-166.
A. Miyagi, T. Ando, Y. L. Lyubchenko, Biochemistry 2011, 50, 7901-7908.
C. W. Akey, K. Luger, Curr. Opin. Struct. Biol. 2003, 13(1), 6-14
T. Ando, T. Uchihashi, N. Kodera, Annu. Rev. Biophys. 2013, 42, 393-414.
A. Hamiche, V. Carot, M. Alilat, F. De Lucia, M. F. O'Donohue, B. Revet, A. Prunell, Proc. Natl. Acad. Sci. USA 1996, 93(15), 7588-7593.
R. Vlijm, J. S. Smitshuijzen, A. Lusser, C. Dekker, PloS one 2012, 7(9), e46306.
Y. Suzuki, Y. Higuchi, K. Hizume, M. Yokokawa, S. H. Yoshimura, K. Yoshikawa, K. Takeyasu, Ultramicroscopy 2010, 110(6), 682-688.
P. T. Lowary, J. Widom, J. Mol. Biol. 1998, 276(1), 19-42.
Y. L. Lyubchenko, Micron 2010, 42, 196-206.
N. Kodera, M. Sakashita, T. Ando, Rev. Sci. Instrum. 2006, 77, 083704.
C. R. Clapier, B. R. Cairns, Annu. Rev. Biochem. 2009, 78, 273-304.
P. K. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. Prater, J. Massie, L. Fukunaga, I. Gurley, V. Elings, Appl. Phys. Lett. 1994, 64, 1738-1740.
K. Luger, T. J. Rechsteiner, T. J. Richmond, Methods Enzymol. 1999, 304, 3-19.
J. Mazurkiewicz, J. F. Kepert, K. Rippe, J. Biol. Chem. 2006, 281 (24), 16462-16472.
H. G. Hansma, D. E. Laney, Biophys. J. 1996, 70, 1933-1939.
2012
2006; 77
1986; 56
1992; 267
2013; 42
1995; 11
2002; 99
2002; 277
2003; 13
1996; 93
2002; 319
2008; 5
2006; 1
1996; 70
1999; 304
1998; 276
2005; 44
2012; 10
1994; 64
2009; 78
2001; 276
1997; 389
1992; 42–44
2011; 147
2004; 75
2010; 42
1990; 87
2009; 10
1987; 84
2009; 97
2001
1990; 29
2006; 25
2011; 50
2010; 110
2005; 30
2005; 4
2006; 281
2008; 83
2012; 7
2012; 338
2005; 12
Li (10.1002/smll.201401318-BIB0004|smll201401318-cit-0004) 2005; 12
Uchihashi (10.1002/smll.201401318-BIB0029|smll201401318-cit-0029) 2012; 7
Miyagi (10.1002/smll.201401318-BIB0021|smll201401318-cit-0021) 2011; 50
Necˇas (10.1002/smll.201401318-BIB0043|smll201401318-cit-0043) 2012; 10
Schiener (10.1002/smll.201401318-BIB0031|smll201401318-cit-0031) 2004; 75
Nakagawa (10.1002/smll.201401318-BIB0010|smll201401318-cit-0010) 2001; 276
Ando (10.1002/smll.201401318-BIB0028|smll201401318-cit-0028) 2008; 83
Lowary (10.1002/smll.201401318-BIB0039|smll201401318-cit-0039) 1998; 276
Bucceri (10.1002/smll.201401318-BIB0017|smll201401318-cit-0017) 2006; 25
Hamiche (10.1002/smll.201401318-BIB0023|smll201401318-cit-0023) 1996; 93
Wiggins (10.1002/smll.201401318-BIB0027|smll201401318-cit-0027) 2006; 1
Jaqaman (10.1002/smll.201401318-BIB0045|smll201401318-cit-0045) 2008; 5
Hayes (10.1002/smll.201401318-BIB0040|smll201401318-cit-0040) 1990; 87
Liu (10.1002/smll.201401318-BIB0025|smll201401318-cit-0025) 1987; 84
Lusser (10.1002/smll.201401318-BIB0042|smll201401318-cit-0042) 2005; 12
Bezanilla (10.1002/smll.201401318-BIB0034|smll201401318-cit-0034) 1995; 11
Kimura (10.1002/smll.201401318-BIB0006|smll201401318-cit-0006) 2005; 4
Ando (10.1002/smll.201401318-BIB0018|smll201401318-cit-0018) 2013; 42
Suzuki (10.1002/smll.201401318-BIB0020|smll201401318-cit-0020) 2010; 110
Yamamoto (10.1002/smll.201401318-BIB0044|smll201401318-cit-0044) 2009; 97
Lyubchenko (10.1002/smll.201401318-BIB0033|smll201401318-cit-0033) 2010; 42
Davey (10.1002/smll.201401318-BIB0022|smll201401318-cit-0022) 2002; 319
Chien (10.1002/smll.201401318-BIB0013|smll201401318-cit-0013) 2009; 10
Mazurkiewicz (10.1002/smll.201401318-BIB0009|smll201401318-cit-0009) 2006; 281
Lee (10.1002/smll.201401318-BIB0038|smll201401318-cit-0038) 2001
Luger (10.1002/smll.201401318-BIB0001|smll201401318-cit-0001) 1997; 389
Jin (10.1002/smll.201401318-BIB0005|smll201401318-cit-0005) 2005; 30
Vanderlinden (10.1002/smll.201401318-BIB0035|smll201401318-cit-0035) 2012
Akey (10.1002/smll.201401318-BIB0002|smll201401318-cit-0002) 2003; 13
Brower-Toland (10.1002/smll.201401318-BIB0012|smll201401318-cit-0012) 2002; 99
Katan (10.1002/smll.201401318-BIB0019|smll201401318-cit-0019) 2011; 147
Clapier (10.1002/smll.201401318-BIB0003|smll201401318-cit-0003) 2009; 78
van Holde (10.1002/smll.201401318-BIB0008|smll201401318-cit-0008) 1992; 267
10.1002/smll.201401318-BIB0026|smll201401318-cit-0026
Vlijm (10.1002/smll.201401318-BIB0011|smll201401318-cit-0011) 2012; 7
Levenstein (10.1002/smll.201401318-BIB0041|smll201401318-cit-0041) 2002; 277
Luger (10.1002/smll.201401318-BIB0037|smll201401318-cit-0037) 1999; 304
Hansma (10.1002/smll.201401318-BIB0016|smll201401318-cit-0016) 1994; 64
Kodera (10.1002/smll.201401318-BIB0030|smll201401318-cit-0030) 2006; 77
Binnig (10.1002/smll.201401318-BIB0015|smll201401318-cit-0015) 1986; 56
Hansma (10.1002/smll.201401318-BIB0032|smll201401318-cit-0032) 1996; 70
Vesenka (10.1002/smll.201401318-BIB0036|smll201401318-cit-0036) 1992; 42-44
Jackson (10.1002/smll.201401318-BIB0007|smll201401318-cit-0007) 1990; 29
Levchenko (10.1002/smll.201401318-BIB0024|smll201401318-cit-0024) 2005; 44
van Loenhout (10.1002/smll.201401318-BIB0014|smll201401318-cit-0014) 2012; 338
References_xml – reference: P. T. Lowary, J. Widom, J. Mol. Biol. 1998, 276(1), 19-42.
– reference: G. Li, M. Levitus, C. Bustamante, J. Widom, Nat. Struct. Mol. Biol. 2005, 12(1), 46-53.
– reference: K. Luger, T. J. Rechsteiner, T. J. Richmond, Methods Enzymol. 1999, 304, 3-19.
– reference: H. G. Hansma, D. E. Laney, Biophys. J. 1996, 70, 1933-1939.
– reference: L. F. Liu, J. C. Wang, Proc. Natl. Acad. Sci. USA 1987, 84(20), 7024-7027.
– reference: D. Yamamoto, N. Nagura, S. Omote, M. Taniguchi, T. Ando, Biophys. J. 2009, 97, 2358-2367.
– reference: K. Luger, A. W. Mader, R. K. Richmond, D. F. Sargent, T. J. Richmond, Nature 1997, 389(6648), 251-260.
– reference: J. Vesenka, M. Guthold, C. L. Tang, D. Keller, E. Delaine, C. Bustamante, Ultramicroscopy 1992, 42-44, 1243-1249.
– reference: B. D. Brower-Toland, C. L. Smith, R. C. Yeh, J. T. Lis, C. L. Peterson, M. D. Wang, Proc. Natl. Acad. Sci. USA 2002, 99(4), 1960-1965.
– reference: P. K. Hansma, J. Cleveland, M. Radmacher, D. Walters, P. Hillner, M. Bezanilla, M. Fritz, D. Vie, H. G. Hansma, C. Prater, J. Massie, L. Fukunaga, I. Gurley, V. Elings, Appl. Phys. Lett. 1994, 64, 1738-1740.
– reference: A. J. Katan, C. Dekker, Cell 2011, 147, 979-982. DOI 10.1016/j.cell.2011.11.017.
– reference: T. Ando, T. Uchihashi, T. Fukuma, Prog. Surf. Sci. 2008, 83, 337-437.
– reference: M. Bezanilla, S. Manne, D. E. Laney, Y. L. Lyubchenko, H. G. Hansma, Langmuir 1995, 11, 655-659.
– reference: N. Kodera, M. Sakashita, T. Ando, Rev. Sci. Instrum. 2006, 77, 083704.
– reference: K. E. van Holde, D. E. Lohr, C. Robert, J. Biol. Chem. 1992, 267(5), 2837-2840.
– reference: F. T. Chien, J. van Noort, Curr. Pharm. Biotechnol. 2009, 10(5), 474-485.
– reference: K.-M. Lee, G. Narlikar, in Current Protocols in Molecular Biology, John Wiley & Sons, Inc., New Jersey, USA 2001.
– reference: Y. L. Lyubchenko, Micron 2010, 42, 196-206.
– reference: J. Mazurkiewicz, J. F. Kepert, K. Rippe, J. Biol. Chem. 2006, 281 (24), 16462-16472.
– reference: J. J. Hayes, T. D. Tullius, A. P. Wolffe, Proc. Natl. Acad. Sci. 1990, 87(19), 7405-7409.
– reference: A. Lusser, D. L. Urwin, J. T. Kadonaga, Nat.Struct. Mol. Biol. 2005, 12(2), 160-166.
– reference: C. R. Clapier, B. R. Cairns, Annu. Rev. Biochem. 2009, 78, 273-304.
– reference: H. Kimura, DNA Repair 2005, 4(8), 939-950.
– reference: C. W. Akey, K. Luger, Curr. Opin. Struct. Biol. 2003, 13(1), 6-14
– reference: D. Necˇas, P. Klapetek, Cent. Eur. J. Phys. 2012, 10, 181-188.
– reference: G. Binnig, C. F. Quate, C. Gerber, Phys. Rev. Lett. 1986, 56(9), 930-933.
– reference: C. A. Davey, D. F. Sargent, K. Luger, A. W. Maeder, T. J. Richmond, J. Mol. Biol. 2002, 319(5), 1097-1113.
– reference: T. Nakagawa, M. Bulger, M. Muramatsu, T. Ito, J. Biol. Chem. 2001, 276(29), 27384-27391.
– reference: Y. Suzuki, Y. Higuchi, K. Hizume, M. Yokokawa, S. H. Yoshimura, K. Yoshikawa, K. Takeyasu, Ultramicroscopy 2010, 110(6), 682-688.
– reference: W. Vanderlinden, PhD Thesis, K.U. Leuven 2012.
– reference: T. Uchihashi, N. Kodera, T. Ando, Nat. Protoc. 2012, 7, 1193-1206.
– reference: M. E. Levenstein, J. T. Kadonaga, J. Biol. Chem. 2002, 277(10), 8749-8754.
– reference: A. Hamiche, V. Carot, M. Alilat, F. De Lucia, M. F. O'Donohue, B. Revet, A. Prunell, Proc. Natl. Acad. Sci. USA 1996, 93(15), 7588-7593.
– reference: M. T. van Loenhout, M. V. de Grunt, C. Dekker, Science 2012, 338(6103), 94-97.
– reference: A. Bucceri, K. Kapitza, F. Thoma, EMBO J. 2006, 25(13), 3123-3132.
– reference: A. Miyagi, T. Ando, Y. L. Lyubchenko, Biochemistry 2011, 50, 7901-7908.
– reference: T. Ando, T. Uchihashi, N. Kodera, Annu. Rev. Biophys. 2013, 42, 393-414.
– reference: J. Schiener, S. Witt, M. Stark, R. Guckenberger, Rev. Sci. Instrum. 2004, 75, 2564.
– reference: J. Jin, Y. Cai, B. Li, R. C. Conaway, J. L. Workman, J. W. Conaway, T. Kusch, Trends Biochem. Sci. 2005, 30(12), 680-687.
– reference: R. Vlijm, J. S. Smitshuijzen, A. Lusser, C. Dekker, PloS one 2012, 7(9), e46306.
– reference: K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid, G. Danuser, Nat. Methods 2008, 5, 695-702. DOI 10.1038/nmeth.1237.
– reference: V. Jackson, Biochemistry 1990, 29 (3), 719-731.
– reference: V. Levchenko, B. Jackson, V. Jackson, Biochemistry 2005, 44(14), 5357-5372.
– reference: P. A. Wiggins, T. van der Heijden, F. Moreno-Herrero, A. Spakowitz, R. Phillips, J. Widom, C. Dekker, P. C. Nelson, Nat. Nanotechnol. 2006, 1(2), 137-141.
– volume: 12
  start-page: 46
  issue: 1
  year: 2005
  end-page: 53
  publication-title: Nat. Struct. Mol. Biol.
– volume: 277
  start-page: 8749
  issue: 10
  year: 2002
  end-page: 8754
  publication-title: J. Biol. Chem.
– volume: 97
  start-page: 2358
  year: 2009
  end-page: 2367
  publication-title: Biophys. J.
– volume: 276
  start-page: 27384
  issue: 29
  year: 2001
  end-page: 27391
  publication-title: J. Biol. Chem.
– volume: 56
  start-page: 930
  issue: 9
  year: 1986
  end-page: 933
  publication-title: Phys. Rev. Lett.
– volume: 147
  start-page: 979
  year: 2011
  end-page: 982
  publication-title: Cell
– volume: 11
  start-page: 655
  year: 1995
  end-page: 659
  publication-title: Langmuir
– volume: 110
  start-page: 682
  issue: 6
  year: 2010
  end-page: 688
  publication-title: Ultramicroscopy
– volume: 64
  start-page: 1738
  year: 1994
  end-page: 1740
  publication-title: Appl. Phys. Lett.
– volume: 267
  start-page: 2837
  issue: 5
  year: 1992
  end-page: 2840
  publication-title: J. Biol. Chem.
– volume: 338
  start-page: 94
  issue: 6103
  year: 2012
  end-page: 97
  publication-title: Science
– volume: 25
  start-page: 3123
  issue: 13
  year: 2006
  end-page: 3132
  publication-title: EMBO J.
– volume: 42
  start-page: 393
  year: 2013
  end-page: 414
  publication-title: Annu. Rev. Biophys.
– volume: 389
  start-page: 251
  issue: 6648
  year: 1997
  end-page: 260
  publication-title: Nature
– year: 2001
– volume: 83
  start-page: 337
  year: 2008
  end-page: 437
  publication-title: Prog. Surf. Sci.
– volume: 7
  start-page: e46306
  issue: 9
  year: 2012
  publication-title: PloS one
– volume: 4
  start-page: 939
  issue: 8
  year: 2005
  end-page: 950
  publication-title: DNA Repair
– volume: 44
  start-page: 5357
  issue: 14
  year: 2005
  end-page: 5372
  publication-title: Biochemistry
– volume: 304
  start-page: 3
  year: 1999
  end-page: 19
  publication-title: Methods Enzymol.
– volume: 30
  start-page: 680
  issue: 12
  year: 2005
  end-page: 687
  publication-title: Trends Biochem. Sci.
– volume: 319
  start-page: 1097
  issue: 5
  year: 2002
  end-page: 1113
  publication-title: J. Mol. Biol.
– volume: 93
  start-page: 7588
  issue: 15
  year: 1996
  end-page: 7593
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 12
  start-page: 160
  issue: 2
  year: 2005
  end-page: 166
  publication-title: Nat.Struct. Mol. Biol.
– volume: 75
  start-page: 2564
  year: 2004
  publication-title: Rev. Sci. Instrum.
– volume: 42–44
  start-page: 1243
  year: 1992
  end-page: 1249
  publication-title: Ultramicroscopy
– volume: 5
  start-page: 695
  year: 2008
  end-page: 702
  publication-title: Nat. Methods
– year: 2012
– volume: 70
  start-page: 1933
  year: 1996
  end-page: 1939
  publication-title: Biophys. J.
– volume: 87
  start-page: 7405
  issue: 19
  year: 1990
  end-page: 7409
  publication-title: Proc. Natl. Acad. Sci.
– volume: 84
  start-page: 7024
  issue: 20
  year: 1987
  end-page: 7027
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 6
  issue: 1
  year: 2003
  end-page: 14
  publication-title: Curr. Opin. Struct. Biol.
– volume: 29
  start-page: 719
  issue: 3
  year: 1990
  end-page: 731
  publication-title: Biochemistry
– volume: 281
  start-page: 16462
  issue: 24
  year: 2006
  end-page: 16472
  publication-title: J. Biol. Chem.
– volume: 276
  start-page: 19
  issue: 1
  year: 1998
  end-page: 42
  publication-title: J. Mol. Biol.
– volume: 7
  start-page: 1193
  year: 2012
  end-page: 1206
  publication-title: Nat. Protoc.
– volume: 78
  start-page: 273
  year: 2009
  end-page: 304
  publication-title: Annu. Rev. Biochem.
– volume: 77
  start-page: 083704
  year: 2006
  publication-title: Rev. Sci. Instrum.
– volume: 1
  start-page: 137
  issue: 2
  year: 2006
  end-page: 141
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 474
  issue: 5
  year: 2009
  end-page: 485
  publication-title: Curr. Pharm. Biotechnol.
– volume: 10
  start-page: 181
  year: 2012
  end-page: 188
  publication-title: Cent. Eur. J. Phys.
– volume: 42
  start-page: 196
  year: 2010
  end-page: 206
  publication-title: Micron
– volume: 50
  start-page: 7901
  year: 2011
  end-page: 7908
  publication-title: Biochemistry
– volume: 99
  start-page: 1960
  issue: 4
  year: 2002
  end-page: 1965
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 64
  start-page: 1738
  year: 1994
  ident: 10.1002/smll.201401318-BIB0016|smll201401318-cit-0016
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.111795
– volume: 78
  start-page: 273
  year: 2009
  ident: 10.1002/smll.201401318-BIB0003|smll201401318-cit-0003
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.77.062706.153223
– volume: 84
  start-page: 7024
  issue: 20
  year: 1987
  ident: 10.1002/smll.201401318-BIB0025|smll201401318-cit-0025
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.84.20.7024
– volume: 42
  start-page: 393
  year: 2013
  ident: 10.1002/smll.201401318-BIB0018|smll201401318-cit-0018
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-083012-130324
– volume: 11
  start-page: 655
  year: 1995
  ident: 10.1002/smll.201401318-BIB0034|smll201401318-cit-0034
  publication-title: Langmuir
  doi: 10.1021/la00002a050
– volume: 276
  start-page: 19
  issue: 1
  year: 1998
  ident: 10.1002/smll.201401318-BIB0039|smll201401318-cit-0039
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1494
– volume: 10
  start-page: 181
  year: 2012
  ident: 10.1002/smll.201401318-BIB0043|smll201401318-cit-0043
  publication-title: Cent. Eur. J. Phys.
  doi: 10.2478/s11534-011-0096-2
– volume: 75
  start-page: 2564
  year: 2004
  ident: 10.1002/smll.201401318-BIB0031|smll201401318-cit-0031
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1777405
– volume: 42
  start-page: 196
  year: 2010
  ident: 10.1002/smll.201401318-BIB0033|smll201401318-cit-0033
  publication-title: Micron
  doi: 10.1016/j.micron.2010.08.011
– volume: 110
  start-page: 682
  issue: 6
  year: 2010
  ident: 10.1002/smll.201401318-BIB0020|smll201401318-cit-0020
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2010.02.032
– volume: 25
  start-page: 3123
  issue: 13
  year: 2006
  ident: 10.1002/smll.201401318-BIB0017|smll201401318-cit-0017
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601196
– volume-title: Current Protocols in Molecular Biology
  year: 2001
  ident: 10.1002/smll.201401318-BIB0038|smll201401318-cit-0038
– volume: 276
  start-page: 27384
  issue: 29
  year: 2001
  ident: 10.1002/smll.201401318-BIB0010|smll201401318-cit-0010
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M101331200
– volume: 99
  start-page: 1960
  issue: 4
  year: 2002
  ident: 10.1002/smll.201401318-BIB0012|smll201401318-cit-0012
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.022638399
– volume-title: PhD Thesis
  year: 2012
  ident: 10.1002/smll.201401318-BIB0035|smll201401318-cit-0035
– volume: 70
  start-page: 1933
  year: 1996
  ident: 10.1002/smll.201401318-BIB0032|smll201401318-cit-0032
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(96)79757-6
– volume: 304
  start-page: 3
  year: 1999
  ident: 10.1002/smll.201401318-BIB0037|smll201401318-cit-0037
  publication-title: Methods Enzymol.
  doi: 10.1016/S0076-6879(99)04003-3
– volume: 4
  start-page: 939
  issue: 8
  year: 2005
  ident: 10.1002/smll.201401318-BIB0006|smll201401318-cit-0006
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2005.04.012
– volume: 44
  start-page: 5357
  issue: 14
  year: 2005
  ident: 10.1002/smll.201401318-BIB0024|smll201401318-cit-0024
  publication-title: Biochemistry
  doi: 10.1021/bi047786o
– volume: 1
  start-page: 137
  issue: 2
  year: 2006
  ident: 10.1002/smll.201401318-BIB0027|smll201401318-cit-0027
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.63
– volume: 56
  start-page: 930
  issue: 9
  year: 1986
  ident: 10.1002/smll.201401318-BIB0015|smll201401318-cit-0015
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.930
– volume: 12
  start-page: 46
  issue: 1
  year: 2005
  ident: 10.1002/smll.201401318-BIB0004|smll201401318-cit-0004
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb869
– volume: 319
  start-page: 1097
  issue: 5
  year: 2002
  ident: 10.1002/smll.201401318-BIB0022|smll201401318-cit-0022
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)00386-8
– volume: 277
  start-page: 8749
  issue: 10
  year: 2002
  ident: 10.1002/smll.201401318-BIB0041|smll201401318-cit-0041
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111212200
– volume: 7
  start-page: e46306
  issue: 9
  year: 2012
  ident: 10.1002/smll.201401318-BIB0011|smll201401318-cit-0011
  publication-title: PloS one
  doi: 10.1371/journal.pone.0046306
– volume: 338
  start-page: 94
  issue: 6103
  year: 2012
  ident: 10.1002/smll.201401318-BIB0014|smll201401318-cit-0014
  publication-title: Science
  doi: 10.1126/science.1225810
– volume: 50
  start-page: 7901
  year: 2011
  ident: 10.1002/smll.201401318-BIB0021|smll201401318-cit-0021
  publication-title: Biochemistry
  doi: 10.1021/bi200946z
– volume: 87
  start-page: 7405
  issue: 19
  year: 1990
  ident: 10.1002/smll.201401318-BIB0040|smll201401318-cit-0040
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.87.19.7405
– volume: 29
  start-page: 719
  issue: 3
  year: 1990
  ident: 10.1002/smll.201401318-BIB0007|smll201401318-cit-0007
  publication-title: Biochemistry
  doi: 10.1021/bi00455a019
– volume: 30
  start-page: 680
  issue: 12
  year: 2005
  ident: 10.1002/smll.201401318-BIB0005|smll201401318-cit-0005
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/j.tibs.2005.10.003
– volume: 267
  start-page: 2837
  issue: 5
  year: 1992
  ident: 10.1002/smll.201401318-BIB0008|smll201401318-cit-0008
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)50656-1
– volume: 10
  start-page: 474
  issue: 5
  year: 2009
  ident: 10.1002/smll.201401318-BIB0013|smll201401318-cit-0013
  publication-title: Curr. Pharm. Biotechnol.
  doi: 10.2174/138920109788922128
– ident: 10.1002/smll.201401318-BIB0026|smll201401318-cit-0026
– volume: 97
  start-page: 2358
  year: 2009
  ident: 10.1002/smll.201401318-BIB0044|smll201401318-cit-0044
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.07.046
– volume: 83
  start-page: 337
  year: 2008
  ident: 10.1002/smll.201401318-BIB0028|smll201401318-cit-0028
  publication-title: Prog. Surf. Sci.
  doi: 10.1016/j.progsurf.2008.09.001
– volume: 7
  start-page: 1193
  year: 2012
  ident: 10.1002/smll.201401318-BIB0029|smll201401318-cit-0029
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2012.047
– volume: 77
  start-page: 083704
  year: 2006
  ident: 10.1002/smll.201401318-BIB0030|smll201401318-cit-0030
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2336113
– volume: 5
  start-page: 695
  year: 2008
  ident: 10.1002/smll.201401318-BIB0045|smll201401318-cit-0045
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1237
– volume: 147
  start-page: 979
  year: 2011
  ident: 10.1002/smll.201401318-BIB0019|smll201401318-cit-0019
  publication-title: Cell
  doi: 10.1016/j.cell.2011.11.017
– volume: 93
  start-page: 7588
  issue: 15
  year: 1996
  ident: 10.1002/smll.201401318-BIB0023|smll201401318-cit-0023
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.93.15.7588
– volume: 281
  start-page: 16462
  issue: 24
  year: 2006
  ident: 10.1002/smll.201401318-BIB0009|smll201401318-cit-0009
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M511619200
– volume: 389
  start-page: 251
  issue: 6648
  year: 1997
  ident: 10.1002/smll.201401318-BIB0001|smll201401318-cit-0001
  publication-title: Nature
  doi: 10.1038/38444
– volume: 42-44
  start-page: 1243
  year: 1992
  ident: 10.1002/smll.201401318-BIB0036|smll201401318-cit-0036
  publication-title: Ultramicroscopy
  doi: 10.1016/0304-3991(92)90430-R
– volume: 13
  start-page: 6
  issue: 1
  year: 2003
  ident: 10.1002/smll.201401318-BIB0002|smll201401318-cit-0002
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/S0959-440X(03)00002-2
– volume: 12
  start-page: 160
  issue: 2
  year: 2005
  ident: 10.1002/smll.201401318-BIB0042|smll201401318-cit-0042
  publication-title: Nat.Struct. Mol. Biol.
  doi: 10.1038/nsmb884
SSID ssj0031247
Score 2.3167088
Snippet The accessibility of DNA is determined by the number, position, and stability of nucleosomes, complexes consisting of a core of 8 histone proteins with DNA...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 976
SubjectTerms Animals
Atomic force microscopy
Atomic structure
Buffers
Chromatin
Deoxyribonucleic acid
Disassembly
Dismantling
DNA
DNA - chemistry
Drosophila
Dynamics
Escherichia coli - metabolism
High speed
Histones
Histones - chemistry
imaging
Ions
Microscopy
Microscopy, Atomic Force
Nanotechnology
Nanotechnology - methods
nucleosome dynamics
Nucleosomes - chemistry
Nucleosomes - ultrastructure
Proteins
Proteins - chemistry
Salts - chemistry
single-molecule studies
Surface Properties
Title Dynamics of Nucleosomal Structures Measured by High-Speed Atomic Force Microscopy
URI https://api.istex.fr/ark:/67375/WNG-8PL554M5-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201401318
https://www.ncbi.nlm.nih.gov/pubmed/25336288
https://www.proquest.com/docview/1655996215
https://www.proquest.com/docview/1658420761
https://www.proquest.com/docview/1668250246
https://www.proquest.com/docview/1677911168
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1613-6810
  databaseCode: DR2
  dateStart: 20050101
  customDbUrl:
  isFulltext: true
  eissn: 1613-6829
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031247
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQucAByrOhLTISglNK4sSPPVaUpUKbFbBU9GbFjn1pu6maXantiZ_Ab-SXMGNnI8qjSFUuiTKWHGfG89me-YaQl6ow3ubOYzYOS0uumlSZEOHoa58XTvoRJgpXU7F_UH445If9hhvmwkR-iGHDDS0jzNdo4LXp-nN99qY7OcaDg7A8yDHXNy94OKX9PLBHFeC6Qm0V8Fgp0m6tOBv_aH7FJ93G4T3_G-C8il-DAxrfJ3rV9Rh3crSzXJgde_kbq-PNv22d3OuxKd2NyvSA3HLzh-TuL4yFj8hsL1aw72jr6RS5kNuuPYFGs8BDu4TFO63itmNDzQXFMJIf377PTsFJ0t0FpkDTcXtmHa0wEhBzYi4ek4Pxuy9v99O-LkNqeYnzoxnVGbPK5aZ0GUxQ0pejzCkH7t5YYSXPnTWuybytrVJGNKbxXsBVOOWZKJ6QtXk7dxuEcu4KnguARU6Wquam5F6oxhuZGSaZSUi6-jPa9qTlWDvjWEe6ZaZxsPQwWAl5PcifRrqOf0q-Cj96EKvPjjDITXL9dfpeq48TAFoV158SsrXSBN3bd6dzgUxtAvBSQl4Mr8Ey8bilnrt2GWRUyXCf6DoZAUt0wEniOhkp0SUJ6PPTqIlDpxmgdSwYnRAW9Ok_H61n1WQyPD27SaNNcgfuY1Y_3yJroF1uG3DZwjwP1vcTTzUv4w
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+of+Nucleosomal+Structures+Measured+by+High-Speed+Atomic+Force+Microscopy&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Katan%2C+Allard+J&rft.au=Vlijm%2C+Rifka&rft.au=Lusser%2C+Alexandra&rft.au=Dekker%2C+Cees&rft.date=2015-02-25&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=8&rft.spage=976&rft_id=info:doi/10.1002%2Fsmll.201401318&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3595310671
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon