Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response
Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which ar...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 341; no. 6152; pp. 1384 - 1387 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
20.09.2013
The American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.1242736 |
Cover
Abstract | Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)—triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition. |
---|---|
AbstractList | Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly,
Liang
et al.
(p.
1384
, published online 5 September) found that several nonleguminous plants, including
Arabidopsis
, tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean.
Nitrogen-fixing bacteria dampen immune responses in their plant hosts.
Virtually since the discovery of nitrogen-fixing
Rhizobium
-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that
Arabidopsis thaliana
plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)–triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition. Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition.Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition. Stealth Nod Factor RecognitionLegumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384, published online 5 September) found that several nonleguminous plants, including Arabidopsis, tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean. Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition. Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384, published online 5 September) found that several nonleguminous plants, including Arabidopsis, tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean. [PUBLICATION ABSTRACT] Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop species (for example, corn). In general, nonlegumes were assumed to lack the ability to respond to the rhizobial lipo-chitin Nod factors, which are the essential signal molecules that trigger legume nodulation. However, our data indicate that Arabidopsis thaliana plants, as well as other nonlegumes, recognize the rhizobial Nod factor via a mechanism that results in strong suppression of microbe-associated molecular pattern (MAMP)-triggered immunity. The mechanism of action leads to reduced levels of pattern-recognition receptors on the plasma membrane involved in MAMP recognition. [PUBLICATION ABSTRACT] Stealth Nod Factor Recognition Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these symbioses and, thus, agriculture depends on externally applied fertilizers. Surprisingly, Liang et al. (p. 1384, published online 5 September) found that several nonleguminous plants, including Arabidopsis , tomato, and corn, were able to respond to the same Nod factors that initiate the microbial symbiosis in soybean. |
Author | Cao, Yangrong Tanaka, Kiwamu Choi, Jeongmin Wan, Jinrong Liang, Yan ho Kang, Chang Thibivilliers, Sandra Stacey, Gary Qiu, Jing |
Author_xml | – sequence: 1 givenname: Yan surname: Liang fullname: Liang, Yan – sequence: 2 givenname: Yangrong surname: Cao fullname: Cao, Yangrong – sequence: 3 givenname: Kiwamu surname: Tanaka fullname: Tanaka, Kiwamu – sequence: 4 givenname: Sandra surname: Thibivilliers fullname: Thibivilliers, Sandra – sequence: 5 givenname: Jinrong surname: Wan fullname: Wan, Jinrong – sequence: 6 givenname: Jeongmin surname: Choi fullname: Choi, Jeongmin – sequence: 7 givenname: Chang surname: ho Kang fullname: ho Kang, Chang – sequence: 8 givenname: Jing surname: Qiu fullname: Qiu, Jing – sequence: 9 givenname: Gary surname: Stacey fullname: Stacey, Gary |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27784755$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24009356$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1LHTEUxUOx1Oez665aBorgZjTfySxFaiuIBa3rIZO5o3nMJNNkZmH_-kbfVMFF3yLcQH7n3JvkHKA9Hzwg9IngE0KoPE3WgbdwQiinisl3aEVwJcqKYraHVhgzWWqsxD46SGmDcT6r2Ae0T3neMiFX6O46-B7u5wFScQNpDL4tplDcPLg_oXGmL65DW1wYO4WYiuaxuJ3HMUJKzt8X0wMUl96bKZdhmD0sDgkO0fvO9Ak-LnWN7i6-_Tr_UV79_H55fnZVWsHpVGrNGmiIFi0w0FJZTfKAvMWGyE6CyqsTom0bw1pRgaZaaQW6rYhkRtKKrdHx1neM4fcMaaoHlyz0vfEQ5lTTfGXGNFN8J0o01lgSguVuVIg8gCAM70Y544pTmuE1-voG3YQ5-vw8zxTWXAuRqS8LNTcDtPUY3WDiY_3vxzJwtAAmWdN30Xjr0iunlObq2eh0y9kYUorQvSAE10_ZqZfs1Et2skK8UVg3mckFP0Xj-v_oPm91m5RT8tKGU0kqJgn7C-Zl0Co |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_chemolab_2024_105145 crossref_primary_10_1016_j_copbio_2021_06_008 crossref_primary_10_3389_fpls_2015_00219 crossref_primary_10_3389_fpls_2021_796045 crossref_primary_10_1007_s00248_021_01818_4 crossref_primary_10_1146_annurev_phyto_080614_120149 crossref_primary_10_1111_tpj_13808 crossref_primary_10_1038_s41467_019_12999_5 crossref_primary_10_3389_fpls_2023_1269815 crossref_primary_10_3390_genes13112004 crossref_primary_10_3390_genes9030125 crossref_primary_10_1371_journal_pone_0148884 crossref_primary_10_1007_s00572_020_00934_2 crossref_primary_10_1016_j_molp_2021_06_010 crossref_primary_10_1016_j_pbi_2014_05_014 crossref_primary_10_1007_s10725_022_00813_0 crossref_primary_10_1093_jxb_erv260 crossref_primary_10_3389_fpls_2014_00238 crossref_primary_10_1016_j_cub_2022_08_069 crossref_primary_10_1093_femsre_fuu003 crossref_primary_10_3389_fmicb_2017_00973 crossref_primary_10_1038_s41467_024_53388_x crossref_primary_10_1146_annurev_micro_051921_114809 crossref_primary_10_1007_s11104_020_04423_5 crossref_primary_10_1186_s42483_022_00154_w crossref_primary_10_1094_MPMI_08_20_0229_CR crossref_primary_10_3389_fpls_2023_1149522 crossref_primary_10_1007_s13199_024_01022_1 crossref_primary_10_1016_j_jplph_2022_153765 crossref_primary_10_1111_mpp_70038 crossref_primary_10_3389_fpls_2018_01531 crossref_primary_10_1186_s12863_017_0481_y crossref_primary_10_1111_pce_13632 crossref_primary_10_3389_fpls_2018_00313 crossref_primary_10_1007_s11105_019_01188_9 crossref_primary_10_1016_j_tplants_2023_11_014 crossref_primary_10_1038_s41467_017_00262_8 crossref_primary_10_1007_s42994_024_00193_1 crossref_primary_10_1111_tpj_12450 crossref_primary_10_1039_C7CS00343A crossref_primary_10_1111_jipb_12155 crossref_primary_10_1038_nrmicro3137 crossref_primary_10_1111_nph_18705 crossref_primary_10_1007_s10886_014_0474_5 crossref_primary_10_1093_jxb_eraa297 crossref_primary_10_3390_ijms241713621 crossref_primary_10_1111_nph_15142 crossref_primary_10_1111_nph_20336 crossref_primary_10_1094_MPMI_07_18_0205_FI crossref_primary_10_1038_ncomms5087 crossref_primary_10_1038_srep39072 crossref_primary_10_1093_jxb_erz313 crossref_primary_10_1093_plcell_koac039 crossref_primary_10_1099_acmi_0_000306 crossref_primary_10_1016_j_chom_2024_01_011 crossref_primary_10_1016_j_csbj_2022_12_052 crossref_primary_10_1093_jxb_eru545 crossref_primary_10_1631_jzus_B1900105 crossref_primary_10_1016_j_tplants_2014_12_002 crossref_primary_10_1111_pbi_12999 crossref_primary_10_1111_pce_14801 crossref_primary_10_1038_nature22009 crossref_primary_10_3390_genes10121012 crossref_primary_10_1007_s42729_020_00263_5 crossref_primary_10_1104_pp_113_233759 crossref_primary_10_1007_s11103_022_01307_3 crossref_primary_10_1016_j_pbi_2018_02_010 crossref_primary_10_1111_1462_2920_15839 crossref_primary_10_3389_fpls_2016_00015 crossref_primary_10_1094_MPMI_11_21_0263_R crossref_primary_10_1371_journal_ppat_1007271 crossref_primary_10_3389_fpls_2015_00401 crossref_primary_10_1016_j_fgb_2015_12_004 crossref_primary_10_1186_s12864_015_1458_8 crossref_primary_10_1093_pcp_pcae016 crossref_primary_10_1093_plphys_kiac551 crossref_primary_10_1111_mpp_13362 crossref_primary_10_1111_nph_15410 crossref_primary_10_1016_j_ijbiomac_2024_134910 crossref_primary_10_4161_psb_28197 crossref_primary_10_3390_ijms18061164 crossref_primary_10_3390_membranes12060606 crossref_primary_10_7554_eLife_03766 crossref_primary_10_1093_jxb_erab096 crossref_primary_10_1111_cmi_13124 crossref_primary_10_1080_15592324_2021_1903758 crossref_primary_10_3389_fpls_2017_02133 crossref_primary_10_1093_pcp_pcy043 crossref_primary_10_1111_1751_7915_13906 crossref_primary_10_1073_pnas_2100678118 crossref_primary_10_1111_nph_13117 crossref_primary_10_1146_annurev_micro_041020_032624 crossref_primary_10_1111_jipb_12211 crossref_primary_10_3389_fpls_2024_1491495 crossref_primary_10_1016_j_fcr_2022_108541 crossref_primary_10_3389_fpls_2016_01837 crossref_primary_10_3389_fpls_2024_1418699 crossref_primary_10_1093_jxb_eraa111 crossref_primary_10_1007_s00203_017_1401_2 crossref_primary_10_1128_mBio_03129_19 crossref_primary_10_1016_j_molp_2021_07_016 crossref_primary_10_1093_jxb_erw387 crossref_primary_10_1007_s11103_018_0756_3 crossref_primary_10_1146_annurev_phyto_080614_120347 crossref_primary_10_1371_journal_pone_0217309 crossref_primary_10_1038_s41467_024_50228_w crossref_primary_10_1111_mec_14464 crossref_primary_10_1016_j_pbi_2014_04_007 crossref_primary_10_1093_glycob_cww086 crossref_primary_10_1016_j_apsoil_2020_103815 crossref_primary_10_1016_j_pbi_2017_04_007 crossref_primary_10_1186_s12864_015_2033_z crossref_primary_10_1073_pnas_1706795114 crossref_primary_10_1073_pnas_2106567118 crossref_primary_10_1111_nph_12898 crossref_primary_10_1094_MPMI_34_5 crossref_primary_10_1146_annurev_cellbio_102314_112502 crossref_primary_10_1007_s10725_015_0072_8 crossref_primary_10_1111_tpj_12520 crossref_primary_10_1094_MPMI_34_1 crossref_primary_10_1186_s12870_023_04690_1 crossref_primary_10_1111_nph_15888 crossref_primary_10_1038_s41467_020_17615_5 crossref_primary_10_1111_nph_12938 crossref_primary_10_1016_j_pbi_2017_12_001 crossref_primary_10_3390_ijms231810427 crossref_primary_10_1111_pce_14192 crossref_primary_10_1016_j_chom_2018_08_007 crossref_primary_10_1111_nph_13504 crossref_primary_10_1134_S0003683817020107 crossref_primary_10_1016_j_mib_2019_08_003 crossref_primary_10_1016_j_pbi_2014_12_003 crossref_primary_10_1371_journal_pone_0112635 crossref_primary_10_1111_nph_19433 crossref_primary_10_1093_femsre_fuad066 crossref_primary_10_1093_pcp_pcae033 crossref_primary_10_1038_s41598_019_47316_z crossref_primary_10_1111_jipb_13207 crossref_primary_10_1111_nph_12881 crossref_primary_10_1094_PBIOMES_04_20_0032_RVW crossref_primary_10_1111_tpj_16736 crossref_primary_10_1094_MPMI_11_18_0304_R crossref_primary_10_1016_j_molp_2020_09_007 crossref_primary_10_1093_aob_mcad191 crossref_primary_10_1007_s11104_018_3679_5 crossref_primary_10_1186_s13059_014_0457_4 crossref_primary_10_1073_pnas_2023738118 crossref_primary_10_1186_s13568_015_0154_z crossref_primary_10_3389_fmicb_2020_01298 crossref_primary_10_7554_eLife_33506 crossref_primary_10_1093_jxb_erv038 crossref_primary_10_1002_smll_201906055 crossref_primary_10_1038_s41598_022_12285_3 crossref_primary_10_1094_PHP_10_17_0058_RS crossref_primary_10_1073_pnas_1400421111 crossref_primary_10_1038_s41564_024_01727_5 crossref_primary_10_3390_ijms24032800 crossref_primary_10_3390_microorganisms10010187 crossref_primary_10_3390_ijms232012383 crossref_primary_10_1016_j_tplants_2014_11_008 crossref_primary_10_1016_j_plgene_2024_100479 crossref_primary_10_1093_jxb_eraa414 crossref_primary_10_1007_s00253_018_9556_6 crossref_primary_10_1093_plphys_kiad059 crossref_primary_10_1007_s00344_014_9456_7 crossref_primary_10_1016_j_jplph_2014_05_013 crossref_primary_10_1111_tpj_15171 crossref_primary_10_1007_s11104_022_05761_2 crossref_primary_10_3389_fpls_2015_00722 crossref_primary_10_1094_MPMI_04_17_0080_R crossref_primary_10_1111_nph_15574 crossref_primary_10_1126_science_aba0196 crossref_primary_10_1007_s10265_024_01546_z crossref_primary_10_1007_s12275_015_5308_9 crossref_primary_10_1016_j_cub_2024_03_015 crossref_primary_10_1186_s12862_019_1467_3 crossref_primary_10_3390_ijms231911089 crossref_primary_10_1093_jxb_erae167 crossref_primary_10_1016_j_cub_2023_07_068 crossref_primary_10_3390_metabo13060687 crossref_primary_10_35550_vbio2017_03_006 crossref_primary_10_1177_00037028241239358 crossref_primary_10_1038_s41598_021_81598_6 crossref_primary_10_1094_PBIOMES_4_3 crossref_primary_10_3389_fpls_2022_997308 crossref_primary_10_1080_17429145_2021_1891306 crossref_primary_10_1146_annurev_arplant_042916_041030 crossref_primary_10_1021_acs_orglett_6b00461 crossref_primary_10_1038_nrmicro_2017_171 crossref_primary_10_1016_j_chom_2018_06_006 crossref_primary_10_1094_MPMI_07_20_0209_R crossref_primary_10_1007_s13258_014_0209_6 |
Cites_doi | 10.1111/j.1365-313X.2011.04671.x 10.1038/nature02485 10.1073/pnas.230440097 10.1126/science.1209467 10.1016/j.pbi.2005.05.014 10.1128/jb.173.18.5619-5623.1991 10.1094/MPMI-9-0574 10.1105/tpc.107.056754 10.1093/pcp/pcp178 10.1093/mp/ssn019 10.1038/35081161 10.1104/pp.104.043612 10.1073/pnas.0705147104 10.1111/j.1365-313X.2011.04588.x 10.1073/pnas.1205171109 10.1104/pp.110.170910 10.1126/science.1198181 10.1111/j.1365-313X.2010.04398.x 10.1007/BF00731226 10.1038/415977a 10.1126/science.1164627 10.1126/science.1204903 10.1073/pnas.91.25.11841 10.1104/pp.110.162503 10.1038/nature02039 10.1126/science.1090074 10.1104/pp.112.201699 10.1038/nature02045 10.1093/dnares/11.4.263 10.1046/j.1365-313x.1998.00343.x 10.1111/j.1365-313X.2010.04411.x 10.1073/pnas.0508882103 10.1105/tpc.002451 10.1016/0092-8674(93)90717-5 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2014 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2014 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7T5 7S9 L.6 |
DOI | 10.1126/science.1242736 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Immunology Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic Immunology Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts Technology Research Database MEDLINE Materials Research Database AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 1387 |
ExternalDocumentID | 3077095441 24009356 27784755 10_1126_science_1242736 42619361 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACHIC ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADMHC ADQXQ ADUKH ADULT ADXHL AEGBM AENEX AETEA AEUPB AEXZC AFBNE AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF BKF BLC C45 C51 CS3 DB2 DCCCD DU5 EBS EJD EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ QJJ RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ AAYXX AGFXO ALIPV ALSLI CITATION .GJ .GO 0-V 186 3EH 41~ 42X 692 79B 7X7 7XC 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8WZ 97F A6W AADHG AAFWJ AAKAS AAYOK ABDPE ABJCF ABTAH ABUWG ACQAM ACTDY ADBBV ADZCM AEUYN AFKRA AFQQW AJUXI ARALO ARAPS ATCPS AZQEC BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CCPQU CJNVE D0S D1I D1J D1K DWQXO D~A EAU EGS EWM EX3 FYUFA GICCO GNUQQ GUQSH GX1 HCIFZ HGD HMCUK HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 LPU M0K M0R M1P M2O M2P M2Q M7P M7R M7S N4W OK1 P62 PATMY PCBAR PDBOC PHGZT PQEDU PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UIG UKHRP VOH WOQ WOW X7L XIH XKJ XOL YCJ YJ6 YXB ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~G0 ~H1 CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 7T5 7S9 L.6 |
ID | FETCH-LOGICAL-c542t-883beb185de3e867c819594d0a16f6e7f6ef55ddba3d59e828787e8d9163a6293 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Sun Sep 28 11:33:36 EDT 2025 Sat Sep 27 20:05:27 EDT 2025 Sat Sep 27 22:21:07 EDT 2025 Sun Sep 28 00:33:44 EDT 2025 Fri Jul 25 10:48:18 EDT 2025 Thu Apr 03 07:04:42 EDT 2025 Wed Apr 02 07:25:19 EDT 2025 Tue Jul 01 04:10:01 EDT 2025 Thu Apr 24 22:52:31 EDT 2025 Sun Sep 28 13:02:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6152 |
Keywords | Symbiosis Immune response Oligosaccharide Nodulation Natural immunity Elicitor Arabidopsis thaliana Molecular signal Cruciferae Dicotyledones Angiospermae Plasma membrane Molecular recognition Bacteria Spermatophyta Cultivated plant Rhizobiaceae Experimental plant Plant microorganism relation |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c542t-883beb185de3e867c819594d0a16f6e7f6ef55ddba3d59e828787e8d9163a6293 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 24009356 |
PQID | 1434084855 |
PQPubID | 1256 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2000338374 proquest_miscellaneous_1808061106 proquest_miscellaneous_1551635130 proquest_miscellaneous_1434742251 proquest_journals_1434084855 pubmed_primary_24009356 pascalfrancis_primary_27784755 crossref_primary_10_1126_science_1242736 crossref_citationtrail_10_1126_science_1242736 jstor_primary_42619361 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-20 |
PublicationDateYYYYMMDD | 2013-09-20 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 Knight H. (e_1_3_2_34_2) 1996; 8 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 Long S. R. (e_1_3_2_5_2) 1996; 8 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_11_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 24056927 - Nat Rev Microbiol. 2013 Nov;11(11):740-1 |
References_xml | – ident: e_1_3_2_12_2 doi: 10.1111/j.1365-313X.2011.04671.x – ident: e_1_3_2_11_2 doi: 10.1038/nature02485 – ident: e_1_3_2_18_2 doi: 10.1073/pnas.230440097 – ident: e_1_3_2_9_2 doi: 10.1126/science.1209467 – ident: e_1_3_2_13_2 doi: 10.1016/j.pbi.2005.05.014 – ident: e_1_3_2_28_2 doi: 10.1128/jb.173.18.5619-5623.1991 – ident: e_1_3_2_17_2 doi: 10.1094/MPMI-9-0574 – ident: e_1_3_2_26_2 doi: 10.1105/tpc.107.056754 – volume: 8 start-page: 489 year: 1996 ident: e_1_3_2_34_2 article-title: Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation publication-title: Plant Cell – ident: e_1_3_2_23_2 doi: 10.1093/pcp/pcp178 – ident: e_1_3_2_15_2 doi: 10.1093/mp/ssn019 – ident: e_1_3_2_10_2 doi: 10.1038/35081161 – ident: e_1_3_2_3_2 doi: 10.1104/pp.104.043612 – ident: e_1_3_2_27_2 doi: 10.1073/pnas.0705147104 – ident: e_1_3_2_36_2 doi: 10.1111/j.1365-313X.2011.04588.x – ident: e_1_3_2_8_2 doi: 10.1073/pnas.1205171109 – ident: e_1_3_2_37_2 doi: 10.1104/pp.110.170910 – ident: e_1_3_2_29_2 doi: 10.1126/science.1198181 – ident: e_1_3_2_24_2 doi: 10.1111/j.1365-313X.2010.04398.x – ident: e_1_3_2_33_2 doi: 10.1007/BF00731226 – ident: e_1_3_2_14_2 doi: 10.1038/415977a – ident: e_1_3_2_16_2 doi: 10.1126/science.1164627 – ident: e_1_3_2_19_2 doi: 10.1126/science.1204903 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.91.25.11841 – ident: e_1_3_2_35_2 doi: 10.1104/pp.110.162503 – ident: e_1_3_2_22_2 doi: 10.1038/nature02039 – ident: e_1_3_2_20_2 doi: 10.1126/science.1090074 – ident: e_1_3_2_31_2 doi: 10.1104/pp.112.201699 – ident: e_1_3_2_21_2 doi: 10.1038/nature02045 – ident: e_1_3_2_4_2 doi: 10.1093/dnares/11.4.263 – volume: 8 start-page: 1885 year: 1996 ident: e_1_3_2_5_2 article-title: Rhizobium symbiosis: Nod factors in perspective publication-title: Plant Cell – ident: e_1_3_2_32_2 doi: 10.1046/j.1365-313x.1998.00343.x – ident: e_1_3_2_2_2 doi: 10.1111/j.1365-313X.2010.04411.x – ident: e_1_3_2_25_2 doi: 10.1073/pnas.0508882103 – ident: e_1_3_2_6_2 doi: 10.1105/tpc.002451 – ident: e_1_3_2_7_2 doi: 10.1016/0092-8674(93)90717-5 – reference: 24056927 - Nat Rev Microbiol. 2013 Nov;11(11):740-1 |
SSID | ssj0009593 |
Score | 2.531543 |
Snippet | Virtually since the discovery of nitrogen-fixing Rhizobium-legume symbioses, researchers have dreamed of transferring this capability into nonlegume crop... Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants, however, cannot establish these... Stealth Nod Factor RecognitionLegumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants,... Stealth Nod Factor Recognition Legumes' symbiotic interaction with nitrogen fixing bacteria supplies the plant with nitrogen. Many important crop plants,... |
SourceID | proquest pubmed pascalfrancis crossref jstor |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1384 |
SubjectTerms | Agronomy. Soil science and plant productions Arabidopsis Arabidopsis - drug effects Arabidopsis - immunology Arabidopsis - microbiology Arabidopsis Proteins - metabolism Bacteria Biological and medical sciences Calcium Cell Membrane - metabolism Cell membranes Chitin Corn Crops Economic plant physiology Fertilizers Flagellin - immunology Flowers & plants Fundamental and applied biological sciences. Psychology Glycine max - immunology Glycine max - microbiology Immune response Immune system Immunity Immunity, Innate - drug effects Immunity, Innate - immunology innate immunity Legumes Lipopolysaccharides - immunology Lipopolysaccharides - pharmacology Lycopersicon esculentum Microorganisms microsymbionts Neurons nitrogen Nitrogen fixation Nitrogen Fixation - genetics nitrogen-fixing bacteria Oligosaccharides - immunology Oligosaccharides - pharmacology Plants Protein Kinases - metabolism Proteolysis Reactive oxygen species Receptors Receptors, Pattern Recognition - metabolism Retarding Soybeans Symbiosis Symbiosis (nodules, symbiotic nitrogen fixation, mycorrhiza...) Tomatoes |
Title | Nonlegumes Respond to Rhizobial Nod Factors by Suppressing the Innate Immune Response |
URI | https://www.jstor.org/stable/42619361 https://www.ncbi.nlm.nih.gov/pubmed/24009356 https://www.proquest.com/docview/1434084855 https://www.proquest.com/docview/1434742251 https://www.proquest.com/docview/1551635130 https://www.proquest.com/docview/1808061106 https://www.proquest.com/docview/2000338374 |
Volume | 341 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBsMCmMyEg9DU6o2_kjy2A2qDUEfxiqNp8qOnakCkqkfoPF_8f9xji9pOq3T4KFRm1zcNne--_l8H4S8FQlnRtksiEJpAq7SJNARTwKTJaHqadHLyh5Ln0fyZMw_XoiLVutPI2ppudDd9PeteSX_w1U4B3x1WbL_wNl6UDgB74G_cAQOw_FePB4VOaz6l67e0lkZ62oclDxzYXRlIsioMIdDbKijnZK48mGvmCF1mueANA9PXYqIxRHma6FB1cwHGFpv7TQYWscoDnwkQRVYgLc1vAyfpuiX_rqSxmNV4JnLWYEGtPQh5OqbT1Sb_lI_lqvQlame_nTuIWzr9kXlZqaabgvXQiIJwl5TFWMlZG-IvPbtucaRYY811TPzhbFQDgGAhQ1922e-wRzabvgY3W4XGp0sbRcwTegzHm5U4L5hGet4xXKlFMoJDjDBAR6QrTACyNYmW4Oj90fDjdWesaZUI1ur-g1rcMhHxLrwXDWHGZr51iqb1z4lBjp_Qh7j4oUOvCRuk5bNd8hD3870eodsI9_n9ACrmb97SsYrIaUopHRR0FpIKQgpRSGl-po2hJSCaFEvpNQLKa2E9BkZDz-cH58E2MsjSAUPF0EcMw2wIBbGMhvLKHX7twk3PdWXmbQRvDIhjNGKGZFY14YhjmxsYPXClARMukvaeZHbF4Q6q6SyOAF4x3mq49hkmkmdxIwlfRP3O6RbPdJJioXuXb-V75MNbOyQg_qGK1_jZTPpbsmjmq70QDAJX7q_xrSaIIwiAIBCdMhexcUJqpA5rLsZdw0t3OU39WVQ8G7XTuW2WHqaiIPZ7d9B47a7mQA8egeNqyArAe3LzTQub6_0WfEOee4lbfVHuPN-Cvny_k_rFXm0mvp7pL2YLe1rwPALvY8z5i89zfKd |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlegumes+Respond+to+Rhizobial+Nod+Factors+by+Suppressing+the+Innate+Immune+Response&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Liang%2C+Yan&rft.au=Cao%2C+Yangrong&rft.au=Tanaka%2C+Kiwamu&rft.au=Thibivilliers%2C+Sandra&rft.date=2013-09-20&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=341&rft.issue=6152&rft.spage=1384&rft.epage=1387&rft_id=info:doi/10.1126%2Fscience.1242736&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_1242736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |