On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons
Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk an...
Saved in:
Published in | The Journal of neuroscience Vol. 24; no. 49; pp. 11046 - 11056 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Soc Neuroscience
08.12.2004
Society for Neuroscience |
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.2520-04.2004 |
Cover
Abstract | Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: ∼50 synaptic inputs spread over 100 μm of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 ± 1 mV (
n
= 30) vs -56 ± 1 mV (
n
= 7), respectively] and are mainly generated and shaped by dendritic Na
+
and K
+
currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the
V
m
and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output. |
---|---|
AbstractList | Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output. Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output. Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: ∼50 synaptic inputs spread over 100 μm of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 ± 1 mV ( n = 30) vs -56 ± 1 mV ( n = 7), respectively] and are mainly generated and shaped by dendritic Na + and K + currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V m and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output. Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: [approx]50 synaptic inputs spread over 100 mu m of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/-1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na super(+) and K super(+) currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V sub(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short- latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output. |
Author | Migliore, Michele Magee, Jeffrey C Gasparini, Sonia |
Author_xml | – sequence: 1 fullname: Gasparini, Sonia – sequence: 2 fullname: Migliore, Michele – sequence: 3 fullname: Magee, Jeffrey C |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15590921$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vEzEQxS1URNPAV6h8Qlw2jP_sei0hpCqUNqhKKkrPlmN7E8Oundobon57NqREwKWXsUbze-OneWfoJMTgEDonMCElZe-_zC_vvy7uprMJLSkUwCcUgL9Ao2EqC8qBnKARUAFFxQU_RWc5fwcAAUS8QqekLCVISkZovgi4Xzs8C773uvcxYB0svk1xo1eHPjb4kws2DYDBdxv_w2XsA55eEHz7mHTnrW7x3G1TDPk1etnoNrs3T-8Y3X--_Da9Lm4WV7PpxU1hSk77wpayIZJbCpTVoma0bGQD2mlCHae2MsbW3DBK6qW2wlIqakuXpmZSlnJZV2yMPh72brbLzlnjQp90qzbJdzo9qqi9-ncS_Fqt4k9VCQZ0KGP09mlBig9bl3vV-Wxc2-rg4jYPHBHABH0WJKJkBBgfwPO_LR29_Ln1AHw4ACbFnJNrlPH97xMPDn2rCKh9tOoYrdpHq4CrfbSDvPpPfvzhOeG7g3DtV-udT07lTrftYJOo3W5HueJSEQK8Yr8AxIu2Dg |
CitedBy_id | crossref_primary_10_1002_hipo_20480 crossref_primary_10_1007_s12021_019_09450_x crossref_primary_10_1523_JNEUROSCI_2219_16_2017 crossref_primary_10_1016_j_bpj_2014_12_048 crossref_primary_10_1017_S1472928808000344 crossref_primary_10_1111_j_1460_9568_2008_06516_x crossref_primary_10_1016_j_neuroscience_2021_12_039 crossref_primary_10_1038_s41467_024_50546_z crossref_primary_10_1038_s41598_023_48183_5 crossref_primary_10_1523_JNEUROSCI_1182_17_2018 crossref_primary_10_1111_j_1471_4159_2007_04470_x crossref_primary_10_1016_j_celrep_2023_112022 crossref_primary_10_1002_cne_23070 crossref_primary_10_1016_j_celrep_2023_112386 crossref_primary_10_1515_revneuro_2016_0015 crossref_primary_10_1038_srep45684 crossref_primary_10_1113_jphysiol_2006_112128 crossref_primary_10_3389_fncel_2021_771600 crossref_primary_10_7554_eLife_04551 crossref_primary_10_1038_s41598_022_10466_8 crossref_primary_10_1523_JNEUROSCI_0835_08_2008 crossref_primary_10_1152_jn_00414_2007 crossref_primary_10_1152_jn_00951_2016 crossref_primary_10_1152_jn_00303_2021 crossref_primary_10_1113_jphysiol_2007_142984 crossref_primary_10_1002_jnr_22444 crossref_primary_10_1016_j_neuroscience_2021_08_035 crossref_primary_10_3389_fnins_2023_1132980 crossref_primary_10_1016_j_neuron_2016_03_019 crossref_primary_10_1016_j_neuroscience_2022_02_009 crossref_primary_10_3389_fncom_2023_1305169 crossref_primary_10_1146_annurev_neuro_28_061604_135703 crossref_primary_10_1111_j_1460_9568_2008_06434_x crossref_primary_10_1002_hipo_20143 crossref_primary_10_3389_fncel_2019_00413 crossref_primary_10_1016_j_neuron_2009_03_010 crossref_primary_10_1038_nature06725 crossref_primary_10_7554_eLife_100664_4 crossref_primary_10_1523_JNEUROSCI_5220_05_2006 crossref_primary_10_1371_journal_pcbi_1002384 crossref_primary_10_1016_j_neuron_2007_11_015 crossref_primary_10_3389_fncel_2017_00029 crossref_primary_10_1523_JNEUROSCI_3977_14_2015 crossref_primary_10_1007_s12311_012_0387_1 crossref_primary_10_1111_j_1460_9568_2006_04615_x crossref_primary_10_1152_jn_00922_2006 crossref_primary_10_1016_j_brainres_2013_05_023 crossref_primary_10_1113_JP286679 crossref_primary_10_1093_cercor_bhw252 crossref_primary_10_3389_fncel_2019_00098 crossref_primary_10_1371_journal_pcbi_1009569 crossref_primary_10_1371_journal_pone_0132577 crossref_primary_10_1038_nrn2864 crossref_primary_10_1364_BOE_4_002869 crossref_primary_10_3389_fcogn_2023_1044216 crossref_primary_10_1162_neco_a_01534 crossref_primary_10_1016_j_cogsys_2021_07_008 crossref_primary_10_3389_fnins_2024_1457774 crossref_primary_10_1002_hipo_20168 crossref_primary_10_1016_j_cub_2008_08_060 crossref_primary_10_7554_eLife_46966 crossref_primary_10_1371_journal_pcbi_1006485 crossref_primary_10_1016_j_neunet_2021_07_026 crossref_primary_10_1523_JNEUROSCI_4172_13_2014 crossref_primary_10_1038_nn_3562 crossref_primary_10_1038_nature13871 crossref_primary_10_1038_nn_3682 crossref_primary_10_1007_s10827_007_0028_8 crossref_primary_10_1016_j_neuron_2010_12_008 crossref_primary_10_1111_j_1460_9568_2012_08199_x crossref_primary_10_1152_jn_00360_2016 crossref_primary_10_1016_j_neuron_2009_01_032 crossref_primary_10_1038_s41467_025_55819_9 crossref_primary_10_1523_JNEUROSCI_3203_13_2014 crossref_primary_10_1016_j_neuron_2008_08_020 crossref_primary_10_1152_jn_00612_2010 crossref_primary_10_3389_fpsyg_2014_00842 crossref_primary_10_1016_j_celrep_2020_108255 crossref_primary_10_1073_pnas_2017339118 crossref_primary_10_1007_s44258_024_00042_2 crossref_primary_10_1016_j_conb_2021_08_001 crossref_primary_10_1371_journal_pcbi_1002550 crossref_primary_10_1016_j_tins_2008_03_004 crossref_primary_10_1016_j_celrep_2024_114413 crossref_primary_10_1162_NECO_a_00366 crossref_primary_10_1038_s41467_021_23829_y crossref_primary_10_1152_jn_01235_2007 crossref_primary_10_1523_JNEUROSCI_4428_05_2006 crossref_primary_10_1186_1756_6606_4_19 crossref_primary_10_1002_hipo_22488 crossref_primary_10_1007_s10827_007_0021_2 crossref_primary_10_1002_hipo_22002 crossref_primary_10_1073_pnas_1312599110 crossref_primary_10_1111_ejn_12065 crossref_primary_10_1162_neco_2009_11_08_913 crossref_primary_10_1016_j_neuroscience_2016_08_016 crossref_primary_10_1152_jn_01129_2009 crossref_primary_10_1016_j_conb_2005_05_013 crossref_primary_10_1016_j_neuroscience_2006_02_085 crossref_primary_10_1109_TBCAS_2012_2199487 crossref_primary_10_1371_journal_pcbi_1009891 crossref_primary_10_1523_ENEURO_0248_20_2020 crossref_primary_10_1016_j_neuroimage_2007_08_048 crossref_primary_10_1016_j_neuroscience_2014_01_067 crossref_primary_10_1371_journal_pone_0047250 crossref_primary_10_1016_j_neuroscience_2019_10_019 crossref_primary_10_1523_JNEUROSCI_2992_05_2005 crossref_primary_10_1016_j_neuroscience_2010_07_032 crossref_primary_10_1016_j_neucom_2005_12_038 crossref_primary_10_1111_j_1460_9568_2011_07791_x crossref_primary_10_1515_revneuro_2016_0080 crossref_primary_10_1523_JNEUROSCI_4223_14_2015 crossref_primary_10_1523_JNEUROSCI_2254_10_2010 crossref_primary_10_3389_fncel_2014_00310 crossref_primary_10_1016_j_neuron_2013_06_005 crossref_primary_10_1038_s41467_024_48987_7 crossref_primary_10_7554_eLife_100664 crossref_primary_10_1523_JNEUROSCI_0586_11_2011 crossref_primary_10_1016_j_neuron_2021_12_017 crossref_primary_10_1523_JNEUROSCI_3495_12_2013 crossref_primary_10_1016_j_neuroscience_2021_07_026 crossref_primary_10_1016_j_neuroscience_2014_07_069 crossref_primary_10_1016_j_neuroscience_2016_02_006 crossref_primary_10_3989_loquens_2021_077 crossref_primary_10_1016_j_neuron_2011_03_006 crossref_primary_10_1113_jphysiol_2012_237172 crossref_primary_10_1186_1756_6606_7_26 crossref_primary_10_1371_journal_pone_0011868 crossref_primary_10_1523_JNEUROSCI_0780_21_2022 crossref_primary_10_1038_s41598_021_87002_7 crossref_primary_10_3390_ijms22094565 crossref_primary_10_1007_s11571_013_9252_2 crossref_primary_10_1016_j_neuron_2013_03_008 crossref_primary_10_1007_s10827_015_0568_2 crossref_primary_10_1007_s12539_015_0104_0 crossref_primary_10_1073_pnas_1103546108 crossref_primary_10_1016_j_ceca_2005_06_013 crossref_primary_10_1152_jn_01076_2007 crossref_primary_10_1007_s00422_009_0359_9 crossref_primary_10_1371_journal_pcbi_1002867 crossref_primary_10_1016_j_brainresbull_2013_09_010 crossref_primary_10_1038_nn1599 crossref_primary_10_1103_PhysRevX_4_011053 crossref_primary_10_1371_journal_pcbi_1004014 crossref_primary_10_3389_fnins_2018_00961 crossref_primary_10_1016_j_pbiomolbio_2020_08_002 crossref_primary_10_1111_j_1460_9568_2010_07341_x crossref_primary_10_1016_j_tins_2007_06_010 crossref_primary_10_1016_j_neuron_2009_06_023 crossref_primary_10_1038_s41598_017_18363_1 crossref_primary_10_1113_jphysiol_2007_142315 crossref_primary_10_1113_JP283311 crossref_primary_10_1016_j_conb_2018_07_004 crossref_primary_10_1038_srep00928 crossref_primary_10_1038_nn1826 crossref_primary_10_1371_journal_pone_0055590 crossref_primary_10_1007_s11062_021_09890_9 crossref_primary_10_1152_physrev_00016_2007 crossref_primary_10_1111_j_1460_9568_2008_06075_x crossref_primary_10_1016_j_neunet_2011_01_001 crossref_primary_10_1080_09548980701587100 crossref_primary_10_1093_cercor_bhz124 crossref_primary_10_1103_PhysRevE_89_030701 crossref_primary_10_1523_JNEUROSCI_1045_10_2011 crossref_primary_10_1038_nrn1937 crossref_primary_10_1016_j_neuron_2006_03_022 crossref_primary_10_1016_j_neuron_2006_03_016 crossref_primary_10_1523_JNEUROSCI_1717_07_2007 crossref_primary_10_1016_j_nlm_2024_107993 crossref_primary_10_1038_s41583_020_0301_7 crossref_primary_10_1371_journal_pone_0122263 crossref_primary_10_1523_JNEUROSCI_2662_10_2010 crossref_primary_10_1103_PhysRevX_2_041016 crossref_primary_10_1016_j_neuron_2012_06_025 crossref_primary_10_3389_fncel_2020_00135 crossref_primary_10_1002_hipo_22061 crossref_primary_10_1152_jn_90332_2008 crossref_primary_10_1073_pnas_2220743120 crossref_primary_10_1126_science_1210362 crossref_primary_10_3389_fnsyn_2023_1113957 crossref_primary_10_1088_1741_2560_7_4_045002 crossref_primary_10_1073_pnas_0909615107 crossref_primary_10_1152_jn_00556_2007 crossref_primary_10_1152_jn_00968_2010 crossref_primary_10_1523_ENEURO_0250_17_2017 crossref_primary_10_1371_journal_pbio_3002935 crossref_primary_10_1016_j_neuron_2009_03_023 crossref_primary_10_1371_journal_pcbi_1007955 crossref_primary_10_1117_1_3275468 crossref_primary_10_1371_journal_pcbi_1000886 crossref_primary_10_1038_nrn2286 crossref_primary_10_1111_j_1525_1594_2011_01224_x crossref_primary_10_1152_jn_00521_2005 crossref_primary_10_1523_ENEURO_0053_15_2015 crossref_primary_10_1109_TBME_2009_2028015 crossref_primary_10_1371_journal_pcbi_1003940 crossref_primary_10_1038_nn_4157 crossref_primary_10_1073_pnas_2321501121 crossref_primary_10_1038_nprot_2006_164 crossref_primary_10_1016_j_neuron_2010_04_027 crossref_primary_10_1007_s11571_011_9158_9 crossref_primary_10_1007_s00429_019_02018_0 crossref_primary_10_1113_jphysiol_2012_239418 crossref_primary_10_1038_nn_3060 crossref_primary_10_1523_JNEUROSCI_5284_05_2006 crossref_primary_10_1111_j_1460_9568_2007_05827_x crossref_primary_10_1113_JP270688 crossref_primary_10_1113_jphysiol_2008_167130 crossref_primary_10_3389_fnsyn_2014_00023 crossref_primary_10_1002_jnr_24240 crossref_primary_10_1111_ejn_13325 crossref_primary_10_3389_fnana_2021_636683 crossref_primary_10_1016_j_neuron_2013_09_027 crossref_primary_10_1143_JPSJ_76_114802 crossref_primary_10_1038_nn_3056 crossref_primary_10_1016_j_pneurobio_2014_12_002 crossref_primary_10_1103_PhysRevE_84_052901 crossref_primary_10_1093_cercor_bhab236 crossref_primary_10_1113_jphysiol_2006_107094 crossref_primary_10_1016_j_celrep_2022_111962 crossref_primary_10_1162_neco_2010_06_09_1030 crossref_primary_10_1371_journal_pone_0001209 |
Cites_doi | 10.1016/S0896-6273(00)81098-3 10.1523/JNEUROSCI.18-10-03521.1998 10.1098/rstb.1997.0139 10.1152/jn.1961.24.3.272 10.1523/JNEUROSCI.18-10-03919.1998 10.1152/jn.1999.81.2.535 10.1523/JNEUROSCI.20-16-06181.2000 10.1152/jn.1961.24.3.225 10.1038/78800 10.1523/JNEUROSCI.11-07-02270.1991 10.1038/nn1253 10.1016/0165-0270(91)90051-Z 10.1111/j.1469-7793.2000.t01-2-00611.x 10.1126/science.287.5451.295 10.1038/nn857 10.1038/nn1178 10.1152/jn.00286.2003 10.1016/S0896-6273(01)00252-5 10.1523/JNEUROSCI.19-01-00274.1999 10.1038/9158 10.1126/science.1061198 10.1523/JNEUROSCI.19-10-04090.1999 10.1523/JNEUROSCI.22-04-01199.2002 10.1016/S0896-6273(03)00149-1 10.1126/science.290.5492.739 10.1126/science.278.5337.463 10.1152/jn.1987.58.2.404 10.1111/j.1469-7793.1997.605ba.x 10.1523/JNEUROSCI.23-21-07750.2003 10.1038/43119 10.1016/S0306-4522(01)00344-X 10.1113/jphysiol.2002.036376 10.1073/pnas.130200797 10.1152/jn.1999.82.4.1895 10.1523/JNEUROSCI.16-21-06676.1996 10.1023/B:JCNS.0000004837.81595.b0 10.1126/science.275.5297.209 10.1016/S0092-8674(00)81828-0 10.1113/jphysiol.2002.020503 10.1113/jphysiol.1955.sp005382 10.1001/archneur.1976.00500020004002 10.1111/j.1469-7793.2001.0447a.x 10.1007/978-3-642-64950-9 10.1126/science.1067903 10.1038/nature00854 10.1038/35005094 10.1152/jn.1998.79.1.491 10.1126/science.8036517 10.1016/S0896-6273(00)81085-5 10.1523/JNEUROSCI.18-19-07613.1998 10.1016/S0896-6273(00)80635-2 |
ContentType | Journal Article |
Copyright | Copyright © 2004 Society for Neuroscience 0270-6474/04/2411046-11.00/0 2004 |
Copyright_xml | – notice: Copyright © 2004 Society for Neuroscience 0270-6474/04/2411046-11.00/0 2004 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
DOI | 10.1523/JNEUROSCI.2520-04.2004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Neurosciences Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 11056 |
ExternalDocumentID | PMC6730267 15590921 10_1523_JNEUROSCI_2520_04_2004 www24_49_11046 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, U.S. Gov't, P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: NS39458 |
GroupedDBID | - 08R 2WC 34G 39C 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ AAJMC AAYXX ABBAR ACGUR ADHGD ADXHL AFCFT AFOSN AFSQR AHWXS AI. AOIJS BTFSW CITATION TR2 W8F YBU YHG YKV YNH YSK AFHIN CGR CUY CVF ECM EIF NPM 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c542t-d59f194d2023878325f9f0aea12e42d6ccd84c3218bad7d2278d2bc839959b863 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:21:42 EDT 2025 Thu Sep 04 16:28:01 EDT 2025 Thu Sep 04 23:07:58 EDT 2025 Wed Feb 19 01:39:25 EST 2025 Thu Apr 24 23:07:47 EDT 2025 Tue Jul 01 00:49:23 EDT 2025 Tue Nov 10 19:18:23 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 49 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-d59f194d2023878325f9f0aea12e42d6ccd84c3218bad7d2278d2bc839959b863 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/24/49/11046.full.pdf |
PMID | 15590921 |
PQID | 17531034 |
PQPubID | 23462 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730267 proquest_miscellaneous_67170372 proquest_miscellaneous_17531034 pubmed_primary_15590921 crossref_citationtrail_10_1523_JNEUROSCI_2520_04_2004 crossref_primary_10_1523_JNEUROSCI_2520_04_2004 highwire_smallpub1_www24_49_11046 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20041208 2004-12-08 2004-Dec-08 |
PublicationDateYYYYMMDD | 2004-12-08 |
PublicationDate_xml | – month: 12 year: 2004 text: 20041208 day: 08 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2004 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | 2023041303100718000_24.49.11046.23 (2023041303100718000_24.49.11046.1) 2003; 23 2023041303100718000_24.49.11046.22 2023041303100718000_24.49.11046.20 2023041303100718000_24.49.11046.18 2023041303100718000_24.49.11046.19 2023041303100718000_24.49.11046.16 (2023041303100718000_24.49.11046.13) 1994; 6 2023041303100718000_24.49.11046.17 2023041303100718000_24.49.11046.14 2023041303100718000_24.49.11046.15 (2023041303100718000_24.49.11046.7) 1996; 16 (2023041303100718000_24.49.11046.8) 1998; 79 (2023041303100718000_24.49.11046.11) 1955; 129 (2023041303100718000_24.49.11046.10) 1999; 81 (2023041303100718000_24.49.11046.36) 1999; 82 2023041303100718000_24.49.11046.35 2023041303100718000_24.49.11046.32 2023041303100718000_24.49.11046.33 2023041303100718000_24.49.11046.31 2023041303100718000_24.49.11046.26 (2023041303100718000_24.49.11046.40) 2003; 29 (2023041303100718000_24.49.11046.27) 1988; 403 (2023041303100718000_24.49.11046.52) 1961; 24 (2023041303100718000_24.49.11046.47) 1987; 58 2023041303100718000_24.49.11046.45 2023041303100718000_24.49.11046.46 2023041303100718000_24.49.11046.44 2023041303100718000_24.49.11046.41 2023041303100718000_24.49.11046.42 2023041303100718000_24.49.11046.4 2023041303100718000_24.49.11046.3 2023041303100718000_24.49.11046.2 (2023041303100718000_24.49.11046.43) 2002; 22 2023041303100718000_24.49.11046.38 2023041303100718000_24.49.11046.39 2023041303100718000_24.49.11046.37 2023041303100718000_24.49.11046.9 (2023041303100718000_24.49.11046.29) 1961; 24 2023041303100718000_24.49.11046.6 2023041303100718000_24.49.11046.5 (2023041303100718000_24.49.11046.12) 1999; 19 (2023041303100718000_24.49.11046.24) 1997; 9 2023041303100718000_24.49.11046.56 (2023041303100718000_24.49.11046.30) 1999; 19 2023041303100718000_24.49.11046.54 2023041303100718000_24.49.11046.55 (2023041303100718000_24.49.11046.25) 1998; 18 2023041303100718000_24.49.11046.50 2023041303100718000_24.49.11046.51 2023041303100718000_24.49.11046.49 (2023041303100718000_24.49.11046.21) 2000; 20 2023041303100718000_24.49.11046.48 (2023041303100718000_24.49.11046.53) 1991; 11 (2023041303100718000_24.49.11046.28) 1998; 18 (2023041303100718000_24.49.11046.34) 1998; 18 |
References_xml | – ident: 2023041303100718000_24.49.11046.5 doi: 10.1016/S0896-6273(00)81098-3 – volume: 18 start-page: 3521 year: 1998 ident: 2023041303100718000_24.49.11046.25 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-10-03521.1998 – ident: 2023041303100718000_24.49.11046.48 doi: 10.1098/rstb.1997.0139 – volume: 24 start-page: 272 year: 1961 ident: 2023041303100718000_24.49.11046.52 publication-title: J Neurophysiol doi: 10.1152/jn.1961.24.3.272 – volume: 18 start-page: 3919 year: 1998 ident: 2023041303100718000_24.49.11046.28 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-10-03919.1998 – volume: 81 start-page: 535 year: 1999 ident: 2023041303100718000_24.49.11046.10 publication-title: J Neurophysiol doi: 10.1152/jn.1999.81.2.535 – volume: 20 start-page: 6181 year: 2000 ident: 2023041303100718000_24.49.11046.21 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-16-06181.2000 – volume: 24 start-page: 225 year: 1961 ident: 2023041303100718000_24.49.11046.29 publication-title: J Neurophysiol doi: 10.1152/jn.1961.24.3.225 – ident: 2023041303100718000_24.49.11046.37 doi: 10.1038/78800 – volume: 11 start-page: 2270 year: 1991 ident: 2023041303100718000_24.49.11046.53 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.11-07-02270.1991 – ident: 2023041303100718000_24.49.11046.23 – ident: 2023041303100718000_24.49.11046.46 doi: 10.1038/nn1253 – volume: 6 start-page: 10 year: 1994 ident: 2023041303100718000_24.49.11046.13 publication-title: Neural Comput – ident: 2023041303100718000_24.49.11046.32 doi: 10.1016/0165-0270(91)90051-Z – ident: 2023041303100718000_24.49.11046.3 doi: 10.1111/j.1469-7793.2000.t01-2-00611.x – ident: 2023041303100718000_24.49.11046.39 doi: 10.1126/science.287.5451.295 – volume: 29 start-page: 903.5 year: 2003 ident: 2023041303100718000_24.49.11046.40 publication-title: Soc Neurosci Abstr – ident: 2023041303100718000_24.49.11046.9 doi: 10.1038/nn857 – ident: 2023041303100718000_24.49.11046.17 doi: 10.1038/nn1178 – ident: 2023041303100718000_24.49.11046.4 doi: 10.1152/jn.00286.2003 – ident: 2023041303100718000_24.49.11046.44 doi: 10.1016/S0896-6273(01)00252-5 – volume: 19 start-page: 274 year: 1999 ident: 2023041303100718000_24.49.11046.12 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-01-00274.1999 – ident: 2023041303100718000_24.49.11046.35 doi: 10.1038/9158 – ident: 2023041303100718000_24.49.11046.54 doi: 10.1126/science.1061198 – volume: 19 start-page: 4090 year: 1999 ident: 2023041303100718000_24.49.11046.30 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.19-10-04090.1999 – volume: 22 start-page: 1199 year: 2002 ident: 2023041303100718000_24.49.11046.43 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.22-04-01199.2002 – ident: 2023041303100718000_24.49.11046.45 doi: 10.1016/S0896-6273(03)00149-1 – ident: 2023041303100718000_24.49.11046.22 doi: 10.1126/science.290.5492.739 – ident: 2023041303100718000_24.49.11046.6 doi: 10.1126/science.278.5337.463 – volume: 58 start-page: 404 year: 1987 ident: 2023041303100718000_24.49.11046.47 publication-title: J Neurophysiol doi: 10.1152/jn.1987.58.2.404 – ident: 2023041303100718000_24.49.11046.49 doi: 10.1111/j.1469-7793.1997.605ba.x – volume: 23 start-page: 7750 year: 2003 ident: 2023041303100718000_24.49.11046.1 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-21-07750.2003 – ident: 2023041303100718000_24.49.11046.26 doi: 10.1038/43119 – volume: 403 start-page: 579 year: 1988 ident: 2023041303100718000_24.49.11046.27 publication-title: J Physiol (Lond) – ident: 2023041303100718000_24.49.11046.14 doi: 10.1016/S0306-4522(01)00344-X – ident: 2023041303100718000_24.49.11046.51 doi: 10.1113/jphysiol.2002.036376 – ident: 2023041303100718000_24.49.11046.2 doi: 10.1073/pnas.130200797 – volume: 82 start-page: 1895 year: 1999 ident: 2023041303100718000_24.49.11046.36 publication-title: J Neurophysiol doi: 10.1152/jn.1999.82.4.1895 – volume: 16 start-page: 6676 year: 1996 ident: 2023041303100718000_24.49.11046.7 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.16-21-06676.1996 – ident: 2023041303100718000_24.49.11046.42 doi: 10.1023/B:JCNS.0000004837.81595.b0 – ident: 2023041303100718000_24.49.11046.38 doi: 10.1126/science.275.5297.209 – ident: 2023041303100718000_24.49.11046.41 doi: 10.1016/S0092-8674(00)81828-0 – ident: 2023041303100718000_24.49.11046.18 doi: 10.1113/jphysiol.2002.020503 – volume: 129 start-page: 608 year: 1955 ident: 2023041303100718000_24.49.11046.11 publication-title: J Physiol (Lond) doi: 10.1113/jphysiol.1955.sp005382 – ident: 2023041303100718000_24.49.11046.16 doi: 10.1001/archneur.1976.00500020004002 – ident: 2023041303100718000_24.49.11046.31 doi: 10.1111/j.1469-7793.2001.0447a.x – ident: 2023041303100718000_24.49.11046.15 doi: 10.1007/978-3-642-64950-9 – volume: 9 start-page: 178 year: 1997 ident: 2023041303100718000_24.49.11046.24 publication-title: Neural Comp – ident: 2023041303100718000_24.49.11046.55 doi: 10.1126/science.1067903 – ident: 2023041303100718000_24.49.11046.20 doi: 10.1038/nature00854 – ident: 2023041303100718000_24.49.11046.50 doi: 10.1038/35005094 – volume: 79 start-page: 491 year: 1998 ident: 2023041303100718000_24.49.11046.8 publication-title: J Neurophysiol doi: 10.1152/jn.1998.79.1.491 – ident: 2023041303100718000_24.49.11046.56 doi: 10.1126/science.8036517 – ident: 2023041303100718000_24.49.11046.33 doi: 10.1016/S0896-6273(00)81085-5 – volume: 18 start-page: 7613 year: 1998 ident: 2023041303100718000_24.49.11046.34 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.18-19-07613.1998 – ident: 2023041303100718000_24.49.11046.19 doi: 10.1016/S0896-6273(00)80635-2 |
SSID | ssj0007017 |
Score | 2.3122957 |
Snippet | Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that... |
SourceID | pubmedcentral proquest pubmed crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11046 |
SubjectTerms | Action Potentials - physiology Animals Cellular/Molecular Dendrites - physiology Electrodes Excitatory Postsynaptic Potentials - physiology In Vitro Techniques Ion Channels - physiology Models, Neurological Pyramidal Cells - physiology Pyramidal Cells - ultrastructure Rats Rats, Sprague-Dawley Receptors, AMPA - physiology Receptors, N-Methyl-D-Aspartate - physiology |
Title | On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons |
URI | http://www.jneurosci.org/cgi/content/abstract/24/49/11046 https://www.ncbi.nlm.nih.gov/pubmed/15590921 https://www.proquest.com/docview/17531034 https://www.proquest.com/docview/67170372 https://pubmed.ncbi.nlm.nih.gov/PMC6730267 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSrkZCvFTZEtfO5bEqlzFpHWibtLfIsZ0t0KbVmqoa_4R_y_Ell05FDF6iKk1aN9_X42Of75yD0DtAWSWc5h5lTHpUCeXFMlMe2ErOMl-FYaYjukeT8OCMHp6z817vV0e1tKqyPfFza17J_6AK5wBXnSX7D8g2Hwon4DXgC0dAGI63wvi4dOLHorJPuNb-g5VoXMEPqpSmn8HgZFH8MPqrwXgUDL5eX_FZIQEiU6DD7dp9b9nT8VU7VS8bInzmS93B0LSE0oqbojHwR8XFtHD6XSs17QhsL5zyx2aQuU3aetvBFDf043bbcS7s6Lrfbc0WiWBBSm3vnT3lzCoxcZyga3dt7rTjl61b6qxooAPPW-07M3UmDida5ngy_rJHGNHqVLPO794AOC1mBnUddvUTm4W9WW77xjTYiBPX6zWhKU1SM4w76C6JwC3T8f5vbSH6yDfNnJsf65LPYXz720dn-j_ZoWy6QHVZ6m1LnJtK3Y7rc_oA3Xc8wCNLwIeop8pHaHdU8mo-u8bvsVERm_DMLpoclxg4iVtOYuAk7nASz3PccBJbTuKixMBJ3HASO04-RmefPp6ODzzXs8MTjJLKkyzJg4RKon3BCKYLlie5zxUPiKJEhkLImIohOJYZl5HUidiSZCLWGdZJFofDJ2innJfqGcJ57GchTDCEDSnMLJKriIVcCekLmYFj3UesfoypcAXtdV-VaaoXtoBE2iCRaiRSn-qmq7SP9pv7Fraky1_veFujlC5nfDoFUIJ0kyd99KaGLwULrcNuvFTz1TLVtXADf0j_fEUYBTDxRqSPnlq423E5yvRRtEGE5gJdHX7znbK4NFXiQ5i7SRg9v8XYX6B77V_8JdqprlbqFfjaVfbasP43nKvQEA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Initiation+and+Propagation+of+Dendritic+Spikes+in+CA1+Pyramidal+Neurons&rft.jtitle=The+Journal+of+neuroscience&rft.au=Gasparini%2C+Sonia&rft.au=Migliore%2C+Michele&rft.au=Magee%2C+Jeffrey+C&rft.date=2004-12-08&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=24&rft.issue=49&rft.spage=11046&rft_id=info:doi/10.1523%2FJNEUROSCI.2520-04.2004&rft_id=info%3Apmid%2F15590921&rft.externalDBID=n%2Fa&rft.externalDocID=www24_49_11046 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |