On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons

Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk an...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 24; no. 49; pp. 11046 - 11056
Main Authors Gasparini, Sonia, Migliore, Michele, Magee, Jeffrey C
Format Journal Article
LanguageEnglish
Published United States Soc Neuroscience 08.12.2004
Society for Neuroscience
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.2520-04.2004

Cover

Abstract Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: ∼50 synaptic inputs spread over 100 μm of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 ± 1 mV ( n = 30) vs -56 ± 1 mV ( n = 7), respectively] and are mainly generated and shaped by dendritic Na + and K + currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V m and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.
AbstractList Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.
Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: approximately 50 synaptic inputs spread over 100 mum of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/- 1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na+ and K+ currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.
Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: ∼50 synaptic inputs spread over 100 μm of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 ± 1 mV ( n = 30) vs -56 ± 1 mV ( n = 7), respectively] and are mainly generated and shaped by dendritic Na + and K + currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V m and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short-latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.
Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that could potentially provide neurons with additional computational abilities. Using whole-cell dendritic recordings from the distal apical trunk and proximal tuft regions and realistic computer modeling, we have determined that highly synchronized and moderately clustered inputs are required for dendritic spike initiation: [approx]50 synaptic inputs spread over 100 mu m of the apical trunk/tuft need to be activated within 3 msec. Dendritic spikes are characterized by a more depolarized voltage threshold than at the soma [-48 +/- 1 mV (n = 30) vs -56 +/-1 mV (n = 7), respectively] and are mainly generated and shaped by dendritic Na super(+) and K super(+) currents. The relative contribution of AMPA and NMDA currents is also important in determining the actual spatiotemporal requirements for dendritic spike initiation. Once initiated, dendritic spikes can easily reach the soma, but their propagation is only moderately strong, so that it can be modulated by physiologically relevant factors such as changes in the V sub(m) and the ionic composition of the extracellular solution. With effective spike propagation, an extremely short- latency neuronal output is produced for greatly reduced input levels. Therefore, dendritic spikes function as efficient detectors of specific input patterns, ensuring that the neuronal response to high levels of input synchrony is a precisely timed action potential output.
Author Migliore, Michele
Magee, Jeffrey C
Gasparini, Sonia
Author_xml – sequence: 1
  fullname: Gasparini, Sonia
– sequence: 2
  fullname: Migliore, Michele
– sequence: 3
  fullname: Magee, Jeffrey C
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15590921$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vEzEQxS1URNPAV6h8Qlw2jP_sei0hpCqUNqhKKkrPlmN7E8Oundobon57NqREwKWXsUbze-OneWfoJMTgEDonMCElZe-_zC_vvy7uprMJLSkUwCcUgL9Ao2EqC8qBnKARUAFFxQU_RWc5fwcAAUS8QqekLCVISkZovgi4Xzs8C773uvcxYB0svk1xo1eHPjb4kws2DYDBdxv_w2XsA55eEHz7mHTnrW7x3G1TDPk1etnoNrs3T-8Y3X--_Da9Lm4WV7PpxU1hSk77wpayIZJbCpTVoma0bGQD2mlCHae2MsbW3DBK6qW2wlIqakuXpmZSlnJZV2yMPh72brbLzlnjQp90qzbJdzo9qqi9-ncS_Fqt4k9VCQZ0KGP09mlBig9bl3vV-Wxc2-rg4jYPHBHABH0WJKJkBBgfwPO_LR29_Ln1AHw4ACbFnJNrlPH97xMPDn2rCKh9tOoYrdpHq4CrfbSDvPpPfvzhOeG7g3DtV-udT07lTrftYJOo3W5HueJSEQK8Yr8AxIu2Dg
CitedBy_id crossref_primary_10_1002_hipo_20480
crossref_primary_10_1007_s12021_019_09450_x
crossref_primary_10_1523_JNEUROSCI_2219_16_2017
crossref_primary_10_1016_j_bpj_2014_12_048
crossref_primary_10_1017_S1472928808000344
crossref_primary_10_1111_j_1460_9568_2008_06516_x
crossref_primary_10_1016_j_neuroscience_2021_12_039
crossref_primary_10_1038_s41467_024_50546_z
crossref_primary_10_1038_s41598_023_48183_5
crossref_primary_10_1523_JNEUROSCI_1182_17_2018
crossref_primary_10_1111_j_1471_4159_2007_04470_x
crossref_primary_10_1016_j_celrep_2023_112022
crossref_primary_10_1002_cne_23070
crossref_primary_10_1016_j_celrep_2023_112386
crossref_primary_10_1515_revneuro_2016_0015
crossref_primary_10_1038_srep45684
crossref_primary_10_1113_jphysiol_2006_112128
crossref_primary_10_3389_fncel_2021_771600
crossref_primary_10_7554_eLife_04551
crossref_primary_10_1038_s41598_022_10466_8
crossref_primary_10_1523_JNEUROSCI_0835_08_2008
crossref_primary_10_1152_jn_00414_2007
crossref_primary_10_1152_jn_00951_2016
crossref_primary_10_1152_jn_00303_2021
crossref_primary_10_1113_jphysiol_2007_142984
crossref_primary_10_1002_jnr_22444
crossref_primary_10_1016_j_neuroscience_2021_08_035
crossref_primary_10_3389_fnins_2023_1132980
crossref_primary_10_1016_j_neuron_2016_03_019
crossref_primary_10_1016_j_neuroscience_2022_02_009
crossref_primary_10_3389_fncom_2023_1305169
crossref_primary_10_1146_annurev_neuro_28_061604_135703
crossref_primary_10_1111_j_1460_9568_2008_06434_x
crossref_primary_10_1002_hipo_20143
crossref_primary_10_3389_fncel_2019_00413
crossref_primary_10_1016_j_neuron_2009_03_010
crossref_primary_10_1038_nature06725
crossref_primary_10_7554_eLife_100664_4
crossref_primary_10_1523_JNEUROSCI_5220_05_2006
crossref_primary_10_1371_journal_pcbi_1002384
crossref_primary_10_1016_j_neuron_2007_11_015
crossref_primary_10_3389_fncel_2017_00029
crossref_primary_10_1523_JNEUROSCI_3977_14_2015
crossref_primary_10_1007_s12311_012_0387_1
crossref_primary_10_1111_j_1460_9568_2006_04615_x
crossref_primary_10_1152_jn_00922_2006
crossref_primary_10_1016_j_brainres_2013_05_023
crossref_primary_10_1113_JP286679
crossref_primary_10_1093_cercor_bhw252
crossref_primary_10_3389_fncel_2019_00098
crossref_primary_10_1371_journal_pcbi_1009569
crossref_primary_10_1371_journal_pone_0132577
crossref_primary_10_1038_nrn2864
crossref_primary_10_1364_BOE_4_002869
crossref_primary_10_3389_fcogn_2023_1044216
crossref_primary_10_1162_neco_a_01534
crossref_primary_10_1016_j_cogsys_2021_07_008
crossref_primary_10_3389_fnins_2024_1457774
crossref_primary_10_1002_hipo_20168
crossref_primary_10_1016_j_cub_2008_08_060
crossref_primary_10_7554_eLife_46966
crossref_primary_10_1371_journal_pcbi_1006485
crossref_primary_10_1016_j_neunet_2021_07_026
crossref_primary_10_1523_JNEUROSCI_4172_13_2014
crossref_primary_10_1038_nn_3562
crossref_primary_10_1038_nature13871
crossref_primary_10_1038_nn_3682
crossref_primary_10_1007_s10827_007_0028_8
crossref_primary_10_1016_j_neuron_2010_12_008
crossref_primary_10_1111_j_1460_9568_2012_08199_x
crossref_primary_10_1152_jn_00360_2016
crossref_primary_10_1016_j_neuron_2009_01_032
crossref_primary_10_1038_s41467_025_55819_9
crossref_primary_10_1523_JNEUROSCI_3203_13_2014
crossref_primary_10_1016_j_neuron_2008_08_020
crossref_primary_10_1152_jn_00612_2010
crossref_primary_10_3389_fpsyg_2014_00842
crossref_primary_10_1016_j_celrep_2020_108255
crossref_primary_10_1073_pnas_2017339118
crossref_primary_10_1007_s44258_024_00042_2
crossref_primary_10_1016_j_conb_2021_08_001
crossref_primary_10_1371_journal_pcbi_1002550
crossref_primary_10_1016_j_tins_2008_03_004
crossref_primary_10_1016_j_celrep_2024_114413
crossref_primary_10_1162_NECO_a_00366
crossref_primary_10_1038_s41467_021_23829_y
crossref_primary_10_1152_jn_01235_2007
crossref_primary_10_1523_JNEUROSCI_4428_05_2006
crossref_primary_10_1186_1756_6606_4_19
crossref_primary_10_1002_hipo_22488
crossref_primary_10_1007_s10827_007_0021_2
crossref_primary_10_1002_hipo_22002
crossref_primary_10_1073_pnas_1312599110
crossref_primary_10_1111_ejn_12065
crossref_primary_10_1162_neco_2009_11_08_913
crossref_primary_10_1016_j_neuroscience_2016_08_016
crossref_primary_10_1152_jn_01129_2009
crossref_primary_10_1016_j_conb_2005_05_013
crossref_primary_10_1016_j_neuroscience_2006_02_085
crossref_primary_10_1109_TBCAS_2012_2199487
crossref_primary_10_1371_journal_pcbi_1009891
crossref_primary_10_1523_ENEURO_0248_20_2020
crossref_primary_10_1016_j_neuroimage_2007_08_048
crossref_primary_10_1016_j_neuroscience_2014_01_067
crossref_primary_10_1371_journal_pone_0047250
crossref_primary_10_1016_j_neuroscience_2019_10_019
crossref_primary_10_1523_JNEUROSCI_2992_05_2005
crossref_primary_10_1016_j_neuroscience_2010_07_032
crossref_primary_10_1016_j_neucom_2005_12_038
crossref_primary_10_1111_j_1460_9568_2011_07791_x
crossref_primary_10_1515_revneuro_2016_0080
crossref_primary_10_1523_JNEUROSCI_4223_14_2015
crossref_primary_10_1523_JNEUROSCI_2254_10_2010
crossref_primary_10_3389_fncel_2014_00310
crossref_primary_10_1016_j_neuron_2013_06_005
crossref_primary_10_1038_s41467_024_48987_7
crossref_primary_10_7554_eLife_100664
crossref_primary_10_1523_JNEUROSCI_0586_11_2011
crossref_primary_10_1016_j_neuron_2021_12_017
crossref_primary_10_1523_JNEUROSCI_3495_12_2013
crossref_primary_10_1016_j_neuroscience_2021_07_026
crossref_primary_10_1016_j_neuroscience_2014_07_069
crossref_primary_10_1016_j_neuroscience_2016_02_006
crossref_primary_10_3989_loquens_2021_077
crossref_primary_10_1016_j_neuron_2011_03_006
crossref_primary_10_1113_jphysiol_2012_237172
crossref_primary_10_1186_1756_6606_7_26
crossref_primary_10_1371_journal_pone_0011868
crossref_primary_10_1523_JNEUROSCI_0780_21_2022
crossref_primary_10_1038_s41598_021_87002_7
crossref_primary_10_3390_ijms22094565
crossref_primary_10_1007_s11571_013_9252_2
crossref_primary_10_1016_j_neuron_2013_03_008
crossref_primary_10_1007_s10827_015_0568_2
crossref_primary_10_1007_s12539_015_0104_0
crossref_primary_10_1073_pnas_1103546108
crossref_primary_10_1016_j_ceca_2005_06_013
crossref_primary_10_1152_jn_01076_2007
crossref_primary_10_1007_s00422_009_0359_9
crossref_primary_10_1371_journal_pcbi_1002867
crossref_primary_10_1016_j_brainresbull_2013_09_010
crossref_primary_10_1038_nn1599
crossref_primary_10_1103_PhysRevX_4_011053
crossref_primary_10_1371_journal_pcbi_1004014
crossref_primary_10_3389_fnins_2018_00961
crossref_primary_10_1016_j_pbiomolbio_2020_08_002
crossref_primary_10_1111_j_1460_9568_2010_07341_x
crossref_primary_10_1016_j_tins_2007_06_010
crossref_primary_10_1016_j_neuron_2009_06_023
crossref_primary_10_1038_s41598_017_18363_1
crossref_primary_10_1113_jphysiol_2007_142315
crossref_primary_10_1113_JP283311
crossref_primary_10_1016_j_conb_2018_07_004
crossref_primary_10_1038_srep00928
crossref_primary_10_1038_nn1826
crossref_primary_10_1371_journal_pone_0055590
crossref_primary_10_1007_s11062_021_09890_9
crossref_primary_10_1152_physrev_00016_2007
crossref_primary_10_1111_j_1460_9568_2008_06075_x
crossref_primary_10_1016_j_neunet_2011_01_001
crossref_primary_10_1080_09548980701587100
crossref_primary_10_1093_cercor_bhz124
crossref_primary_10_1103_PhysRevE_89_030701
crossref_primary_10_1523_JNEUROSCI_1045_10_2011
crossref_primary_10_1038_nrn1937
crossref_primary_10_1016_j_neuron_2006_03_022
crossref_primary_10_1016_j_neuron_2006_03_016
crossref_primary_10_1523_JNEUROSCI_1717_07_2007
crossref_primary_10_1016_j_nlm_2024_107993
crossref_primary_10_1038_s41583_020_0301_7
crossref_primary_10_1371_journal_pone_0122263
crossref_primary_10_1523_JNEUROSCI_2662_10_2010
crossref_primary_10_1103_PhysRevX_2_041016
crossref_primary_10_1016_j_neuron_2012_06_025
crossref_primary_10_3389_fncel_2020_00135
crossref_primary_10_1002_hipo_22061
crossref_primary_10_1152_jn_90332_2008
crossref_primary_10_1073_pnas_2220743120
crossref_primary_10_1126_science_1210362
crossref_primary_10_3389_fnsyn_2023_1113957
crossref_primary_10_1088_1741_2560_7_4_045002
crossref_primary_10_1073_pnas_0909615107
crossref_primary_10_1152_jn_00556_2007
crossref_primary_10_1152_jn_00968_2010
crossref_primary_10_1523_ENEURO_0250_17_2017
crossref_primary_10_1371_journal_pbio_3002935
crossref_primary_10_1016_j_neuron_2009_03_023
crossref_primary_10_1371_journal_pcbi_1007955
crossref_primary_10_1117_1_3275468
crossref_primary_10_1371_journal_pcbi_1000886
crossref_primary_10_1038_nrn2286
crossref_primary_10_1111_j_1525_1594_2011_01224_x
crossref_primary_10_1152_jn_00521_2005
crossref_primary_10_1523_ENEURO_0053_15_2015
crossref_primary_10_1109_TBME_2009_2028015
crossref_primary_10_1371_journal_pcbi_1003940
crossref_primary_10_1038_nn_4157
crossref_primary_10_1073_pnas_2321501121
crossref_primary_10_1038_nprot_2006_164
crossref_primary_10_1016_j_neuron_2010_04_027
crossref_primary_10_1007_s11571_011_9158_9
crossref_primary_10_1007_s00429_019_02018_0
crossref_primary_10_1113_jphysiol_2012_239418
crossref_primary_10_1038_nn_3060
crossref_primary_10_1523_JNEUROSCI_5284_05_2006
crossref_primary_10_1111_j_1460_9568_2007_05827_x
crossref_primary_10_1113_JP270688
crossref_primary_10_1113_jphysiol_2008_167130
crossref_primary_10_3389_fnsyn_2014_00023
crossref_primary_10_1002_jnr_24240
crossref_primary_10_1111_ejn_13325
crossref_primary_10_3389_fnana_2021_636683
crossref_primary_10_1016_j_neuron_2013_09_027
crossref_primary_10_1143_JPSJ_76_114802
crossref_primary_10_1038_nn_3056
crossref_primary_10_1016_j_pneurobio_2014_12_002
crossref_primary_10_1103_PhysRevE_84_052901
crossref_primary_10_1093_cercor_bhab236
crossref_primary_10_1113_jphysiol_2006_107094
crossref_primary_10_1016_j_celrep_2022_111962
crossref_primary_10_1162_neco_2010_06_09_1030
crossref_primary_10_1371_journal_pone_0001209
Cites_doi 10.1016/S0896-6273(00)81098-3
10.1523/JNEUROSCI.18-10-03521.1998
10.1098/rstb.1997.0139
10.1152/jn.1961.24.3.272
10.1523/JNEUROSCI.18-10-03919.1998
10.1152/jn.1999.81.2.535
10.1523/JNEUROSCI.20-16-06181.2000
10.1152/jn.1961.24.3.225
10.1038/78800
10.1523/JNEUROSCI.11-07-02270.1991
10.1038/nn1253
10.1016/0165-0270(91)90051-Z
10.1111/j.1469-7793.2000.t01-2-00611.x
10.1126/science.287.5451.295
10.1038/nn857
10.1038/nn1178
10.1152/jn.00286.2003
10.1016/S0896-6273(01)00252-5
10.1523/JNEUROSCI.19-01-00274.1999
10.1038/9158
10.1126/science.1061198
10.1523/JNEUROSCI.19-10-04090.1999
10.1523/JNEUROSCI.22-04-01199.2002
10.1016/S0896-6273(03)00149-1
10.1126/science.290.5492.739
10.1126/science.278.5337.463
10.1152/jn.1987.58.2.404
10.1111/j.1469-7793.1997.605ba.x
10.1523/JNEUROSCI.23-21-07750.2003
10.1038/43119
10.1016/S0306-4522(01)00344-X
10.1113/jphysiol.2002.036376
10.1073/pnas.130200797
10.1152/jn.1999.82.4.1895
10.1523/JNEUROSCI.16-21-06676.1996
10.1023/B:JCNS.0000004837.81595.b0
10.1126/science.275.5297.209
10.1016/S0092-8674(00)81828-0
10.1113/jphysiol.2002.020503
10.1113/jphysiol.1955.sp005382
10.1001/archneur.1976.00500020004002
10.1111/j.1469-7793.2001.0447a.x
10.1007/978-3-642-64950-9
10.1126/science.1067903
10.1038/nature00854
10.1038/35005094
10.1152/jn.1998.79.1.491
10.1126/science.8036517
10.1016/S0896-6273(00)81085-5
10.1523/JNEUROSCI.18-19-07613.1998
10.1016/S0896-6273(00)80635-2
ContentType Journal Article
Copyright Copyright © 2004 Society for Neuroscience 0270-6474/04/2411046-11.00/0 2004
Copyright_xml – notice: Copyright © 2004 Society for Neuroscience 0270-6474/04/2411046-11.00/0 2004
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
DOI 10.1523/JNEUROSCI.2520-04.2004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 11056
ExternalDocumentID PMC6730267
15590921
10_1523_JNEUROSCI_2520_04_2004
www24_49_11046
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: NS39458
GroupedDBID -
08R
2WC
34G
39C
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
AAJMC
AAYXX
ABBAR
ACGUR
ADHGD
ADXHL
AFCFT
AFOSN
AFSQR
AHWXS
AI.
AOIJS
BTFSW
CITATION
TR2
W8F
YBU
YHG
YKV
YNH
YSK
AFHIN
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
5PM
ID FETCH-LOGICAL-c542t-d59f194d2023878325f9f0aea12e42d6ccd84c3218bad7d2278d2bc839959b863
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:21:42 EDT 2025
Thu Sep 04 16:28:01 EDT 2025
Thu Sep 04 23:07:58 EDT 2025
Wed Feb 19 01:39:25 EST 2025
Thu Apr 24 23:07:47 EDT 2025
Tue Jul 01 00:49:23 EDT 2025
Tue Nov 10 19:18:23 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 49
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-d59f194d2023878325f9f0aea12e42d6ccd84c3218bad7d2278d2bc839959b863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/24/49/11046.full.pdf
PMID 15590921
PQID 17531034
PQPubID 23462
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6730267
proquest_miscellaneous_67170372
proquest_miscellaneous_17531034
pubmed_primary_15590921
crossref_citationtrail_10_1523_JNEUROSCI_2520_04_2004
crossref_primary_10_1523_JNEUROSCI_2520_04_2004
highwire_smallpub1_www24_49_11046
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20041208
2004-12-08
2004-Dec-08
PublicationDateYYYYMMDD 2004-12-08
PublicationDate_xml – month: 12
  year: 2004
  text: 20041208
  day: 08
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2004
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References 2023041303100718000_24.49.11046.23
(2023041303100718000_24.49.11046.1) 2003; 23
2023041303100718000_24.49.11046.22
2023041303100718000_24.49.11046.20
2023041303100718000_24.49.11046.18
2023041303100718000_24.49.11046.19
2023041303100718000_24.49.11046.16
(2023041303100718000_24.49.11046.13) 1994; 6
2023041303100718000_24.49.11046.17
2023041303100718000_24.49.11046.14
2023041303100718000_24.49.11046.15
(2023041303100718000_24.49.11046.7) 1996; 16
(2023041303100718000_24.49.11046.8) 1998; 79
(2023041303100718000_24.49.11046.11) 1955; 129
(2023041303100718000_24.49.11046.10) 1999; 81
(2023041303100718000_24.49.11046.36) 1999; 82
2023041303100718000_24.49.11046.35
2023041303100718000_24.49.11046.32
2023041303100718000_24.49.11046.33
2023041303100718000_24.49.11046.31
2023041303100718000_24.49.11046.26
(2023041303100718000_24.49.11046.40) 2003; 29
(2023041303100718000_24.49.11046.27) 1988; 403
(2023041303100718000_24.49.11046.52) 1961; 24
(2023041303100718000_24.49.11046.47) 1987; 58
2023041303100718000_24.49.11046.45
2023041303100718000_24.49.11046.46
2023041303100718000_24.49.11046.44
2023041303100718000_24.49.11046.41
2023041303100718000_24.49.11046.42
2023041303100718000_24.49.11046.4
2023041303100718000_24.49.11046.3
2023041303100718000_24.49.11046.2
(2023041303100718000_24.49.11046.43) 2002; 22
2023041303100718000_24.49.11046.38
2023041303100718000_24.49.11046.39
2023041303100718000_24.49.11046.37
2023041303100718000_24.49.11046.9
(2023041303100718000_24.49.11046.29) 1961; 24
2023041303100718000_24.49.11046.6
2023041303100718000_24.49.11046.5
(2023041303100718000_24.49.11046.12) 1999; 19
(2023041303100718000_24.49.11046.24) 1997; 9
2023041303100718000_24.49.11046.56
(2023041303100718000_24.49.11046.30) 1999; 19
2023041303100718000_24.49.11046.54
2023041303100718000_24.49.11046.55
(2023041303100718000_24.49.11046.25) 1998; 18
2023041303100718000_24.49.11046.50
2023041303100718000_24.49.11046.51
2023041303100718000_24.49.11046.49
(2023041303100718000_24.49.11046.21) 2000; 20
2023041303100718000_24.49.11046.48
(2023041303100718000_24.49.11046.53) 1991; 11
(2023041303100718000_24.49.11046.28) 1998; 18
(2023041303100718000_24.49.11046.34) 1998; 18
References_xml – ident: 2023041303100718000_24.49.11046.5
  doi: 10.1016/S0896-6273(00)81098-3
– volume: 18
  start-page: 3521
  year: 1998
  ident: 2023041303100718000_24.49.11046.25
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-10-03521.1998
– ident: 2023041303100718000_24.49.11046.48
  doi: 10.1098/rstb.1997.0139
– volume: 24
  start-page: 272
  year: 1961
  ident: 2023041303100718000_24.49.11046.52
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1961.24.3.272
– volume: 18
  start-page: 3919
  year: 1998
  ident: 2023041303100718000_24.49.11046.28
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-10-03919.1998
– volume: 81
  start-page: 535
  year: 1999
  ident: 2023041303100718000_24.49.11046.10
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.81.2.535
– volume: 20
  start-page: 6181
  year: 2000
  ident: 2023041303100718000_24.49.11046.21
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.20-16-06181.2000
– volume: 24
  start-page: 225
  year: 1961
  ident: 2023041303100718000_24.49.11046.29
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1961.24.3.225
– ident: 2023041303100718000_24.49.11046.37
  doi: 10.1038/78800
– volume: 11
  start-page: 2270
  year: 1991
  ident: 2023041303100718000_24.49.11046.53
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.11-07-02270.1991
– ident: 2023041303100718000_24.49.11046.23
– ident: 2023041303100718000_24.49.11046.46
  doi: 10.1038/nn1253
– volume: 6
  start-page: 10
  year: 1994
  ident: 2023041303100718000_24.49.11046.13
  publication-title: Neural Comput
– ident: 2023041303100718000_24.49.11046.32
  doi: 10.1016/0165-0270(91)90051-Z
– ident: 2023041303100718000_24.49.11046.3
  doi: 10.1111/j.1469-7793.2000.t01-2-00611.x
– ident: 2023041303100718000_24.49.11046.39
  doi: 10.1126/science.287.5451.295
– volume: 29
  start-page: 903.5
  year: 2003
  ident: 2023041303100718000_24.49.11046.40
  publication-title: Soc Neurosci Abstr
– ident: 2023041303100718000_24.49.11046.9
  doi: 10.1038/nn857
– ident: 2023041303100718000_24.49.11046.17
  doi: 10.1038/nn1178
– ident: 2023041303100718000_24.49.11046.4
  doi: 10.1152/jn.00286.2003
– ident: 2023041303100718000_24.49.11046.44
  doi: 10.1016/S0896-6273(01)00252-5
– volume: 19
  start-page: 274
  year: 1999
  ident: 2023041303100718000_24.49.11046.12
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-01-00274.1999
– ident: 2023041303100718000_24.49.11046.35
  doi: 10.1038/9158
– ident: 2023041303100718000_24.49.11046.54
  doi: 10.1126/science.1061198
– volume: 19
  start-page: 4090
  year: 1999
  ident: 2023041303100718000_24.49.11046.30
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.19-10-04090.1999
– volume: 22
  start-page: 1199
  year: 2002
  ident: 2023041303100718000_24.49.11046.43
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.22-04-01199.2002
– ident: 2023041303100718000_24.49.11046.45
  doi: 10.1016/S0896-6273(03)00149-1
– ident: 2023041303100718000_24.49.11046.22
  doi: 10.1126/science.290.5492.739
– ident: 2023041303100718000_24.49.11046.6
  doi: 10.1126/science.278.5337.463
– volume: 58
  start-page: 404
  year: 1987
  ident: 2023041303100718000_24.49.11046.47
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1987.58.2.404
– ident: 2023041303100718000_24.49.11046.49
  doi: 10.1111/j.1469-7793.1997.605ba.x
– volume: 23
  start-page: 7750
  year: 2003
  ident: 2023041303100718000_24.49.11046.1
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.23-21-07750.2003
– ident: 2023041303100718000_24.49.11046.26
  doi: 10.1038/43119
– volume: 403
  start-page: 579
  year: 1988
  ident: 2023041303100718000_24.49.11046.27
  publication-title: J Physiol (Lond)
– ident: 2023041303100718000_24.49.11046.14
  doi: 10.1016/S0306-4522(01)00344-X
– ident: 2023041303100718000_24.49.11046.51
  doi: 10.1113/jphysiol.2002.036376
– ident: 2023041303100718000_24.49.11046.2
  doi: 10.1073/pnas.130200797
– volume: 82
  start-page: 1895
  year: 1999
  ident: 2023041303100718000_24.49.11046.36
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1999.82.4.1895
– volume: 16
  start-page: 6676
  year: 1996
  ident: 2023041303100718000_24.49.11046.7
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.16-21-06676.1996
– ident: 2023041303100718000_24.49.11046.42
  doi: 10.1023/B:JCNS.0000004837.81595.b0
– ident: 2023041303100718000_24.49.11046.38
  doi: 10.1126/science.275.5297.209
– ident: 2023041303100718000_24.49.11046.41
  doi: 10.1016/S0092-8674(00)81828-0
– ident: 2023041303100718000_24.49.11046.18
  doi: 10.1113/jphysiol.2002.020503
– volume: 129
  start-page: 608
  year: 1955
  ident: 2023041303100718000_24.49.11046.11
  publication-title: J Physiol (Lond)
  doi: 10.1113/jphysiol.1955.sp005382
– ident: 2023041303100718000_24.49.11046.16
  doi: 10.1001/archneur.1976.00500020004002
– ident: 2023041303100718000_24.49.11046.31
  doi: 10.1111/j.1469-7793.2001.0447a.x
– ident: 2023041303100718000_24.49.11046.15
  doi: 10.1007/978-3-642-64950-9
– volume: 9
  start-page: 178
  year: 1997
  ident: 2023041303100718000_24.49.11046.24
  publication-title: Neural Comp
– ident: 2023041303100718000_24.49.11046.55
  doi: 10.1126/science.1067903
– ident: 2023041303100718000_24.49.11046.20
  doi: 10.1038/nature00854
– ident: 2023041303100718000_24.49.11046.50
  doi: 10.1038/35005094
– volume: 79
  start-page: 491
  year: 1998
  ident: 2023041303100718000_24.49.11046.8
  publication-title: J Neurophysiol
  doi: 10.1152/jn.1998.79.1.491
– ident: 2023041303100718000_24.49.11046.56
  doi: 10.1126/science.8036517
– ident: 2023041303100718000_24.49.11046.33
  doi: 10.1016/S0896-6273(00)81085-5
– volume: 18
  start-page: 7613
  year: 1998
  ident: 2023041303100718000_24.49.11046.34
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.18-19-07613.1998
– ident: 2023041303100718000_24.49.11046.19
  doi: 10.1016/S0896-6273(00)80635-2
SSID ssj0007017
Score 2.3122957
Snippet Under certain conditions, regenerative voltage spikes can be initiated locally in the dendrites of CA1 pyramidal neurons. These are interesting events that...
SourceID pubmedcentral
proquest
pubmed
crossref
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11046
SubjectTerms Action Potentials - physiology
Animals
Cellular/Molecular
Dendrites - physiology
Electrodes
Excitatory Postsynaptic Potentials - physiology
In Vitro Techniques
Ion Channels - physiology
Models, Neurological
Pyramidal Cells - physiology
Pyramidal Cells - ultrastructure
Rats
Rats, Sprague-Dawley
Receptors, AMPA - physiology
Receptors, N-Methyl-D-Aspartate - physiology
Title On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons
URI http://www.jneurosci.org/cgi/content/abstract/24/49/11046
https://www.ncbi.nlm.nih.gov/pubmed/15590921
https://www.proquest.com/docview/17531034
https://www.proquest.com/docview/67170372
https://pubmed.ncbi.nlm.nih.gov/PMC6730267
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKeOEFAeNSrkZCvFTZEtfO5bEqlzFpHWibtLfIsZ0t0KbVmqoa_4R_y_Ell05FDF6iKk1aN9_X42Of75yD0DtAWSWc5h5lTHpUCeXFMlMe2ErOMl-FYaYjukeT8OCMHp6z817vV0e1tKqyPfFza17J_6AK5wBXnSX7D8g2Hwon4DXgC0dAGI63wvi4dOLHorJPuNb-g5VoXMEPqpSmn8HgZFH8MPqrwXgUDL5eX_FZIQEiU6DD7dp9b9nT8VU7VS8bInzmS93B0LSE0oqbojHwR8XFtHD6XSs17QhsL5zyx2aQuU3aetvBFDf043bbcS7s6Lrfbc0WiWBBSm3vnT3lzCoxcZyga3dt7rTjl61b6qxooAPPW-07M3UmDida5ngy_rJHGNHqVLPO794AOC1mBnUddvUTm4W9WW77xjTYiBPX6zWhKU1SM4w76C6JwC3T8f5vbSH6yDfNnJsf65LPYXz720dn-j_ZoWy6QHVZ6m1LnJtK3Y7rc_oA3Xc8wCNLwIeop8pHaHdU8mo-u8bvsVERm_DMLpoclxg4iVtOYuAk7nASz3PccBJbTuKixMBJ3HASO04-RmefPp6ODzzXs8MTjJLKkyzJg4RKon3BCKYLlie5zxUPiKJEhkLImIohOJYZl5HUidiSZCLWGdZJFofDJ2innJfqGcJ57GchTDCEDSnMLJKriIVcCekLmYFj3UesfoypcAXtdV-VaaoXtoBE2iCRaiRSn-qmq7SP9pv7Fraky1_veFujlC5nfDoFUIJ0kyd99KaGLwULrcNuvFTz1TLVtXADf0j_fEUYBTDxRqSPnlq423E5yvRRtEGE5gJdHX7znbK4NFXiQ5i7SRg9v8XYX6B77V_8JdqprlbqFfjaVfbasP43nKvQEA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Initiation+and+Propagation+of+Dendritic+Spikes+in+CA1+Pyramidal+Neurons&rft.jtitle=The+Journal+of+neuroscience&rft.au=Gasparini%2C+Sonia&rft.au=Migliore%2C+Michele&rft.au=Magee%2C+Jeffrey+C&rft.date=2004-12-08&rft.pub=Soc+Neuroscience&rft.issn=0270-6474&rft.eissn=1529-2401&rft.volume=24&rft.issue=49&rft.spage=11046&rft_id=info:doi/10.1523%2FJNEUROSCI.2520-04.2004&rft_id=info%3Apmid%2F15590921&rft.externalDBID=n%2Fa&rft.externalDocID=www24_49_11046
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon