Broadband near-infrared metamaterial absorbers utilizing highly lossy metals
Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally de...
Saved in:
Published in | Scientific reports Vol. 6; no. 1; p. 39445 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.12.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/srep39445 |
Cover
Abstract | Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO
2
) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials. |
---|---|
AbstractList | Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO
) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials. Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO 2 ) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials. Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials.Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials. Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2 ) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of ~40°. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials. Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor of the localized surface plasmon (LSP) resonance being decreased due to the intrinsic high loss of Ti. The combination of this low-Q LSP resonance and the propagating surface plasmon (PSP) excitation resonance, which occur at different wavelengths, is the fundamental origin of the broadband absorption. The measured (at normal light incidence) absorption is over 90% in the wavelength range from 900 nm to 1825 nm, with high absorption persisting up to the incident angle of similar to 40 degrees. The demonstrated thin-film absorber configuration is relatively easy to fabricate and can be realized with other properly selected materials. |
ArticleNumber | 39445 |
Author | Chen, Yiting Zhu, Jianfei Dai, Jin Bozhevolnyi, Sergey I. Ding, Fei Jin, Yi |
Author_xml | – sequence: 1 givenname: Fei surname: Ding fullname: Ding, Fei organization: Centre for Nano Optics, University of Southern Denmark – sequence: 2 givenname: Jin surname: Dai fullname: Dai, Jin organization: Department of Materials and Nano Physics, School of Information and Communication Technology, KTH-Royal Institute of Technology – sequence: 3 givenname: Yiting surname: Chen fullname: Chen, Yiting organization: Centre for Nano Optics, University of Southern Denmark – sequence: 4 givenname: Jianfei surname: Zhu fullname: Zhu, Jianfei organization: Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University – sequence: 5 givenname: Yi surname: Jin fullname: Jin, Yi organization: Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentations, Zhejiang University – sequence: 6 givenname: Sergey I. surname: Bozhevolnyi fullname: Bozhevolnyi, Sergey I. organization: Centre for Nano Optics, University of Southern Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28000718$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199736$$DView record from Swedish Publication Index |
BookMark | eNptkV9rFDEUxYNUbK198AvIgC-2MG3-TCaTl0KtVQsLvhRfQzJzZzZ1JlmTjLL99KbutmyrIXAT8juHk3tfoz3nHSD0luBTgllzFgOsmKwq_gIdUFzxkjJK93bO--goxlucF6eyIvIV2qdNvgnSHKDFx-B1Z7TrCgc6lNb1QQfoigmSnnSCYPVYaBN9MBBiMSc72jvrhmJph-W4LkYf4_ovPcY36GWfCxxt6yG6-Xx1c_m1XHz7cn15sShbXtFUCtxXotGGsk4SbaRo6hp4L1lfdYYSwVpWC0y6qgEDxACusRB9_ok0pMGaHaJyYxt_w2o2ahXspMNaeW3VJ_v9QvkwqB9pqYiUgtWZP9_wGZ6ga8GloMcnsqcvzi7V4H8pTkTeNBt82BoE_3OGmNRkYwvjqB34OSrScEIl55Jk9P0z9NbPweVuZErKijGKm0y92030GOVhLhk42wBtyP0N0KvWJp2svw9oR0Wwuh--ehx-Vhw_UzyY_o892TYwM26AsBPyH_gPw0K-dw |
CitedBy_id | crossref_primary_10_1364_OE_458572 crossref_primary_10_1002_adom_201700368 crossref_primary_10_1364_AO_58_007134 crossref_primary_10_1016_j_mattod_2025_02_016 crossref_primary_10_1364_OE_423353 crossref_primary_10_1016_j_physe_2021_115078 crossref_primary_10_1126_sciadv_aba3494 crossref_primary_10_1016_j_rinp_2023_106559 crossref_primary_10_1364_OE_27_026369 crossref_primary_10_1364_PRJ_6_000168 crossref_primary_10_1002_adom_201900028 crossref_primary_10_3390_ma13112560 crossref_primary_10_1016_j_photonics_2024_101226 crossref_primary_10_3389_fmats_2024_1428912 crossref_primary_10_3390_ma13225140 crossref_primary_10_1016_j_rinp_2024_108105 crossref_primary_10_1039_C8TC02302F crossref_primary_10_1021_acsami_8b22535 crossref_primary_10_1007_s11468_023_02024_3 crossref_primary_10_1364_AO_454217 crossref_primary_10_1364_OME_397173 crossref_primary_10_1364_OE_26_016940 crossref_primary_10_3390_mi11090824 crossref_primary_10_3390_photonics10080922 crossref_primary_10_1515_nanoph_2017_0125 crossref_primary_10_1007_s11082_024_06957_9 crossref_primary_10_1364_JOSAB_36_003573 crossref_primary_10_1364_OSAC_397243 crossref_primary_10_1016_j_nanoen_2018_08_074 crossref_primary_10_1039_D3NR01941A crossref_primary_10_1007_s11664_024_11608_6 crossref_primary_10_1088_2053_1591_aca8e9 crossref_primary_10_37188_lam_2021_026 crossref_primary_10_1016_j_photonics_2023_101154 crossref_primary_10_1088_1402_4896_acb514 crossref_primary_10_1002_adom_201800995 crossref_primary_10_1088_1402_4896_ace1b1 crossref_primary_10_1002_solr_201700049 crossref_primary_10_1080_09205071_2024_2394434 crossref_primary_10_1016_j_rinp_2021_103986 crossref_primary_10_1039_D2CP01626E crossref_primary_10_1021_acsami_3c17546 crossref_primary_10_1016_j_physleta_2024_130102 crossref_primary_10_1364_AO_384027 crossref_primary_10_1016_j_optmat_2024_115776 crossref_primary_10_1007_s11468_019_00916_x crossref_primary_10_1515_nanoph_2017_0130 crossref_primary_10_1088_1361_6463_ab5d41 crossref_primary_10_1364_AO_56_004201 crossref_primary_10_1016_j_optcom_2023_129600 crossref_primary_10_1016_j_renene_2022_04_040 crossref_primary_10_3390_nano12193477 crossref_primary_10_1007_s11468_023_01806_z crossref_primary_10_1039_D3TC00578J crossref_primary_10_1088_1361_6463_abf579 crossref_primary_10_1109_MNANO_2019_2916113 crossref_primary_10_1364_AO_451285 crossref_primary_10_1016_j_mssp_2022_106682 crossref_primary_10_1364_PRJ_386655 crossref_primary_10_1364_JOSAB_425856 crossref_primary_10_1002_smll_202405140 crossref_primary_10_1109_JLT_2022_3193658 crossref_primary_10_1016_j_rinp_2021_104146 crossref_primary_10_1007_s11431_021_1982_y crossref_primary_10_1088_1361_6463_ad32a7 crossref_primary_10_1038_s41598_018_36540_8 crossref_primary_10_1364_OE_26_020695 crossref_primary_10_3390_nano12152537 crossref_primary_10_1039_D3CP05333D crossref_primary_10_1021_acsphotonics_3c01013 crossref_primary_10_1080_00150193_2022_2076444 crossref_primary_10_1364_OE_27_038029 crossref_primary_10_1016_j_solmat_2018_09_003 crossref_primary_10_1016_j_physb_2021_413030 crossref_primary_10_1016_j_optmat_2019_109581 crossref_primary_10_1364_OE_474970 crossref_primary_10_1364_OE_496764 crossref_primary_10_1088_1361_6633_aa8732 crossref_primary_10_1016_j_apsusc_2021_149142 crossref_primary_10_3390_mi14050985 crossref_primary_10_1038_s41598_020_75931_8 crossref_primary_10_34133_2022_9861078 crossref_primary_10_1039_D0CP01943G crossref_primary_10_1088_1402_4896_acd3bc crossref_primary_10_1088_1402_4896_ad16ca crossref_primary_10_1109_LPT_2024_3423798 crossref_primary_10_1038_s41598_021_98077_7 crossref_primary_10_1088_2053_1591_abba9e crossref_primary_10_1039_C9NR07602F crossref_primary_10_1088_1361_6463_abccf0 crossref_primary_10_1002_adom_202301304 crossref_primary_10_1088_1361_6463_ad8501 crossref_primary_10_1364_OE_401992 crossref_primary_10_1515_nanoph_2022_0686 crossref_primary_10_1007_s12034_024_03182_8 crossref_primary_10_1002_adom_201901203 crossref_primary_10_1364_OE_26_011728 crossref_primary_10_1016_j_optcom_2019_04_080 crossref_primary_10_1364_JOSAB_426441 crossref_primary_10_1117_1_JNP_13_036012 crossref_primary_10_1515_nanoph_2018_0217 crossref_primary_10_1021_acsphotonics_7b01439 crossref_primary_10_1088_2053_1591_ab5129 crossref_primary_10_1038_s41598_017_04964_3 crossref_primary_10_1088_2040_8986_ac15e8 crossref_primary_10_3390_mi14020340 crossref_primary_10_1016_j_ijleo_2021_167855 crossref_primary_10_1016_j_matlet_2023_135518 crossref_primary_10_3390_mi11040409 crossref_primary_10_1038_s41598_017_15312_w crossref_primary_10_3390_coatings14070799 crossref_primary_10_1038_s41598_019_46464_6 crossref_primary_10_1088_1361_6463_aa81af crossref_primary_10_1364_OE_439767 crossref_primary_10_1515_nanoph_2020_0111 crossref_primary_10_1016_j_optlastec_2024_111546 crossref_primary_10_1038_s41598_018_27397_y crossref_primary_10_3390_ma16062286 crossref_primary_10_1364_OE_26_027089 crossref_primary_10_1364_OE_27_011809 crossref_primary_10_1364_AO_398609 crossref_primary_10_1002_adts_202400839 crossref_primary_10_1007_s11082_023_05227_4 crossref_primary_10_1016_j_optmat_2020_110023 crossref_primary_10_1364_OL_44_000963 crossref_primary_10_1364_OL_45_000686 crossref_primary_10_1063_5_0023151 crossref_primary_10_1007_s11468_021_01563_x crossref_primary_10_1016_j_optmat_2020_109712 crossref_primary_10_7498_aps_67_20172716 crossref_primary_10_1364_OL_43_002981 crossref_primary_10_1007_s11468_025_02848_1 crossref_primary_10_1016_j_solener_2024_112957 crossref_primary_10_1364_OE_451411 crossref_primary_10_3390_mi13081239 crossref_primary_10_3390_mi14030659 crossref_primary_10_3390_nano11102709 crossref_primary_10_1016_j_cap_2021_08_001 crossref_primary_10_1021_acsphotonics_8b00781 crossref_primary_10_1039_C8NH00286J crossref_primary_10_1088_1361_6439_abc31f crossref_primary_10_1142_S0217979219503648 crossref_primary_10_1515_nanoph_2023_0021 crossref_primary_10_1088_1674_1056_ac2d1d crossref_primary_10_1016_j_rinp_2022_105470 crossref_primary_10_1364_OE_439546 crossref_primary_10_3390_ma12213568 crossref_primary_10_1039_D0TC01990A crossref_primary_10_1080_02678292_2019_1618935 crossref_primary_10_1016_j_mtsust_2024_100877 crossref_primary_10_1016_j_optcom_2019_124948 crossref_primary_10_1246_bcsj_20220163 crossref_primary_10_1016_j_apmt_2021_101266 crossref_primary_10_1039_C7NR04186A crossref_primary_10_1109_JPHOT_2019_2910806 crossref_primary_10_1364_PRJ_7_000734 crossref_primary_10_2200_S01133ED1V01Y202109EMA004 crossref_primary_10_1117_1_OE_58_11_115103 crossref_primary_10_1364_JOSAB_427975 crossref_primary_10_1364_OE_383666 crossref_primary_10_1021_acsphotonics_8b00872 crossref_primary_10_1021_acsphotonics_9b00889 crossref_primary_10_1364_OE_27_005280 crossref_primary_10_1088_1361_6528_ab109d crossref_primary_10_1049_iet_opt_2018_5045 crossref_primary_10_1088_1402_4896_acc4f4 crossref_primary_10_1007_s11468_023_02137_9 crossref_primary_10_1364_JOSAB_36_00F131 crossref_primary_10_1364_OE_403559 crossref_primary_10_1002_cnma_202100060 crossref_primary_10_1515_nanoph_2022_0073 crossref_primary_10_1088_1361_6528_abd275 crossref_primary_10_1021_acs_nanolett_2c00322 crossref_primary_10_1088_1555_6611_ace70f crossref_primary_10_1016_j_ijleo_2021_166959 crossref_primary_10_1007_s11468_020_01288_3 crossref_primary_10_7567_1882_0786_ab24af crossref_primary_10_1002_adom_202202011 crossref_primary_10_1364_JOSAB_410656 crossref_primary_10_3390_nano13040766 crossref_primary_10_1021_acsphotonics_9b00636 crossref_primary_10_1364_JOSAB_34_000D86 crossref_primary_10_1016_j_ijleo_2021_167249 crossref_primary_10_1109_JLT_2024_3373250 crossref_primary_10_1007_s12596_021_00760_5 crossref_primary_10_1364_OE_430068 crossref_primary_10_32604_jrm_2022_022283 crossref_primary_10_1002_adom_201801660 crossref_primary_10_1364_OE_26_020174 crossref_primary_10_1142_S0217984921502912 crossref_primary_10_1016_j_optmat_2023_114143 crossref_primary_10_1007_s11468_018_0766_7 crossref_primary_10_1063_5_0136552 crossref_primary_10_1364_OE_447885 crossref_primary_10_1016_j_vacuum_2023_112536 crossref_primary_10_1364_AO_57_001757 crossref_primary_10_1007_s11468_019_00976_z crossref_primary_10_1364_OE_26_033253 crossref_primary_10_1088_1402_4896_acdb5b crossref_primary_10_1364_JOSAB_36_000153 crossref_primary_10_1364_OE_414961 crossref_primary_10_1364_AO_58_004467 crossref_primary_10_1142_S0217979219500565 crossref_primary_10_1016_j_optmat_2021_111029 crossref_primary_10_1007_s11468_020_01260_1 crossref_primary_10_2184_lsj_47_7_361 crossref_primary_10_1109_ACCESS_2021_3089895 crossref_primary_10_1364_OE_446655 crossref_primary_10_1109_JSEN_2023_3346441 crossref_primary_10_1007_s11082_023_04681_4 crossref_primary_10_1016_j_solener_2022_11_003 crossref_primary_10_1002_adpr_202100291 crossref_primary_10_1039_D4TC04229H crossref_primary_10_1021_acs_jpcc_1c08325 crossref_primary_10_1080_15567265_2018_1434844 crossref_primary_10_1186_s11671_020_03471_1 crossref_primary_10_1016_j_cap_2019_11_024 crossref_primary_10_1364_OE_476527 crossref_primary_10_1364_PRJ_527945 crossref_primary_10_1039_D4TC02504K crossref_primary_10_1007_s11082_022_03753_1 crossref_primary_10_1364_AO_405135 crossref_primary_10_3389_fspas_2024_1374951 crossref_primary_10_1364_OE_491334 crossref_primary_10_1364_OE_382776 crossref_primary_10_1021_acsaem_4c02914 crossref_primary_10_1109_JQE_2021_3064289 crossref_primary_10_1109_JPHOT_2022_3184964 crossref_primary_10_1016_j_optlastec_2024_111490 crossref_primary_10_1088_2053_1591_acaf4c crossref_primary_10_1016_j_optmat_2018_06_008 crossref_primary_10_1088_2399_1984_aba10a crossref_primary_10_1038_s41598_022_04772_4 crossref_primary_10_1016_j_physleta_2020_126288 crossref_primary_10_1063_1_4997458 crossref_primary_10_1002_adom_201701204 crossref_primary_10_1007_s11468_023_02025_2 crossref_primary_10_1088_1361_6528_abad60 crossref_primary_10_3390_nano13010091 crossref_primary_10_1016_j_optmat_2022_112793 crossref_primary_10_1007_s40998_023_00594_w crossref_primary_10_1063_1_4977860 crossref_primary_10_1364_OL_404423 crossref_primary_10_3390_mi11010058 crossref_primary_10_1007_s11468_020_01244_1 crossref_primary_10_1016_j_jpowsour_2023_233281 crossref_primary_10_1364_JOSAB_469674 crossref_primary_10_1021_acs_jpcc_9b00434 crossref_primary_10_3390_mi11121032 crossref_primary_10_1103_PhysRevA_106_053523 crossref_primary_10_1002_adfm_202213818 crossref_primary_10_1002_adom_201901502 crossref_primary_10_1016_j_rinp_2021_104466 crossref_primary_10_1088_1361_6528_ac988e crossref_primary_10_1364_OE_25_027624 |
Cites_doi | 10.1002/lpor.201400026 10.1038/ncomms1528 10.1364/OE.20.013311 10.1002/lpor.201400157 10.1063/1.3442904 10.1103/PhysRevB.85.045434 10.1038/nmat3013 10.1063/1.3599551 10.1126/science.1125907 10.1038/srep08901 10.2528/PIER14040306 10.1126/science.1058847 10.1103/PhysRevLett.100.207402 10.1088/1367-2630/15/7/073007 10.1038/nature11615 10.1364/OE.21.020873 10.1364/OL.37.000154 10.1126/science.1232009 10.1038/nmat3839 10.1021/nl204118h 10.1063/1.4890521 10.1038/ncomms1976 10.1063/1.3692178 10.1038/nmat3151 10.1021/nn504708t 10.1364/AO.37.005271 10.1103/PhysRevLett.85.3966 10.1103/PhysRevLett.104.207403 10.1063/1.4929151 10.1063/1.3672002 10.1021/nl9041033 10.1364/JOSAB.27.000498 |
ContentType | Journal Article |
Copyright | The Author(s) 2016 Copyright Nature Publishing Group Dec 2016 Copyright © 2016, The Author(s) 2016 The Author(s) |
Copyright_xml | – notice: The Author(s) 2016 – notice: Copyright Nature Publishing Group Dec 2016 – notice: Copyright © 2016, The Author(s) 2016 The Author(s) |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTPV AOWAS D8V |
DOI | 10.1038/srep39445 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | oai_DiVA_org_kth_199736 PMC5175172 28000718 10_1038_srep39445 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO Q9U 7X8 5PM ADTPV AOWAS D8V IPNFZ RIG |
ID | FETCH-LOGICAL-c542t-70f478ab23d91ab97866e5f93f4db2173c36701d48ebe1be06077f3229b180a3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Tue Sep 09 23:42:28 EDT 2025 Thu Aug 21 13:59:52 EDT 2025 Fri Sep 05 09:23:55 EDT 2025 Mon Sep 08 08:14:07 EDT 2025 Thu Apr 03 07:08:10 EDT 2025 Thu Apr 24 23:09:42 EDT 2025 Tue Jul 01 04:02:26 EDT 2025 Fri Feb 21 02:39:33 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c542t-70f478ab23d91ab97866e5f93f4db2173c36701d48ebe1be06077f3229b180a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/srep39445 |
PMID | 28000718 |
PQID | 1899433208 |
PQPubID | 2041939 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_199736 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5175172 proquest_miscellaneous_1851295591 proquest_journals_1899433208 pubmed_primary_28000718 crossref_citationtrail_10_1038_srep39445 crossref_primary_10_1038_srep39445 springer_journals_10_1038_srep39445 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-21 |
PublicationDateYYYYMMDD | 2016-12-21 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2016 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ding (CR27) 2014; 8 Chen, Dai, Yan, Qiu (CR14) 2013; 21 Ye, Jin, He (CR17) 2010; 27 Pendry, Schurig, Smith (CR8) 2006; 312 Tittl (CR30) 2014; 8 Landy, Sajuyigbe, Mock, Smith, Padilla (CR11) 2008; 100 CR34 Yu, Capasso (CR10) 2014; 13 Shelby, Smith, Schultz (CR7) 2001; 292 Cui (CR19) 2011; 99 He, Ding, Mo, Bao (CR28) 2014; 147 Xu, Chen, Gartia, Jiang, Liu (CR3) 2011; 98 Hao (CR16) 2010; 96 Cui (CR5) 2014; 8 Cui (CR25) 2012; 12 Kraemer (CR1) 2011; 10 Yin (CR31) 2015; 107 Moreau (CR15) 2012; 492 Ding, Cui, Ge, Jin, He (CR26) 2012; 100 Linic, Christopher, Ingram (CR2) 2011; 10 Zhu (CR22) 2014; 105 Gramotnev, Pors, Willatzen, Bozhevolnyi (CR29) 2012; 85 Kildishev, Boltasseva, Shalaev (CR9) 2013; 339 Liu, Starr, Starr, Padilla (CR12) 2010; 104 Liu, Mesch, Weiss, Hentschel, Giessen (CR13) 2010; 10 Rakic, Djurisic, Elazar, Majewski (CR33) 1998; 37 Zang (CR32) 2015; 5 Jonas (CR24) 2013; 15 Watts, Liu, Padilla (CR4) 2012; 24 Nielsen, Pors, Albrektsen, Bozhevolnyi (CR21) 2012; 20 Pendry (CR6) 2000; 85 Søndergaard (CR23) 2012; 3 Aydin, Ferry, Briggs, Atwater (CR18) 2011; 2 Huang (CR20) 2012; 37 Y Cui (BFsrep39445_CR5) 2014; 8 B Jonas (BFsrep39445_CR24) 2013; 15 J Zhu (BFsrep39445_CR22) 2014; 105 L Huang (BFsrep39445_CR20) 2012; 37 JB Pendry (BFsrep39445_CR6) 2000; 85 A Moreau (BFsrep39445_CR15) 2012; 492 S He (BFsrep39445_CR28) 2014; 147 S Yin (BFsrep39445_CR31) 2015; 107 DK Gramotnev (BFsrep39445_CR29) 2012; 85 X Liu (BFsrep39445_CR12) 2010; 104 N Liu (BFsrep39445_CR13) 2010; 10 YQ Ye (BFsrep39445_CR17) 2010; 27 X Zang (BFsrep39445_CR32) 2015; 5 S Linic (BFsrep39445_CR2) 2011; 10 K Aydin (BFsrep39445_CR18) 2011; 2 Y Cui (BFsrep39445_CR19) 2011; 99 J Hao (BFsrep39445_CR16) 2010; 96 Y Chen (BFsrep39445_CR14) 2013; 21 AV Kildishev (BFsrep39445_CR9) 2013; 339 F Ding (BFsrep39445_CR27) 2014; 8 F Ding (BFsrep39445_CR26) 2012; 100 CM Watts (BFsrep39445_CR4) 2012; 24 BFsrep39445_CR34 AD Rakic (BFsrep39445_CR33) 1998; 37 A Tittl (BFsrep39445_CR30) 2014; 8 MG Nielsen (BFsrep39445_CR21) 2012; 20 Y Cui (BFsrep39445_CR25) 2012; 12 N Yu (BFsrep39445_CR10) 2014; 13 T Søndergaard (BFsrep39445_CR23) 2012; 3 D Kraemer (BFsrep39445_CR1) 2011; 10 NI Landy (BFsrep39445_CR11) 2008; 100 JB Pendry (BFsrep39445_CR8) 2006; 312 RA Shelby (BFsrep39445_CR7) 2001; 292 Z Xu (BFsrep39445_CR3) 2011; 98 22714359 - Opt Express. 2012 Jun 4;20(12):13311-9 11041972 - Phys Rev Lett. 2000 Oct 30;85(18):3966-9 25754618 - Sci Rep. 2015 Mar 10;5:8901 22109608 - Nat Mater. 2011 Nov 23;10(12):911-21 22627995 - Adv Mater. 2012 Jun 19;24(23):OP98-120, OP181 18286006 - Appl Opt. 1998 Aug 1;37(22):5271-83 16728597 - Science. 2006 Jun 23;312(5781):1780-2 21532584 - Nat Mater. 2011 May 01;10(7):532-8 25251075 - ACS Nano. 2014 Oct 28;8(10):10885-92 20867064 - Phys Rev Lett. 2010 May 21;104(20):207403 22044996 - Nat Commun. 2011 Nov 01;2:517 23493714 - Science. 2013 Mar 15;339(6125):1232009 11292865 - Science. 2001 Apr 6;292(5514):77-9 18518577 - Phys Rev Lett. 2008 May 23;100(20):207402 24452357 - Nat Mater. 2014 Feb;13(2):139-50 22828629 - Nat Commun. 2012 Jul 24;3:969 22854451 - Opt Lett. 2012 Jan 15;37(2):154-6 24103960 - Opt Express. 2013 Sep 9;21(18):20873-9 20560590 - Nano Lett. 2010 Jul 14;10(7):2342-8 22309161 - Nano Lett. 2012 Mar 14;12(3):1443-7 23222613 - Nature. 2012 Dec 6;492(7427):86-9 |
References_xml | – volume: 8 start-page: 495 year: 2014 end-page: 520 ident: CR5 article-title: Plasmonic and metamaterial structures as electromagnetic absorbers publication-title: Laser Photonics Rev doi: 10.1002/lpor.201400026 – volume: 2 start-page: 517 year: 2011 ident: CR18 article-title: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers publication-title: Nat. Commun. doi: 10.1038/ncomms1528 – volume: 20 start-page: 13311 year: 2012 ident: CR21 article-title: Efficient absorption of visible radiation by gap plasmon resonators publication-title: Opt. Express doi: 10.1364/OE.20.013311 – volume: 8 start-page: 946 year: 2014 end-page: 953 ident: CR27 article-title: Ultrabroadband strong light absorption based on thin multilayered metamaterials publication-title: Laser Photonics Rev doi: 10.1002/lpor.201400157 – volume: 96 start-page: 251104 year: 2010 end-page: 251103 ident: CR16 article-title: High performance optical absorber based on a plasmonic metamaterial publication-title: Appl. Phys. Lett. doi: 10.1063/1.3442904 – volume: 85 start-page: 045434 year: 2012 ident: CR29 article-title: Gap-plasmon nanoantennas and bowtie resonators publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.045434 – volume: 10 start-page: 532 year: 2011 end-page: 538 ident: CR1 article-title: High-performance flat-panel solar thermoelectric generators with high thermal concentration publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 98 start-page: 241904 year: 2011 ident: CR3 article-title: Surface plasmon enhanced broadband spectrophotometry on black silver substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.3599551 – volume: 312 start-page: 1780 year: 2006 end-page: 1782 ident: CR8 article-title: Controlling electromagnetic fields publication-title: Science doi: 10.1126/science.1125907 – volume: 5 start-page: 8901 year: 2015 ident: CR32 article-title: Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings publication-title: Sci. Rep doi: 10.1038/srep08901 – volume: 147 start-page: 69 year: 2014 end-page: 79 ident: CR28 article-title: Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films publication-title: Prog. Electromagnetics Res doi: 10.2528/PIER14040306 – volume: 292 start-page: 77 year: 2001 end-page: 79 ident: CR7 article-title: Experimental Verification of a Negative Index of Refraction publication-title: Science doi: 10.1126/science.1058847 – volume: 100 start-page: 207402 year: 2008 ident: CR11 article-title: Perfect Metamaterial Absorber publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 24 start-page: OP98 year: 2012 end-page: OP120 ident: CR4 article-title: Metamaterial Electromagnetic Wave Absorbers publication-title: Adv. Mater. – volume: 15 start-page: 073007 year: 2013 ident: CR24 article-title: Plasmonic black metals by broadband light absorption in ultra-sharp convex grooves publication-title: New J. Phys. doi: 10.1088/1367-2630/15/7/073007 – volume: 492 start-page: 86 year: 2012 end-page: 89 ident: CR15 article-title: Controlled-reflectance surfaces with film-coupled colloidal nanoantennas publication-title: Nature doi: 10.1038/nature11615 – volume: 21 start-page: 20873 year: 2013 ident: CR14 article-title: Honeycomb-lattice plasmonic absorbers at NIR: anomalous high-order resonance publication-title: Opt. Express doi: 10.1364/OE.21.020873 – volume: 37 start-page: 154 year: 2012 ident: CR20 article-title: Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band publication-title: Opt. Lett. doi: 10.1364/OL.37.000154 – volume: 339 start-page: 1232009 year: 2013 ident: CR9 article-title: Planar Photonics with Metasurfaces publication-title: Science doi: 10.1126/science.1232009 – volume: 13 start-page: 139 year: 2014 end-page: 150 ident: CR10 article-title: Flat optics with designer metasurfaces publication-title: Nat. Mater. doi: 10.1038/nmat3839 – volume: 12 start-page: 1443 year: 2012 ident: CR25 article-title: Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab publication-title: Nano Lett. doi: 10.1021/nl204118h – volume: 27 start-page: 498 year: 2010 end-page: 504 ident: CR17 article-title: Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime publication-title: J. Opt. Soc. Am. B – volume: 105 start-page: 021102 year: 2014 ident: CR22 article-title: Ultra-broadband terahertz metamaterial absorber publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890521 – volume: 3 start-page: 969 year: 2012 ident: CR23 article-title: Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves publication-title: Nat. Commun. doi: 10.1038/ncomms1976 – volume: 100 start-page: 103506 year: 2012 ident: CR26 article-title: Ultra-broadband microwave metamaterial absorber publication-title: Appl. Phys. Lett. doi: 10.1063/1.3692178 – volume: 10 start-page: 911 year: 2011 end-page: 921 ident: CR2 article-title: Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy publication-title: Nat. Mater. doi: 10.1038/nmat3151 – volume: 8 start-page: 10885 year: 2014 end-page: 10892 ident: CR30 article-title: Quantitative Angle-Resolved Small-Spot Reflectance Measurements on Plasmonic Perfect Absorbers: Impedance Matching and Disorder Effects publication-title: ACS Nano doi: 10.1021/nn504708t – volume: 37 start-page: 5271 year: 1998 end-page: 5283 ident: CR33 article-title: Optical properties of metallic Films for vertical-cavity optoelectronic devices publication-title: Appl. Opt. doi: 10.1364/AO.37.005271 – ident: CR34 – volume: 85 start-page: 3966 year: 2000 end-page: 3969 ident: CR6 article-title: Negative Refraction Makes a Perfect Lens publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 104 start-page: 207403 year: 2010 ident: CR12 article-title: Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.207403 – volume: 107 start-page: 073903 year: 2015 ident: CR31 article-title: High-performance terahertz wave absorbers made of silicon-based metamaterials publication-title: Appl. Phys. Lett. doi: 10.1063/1.4929151 – volume: 99 start-page: 253101 year: 2011 ident: CR19 article-title: A thin film broadband absorber based on multi-sized nanoantennas publication-title: Appl. Phys. Lett. doi: 10.1063/1.3672002 – volume: 10 start-page: 2342 year: 2010 end-page: 2348 ident: CR13 article-title: Infrared Perfect Absorber and Its Application as Plasmonic Sensor publication-title: Nano Lett. doi: 10.1021/nl9041033 – volume: 100 start-page: 207402 year: 2008 ident: BFsrep39445_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 107 start-page: 073903 year: 2015 ident: BFsrep39445_CR31 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4929151 – volume: 13 start-page: 139 year: 2014 ident: BFsrep39445_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat3839 – volume: 27 start-page: 498 year: 2010 ident: BFsrep39445_CR17 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.27.000498 – volume: 8 start-page: 946 year: 2014 ident: BFsrep39445_CR27 publication-title: Laser Photonics Rev doi: 10.1002/lpor.201400157 – volume: 85 start-page: 3966 year: 2000 ident: BFsrep39445_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.3966 – volume: 21 start-page: 20873 year: 2013 ident: BFsrep39445_CR14 publication-title: Opt. Express doi: 10.1364/OE.21.020873 – volume: 99 start-page: 253101 year: 2011 ident: BFsrep39445_CR19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3672002 – volume: 12 start-page: 1443 year: 2012 ident: BFsrep39445_CR25 publication-title: Nano Lett. doi: 10.1021/nl204118h – volume: 85 start-page: 045434 year: 2012 ident: BFsrep39445_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.85.045434 – volume: 96 start-page: 251104 year: 2010 ident: BFsrep39445_CR16 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3442904 – volume: 2 start-page: 517 year: 2011 ident: BFsrep39445_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms1528 – volume: 5 start-page: 8901 year: 2015 ident: BFsrep39445_CR32 publication-title: Sci. Rep doi: 10.1038/srep08901 – volume: 98 start-page: 241904 year: 2011 ident: BFsrep39445_CR3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3599551 – volume: 24 start-page: OP98 year: 2012 ident: BFsrep39445_CR4 publication-title: Adv. Mater. – volume: 37 start-page: 154 year: 2012 ident: BFsrep39445_CR20 publication-title: Opt. Lett. doi: 10.1364/OL.37.000154 – ident: BFsrep39445_CR34 – volume: 292 start-page: 77 year: 2001 ident: BFsrep39445_CR7 publication-title: Science doi: 10.1126/science.1058847 – volume: 147 start-page: 69 year: 2014 ident: BFsrep39445_CR28 publication-title: Prog. Electromagnetics Res doi: 10.2528/PIER14040306 – volume: 492 start-page: 86 year: 2012 ident: BFsrep39445_CR15 publication-title: Nature doi: 10.1038/nature11615 – volume: 8 start-page: 10885 year: 2014 ident: BFsrep39445_CR30 publication-title: ACS Nano doi: 10.1021/nn504708t – volume: 3 start-page: 969 year: 2012 ident: BFsrep39445_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms1976 – volume: 37 start-page: 5271 year: 1998 ident: BFsrep39445_CR33 publication-title: Appl. Opt. doi: 10.1364/AO.37.005271 – volume: 339 start-page: 1232009 year: 2013 ident: BFsrep39445_CR9 publication-title: Science doi: 10.1126/science.1232009 – volume: 105 start-page: 021102 year: 2014 ident: BFsrep39445_CR22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4890521 – volume: 20 start-page: 13311 year: 2012 ident: BFsrep39445_CR21 publication-title: Opt. Express doi: 10.1364/OE.20.013311 – volume: 10 start-page: 2342 year: 2010 ident: BFsrep39445_CR13 publication-title: Nano Lett. doi: 10.1021/nl9041033 – volume: 100 start-page: 103506 year: 2012 ident: BFsrep39445_CR26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3692178 – volume: 10 start-page: 532 year: 2011 ident: BFsrep39445_CR1 publication-title: Nat. Mater. doi: 10.1038/nmat3013 – volume: 15 start-page: 073007 year: 2013 ident: BFsrep39445_CR24 publication-title: New J. Phys. doi: 10.1088/1367-2630/15/7/073007 – volume: 104 start-page: 207403 year: 2010 ident: BFsrep39445_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.207403 – volume: 10 start-page: 911 year: 2011 ident: BFsrep39445_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat3151 – volume: 8 start-page: 495 year: 2014 ident: BFsrep39445_CR5 publication-title: Laser Photonics Rev doi: 10.1002/lpor.201400026 – volume: 312 start-page: 1780 year: 2006 ident: BFsrep39445_CR8 publication-title: Science doi: 10.1126/science.1125907 – reference: 23493714 - Science. 2013 Mar 15;339(6125):1232009 – reference: 22109608 - Nat Mater. 2011 Nov 23;10(12):911-21 – reference: 11292865 - Science. 2001 Apr 6;292(5514):77-9 – reference: 23222613 - Nature. 2012 Dec 6;492(7427):86-9 – reference: 25251075 - ACS Nano. 2014 Oct 28;8(10):10885-92 – reference: 25754618 - Sci Rep. 2015 Mar 10;5:8901 – reference: 22309161 - Nano Lett. 2012 Mar 14;12(3):1443-7 – reference: 21532584 - Nat Mater. 2011 May 01;10(7):532-8 – reference: 24452357 - Nat Mater. 2014 Feb;13(2):139-50 – reference: 22627995 - Adv Mater. 2012 Jun 19;24(23):OP98-120, OP181 – reference: 20560590 - Nano Lett. 2010 Jul 14;10(7):2342-8 – reference: 20867064 - Phys Rev Lett. 2010 May 21;104(20):207403 – reference: 11041972 - Phys Rev Lett. 2000 Oct 30;85(18):3966-9 – reference: 22828629 - Nat Commun. 2012 Jul 24;3:969 – reference: 22854451 - Opt Lett. 2012 Jan 15;37(2):154-6 – reference: 16728597 - Science. 2006 Jun 23;312(5781):1780-2 – reference: 18518577 - Phys Rev Lett. 2008 May 23;100(20):207402 – reference: 22044996 - Nat Commun. 2011 Nov 01;2:517 – reference: 22714359 - Opt Express. 2012 Jun 4;20(12):13311-9 – reference: 24103960 - Opt Express. 2013 Sep 9;21(18):20873-9 – reference: 18286006 - Appl Opt. 1998 Aug 1;37(22):5271-83 |
SSID | ssj0000529419 |
Score | 2.6188228 |
Snippet | Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc.... |
SourceID | swepub pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 39445 |
SubjectTerms | 142/126 639/624/399/1015 639/766/1130/2799 639/925/927/1021 Absorption Bandwidths Dielectric properties Heavy metals Humanities and Social Sciences I.R. radiation Light Magnetic fields multidisciplinary Polarization Radiation Resonance Science Silica Silicon Silicon dioxide Simulation Spectrum allocation Spectrum analysis Thin films Titanium Wavelengths |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4oD6Api0oUIS4WLUTJ3EOCLXQqkLtCqGCeovs2GlXDcl2Nz0sv56x84BlK86e2I5nbH_jsb8BeCtCYxA25EQVWhOOLjOxHCxEaixQIjHURXQvxvHZd_7lKrpag3H_FsZeq-zXRLdQ6zq3Z-SHDB0Dy7VFxcfpHbFZo2x0tU-hIbvUCvqDoxh7BOu4JEd0BOvHJ-Ov34ZTFxvX4iztKYZCcYgb0dQ-Do2WN6YVtLl6aXKInP7DMup2ptMNeNpBSv-otYFNWDPVFjxuk0wutuEcPW2play0X6FZEzSpmb117v80jUS86kzQl2pezxRiQR8tsZz8wiZ9S2VcLvwSu7tw0uX8GVyenlx-OiNdDgWSRzxoSEILngipglCnTCr0GePYREUaFlwrdEfC3DK4Mc0FapMpQ2OaJAXO8lQxQWX4HEZVXZkd8NH1oTKmHP0VxTXLRRQUVAmsRpsoT6UH7_vxy_KOX9ymuSgzF-cORTYMtQdvBtFpS6rxkNB-r4Ssm1fz7I8VePB6KMYZYcMcsjL1vZWxIAY9JebBi1ZnQyuBcKAKv06WtDkIWLbt5ZJqcuNYtyMEWoj2PDjo9f5Xt1Y7_641iaWKP09-HGX17Dq7bW4ye8MnjHf__5d78AQRmsuUFLB9GDWze_MSUVCjXnWm_RvcAQub priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB5BERIXtMszwK7CQ4hLhJ04iXOsdhehCrjwELfIjh2oCClqw6H8esbOA0r3wNnjhzxj-5vM5BuAIx5ojbAh82SulMfQZfYMB4snFDZIHmtiI7qXV9H5LRvch_cNWfSkSausKS3tNd1mh53ie_Fi_uEMF2GJx3jr9mCp3x9cD7oPKiZkxWjSsgcF_KPP7JszByTn8yG7oOgXAlH76Jz9gNUGLbr9en0_YUGXa7Bc14-crsMFOtFCSVEqt0SL9dBaxiah3H3WlUAoaq3LFXIyGkuEeS4aWTF8wyldw1JcTN0Clzu10sVkA27O_t38Ofea8gheFjK_8mKSs5gL6QcqoUKiOxhFOsyTIGdKoqcRZIacjSrGUVFUahKROM7xACeSciKCTeiVo1Jvg4teDRERYeiKSKZoxkM_J5LjMEqHWSIcOGn3L80a6nBTwaJIbQg74Gm31Q4cdKIvNV_G_4T2WiWkzZGZpBQ9P0OmRrgD-10zGruJYIhSj16NjMEn6ARRB7ZqnXWz-NziJewdz2izEzBE2rMt5fDREmqHiKEQyDlw2Or907LmF39cm8TMwH-Hd_10NH5In6rH1CTvBNHOt4bbhRXEYLYWkk_3oFeNX_UvxDmV_N1Y-DsSVAFt priority: 102 providerName: Springer Nature |
Title | Broadband near-infrared metamaterial absorbers utilizing highly lossy metals |
URI | https://link.springer.com/article/10.1038/srep39445 https://www.ncbi.nlm.nih.gov/pubmed/28000718 https://www.proquest.com/docview/1899433208 https://www.proquest.com/docview/1851295591 https://pubmed.ncbi.nlm.nih.gov/PMC5175172 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199736 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB31Q0hcELRAU8oqBYS4mDqJkzgHhLbbVtWqVAhatLfIjp12RZot2VRi-fWMnQ912R44RYonieMZy-9lnDcA73igNcKGjMhcKcKQMhOjwUKEwgbJY01tRvfLeXR6ycaTcLIGXY3NdgDnD1I7U0_qsio-_v61-IwT_lPzyzg_wLXk1vzfGa7Dpk0TmR18LcpvJL79hNkSH0Z7nSCG8DuNoftXL69MK3Bzdddknzr9R2bULk0nT-FJiyndYRMEz2BNl1vwqKkyudiGM6TaQklRKrfEuCb4lpXZdu7e6FogYLUx6Ao5n1USwaCLoVhM_-AjXaNlXCzcAru7sNbF_DlcnBxfjE5JW0SBZCHzaxLTnMVcSD9QiSckksYo0mGeBDlTEvlIkBkJN08xju70pKYRjeMchyiRHqcieAEb5azUO-Ai96EiogwJi2TKy3jo51RyvI3SYZYIBz5045dmrcC4qXNRpDbRHfC0H2oH3vSmt42qxkNGe50T0i4uUg_5oZFco9yB_b4Zp4TJc4hSz-6MjUExSJU8B142Puuf4nOLqvDqeMmbvYGR215uKafXVnY7RKSFcM-Bt53f73VrtfPvm5BYuvHR9McwnVVX6c_6OjVbfIJo9z9e4xU8Rpxm6yX53h5s1NWdfo1YqJYDWI8n8QA2h8Px9zEeD4_Pv37Ds6NoNLDfFwZ2LvwFtVEQ1w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIkQvFd9NKRA-xcVqnDiJc0CoolRbuu1pQXuz7NhpVw3JspsKLf-J_8jY2QSWRdx69sRxPM_xm4zzBuAVj4xB2pATVWhNGIbMxGqwEKmxQfHUBC6je3qWDD6zT-N4vAE_u39h7LHK7p3oXtS6zu038n2KgYHV2gr4--k3YqtG2exqV0KjhcWJWXzHkG3-7vgQ_fs6DI8-jj4MyLKqAMljFjYkDQqWcqnCSGdUKoyiksTERRYVTCsk6FFuNc2oZhyfjyoTJEGaFoj7TFEeyAi7vQE3mc0w4vJJx2n_SccmzRjNOv2iiO_jLje1f57Gq7veGpVdP5HZp2X_kjB1297RHdhe8lX_oAXYXdgw1T241VawXNyHIYbxUitZab_CySGI15k90u5_NY1EMuzw7Us1r2cKiaaPMC8nP_CWvtVJLhd-icNdOOty_gBG1zGVD2GzqiuzAz7GVYFMAobBkGKa5jwOi0Bx7EabOM-kB2-7-RP5Urzc1tAohUuiR1z0U-3Bi9502ip2_Mtor3OCWC7aufgNMQ-e98243GwORVamvrI2liFhGEY9eNT6rL9LyB1jw6vTFW_2BlbKe7Wlmlw4Se8YWRxSSQ9edn7_Y1jrg3_TQmKl48PJlwNRz87FZXMh7PGhKNn9_1M-g9uD0elQDI_PTh7DFlJBV5IppHuw2cyuzBOkW4166kDug7jmRfUL0MhALQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAviDeBAuYpLtHm4cTOAaGKZdXSUnEoaG-WHTt01ZAsu6nQ8s_4d4ydByyLuPXsieN4ZuJvMpNvAJ7z2BiEDbmvCq19iiGzbzlYfKlxQHFmApfR_XCc7n-i76fJdAt-9v_C2LLK_p3oXtS6zu038lGIgYHl2gr4qOjKIj6OJ2_m33zbQcpmWvt2Gq2JHJrVdwzflq8PxqjrF1E0eXfydt_vOgz4eUKjxmdBQRmXKop1FkqFEVWamqTI4oJqhWA9zi2_Wagpx2cNlQnSgLECfSBTIQ9kjNNegsssptR2jWBTNnzesQk0GmY9l1HMR3jize1fqMn6CbgBazerM4cU7V90pu4InFyHax12JXutsd2ALVPdhCttN8vVLTjCkF5qJStNKtwcH213YcvbyVfTSATGztaJVMt6oRB0EjT5cvYDb0ksZ3K5IiUud-Wky-VtOLmIrbwD21VdmXtAMMYKZBpQDIwU1WHOk6gIFMdptEnyTHrwqt8_kXdE5rafRilcQj3mYthqD54OovOWveNfQru9EkTnwEvx29w8eDIMo-vZfIqsTH1uZSxawpAs9OBuq7PhLhF36A2vZmvaHAQsrff6SDU7dfTeCSI6hJUePOv1_seyNhf_sjWJtYnHs897ol58EWfNqbClRHF6__9P-RiuojuJo4Pjwwewg6jQdWeKwl3Ybhbn5iEir0Y9cjZOQFywT_0Cbp5EYA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Broadband+near-infrared+metamaterial+absorbers+utilizing+highly+lossy+metals&rft.jtitle=Scientific+reports&rft.au=Ding%2C+Fei&rft.au=Dai%2C+Jin&rft.au=Chen%2C+Yiting&rft.au=Zhu%2C+Jianfei&rft.date=2016-12-21&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=6&rft.spage=39445&rft_id=info:doi/10.1038%2Fsrep39445&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |