Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response

Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which ar...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 341; no. 6152; pp. 1384 - 1387
Main Authors Liang, Yan, Cao, Yangrong, Tanaka, Kiwamu, Thibivilliers, Sandra, Wan, Jinrong, Choi, Jeongmin, ho Kang, Chang, Qiu, Jing, Stacey, Gary
Format Journal Article
LanguageEnglish
Published Washington, DC American Association for the Advancement of Science 20.09.2013
The American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.1242736

Cover

Abstract Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)—triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.
AbstractList Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384 , published online 5 September) found that several nonleguminous plants, including Arabidopsis , tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean. Nitrogen-fixing bacteria dampen immune responses in their plant hosts. Virtually since the discovery of nitrogen-fixing Rhizobium -legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)–triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.
Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.
Stealth Nod Factor RecognitionLegumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384, published online 5 September) found that several nonleguminous plants, including Arabidopsis, tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean.
Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.
Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384, published online 5 September) found that several nonleguminous plants, including Arabidopsis, tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean. [PUBLICATION ABSTRACT] Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition. [PUBLICATION ABSTRACT]
Stealth Nod Factor Recognition Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384, published online 5 September) found that several nonleguminous plants, including Arabidopsis , tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean.
Author Cao, Yangrong
Tanaka, Kiwamu
Choi, Jeongmin
Wan, Jinrong
Liang, Yan
ho Kang, Chang
Thibivilliers, Sandra
Stacey, Gary
Qiu, Jing
Author_xml – sequence: 1
  givenname: Yan
  surname: Liang
  fullname: Liang, Yan
– sequence: 2
  givenname: Yangrong
  surname: Cao
  fullname: Cao, Yangrong
– sequence: 3
  givenname: Kiwamu
  surname: Tanaka
  fullname: Tanaka, Kiwamu
– sequence: 4
  givenname: Sandra
  surname: Thibivilliers
  fullname: Thibivilliers, Sandra
– sequence: 5
  givenname: Jinrong
  surname: Wan
  fullname: Wan, Jinrong
– sequence: 6
  givenname: Jeongmin
  surname: Choi
  fullname: Choi, Jeongmin
– sequence: 7
  givenname: Chang
  surname: ho Kang
  fullname: ho Kang, Chang
– sequence: 8
  givenname: Jing
  surname: Qiu
  fullname: Qiu, Jing
– sequence: 9
  givenname: Gary
  surname: Stacey
  fullname: Stacey, Gary
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784755$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24009356$$D View this record in MEDLINE/PubMed
BookMark eNqFks1LHTEUxUOx1Oez665aBorgZjTfySxFaiuIBa3rIZO5o3nMJNNkZmH_-kbfVMFF3yLcQH7n3JvkHKA9Hzwg9IngE0KoPE3WgbdwQiinisl3aEVwJcqKYraHVhgzWWqsxD46SGmDcT6r2Ae0T3neMiFX6O46-B7u5wFScQNpDL4tplDcPLg_oXGmL65DW1wYO4WYiuaxuJ3HMUJKzt8X0wMUl96bKZdhmD0sDgkO0fvO9Ak-LnWN7i6-_Tr_UV79_H55fnZVWsHpVGrNGmiIFi0w0FJZTfKAvMWGyE6CyqsTom0bw1pRgaZaaQW6rYhkRtKKrdHx1neM4fcMaaoHlyz0vfEQ5lTTfGXGNFN8J0o01lgSguVuVIg8gCAM70Y544pTmuE1-voG3YQ5-vw8zxTWXAuRqS8LNTcDtPUY3WDiY_3vxzJwtAAmWdN30Xjr0iunlObq2eh0y9kYUorQvSAE10_ZqZfs1Et2skK8UVg3mckFP0Xj-v_oPm91m5RT8tKGU0kqJgn7C-Zl0Co
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_chemolab_2024_105145
crossref_primary_10_1016_j_copbio_2021_06_008
crossref_primary_10_3389_fpls_2015_00219
crossref_primary_10_3389_fpls_2021_796045
crossref_primary_10_1007_s00248_021_01818_4
crossref_primary_10_1146_annurev_phyto_080614_120149
crossref_primary_10_1111_tpj_13808
crossref_primary_10_1038_s41467_019_12999_5
crossref_primary_10_3389_fpls_2023_1269815
crossref_primary_10_3390_genes13112004
crossref_primary_10_3390_genes9030125
crossref_primary_10_1371_journal_pone_0148884
crossref_primary_10_1007_s00572_020_00934_2
crossref_primary_10_1016_j_molp_2021_06_010
crossref_primary_10_1016_j_pbi_2014_05_014
crossref_primary_10_1007_s10725_022_00813_0
crossref_primary_10_1093_jxb_erv260
crossref_primary_10_3389_fpls_2014_00238
crossref_primary_10_1016_j_cub_2022_08_069
crossref_primary_10_1093_femsre_fuu003
crossref_primary_10_3389_fmicb_2017_00973
crossref_primary_10_1038_s41467_024_53388_x
crossref_primary_10_1146_annurev_micro_051921_114809
crossref_primary_10_1007_s11104_020_04423_5
crossref_primary_10_1186_s42483_022_00154_w
crossref_primary_10_1094_MPMI_08_20_0229_CR
crossref_primary_10_3389_fpls_2023_1149522
crossref_primary_10_1007_s13199_024_01022_1
crossref_primary_10_1016_j_jplph_2022_153765
crossref_primary_10_1111_mpp_70038
crossref_primary_10_3389_fpls_2018_01531
crossref_primary_10_1186_s12863_017_0481_y
crossref_primary_10_1111_pce_13632
crossref_primary_10_3389_fpls_2018_00313
crossref_primary_10_1007_s11105_019_01188_9
crossref_primary_10_1016_j_tplants_2023_11_014
crossref_primary_10_1038_s41467_017_00262_8
crossref_primary_10_1007_s42994_024_00193_1
crossref_primary_10_1111_tpj_12450
crossref_primary_10_1039_C7CS00343A
crossref_primary_10_1111_jipb_12155
crossref_primary_10_1038_nrmicro3137
crossref_primary_10_1111_nph_18705
crossref_primary_10_1007_s10886_014_0474_5
crossref_primary_10_1093_jxb_eraa297
crossref_primary_10_3390_ijms241713621
crossref_primary_10_1111_nph_15142
crossref_primary_10_1111_nph_20336
crossref_primary_10_1094_MPMI_07_18_0205_FI
crossref_primary_10_1038_ncomms5087
crossref_primary_10_1038_srep39072
crossref_primary_10_1093_jxb_erz313
crossref_primary_10_1093_plcell_koac039
crossref_primary_10_1099_acmi_0_000306
crossref_primary_10_1016_j_chom_2024_01_011
crossref_primary_10_1016_j_csbj_2022_12_052
crossref_primary_10_1093_jxb_eru545
crossref_primary_10_1631_jzus_B1900105
crossref_primary_10_1016_j_tplants_2014_12_002
crossref_primary_10_1111_pbi_12999
crossref_primary_10_1111_pce_14801
crossref_primary_10_1038_nature22009
crossref_primary_10_3390_genes10121012
crossref_primary_10_1007_s42729_020_00263_5
crossref_primary_10_1104_pp_113_233759
crossref_primary_10_1007_s11103_022_01307_3
crossref_primary_10_1016_j_pbi_2018_02_010
crossref_primary_10_1111_1462_2920_15839
crossref_primary_10_3389_fpls_2016_00015
crossref_primary_10_1094_MPMI_11_21_0263_R
crossref_primary_10_1371_journal_ppat_1007271
crossref_primary_10_3389_fpls_2015_00401
crossref_primary_10_1016_j_fgb_2015_12_004
crossref_primary_10_1186_s12864_015_1458_8
crossref_primary_10_1093_pcp_pcae016
crossref_primary_10_1093_plphys_kiac551
crossref_primary_10_1111_mpp_13362
crossref_primary_10_1111_nph_15410
crossref_primary_10_1016_j_ijbiomac_2024_134910
crossref_primary_10_4161_psb_28197
crossref_primary_10_3390_ijms18061164
crossref_primary_10_3390_membranes12060606
crossref_primary_10_7554_eLife_03766
crossref_primary_10_1093_jxb_erab096
crossref_primary_10_1111_cmi_13124
crossref_primary_10_1080_15592324_2021_1903758
crossref_primary_10_3389_fpls_2017_02133
crossref_primary_10_1093_pcp_pcy043
crossref_primary_10_1111_1751_7915_13906
crossref_primary_10_1073_pnas_2100678118
crossref_primary_10_1111_nph_13117
crossref_primary_10_1146_annurev_micro_041020_032624
crossref_primary_10_1111_jipb_12211
crossref_primary_10_3389_fpls_2024_1491495
crossref_primary_10_1016_j_fcr_2022_108541
crossref_primary_10_3389_fpls_2016_01837
crossref_primary_10_3389_fpls_2024_1418699
crossref_primary_10_1093_jxb_eraa111
crossref_primary_10_1007_s00203_017_1401_2
crossref_primary_10_1128_mBio_03129_19
crossref_primary_10_1016_j_molp_2021_07_016
crossref_primary_10_1093_jxb_erw387
crossref_primary_10_1007_s11103_018_0756_3
crossref_primary_10_1146_annurev_phyto_080614_120347
crossref_primary_10_1371_journal_pone_0217309
crossref_primary_10_1038_s41467_024_50228_w
crossref_primary_10_1111_mec_14464
crossref_primary_10_1016_j_pbi_2014_04_007
crossref_primary_10_1093_glycob_cww086
crossref_primary_10_1016_j_apsoil_2020_103815
crossref_primary_10_1016_j_pbi_2017_04_007
crossref_primary_10_1186_s12864_015_2033_z
crossref_primary_10_1073_pnas_1706795114
crossref_primary_10_1073_pnas_2106567118
crossref_primary_10_1111_nph_12898
crossref_primary_10_1094_MPMI_34_5
crossref_primary_10_1146_annurev_cellbio_102314_112502
crossref_primary_10_1007_s10725_015_0072_8
crossref_primary_10_1111_tpj_12520
crossref_primary_10_1094_MPMI_34_1
crossref_primary_10_1186_s12870_023_04690_1
crossref_primary_10_1111_nph_15888
crossref_primary_10_1038_s41467_020_17615_5
crossref_primary_10_1111_nph_12938
crossref_primary_10_1016_j_pbi_2017_12_001
crossref_primary_10_3390_ijms231810427
crossref_primary_10_1111_pce_14192
crossref_primary_10_1016_j_chom_2018_08_007
crossref_primary_10_1111_nph_13504
crossref_primary_10_1134_S0003683817020107
crossref_primary_10_1016_j_mib_2019_08_003
crossref_primary_10_1016_j_pbi_2014_12_003
crossref_primary_10_1371_journal_pone_0112635
crossref_primary_10_1111_nph_19433
crossref_primary_10_1093_femsre_fuad066
crossref_primary_10_1093_pcp_pcae033
crossref_primary_10_1038_s41598_019_47316_z
crossref_primary_10_1111_jipb_13207
crossref_primary_10_1111_nph_12881
crossref_primary_10_1094_PBIOMES_04_20_0032_RVW
crossref_primary_10_1111_tpj_16736
crossref_primary_10_1094_MPMI_11_18_0304_R
crossref_primary_10_1016_j_molp_2020_09_007
crossref_primary_10_1093_aob_mcad191
crossref_primary_10_1007_s11104_018_3679_5
crossref_primary_10_1186_s13059_014_0457_4
crossref_primary_10_1073_pnas_2023738118
crossref_primary_10_1186_s13568_015_0154_z
crossref_primary_10_3389_fmicb_2020_01298
crossref_primary_10_7554_eLife_33506
crossref_primary_10_1093_jxb_erv038
crossref_primary_10_1002_smll_201906055
crossref_primary_10_1038_s41598_022_12285_3
crossref_primary_10_1094_PHP_10_17_0058_RS
crossref_primary_10_1073_pnas_1400421111
crossref_primary_10_1038_s41564_024_01727_5
crossref_primary_10_3390_ijms24032800
crossref_primary_10_3390_microorganisms10010187
crossref_primary_10_3390_ijms232012383
crossref_primary_10_1016_j_tplants_2014_11_008
crossref_primary_10_1016_j_plgene_2024_100479
crossref_primary_10_1093_jxb_eraa414
crossref_primary_10_1007_s00253_018_9556_6
crossref_primary_10_1093_plphys_kiad059
crossref_primary_10_1007_s00344_014_9456_7
crossref_primary_10_1016_j_jplph_2014_05_013
crossref_primary_10_1111_tpj_15171
crossref_primary_10_1007_s11104_022_05761_2
crossref_primary_10_3389_fpls_2015_00722
crossref_primary_10_1094_MPMI_04_17_0080_R
crossref_primary_10_1111_nph_15574
crossref_primary_10_1126_science_aba0196
crossref_primary_10_1007_s10265_024_01546_z
crossref_primary_10_1007_s12275_015_5308_9
crossref_primary_10_1016_j_cub_2024_03_015
crossref_primary_10_1186_s12862_019_1467_3
crossref_primary_10_3390_ijms231911089
crossref_primary_10_1093_jxb_erae167
crossref_primary_10_1016_j_cub_2023_07_068
crossref_primary_10_3390_metabo13060687
crossref_primary_10_35550_vbio2017_03_006
crossref_primary_10_1177_00037028241239358
crossref_primary_10_1038_s41598_021_81598_6
crossref_primary_10_1094_PBIOMES_4_3
crossref_primary_10_3389_fpls_2022_997308
crossref_primary_10_1080_17429145_2021_1891306
crossref_primary_10_1146_annurev_arplant_042916_041030
crossref_primary_10_1021_acs_orglett_6b00461
crossref_primary_10_1038_nrmicro_2017_171
crossref_primary_10_1016_j_chom_2018_06_006
crossref_primary_10_1094_MPMI_07_20_0209_R
crossref_primary_10_1007_s13258_014_0209_6
Cites_doi 10.1111/j.1365-313X.2011.04671.x
10.1038/nature02485
10.1073/pnas.230440097
10.1126/science.1209467
10.1016/j.pbi.2005.05.014
10.1128/jb.173.18.5619-5623.1991
10.1094/MPMI-9-0574
10.1105/tpc.107.056754
10.1093/pcp/pcp178
10.1093/mp/ssn019
10.1038/35081161
10.1104/pp.104.043612
10.1073/pnas.0705147104
10.1111/j.1365-313X.2011.04588.x
10.1073/pnas.1205171109
10.1104/pp.110.170910
10.1126/science.1198181
10.1111/j.1365-313X.2010.04398.x
10.1007/BF00731226
10.1038/415977a
10.1126/science.1164627
10.1126/science.1204903
10.1073/pnas.91.25.11841
10.1104/pp.110.162503
10.1038/nature02039
10.1126/science.1090074
10.1104/pp.112.201699
10.1038/nature02045
10.1093/dnares/11.4.263
10.1046/j.1365-313x.1998.00343.x
10.1111/j.1365-313X.2010.04411.x
10.1073/pnas.0508882103
10.1105/tpc.002451
10.1016/0092-8674(93)90717-5
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2014 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2014 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7T5
7S9
L.6
DOI 10.1126/science.1242736
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Immunology Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
Immunology Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Technology Research Database
MEDLINE

Materials Research Database
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 1387
ExternalDocumentID 3077095441
24009356
27784755
10_1126_science_1242736
42619361
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADMHC
ADQXQ
ADUKH
ADULT
ADXHL
AEGBM
AENEX
AETEA
AEUPB
AEXZC
AFBNE
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DU5
EBS
EJD
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
AAYXX
AGFXO
ALIPV
ALSLI
CITATION
.GJ
.GO
0-V
186
3EH
41~
42X
692
79B
7X7
7XC
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AAYOK
ABDPE
ABJCF
ABTAH
ABUWG
ACQAM
ACTDY
ADBBV
ADZCM
AEUYN
AFKRA
AFQQW
AJUXI
ARALO
ARAPS
ATCPS
AZQEC
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CCPQU
CJNVE
D0S
D1I
D1J
D1K
DWQXO
D~A
EAU
EGS
EWM
EX3
FYUFA
GICCO
GNUQQ
GUQSH
GX1
HCIFZ
HGD
HMCUK
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
LPU
M0K
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
OK1
P62
PATMY
PCBAR
PDBOC
PHGZT
PQEDU
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UIG
UKHRP
VOH
WOQ
WOW
X7L
XIH
XKJ
XOL
YCJ
YJ6
YXB
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
~H1
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
7T5
7S9
L.6
ID FETCH-LOGICAL-c542t-883beb185de3e867c819594d0a16f6e7f6ef55ddba3d59e828787e8d9163a6293
ISSN 0036-8075
1095-9203
IngestDate Sun Sep 28 11:33:36 EDT 2025
Sat Sep 27 20:05:27 EDT 2025
Sat Sep 27 22:21:07 EDT 2025
Sun Sep 28 00:33:44 EDT 2025
Fri Jul 25 10:48:18 EDT 2025
Thu Apr 03 07:04:42 EDT 2025
Wed Apr 02 07:25:19 EDT 2025
Tue Jul 01 04:10:01 EDT 2025
Thu Apr 24 22:52:31 EDT 2025
Sun Sep 28 13:02:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6152
Keywords Symbiosis
Immune response
Oligosaccharide
Nodulation
Natural immunity
Elicitor
Arabidopsis thaliana
Molecular signal
Cruciferae
Dicotyledones
Angiospermae
Plasma membrane
Molecular recognition
Bacteria
Spermatophyta
Cultivated plant
Rhizobiaceae
Experimental plant
Plant microorganism relation
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c542t-883beb185de3e867c819594d0a16f6e7f6ef55ddba3d59e828787e8d9163a6293
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 24009356
PQID 1434084855
PQPubID 1256
PageCount 4
ParticipantIDs proquest_miscellaneous_2000338374
proquest_miscellaneous_1808061106
proquest_miscellaneous_1551635130
proquest_miscellaneous_1434742251
proquest_journals_1434084855
pubmed_primary_24009356
pascalfrancis_primary_27784755
crossref_primary_10_1126_science_1242736
crossref_citationtrail_10_1126_science_1242736
jstor_primary_42619361
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-20
PublicationDateYYYYMMDD 2013-09-20
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-20
  day: 20
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
Knight H. (e_1_3_2_34_2) 1996; 8
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
Long S. R. (e_1_3_2_5_2) 1996; 8
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_11_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
24056927 - Nat Rev Microbiol. 2013 Nov;11(11):740-1
References_xml – ident: e_1_3_2_12_2
  doi: 10.1111/j.1365-313X.2011.04671.x
– ident: e_1_3_2_11_2
  doi: 10.1038/nature02485
– ident: e_1_3_2_18_2
  doi: 10.1073/pnas.230440097
– ident: e_1_3_2_9_2
  doi: 10.1126/science.1209467
– ident: e_1_3_2_13_2
  doi: 10.1016/j.pbi.2005.05.014
– ident: e_1_3_2_28_2
  doi: 10.1128/jb.173.18.5619-5623.1991
– ident: e_1_3_2_17_2
  doi: 10.1094/MPMI-9-0574
– ident: e_1_3_2_26_2
  doi: 10.1105/tpc.107.056754
– volume: 8
  start-page: 489
  year: 1996
  ident: e_1_3_2_34_2
  article-title: Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation
  publication-title: Plant Cell
– ident: e_1_3_2_23_2
  doi: 10.1093/pcp/pcp178
– ident: e_1_3_2_15_2
  doi: 10.1093/mp/ssn019
– ident: e_1_3_2_10_2
  doi: 10.1038/35081161
– ident: e_1_3_2_3_2
  doi: 10.1104/pp.104.043612
– ident: e_1_3_2_27_2
  doi: 10.1073/pnas.0705147104
– ident: e_1_3_2_36_2
  doi: 10.1111/j.1365-313X.2011.04588.x
– ident: e_1_3_2_8_2
  doi: 10.1073/pnas.1205171109
– ident: e_1_3_2_37_2
  doi: 10.1104/pp.110.170910
– ident: e_1_3_2_29_2
  doi: 10.1126/science.1198181
– ident: e_1_3_2_24_2
  doi: 10.1111/j.1365-313X.2010.04398.x
– ident: e_1_3_2_33_2
  doi: 10.1007/BF00731226
– ident: e_1_3_2_14_2
  doi: 10.1038/415977a
– ident: e_1_3_2_16_2
  doi: 10.1126/science.1164627
– ident: e_1_3_2_19_2
  doi: 10.1126/science.1204903
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.91.25.11841
– ident: e_1_3_2_35_2
  doi: 10.1104/pp.110.162503
– ident: e_1_3_2_22_2
  doi: 10.1038/nature02039
– ident: e_1_3_2_20_2
  doi: 10.1126/science.1090074
– ident: e_1_3_2_31_2
  doi: 10.1104/pp.112.201699
– ident: e_1_3_2_21_2
  doi: 10.1038/nature02045
– ident: e_1_3_2_4_2
  doi: 10.1093/dnares/11.4.263
– volume: 8
  start-page: 1885
  year: 1996
  ident: e_1_3_2_5_2
  article-title: Rhizobium symbiosis: Nod factors in perspective
  publication-title: Plant Cell
– ident: e_1_3_2_32_2
  doi: 10.1046/j.1365-313x.1998.00343.x
– ident: e_1_3_2_2_2
  doi: 10.1111/j.1365-313X.2010.04411.x
– ident: e_1_3_2_25_2
  doi: 10.1073/pnas.0508882103
– ident: e_1_3_2_6_2
  doi: 10.1105/tpc.002451
– ident: e_1_3_2_7_2
  doi: 10.1016/0092-8674(93)90717-5
– reference: 24056927 - Nat Rev Microbiol. 2013 Nov;11(11):740-1
SSID ssj0009593
Score 2.531543
Snippet Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop...
Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these...
Stealth Nod Factor RecognitionLegumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants,...
Stealth Nod Factor Recognition Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants,...
SourceID proquest
pubmed
pascalfrancis
crossref
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1384
SubjectTerms Agronomy. Soil science and plant productions
Arabidopsis
Arabidopsis - drug effects
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - metabolism
Bacteria
Biological and medical sciences
Calcium
Cell Membrane - metabolism
Cell membranes
Chitin
Corn
Crops
Economic plant physiology
Fertilizers
Flagellin - immunology
Flowers & plants
Fundamental and applied biological sciences. Psychology
Glycine max - immunology
Glycine max - microbiology
Immune response
Immune system
Immunity
Immunity, Innate - drug effects
Immunity, Innate - immunology
innate immunity
Legumes
Lipopolysaccharides - immunology
Lipopolysaccharides - pharmacology
Lycopersicon esculentum
Microorganisms
microsymbionts
Neurons
nitrogen
Nitrogen fixation
Nitrogen Fixation - genetics
nitrogen-fixing bacteria
Oligosaccharides - immunology
Oligosaccharides - pharmacology
Plants
Protein Kinases - metabolism
Proteolysis
Reactive oxygen species
Receptors
Receptors, Pattern Recognition - metabolism
Retarding
Soybeans
Symbiosis
Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...)
Tomatoes
Title Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response
URI https://www.jstor.org/stable/42619361
https://www.ncbi.nlm.nih.gov/pubmed/24009356
https://www.proquest.com/docview/1434084855
https://www.proquest.com/docview/1434742251
https://www.proquest.com/docview/1551635130
https://www.proquest.com/docview/1808061106
https://www.proquest.com/docview/2000338374
Volume 341
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBsMCmMyEg9DU6o2_kjy2A2qDUEfxiqNp8qOnakCkqkfoPF_8f9xji9pOq3T4KFRm1zcNne--_l8H4S8FQlnRtksiEJpAq7SJNARTwKTJaHqadHLyh5Ln0fyZMw_XoiLVutPI2ppudDd9PeteSX_w1U4B3x1WbL_wNl6UDgB74G_cAQOw_FePB4VOaz6l67e0lkZ62oclDxzYXRlIsioMIdDbKijnZK48mGvmCF1mueANA9PXYqIxRHma6FB1cwHGFpv7TQYWscoDnwkQRVYgLc1vAyfpuiX_rqSxmNV4JnLWYEGtPQh5OqbT1Sb_lI_lqvQlame_nTuIWzr9kXlZqaabgvXQiIJwl5TFWMlZG-IvPbtucaRYY811TPzhbFQDgGAhQ1922e-wRzabvgY3W4XGp0sbRcwTegzHm5U4L5hGet4xXKlFMoJDjDBAR6QrTACyNYmW4Oj90fDjdWesaZUI1ur-g1rcMhHxLrwXDWHGZr51iqb1z4lBjp_Qh7j4oUOvCRuk5bNd8hD3870eodsI9_n9ACrmb97SsYrIaUopHRR0FpIKQgpRSGl-po2hJSCaFEvpNQLKa2E9BkZDz-cH58E2MsjSAUPF0EcMw2wIBbGMhvLKHX7twk3PdWXmbQRvDIhjNGKGZFY14YhjmxsYPXClARMukvaeZHbF4Q6q6SyOAF4x3mq49hkmkmdxIwlfRP3O6RbPdJJioXuXb-V75MNbOyQg_qGK1_jZTPpbsmjmq70QDAJX7q_xrSaIIwiAIBCdMhexcUJqpA5rLsZdw0t3OU39WVQ8G7XTuW2WHqaiIPZ7d9B47a7mQA8egeNqyArAe3LzTQub6_0WfEOee4lbfVHuPN-Cvny_k_rFXm0mvp7pL2YLe1rwPALvY8z5i89zfKd
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlegumes+Respond+to+Rhizobial+Nod+Factors+by+Suppressing+the+Innate+Immune+Response&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liang%2C+Yan&rft.au=Cao%2C+Yangrong&rft.au=Tanaka%2C+Kiwamu&rft.au=Thibivilliers%2C+Sandra&rft.date=2013-09-20&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=341&rft.issue=6152&rft.spage=1384&rft.epage=1387&rft_id=info:doi/10.1126%2Fscience.1242736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_1242736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon