Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally de...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 6; no. 1; p. 39445
Main Authors Ding, Fei, Dai, Jin, Chen, Yiting, Zhu, Jianfei, Jin, Yi, Bozhevolnyi, Sergey I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.12.2016
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/srep39445

Cover

Abstract Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO 2 ) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.
AbstractList Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO ) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.
Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO 2 ) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.
Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.
Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2 ) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.
Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of similar to 40 degrees. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.
ArticleNumber 39445
Author Chen, Yiting
Zhu, Jianfei
Dai, Jin
Bozhevolnyi, Sergey I.
Ding, Fei
Jin, Yi
Author_xml – sequence: 1
  givenname: Fei
  surname: Ding
  fullname: Ding, Fei
  organization: Centre for Nano Optics, University of Southern Denmark
– sequence: 2
  givenname: Jin
  surname: Dai
  fullname: Dai, Jin
  organization: Department of Materials and Nano Physics, School of Information and Communication Technology, KTH-Royal Institute of Technology
– sequence: 3
  givenname: Yiting
  surname: Chen
  fullname: Chen, Yiting
  organization: Centre for Nano Optics, University of Southern Denmark
– sequence: 4
  givenname: Jianfei
  surname: Zhu
  fullname: Zhu, Jianfei
  organization: Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University
– sequence: 5
  givenname: Yi
  surname: Jin
  fullname: Jin, Yi
  organization: Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University
– sequence: 6
  givenname: Sergey I.
  surname: Bozhevolnyi
  fullname: Bozhevolnyi, Sergey I.
  organization: Centre for Nano Optics, University of Southern Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28000718$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199736$$DView record from Swedish Publication Index
BookMark eNptkV9rFDEUxYNUbK198AvIgC-2MG3-TCaTl0KtVQsLvhRfQzJzZzZ1JlmTjLL99KbutmyrIXAT8juHk3tfoz3nHSD0luBTgllzFgOsmKwq_gIdUFzxkjJK93bO--goxlucF6eyIvIV2qdNvgnSHKDFx-B1Z7TrCgc6lNb1QQfoigmSnnSCYPVYaBN9MBBiMSc72jvrhmJph-W4LkYf4_ovPcY36GWfCxxt6yG6-Xx1c_m1XHz7cn15sShbXtFUCtxXotGGsk4SbaRo6hp4L1lfdYYSwVpWC0y6qgEDxACusRB9_ok0pMGaHaJyYxt_w2o2ahXspMNaeW3VJ_v9QvkwqB9pqYiUgtWZP9_wGZ6ga8GloMcnsqcvzi7V4H8pTkTeNBt82BoE_3OGmNRkYwvjqB34OSrScEIl55Jk9P0z9NbPweVuZErKijGKm0y92030GOVhLhk42wBtyP0N0KvWJp2svw9oR0Wwuh--ehx-Vhw_UzyY_o892TYwM26AsBPyH_gPw0K-dw
CitedBy_id crossref_primary_10_1364_OE_458572
crossref_primary_10_1002_adom_201700368
crossref_primary_10_1364_AO_58_007134
crossref_primary_10_1016_j_mattod_2025_02_016
crossref_primary_10_1364_OE_423353
crossref_primary_10_1016_j_physe_2021_115078
crossref_primary_10_1126_sciadv_aba3494
crossref_primary_10_1016_j_rinp_2023_106559
crossref_primary_10_1364_OE_27_026369
crossref_primary_10_1364_PRJ_6_000168
crossref_primary_10_1002_adom_201900028
crossref_primary_10_3390_ma13112560
crossref_primary_10_1016_j_photonics_2024_101226
crossref_primary_10_3389_fmats_2024_1428912
crossref_primary_10_3390_ma13225140
crossref_primary_10_1016_j_rinp_2024_108105
crossref_primary_10_1039_C8TC02302F
crossref_primary_10_1021_acsami_8b22535
crossref_primary_10_1007_s11468_023_02024_3
crossref_primary_10_1364_AO_454217
crossref_primary_10_1364_OME_397173
crossref_primary_10_1364_OE_26_016940
crossref_primary_10_3390_mi11090824
crossref_primary_10_3390_photonics10080922
crossref_primary_10_1515_nanoph_2017_0125
crossref_primary_10_1007_s11082_024_06957_9
crossref_primary_10_1364_JOSAB_36_003573
crossref_primary_10_1364_OSAC_397243
crossref_primary_10_1016_j_nanoen_2018_08_074
crossref_primary_10_1039_D3NR01941A
crossref_primary_10_1007_s11664_024_11608_6
crossref_primary_10_1088_2053_1591_aca8e9
crossref_primary_10_37188_lam_2021_026
crossref_primary_10_1016_j_photonics_2023_101154
crossref_primary_10_1088_1402_4896_acb514
crossref_primary_10_1002_adom_201800995
crossref_primary_10_1088_1402_4896_ace1b1
crossref_primary_10_1002_solr_201700049
crossref_primary_10_1080_09205071_2024_2394434
crossref_primary_10_1016_j_rinp_2021_103986
crossref_primary_10_1039_D2CP01626E
crossref_primary_10_1021_acsami_3c17546
crossref_primary_10_1016_j_physleta_2024_130102
crossref_primary_10_1364_AO_384027
crossref_primary_10_1016_j_optmat_2024_115776
crossref_primary_10_1007_s11468_019_00916_x
crossref_primary_10_1515_nanoph_2017_0130
crossref_primary_10_1088_1361_6463_ab5d41
crossref_primary_10_1364_AO_56_004201
crossref_primary_10_1016_j_optcom_2023_129600
crossref_primary_10_1016_j_renene_2022_04_040
crossref_primary_10_3390_nano12193477
crossref_primary_10_1007_s11468_023_01806_z
crossref_primary_10_1039_D3TC00578J
crossref_primary_10_1088_1361_6463_abf579
crossref_primary_10_1109_MNANO_2019_2916113
crossref_primary_10_1364_AO_451285
crossref_primary_10_1016_j_mssp_2022_106682
crossref_primary_10_1364_PRJ_386655
crossref_primary_10_1364_JOSAB_425856
crossref_primary_10_1002_smll_202405140
crossref_primary_10_1109_JLT_2022_3193658
crossref_primary_10_1016_j_rinp_2021_104146
crossref_primary_10_1007_s11431_021_1982_y
crossref_primary_10_1088_1361_6463_ad32a7
crossref_primary_10_1038_s41598_018_36540_8
crossref_primary_10_1364_OE_26_020695
crossref_primary_10_3390_nano12152537
crossref_primary_10_1039_D3CP05333D
crossref_primary_10_1021_acsphotonics_3c01013
crossref_primary_10_1080_00150193_2022_2076444
crossref_primary_10_1364_OE_27_038029
crossref_primary_10_1016_j_solmat_2018_09_003
crossref_primary_10_1016_j_physb_2021_413030
crossref_primary_10_1016_j_optmat_2019_109581
crossref_primary_10_1364_OE_474970
crossref_primary_10_1364_OE_496764
crossref_primary_10_1088_1361_6633_aa8732
crossref_primary_10_1016_j_apsusc_2021_149142
crossref_primary_10_3390_mi14050985
crossref_primary_10_1038_s41598_020_75931_8
crossref_primary_10_34133_2022_9861078
crossref_primary_10_1039_D0CP01943G
crossref_primary_10_1088_1402_4896_acd3bc
crossref_primary_10_1088_1402_4896_ad16ca
crossref_primary_10_1109_LPT_2024_3423798
crossref_primary_10_1038_s41598_021_98077_7
crossref_primary_10_1088_2053_1591_abba9e
crossref_primary_10_1039_C9NR07602F
crossref_primary_10_1088_1361_6463_abccf0
crossref_primary_10_1002_adom_202301304
crossref_primary_10_1088_1361_6463_ad8501
crossref_primary_10_1364_OE_401992
crossref_primary_10_1515_nanoph_2022_0686
crossref_primary_10_1007_s12034_024_03182_8
crossref_primary_10_1002_adom_201901203
crossref_primary_10_1364_OE_26_011728
crossref_primary_10_1016_j_optcom_2019_04_080
crossref_primary_10_1364_JOSAB_426441
crossref_primary_10_1117_1_JNP_13_036012
crossref_primary_10_1515_nanoph_2018_0217
crossref_primary_10_1021_acsphotonics_7b01439
crossref_primary_10_1088_2053_1591_ab5129
crossref_primary_10_1038_s41598_017_04964_3
crossref_primary_10_1088_2040_8986_ac15e8
crossref_primary_10_3390_mi14020340
crossref_primary_10_1016_j_ijleo_2021_167855
crossref_primary_10_1016_j_matlet_2023_135518
crossref_primary_10_3390_mi11040409
crossref_primary_10_1038_s41598_017_15312_w
crossref_primary_10_3390_coatings14070799
crossref_primary_10_1038_s41598_019_46464_6
crossref_primary_10_1088_1361_6463_aa81af
crossref_primary_10_1364_OE_439767
crossref_primary_10_1515_nanoph_2020_0111
crossref_primary_10_1016_j_optlastec_2024_111546
crossref_primary_10_1038_s41598_018_27397_y
crossref_primary_10_3390_ma16062286
crossref_primary_10_1364_OE_26_027089
crossref_primary_10_1364_OE_27_011809
crossref_primary_10_1364_AO_398609
crossref_primary_10_1002_adts_202400839
crossref_primary_10_1007_s11082_023_05227_4
crossref_primary_10_1016_j_optmat_2020_110023
crossref_primary_10_1364_OL_44_000963
crossref_primary_10_1364_OL_45_000686
crossref_primary_10_1063_5_0023151
crossref_primary_10_1007_s11468_021_01563_x
crossref_primary_10_1016_j_optmat_2020_109712
crossref_primary_10_7498_aps_67_20172716
crossref_primary_10_1364_OL_43_002981
crossref_primary_10_1007_s11468_025_02848_1
crossref_primary_10_1016_j_solener_2024_112957
crossref_primary_10_1364_OE_451411
crossref_primary_10_3390_mi13081239
crossref_primary_10_3390_mi14030659
crossref_primary_10_3390_nano11102709
crossref_primary_10_1016_j_cap_2021_08_001
crossref_primary_10_1021_acsphotonics_8b00781
crossref_primary_10_1039_C8NH00286J
crossref_primary_10_1088_1361_6439_abc31f
crossref_primary_10_1142_S0217979219503648
crossref_primary_10_1515_nanoph_2023_0021
crossref_primary_10_1088_1674_1056_ac2d1d
crossref_primary_10_1016_j_rinp_2022_105470
crossref_primary_10_1364_OE_439546
crossref_primary_10_3390_ma12213568
crossref_primary_10_1039_D0TC01990A
crossref_primary_10_1080_02678292_2019_1618935
crossref_primary_10_1016_j_mtsust_2024_100877
crossref_primary_10_1016_j_optcom_2019_124948
crossref_primary_10_1246_bcsj_20220163
crossref_primary_10_1016_j_apmt_2021_101266
crossref_primary_10_1039_C7NR04186A
crossref_primary_10_1109_JPHOT_2019_2910806
crossref_primary_10_1364_PRJ_7_000734
crossref_primary_10_2200_S01133ED1V01Y202109EMA004
crossref_primary_10_1117_1_OE_58_11_115103
crossref_primary_10_1364_JOSAB_427975
crossref_primary_10_1364_OE_383666
crossref_primary_10_1021_acsphotonics_8b00872
crossref_primary_10_1021_acsphotonics_9b00889
crossref_primary_10_1364_OE_27_005280
crossref_primary_10_1088_1361_6528_ab109d
crossref_primary_10_1049_iet_opt_2018_5045
crossref_primary_10_1088_1402_4896_acc4f4
crossref_primary_10_1007_s11468_023_02137_9
crossref_primary_10_1364_JOSAB_36_00F131
crossref_primary_10_1364_OE_403559
crossref_primary_10_1002_cnma_202100060
crossref_primary_10_1515_nanoph_2022_0073
crossref_primary_10_1088_1361_6528_abd275
crossref_primary_10_1021_acs_nanolett_2c00322
crossref_primary_10_1088_1555_6611_ace70f
crossref_primary_10_1016_j_ijleo_2021_166959
crossref_primary_10_1007_s11468_020_01288_3
crossref_primary_10_7567_1882_0786_ab24af
crossref_primary_10_1002_adom_202202011
crossref_primary_10_1364_JOSAB_410656
crossref_primary_10_3390_nano13040766
crossref_primary_10_1021_acsphotonics_9b00636
crossref_primary_10_1364_JOSAB_34_000D86
crossref_primary_10_1016_j_ijleo_2021_167249
crossref_primary_10_1109_JLT_2024_3373250
crossref_primary_10_1007_s12596_021_00760_5
crossref_primary_10_1364_OE_430068
crossref_primary_10_32604_jrm_2022_022283
crossref_primary_10_1002_adom_201801660
crossref_primary_10_1364_OE_26_020174
crossref_primary_10_1142_S0217984921502912
crossref_primary_10_1016_j_optmat_2023_114143
crossref_primary_10_1007_s11468_018_0766_7
crossref_primary_10_1063_5_0136552
crossref_primary_10_1364_OE_447885
crossref_primary_10_1016_j_vacuum_2023_112536
crossref_primary_10_1364_AO_57_001757
crossref_primary_10_1007_s11468_019_00976_z
crossref_primary_10_1364_OE_26_033253
crossref_primary_10_1088_1402_4896_acdb5b
crossref_primary_10_1364_JOSAB_36_000153
crossref_primary_10_1364_OE_414961
crossref_primary_10_1364_AO_58_004467
crossref_primary_10_1142_S0217979219500565
crossref_primary_10_1016_j_optmat_2021_111029
crossref_primary_10_1007_s11468_020_01260_1
crossref_primary_10_2184_lsj_47_7_361
crossref_primary_10_1109_ACCESS_2021_3089895
crossref_primary_10_1364_OE_446655
crossref_primary_10_1109_JSEN_2023_3346441
crossref_primary_10_1007_s11082_023_04681_4
crossref_primary_10_1016_j_solener_2022_11_003
crossref_primary_10_1002_adpr_202100291
crossref_primary_10_1039_D4TC04229H
crossref_primary_10_1021_acs_jpcc_1c08325
crossref_primary_10_1080_15567265_2018_1434844
crossref_primary_10_1186_s11671_020_03471_1
crossref_primary_10_1016_j_cap_2019_11_024
crossref_primary_10_1364_OE_476527
crossref_primary_10_1364_PRJ_527945
crossref_primary_10_1039_D4TC02504K
crossref_primary_10_1007_s11082_022_03753_1
crossref_primary_10_1364_AO_405135
crossref_primary_10_3389_fspas_2024_1374951
crossref_primary_10_1364_OE_491334
crossref_primary_10_1364_OE_382776
crossref_primary_10_1021_acsaem_4c02914
crossref_primary_10_1109_JQE_2021_3064289
crossref_primary_10_1109_JPHOT_2022_3184964
crossref_primary_10_1016_j_optlastec_2024_111490
crossref_primary_10_1088_2053_1591_acaf4c
crossref_primary_10_1016_j_optmat_2018_06_008
crossref_primary_10_1088_2399_1984_aba10a
crossref_primary_10_1038_s41598_022_04772_4
crossref_primary_10_1016_j_physleta_2020_126288
crossref_primary_10_1063_1_4997458
crossref_primary_10_1002_adom_201701204
crossref_primary_10_1007_s11468_023_02025_2
crossref_primary_10_1088_1361_6528_abad60
crossref_primary_10_3390_nano13010091
crossref_primary_10_1016_j_optmat_2022_112793
crossref_primary_10_1007_s40998_023_00594_w
crossref_primary_10_1063_1_4977860
crossref_primary_10_1364_OL_404423
crossref_primary_10_3390_mi11010058
crossref_primary_10_1007_s11468_020_01244_1
crossref_primary_10_1016_j_jpowsour_2023_233281
crossref_primary_10_1364_JOSAB_469674
crossref_primary_10_1021_acs_jpcc_9b00434
crossref_primary_10_3390_mi11121032
crossref_primary_10_1103_PhysRevA_106_053523
crossref_primary_10_1002_adfm_202213818
crossref_primary_10_1002_adom_201901502
crossref_primary_10_1016_j_rinp_2021_104466
crossref_primary_10_1088_1361_6528_ac988e
crossref_primary_10_1364_OE_25_027624
Cites_doi 10.1002/lpor.201400026
10.1038/ncomms1528
10.1364/OE.20.013311
10.1002/lpor.201400157
10.1063/1.3442904
10.1103/PhysRevB.85.045434
10.1038/nmat3013
10.1063/1.3599551
10.1126/science.1125907
10.1038/srep08901
10.2528/PIER14040306
10.1126/science.1058847
10.1103/PhysRevLett.100.207402
10.1088/1367-2630/15/7/073007
10.1038/nature11615
10.1364/OE.21.020873
10.1364/OL.37.000154
10.1126/science.1232009
10.1038/nmat3839
10.1021/nl204118h
10.1063/1.4890521
10.1038/ncomms1976
10.1063/1.3692178
10.1038/nmat3151
10.1021/nn504708t
10.1364/AO.37.005271
10.1103/PhysRevLett.85.3966
10.1103/PhysRevLett.104.207403
10.1063/1.4929151
10.1063/1.3672002
10.1021/nl9041033
10.1364/JOSAB.27.000498
ContentType Journal Article
Copyright The Author(s) 2016
Copyright Nature Publishing Group Dec 2016
Copyright © 2016, The Author(s) 2016 The Author(s)
Copyright_xml – notice: The Author(s) 2016
– notice: Copyright Nature Publishing Group Dec 2016
– notice: Copyright © 2016, The Author(s) 2016 The Author(s)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTPV
AOWAS
D8V
DOI 10.1038/srep39445
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID oai_DiVA_org_kth_199736
PMC5175172
28000718
10_1038_srep39445
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
7X8
5PM
ADTPV
AOWAS
D8V
IPNFZ
RIG
ID FETCH-LOGICAL-c542t-70f478ab23d91ab97866e5f93f4db2173c36701d48ebe1be06077f3229b180a3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Sep 09 23:42:28 EDT 2025
Thu Aug 21 13:59:52 EDT 2025
Fri Sep 05 09:23:55 EDT 2025
Mon Sep 08 08:14:07 EDT 2025
Thu Apr 03 07:08:10 EDT 2025
Thu Apr 24 23:09:42 EDT 2025
Tue Jul 01 04:02:26 EDT 2025
Fri Feb 21 02:39:33 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c542t-70f478ab23d91ab97866e5f93f4db2173c36701d48ebe1be06077f3229b180a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep39445
PMID 28000718
PQID 1899433208
PQPubID 2041939
ParticipantIDs swepub_primary_oai_DiVA_org_kth_199736
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5175172
proquest_miscellaneous_1851295591
proquest_journals_1899433208
pubmed_primary_28000718
crossref_citationtrail_10_1038_srep39445
crossref_primary_10_1038_srep39445
springer_journals_10_1038_srep39445
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-21
PublicationDateYYYYMMDD 2016-12-21
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-21
  day: 21
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2016
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ding (CR27) 2014; 8
Chen, Dai, Yan, Qiu (CR14) 2013; 21
Ye, Jin, He (CR17) 2010; 27
Pendry, Schurig, Smith (CR8) 2006; 312
Tittl (CR30) 2014; 8
Landy, Sajuyigbe, Mock, Smith, Padilla (CR11) 2008; 100
CR34
Yu, Capasso (CR10) 2014; 13
Shelby, Smith, Schultz (CR7) 2001; 292
Cui (CR19) 2011; 99
He, Ding, Mo, Bao (CR28) 2014; 147
Xu, Chen, Gartia, Jiang, Liu (CR3) 2011; 98
Hao (CR16) 2010; 96
Cui (CR5) 2014; 8
Cui (CR25) 2012; 12
Kraemer (CR1) 2011; 10
Yin (CR31) 2015; 107
Moreau (CR15) 2012; 492
Ding, Cui, Ge, Jin, He (CR26) 2012; 100
Linic, Christopher, Ingram (CR2) 2011; 10
Zhu (CR22) 2014; 105
Gramotnev, Pors, Willatzen, Bozhevolnyi (CR29) 2012; 85
Kildishev, Boltasseva, Shalaev (CR9) 2013; 339
Liu, Starr, Starr, Padilla (CR12) 2010; 104
Liu, Mesch, Weiss, Hentschel, Giessen (CR13) 2010; 10
Rakic, Djurisic, Elazar, Majewski (CR33) 1998; 37
Zang (CR32) 2015; 5
Jonas (CR24) 2013; 15
Watts, Liu, Padilla (CR4) 2012; 24
Nielsen, Pors, Albrektsen, Bozhevolnyi (CR21) 2012; 20
Pendry (CR6) 2000; 85
Søndergaard (CR23) 2012; 3
Aydin, Ferry, Briggs, Atwater (CR18) 2011; 2
Huang (CR20) 2012; 37
Y Cui (BFsrep39445_CR5) 2014; 8
B Jonas (BFsrep39445_CR24) 2013; 15
J Zhu (BFsrep39445_CR22) 2014; 105
L Huang (BFsrep39445_CR20) 2012; 37
JB Pendry (BFsrep39445_CR6) 2000; 85
A Moreau (BFsrep39445_CR15) 2012; 492
S He (BFsrep39445_CR28) 2014; 147
S Yin (BFsrep39445_CR31) 2015; 107
DK Gramotnev (BFsrep39445_CR29) 2012; 85
X Liu (BFsrep39445_CR12) 2010; 104
N Liu (BFsrep39445_CR13) 2010; 10
YQ Ye (BFsrep39445_CR17) 2010; 27
X Zang (BFsrep39445_CR32) 2015; 5
S Linic (BFsrep39445_CR2) 2011; 10
K Aydin (BFsrep39445_CR18) 2011; 2
Y Cui (BFsrep39445_CR19) 2011; 99
J Hao (BFsrep39445_CR16) 2010; 96
Y Chen (BFsrep39445_CR14) 2013; 21
AV Kildishev (BFsrep39445_CR9) 2013; 339
F Ding (BFsrep39445_CR27) 2014; 8
F Ding (BFsrep39445_CR26) 2012; 100
CM Watts (BFsrep39445_CR4) 2012; 24
BFsrep39445_CR34
AD Rakic (BFsrep39445_CR33) 1998; 37
A Tittl (BFsrep39445_CR30) 2014; 8
MG Nielsen (BFsrep39445_CR21) 2012; 20
Y Cui (BFsrep39445_CR25) 2012; 12
N Yu (BFsrep39445_CR10) 2014; 13
T Søndergaard (BFsrep39445_CR23) 2012; 3
D Kraemer (BFsrep39445_CR1) 2011; 10
NI Landy (BFsrep39445_CR11) 2008; 100
JB Pendry (BFsrep39445_CR8) 2006; 312
RA Shelby (BFsrep39445_CR7) 2001; 292
Z Xu (BFsrep39445_CR3) 2011; 98
22714359 - Opt Express. 2012 Jun 4;20(12):13311-9
11041972 - Phys Rev Lett. 2000 Oct 30;85(18):3966-9
25754618 - Sci Rep. 2015 Mar 10;5:8901
22109608 - Nat Mater. 2011 Nov 23;10(12):911-21
22627995 - Adv Mater. 2012 Jun 19;24(23):OP98-120, OP181
18286006 - Appl Opt. 1998 Aug 1;37(22):5271-83
16728597 - Science. 2006 Jun 23;312(5781):1780-2
21532584 - Nat Mater. 2011 May 01;10(7):532-8
25251075 - ACS Nano. 2014 Oct 28;8(10):10885-92
20867064 - Phys Rev Lett. 2010 May 21;104(20):207403
22044996 - Nat Commun. 2011 Nov 01;2:517
23493714 - Science. 2013 Mar 15;339(6125):1232009
11292865 - Science. 2001 Apr 6;292(5514):77-9
18518577 - Phys Rev Lett. 2008 May 23;100(20):207402
24452357 - Nat Mater. 2014 Feb;13(2):139-50
22828629 - Nat Commun. 2012 Jul 24;3:969
22854451 - Opt Lett. 2012 Jan 15;37(2):154-6
24103960 - Opt Express. 2013 Sep 9;21(18):20873-9
20560590 - Nano Lett. 2010 Jul 14;10(7):2342-8
22309161 - Nano Lett. 2012 Mar 14;12(3):1443-7
23222613 - Nature. 2012 Dec 6;492(7427):86-9
References_xml – volume: 8
  start-page: 495
  year: 2014
  end-page: 520
  ident: CR5
  article-title: Plasmonic and metamaterial structures as electromagnetic absorbers
  publication-title: Laser Photonics Rev
  doi: 10.1002/lpor.201400026
– volume: 2
  start-page: 517
  year: 2011
  ident: CR18
  article-title: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1528
– volume: 20
  start-page: 13311
  year: 2012
  ident: CR21
  article-title: Efficient absorption of visible radiation by gap plasmon resonators
  publication-title: Opt. Express
  doi: 10.1364/OE.20.013311
– volume: 8
  start-page: 946
  year: 2014
  end-page: 953
  ident: CR27
  article-title: Ultrabroadband strong light absorption based on thin multilayered metamaterials
  publication-title: Laser Photonics Rev
  doi: 10.1002/lpor.201400157
– volume: 96
  start-page: 251104
  year: 2010
  end-page: 251103
  ident: CR16
  article-title: High performance optical absorber based on a plasmonic metamaterial
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3442904
– volume: 85
  start-page: 045434
  year: 2012
  ident: CR29
  article-title: Gap-plasmon nanoantennas and bowtie resonators
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.045434
– volume: 10
  start-page: 532
  year: 2011
  end-page: 538
  ident: CR1
  article-title: High-performance flat-panel solar thermoelectric generators with high thermal concentration
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 98
  start-page: 241904
  year: 2011
  ident: CR3
  article-title: Surface plasmon enhanced broadband spectrophotometry on black silver substrates
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3599551
– volume: 312
  start-page: 1780
  year: 2006
  end-page: 1782
  ident: CR8
  article-title: Controlling electromagnetic fields
  publication-title: Science
  doi: 10.1126/science.1125907
– volume: 5
  start-page: 8901
  year: 2015
  ident: CR32
  article-title: Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings
  publication-title: Sci. Rep
  doi: 10.1038/srep08901
– volume: 147
  start-page: 69
  year: 2014
  end-page: 79
  ident: CR28
  article-title: Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films
  publication-title: Prog. Electromagnetics Res
  doi: 10.2528/PIER14040306
– volume: 292
  start-page: 77
  year: 2001
  end-page: 79
  ident: CR7
  article-title: Experimental Verification of a Negative Index of Refraction
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 100
  start-page: 207402
  year: 2008
  ident: CR11
  article-title: Perfect Metamaterial Absorber
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 24
  start-page: OP98
  year: 2012
  end-page: OP120
  ident: CR4
  article-title: Metamaterial Electromagnetic Wave Absorbers
  publication-title: Adv. Mater.
– volume: 15
  start-page: 073007
  year: 2013
  ident: CR24
  article-title: Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/7/073007
– volume: 492
  start-page: 86
  year: 2012
  end-page: 89
  ident: CR15
  article-title: Controlled-reflectance surfaces with film-coupled colloidal nanoantennas
  publication-title: Nature
  doi: 10.1038/nature11615
– volume: 21
  start-page: 20873
  year: 2013
  ident: CR14
  article-title: Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance
  publication-title: Opt. Express
  doi: 10.1364/OE.21.020873
– volume: 37
  start-page: 154
  year: 2012
  ident: CR20
  article-title: Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000154
– volume: 339
  start-page: 1232009
  year: 2013
  ident: CR9
  article-title: Planar Photonics with Metasurfaces
  publication-title: Science
  doi: 10.1126/science.1232009
– volume: 13
  start-page: 139
  year: 2014
  end-page: 150
  ident: CR10
  article-title: Flat optics with designer metasurfaces
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3839
– volume: 12
  start-page: 1443
  year: 2012
  ident: CR25
  article-title: Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab
  publication-title: Nano Lett.
  doi: 10.1021/nl204118h
– volume: 27
  start-page: 498
  year: 2010
  end-page: 504
  ident: CR17
  article-title: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime
  publication-title: J. Opt. Soc. Am. B
– volume: 105
  start-page: 021102
  year: 2014
  ident: CR22
  article-title: Ultra-broadband terahertz metamaterial absorber
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890521
– volume: 3
  start-page: 969
  year: 2012
  ident: CR23
  article-title: Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1976
– volume: 100
  start-page: 103506
  year: 2012
  ident: CR26
  article-title: Ultra-broadband microwave metamaterial absorber
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3692178
– volume: 10
  start-page: 911
  year: 2011
  end-page: 921
  ident: CR2
  article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3151
– volume: 8
  start-page: 10885
  year: 2014
  end-page: 10892
  ident: CR30
  article-title: Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects
  publication-title: ACS Nano
  doi: 10.1021/nn504708t
– volume: 37
  start-page: 5271
  year: 1998
  end-page: 5283
  ident: CR33
  article-title: Optical properties of metallic Films for vertical-cavity optoelectronic devices
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.005271
– ident: CR34
– volume: 85
  start-page: 3966
  year: 2000
  end-page: 3969
  ident: CR6
  article-title: Negative Refraction Makes a Perfect Lens
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 104
  start-page: 207403
  year: 2010
  ident: CR12
  article-title: Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.207403
– volume: 107
  start-page: 073903
  year: 2015
  ident: CR31
  article-title: High-performance terahertz wave absorbers made of silicon-based metamaterials
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4929151
– volume: 99
  start-page: 253101
  year: 2011
  ident: CR19
  article-title: A thin film broadband absorber based on multi-sized nanoantennas
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3672002
– volume: 10
  start-page: 2342
  year: 2010
  end-page: 2348
  ident: CR13
  article-title: Infrared Perfect Absorber and Its Application as Plasmonic Sensor
  publication-title: Nano Lett.
  doi: 10.1021/nl9041033
– volume: 100
  start-page: 207402
  year: 2008
  ident: BFsrep39445_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 107
  start-page: 073903
  year: 2015
  ident: BFsrep39445_CR31
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4929151
– volume: 13
  start-page: 139
  year: 2014
  ident: BFsrep39445_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3839
– volume: 27
  start-page: 498
  year: 2010
  ident: BFsrep39445_CR17
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.27.000498
– volume: 8
  start-page: 946
  year: 2014
  ident: BFsrep39445_CR27
  publication-title: Laser Photonics Rev
  doi: 10.1002/lpor.201400157
– volume: 85
  start-page: 3966
  year: 2000
  ident: BFsrep39445_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.3966
– volume: 21
  start-page: 20873
  year: 2013
  ident: BFsrep39445_CR14
  publication-title: Opt. Express
  doi: 10.1364/OE.21.020873
– volume: 99
  start-page: 253101
  year: 2011
  ident: BFsrep39445_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3672002
– volume: 12
  start-page: 1443
  year: 2012
  ident: BFsrep39445_CR25
  publication-title: Nano Lett.
  doi: 10.1021/nl204118h
– volume: 85
  start-page: 045434
  year: 2012
  ident: BFsrep39445_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.045434
– volume: 96
  start-page: 251104
  year: 2010
  ident: BFsrep39445_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3442904
– volume: 2
  start-page: 517
  year: 2011
  ident: BFsrep39445_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1528
– volume: 5
  start-page: 8901
  year: 2015
  ident: BFsrep39445_CR32
  publication-title: Sci. Rep
  doi: 10.1038/srep08901
– volume: 98
  start-page: 241904
  year: 2011
  ident: BFsrep39445_CR3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3599551
– volume: 24
  start-page: OP98
  year: 2012
  ident: BFsrep39445_CR4
  publication-title: Adv. Mater.
– volume: 37
  start-page: 154
  year: 2012
  ident: BFsrep39445_CR20
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000154
– ident: BFsrep39445_CR34
– volume: 292
  start-page: 77
  year: 2001
  ident: BFsrep39445_CR7
  publication-title: Science
  doi: 10.1126/science.1058847
– volume: 147
  start-page: 69
  year: 2014
  ident: BFsrep39445_CR28
  publication-title: Prog. Electromagnetics Res
  doi: 10.2528/PIER14040306
– volume: 492
  start-page: 86
  year: 2012
  ident: BFsrep39445_CR15
  publication-title: Nature
  doi: 10.1038/nature11615
– volume: 8
  start-page: 10885
  year: 2014
  ident: BFsrep39445_CR30
  publication-title: ACS Nano
  doi: 10.1021/nn504708t
– volume: 3
  start-page: 969
  year: 2012
  ident: BFsrep39445_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1976
– volume: 37
  start-page: 5271
  year: 1998
  ident: BFsrep39445_CR33
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.005271
– volume: 339
  start-page: 1232009
  year: 2013
  ident: BFsrep39445_CR9
  publication-title: Science
  doi: 10.1126/science.1232009
– volume: 105
  start-page: 021102
  year: 2014
  ident: BFsrep39445_CR22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4890521
– volume: 20
  start-page: 13311
  year: 2012
  ident: BFsrep39445_CR21
  publication-title: Opt. Express
  doi: 10.1364/OE.20.013311
– volume: 10
  start-page: 2342
  year: 2010
  ident: BFsrep39445_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl9041033
– volume: 100
  start-page: 103506
  year: 2012
  ident: BFsrep39445_CR26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3692178
– volume: 10
  start-page: 532
  year: 2011
  ident: BFsrep39445_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3013
– volume: 15
  start-page: 073007
  year: 2013
  ident: BFsrep39445_CR24
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/7/073007
– volume: 104
  start-page: 207403
  year: 2010
  ident: BFsrep39445_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.207403
– volume: 10
  start-page: 911
  year: 2011
  ident: BFsrep39445_CR2
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3151
– volume: 8
  start-page: 495
  year: 2014
  ident: BFsrep39445_CR5
  publication-title: Laser Photonics Rev
  doi: 10.1002/lpor.201400026
– volume: 312
  start-page: 1780
  year: 2006
  ident: BFsrep39445_CR8
  publication-title: Science
  doi: 10.1126/science.1125907
– reference: 23493714 - Science. 2013 Mar 15;339(6125):1232009
– reference: 22109608 - Nat Mater. 2011 Nov 23;10(12):911-21
– reference: 11292865 - Science. 2001 Apr 6;292(5514):77-9
– reference: 23222613 - Nature. 2012 Dec 6;492(7427):86-9
– reference: 25251075 - ACS Nano. 2014 Oct 28;8(10):10885-92
– reference: 25754618 - Sci Rep. 2015 Mar 10;5:8901
– reference: 22309161 - Nano Lett. 2012 Mar 14;12(3):1443-7
– reference: 21532584 - Nat Mater. 2011 May 01;10(7):532-8
– reference: 24452357 - Nat Mater. 2014 Feb;13(2):139-50
– reference: 22627995 - Adv Mater. 2012 Jun 19;24(23):OP98-120, OP181
– reference: 20560590 - Nano Lett. 2010 Jul 14;10(7):2342-8
– reference: 20867064 - Phys Rev Lett. 2010 May 21;104(20):207403
– reference: 11041972 - Phys Rev Lett. 2000 Oct 30;85(18):3966-9
– reference: 22828629 - Nat Commun. 2012 Jul 24;3:969
– reference: 22854451 - Opt Lett. 2012 Jan 15;37(2):154-6
– reference: 16728597 - Science. 2006 Jun 23;312(5781):1780-2
– reference: 18518577 - Phys Rev Lett. 2008 May 23;100(20):207402
– reference: 22044996 - Nat Commun. 2011 Nov 01;2:517
– reference: 22714359 - Opt Express. 2012 Jun 4;20(12):13311-9
– reference: 24103960 - Opt Express. 2013 Sep 9;21(18):20873-9
– reference: 18286006 - Appl Opt. 1998 Aug 1;37(22):5271-83
SSID ssj0000529419
Score 2.6188228
Snippet Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc....
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 39445
SubjectTerms 142/126
639/624/399/1015
639/766/1130/2799
639/925/927/1021
Absorption
Bandwidths
Dielectric properties
Heavy metals
Humanities and Social Sciences
I.R. radiation
Light
Magnetic fields
multidisciplinary
Polarization
Radiation
Resonance
Science
Silica
Silicon
Silicon dioxide
Simulation
Spectrum allocation
Spectrum analysis
Thin films
Titanium
Wavelengths
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4oD6Api0oUIS4WLUTJ3EOCLXQqkLtCqGCeovs2GlXDcl2Nz0sv56x84BlK86e2I5nbH_jsb8BeCtCYxA25EQVWhOOLjOxHCxEaixQIjHURXQvxvHZd_7lKrpag3H_FsZeq-zXRLdQ6zq3Z-SHDB0Dy7VFxcfpHbFZo2x0tU-hIbvUCvqDoxh7BOu4JEd0BOvHJ-Ov34ZTFxvX4iztKYZCcYgb0dQ-Do2WN6YVtLl6aXKInP7DMup2ptMNeNpBSv-otYFNWDPVFjxuk0wutuEcPW2play0X6FZEzSpmb117v80jUS86kzQl2pezxRiQR8tsZz8wiZ9S2VcLvwSu7tw0uX8GVyenlx-OiNdDgWSRzxoSEILngipglCnTCr0GePYREUaFlwrdEfC3DK4Mc0FapMpQ2OaJAXO8lQxQWX4HEZVXZkd8NH1oTKmHP0VxTXLRRQUVAmsRpsoT6UH7_vxy_KOX9ymuSgzF-cORTYMtQdvBtFpS6rxkNB-r4Ssm1fz7I8VePB6KMYZYcMcsjL1vZWxIAY9JebBi1ZnQyuBcKAKv06WtDkIWLbt5ZJqcuNYtyMEWoj2PDjo9f5Xt1Y7_641iaWKP09-HGX17Dq7bW4ye8MnjHf__5d78AQRmsuUFLB9GDWze_MSUVCjXnWm_RvcAQub
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BERIXtMszwK7CQ4hLhJ04iXOsdhehCrjwELfIjh2oCClqw6H8esbOA0r3wNnjhzxj-5vM5BuAIx5ojbAh82SulMfQZfYMB4snFDZIHmtiI7qXV9H5LRvch_cNWfSkSausKS3tNd1mh53ie_Fi_uEMF2GJx3jr9mCp3x9cD7oPKiZkxWjSsgcF_KPP7JszByTn8yG7oOgXAlH76Jz9gNUGLbr9en0_YUGXa7Bc14-crsMFOtFCSVEqt0SL9dBaxiah3H3WlUAoaq3LFXIyGkuEeS4aWTF8wyldw1JcTN0Clzu10sVkA27O_t38Ofea8gheFjK_8mKSs5gL6QcqoUKiOxhFOsyTIGdKoqcRZIacjSrGUVFUahKROM7xACeSciKCTeiVo1Jvg4teDRERYeiKSKZoxkM_J5LjMEqHWSIcOGn3L80a6nBTwaJIbQg74Gm31Q4cdKIvNV_G_4T2WiWkzZGZpBQ9P0OmRrgD-10zGruJYIhSj16NjMEn6ARRB7ZqnXWz-NziJewdz2izEzBE2rMt5fDREmqHiKEQyDlw2Or907LmF39cm8TMwH-Hd_10NH5In6rH1CTvBNHOt4bbhRXEYLYWkk_3oFeNX_UvxDmV_N1Y-DsSVAFt
  priority: 102
  providerName: Springer Nature
Title Broadband near-infrared metamaterial absorbers utilizing highly lossy metals
URI https://link.springer.com/article/10.1038/srep39445
https://www.ncbi.nlm.nih.gov/pubmed/28000718
https://www.proquest.com/docview/1899433208
https://www.proquest.com/docview/1851295591
https://pubmed.ncbi.nlm.nih.gov/PMC5175172
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199736
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB31Q0hcELRAU8oqBYS4mDqJkzgHhLbbVtWqVAhatLfIjp12RZot2VRi-fWMnQ912R44RYonieMZy-9lnDcA73igNcKGjMhcKcKQMhOjwUKEwgbJY01tRvfLeXR6ycaTcLIGXY3NdgDnD1I7U0_qsio-_v61-IwT_lPzyzg_wLXk1vzfGa7Dpk0TmR18LcpvJL79hNkSH0Z7nSCG8DuNoftXL69MK3Bzdddknzr9R2bULk0nT-FJiyndYRMEz2BNl1vwqKkyudiGM6TaQklRKrfEuCb4lpXZdu7e6FogYLUx6Ao5n1USwaCLoVhM_-AjXaNlXCzcAru7sNbF_DlcnBxfjE5JW0SBZCHzaxLTnMVcSD9QiSckksYo0mGeBDlTEvlIkBkJN08xju70pKYRjeMchyiRHqcieAEb5azUO-Ai96EiogwJi2TKy3jo51RyvI3SYZYIBz5045dmrcC4qXNRpDbRHfC0H2oH3vSmt42qxkNGe50T0i4uUg_5oZFco9yB_b4Zp4TJc4hSz-6MjUExSJU8B142Puuf4nOLqvDqeMmbvYGR215uKafXVnY7RKSFcM-Bt53f73VrtfPvm5BYuvHR9McwnVVX6c_6OjVbfIJo9z9e4xU8Rpxm6yX53h5s1NWdfo1YqJYDWI8n8QA2h8Px9zEeD4_Pv37Ds6NoNLDfFwZ2LvwFtVEQ1w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIkQvFd9NKRA-xcVqnDiJc0CoolRbuu1pQXuz7NhpVw3JspsKLf-J_8jY2QSWRdx69sRxPM_xm4zzBuAVj4xB2pATVWhNGIbMxGqwEKmxQfHUBC6je3qWDD6zT-N4vAE_u39h7LHK7p3oXtS6zu038n2KgYHV2gr4--k3YqtG2exqV0KjhcWJWXzHkG3-7vgQ_fs6DI8-jj4MyLKqAMljFjYkDQqWcqnCSGdUKoyiksTERRYVTCsk6FFuNc2oZhyfjyoTJEGaFoj7TFEeyAi7vQE3mc0w4vJJx2n_SccmzRjNOv2iiO_jLje1f57Gq7veGpVdP5HZp2X_kjB1297RHdhe8lX_oAXYXdgw1T241VawXNyHIYbxUitZab_CySGI15k90u5_NY1EMuzw7Us1r2cKiaaPMC8nP_CWvtVJLhd-icNdOOty_gBG1zGVD2GzqiuzAz7GVYFMAobBkGKa5jwOi0Bx7EabOM-kB2-7-RP5Urzc1tAohUuiR1z0U-3Bi9502ip2_Mtor3OCWC7aufgNMQ-e98243GwORVamvrI2liFhGEY9eNT6rL9LyB1jw6vTFW_2BlbKe7Wlmlw4Se8YWRxSSQ9edn7_Y1jrg3_TQmKl48PJlwNRz87FZXMh7PGhKNn9_1M-g9uD0elQDI_PTh7DFlJBV5IppHuw2cyuzBOkW4166kDug7jmRfUL0MhALQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviDeBAuYpLtHm4cTOAaGKZdXSUnEoaG-WHTt01ZAsu6nQ8s_4d4ydByyLuPXsieN4ZuJvMpNvAJ7z2BiEDbmvCq19iiGzbzlYfKlxQHFmApfR_XCc7n-i76fJdAt-9v_C2LLK_p3oXtS6zu038lGIgYHl2gr4qOjKIj6OJ2_m33zbQcpmWvt2Gq2JHJrVdwzflq8PxqjrF1E0eXfydt_vOgz4eUKjxmdBQRmXKop1FkqFEVWamqTI4oJqhWA9zi2_Wagpx2cNlQnSgLECfSBTIQ9kjNNegsssptR2jWBTNnzesQk0GmY9l1HMR3jize1fqMn6CbgBazerM4cU7V90pu4InFyHax12JXutsd2ALVPdhCttN8vVLTjCkF5qJStNKtwcH213YcvbyVfTSATGztaJVMt6oRB0EjT5cvYDb0ksZ3K5IiUud-Wky-VtOLmIrbwD21VdmXtAMMYKZBpQDIwU1WHOk6gIFMdptEnyTHrwqt8_kXdE5rafRilcQj3mYthqD54OovOWveNfQru9EkTnwEvx29w8eDIMo-vZfIqsTH1uZSxawpAs9OBuq7PhLhF36A2vZmvaHAQsrff6SDU7dfTeCSI6hJUePOv1_seyNhf_sjWJtYnHs897ol58EWfNqbClRHF6__9P-RiuojuJo4Pjwwewg6jQdWeKwl3Ybhbn5iEir0Y9cjZOQFywT_0Cbp5EYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+near-infrared+metamaterial+absorbers+utilizing+highly+lossy+metals&rft.jtitle=Scientific+reports&rft.au=Ding%2C+Fei&rft.au=Dai%2C+Jin&rft.au=Chen%2C+Yiting&rft.au=Zhu%2C+Jianfei&rft.date=2016-12-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=6&rft.spage=39445&rft_id=info:doi/10.1038%2Fsrep39445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon