A point mutation in LTT1 enhances cold tolerance at the booting stage in rice
The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low‐temperature tol...
Saved in:
Published in | Plant, cell and environment Vol. 43; no. 4; pp. 992 - 1007 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.04.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0140-7791 1365-3040 1365-3040 |
DOI | 10.1111/pce.13717 |
Cover
Abstract | The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low‐temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold‐induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold‐sensitive rice varieties under low‐temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.
Understanding how rice plants respond to the changing environmental temperature is one of the most important biological subjects. By functional analysis of the cold tolerant ltt1 mutant, we demonstrate that acclimation to high endogenous reactive oxygen species level is critical for rice plants to cope with the coming low‐temperature stress. Our results provide a novel strategy for genetic improvement of booting stage cold tolerance in rice. |
---|---|
AbstractList | The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance. The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low‐temperature tolerance 1 ( LTT1 ) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold‐induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold‐sensitive rice varieties under low‐temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance. Understanding how rice plants respond to the changing environmental temperature is one of the most important biological subjects. By functional analysis of the cold tolerant ltt1 mutant, we demonstrate that acclimation to high endogenous reactive oxygen species level is critical for rice plants to cope with the coming low‐temperature stress. Our results provide a novel strategy for genetic improvement of booting stage cold tolerance in rice. The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance.The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low-temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold-induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold-sensitive rice varieties under low-temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance. The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance genes have been identified that can be effectively used in breeding programmes. Here, we show that a point mutation in the low‐temperature tolerance 1 (LTT1) gene improves cold tolerance by maintaining tapetum degradation and pollen development, by activation of systems that metabolize reactive oxygen species (ROS). Cold‐induced ROS accumulation is therefore prevented in the anthers of the ltt1 mutants allowing correct development. In contrast, exposure to cold stress dramatically increases ROS accumulation in the wild type anthers, together with the expression of genes encoding proteins associated with programmed cell death and with the accelerated degradation of the tapetum that ultimately leads to pollen abortion. These results demonstrate that appropriate ROS management is critical for the cold tolerance of rice at the booting stage. Hence, the ltt1 mutation can significantly improve the seed setting ability of cold‐sensitive rice varieties under low‐temperature stress conditions, with little yield penalty under optimal temperature conditions. This study highlights the importance of a valuable genetic resource that may be applied in rice breeding programmes to enhance cold tolerance. Understanding how rice plants respond to the changing environmental temperature is one of the most important biological subjects. By functional analysis of the cold tolerant ltt1 mutant, we demonstrate that acclimation to high endogenous reactive oxygen species level is critical for rice plants to cope with the coming low‐temperature stress. Our results provide a novel strategy for genetic improvement of booting stage cold tolerance in rice. |
Author | Xu, Yufang Wang, Yueming Wang, Ruci Yao, Shanguo Zhang, Li |
AuthorAffiliation | 1 State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China 2 Genome Biology Center University of Chinese Academy of Sciences Beijing China |
AuthorAffiliation_xml | – name: 1 State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design Chinese Academy of Sciences Beijing China – name: 2 Genome Biology Center University of Chinese Academy of Sciences Beijing China |
Author_xml | – sequence: 1 givenname: Yufang orcidid: 0000-0002-3018-0722 surname: Xu fullname: Xu, Yufang organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Ruci surname: Wang fullname: Wang, Ruci organization: Chinese Academy of Sciences – sequence: 3 givenname: Yueming surname: Wang fullname: Wang, Yueming organization: Chinese Academy of Sciences – sequence: 4 givenname: Li surname: Zhang fullname: Zhang, Li organization: University of Chinese Academy of Sciences – sequence: 5 givenname: Shanguo orcidid: 0000-0001-9398-785X surname: Yao fullname: Yao, Shanguo email: sgyao@genetics.ac.cn organization: Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31922260$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1OGzEUha2KqiS0i74AstQNLAb8N_Z4UymKgFYKahfp2vI4nsRoYgfbA-LtcUiKWiTAG8vX3zm6954xOPDBWwC-YnSGyznfGHuGqcDiAxhhyuuKIoYOwAhhhiohJD4E45RuECoFIT-BQ4olIYSjEbiewE1wPsP1kHV2wUPn4Ww-x9D6lfbGJmhCv4A59DZu31BnmFcWtiFk55cwZb20W1F0xn4GHzvdJ_tlfx-BP5cX8-mPavbr6ud0MqtMzYioiGyajpO64awxqG5ZVyPOCGGoxV2DDDOdlqzDBWMLSXWLmUGCtzUrKOULegS-73w3Q7u2C2N9jrpXm-jWOj6ooJ36_8e7lVqGOyVwzbikxeBkbxDD7WBTVmuXjO177W0YkiKMSkYaKsj7KKW8rBIjWdBvL9CbMERfNlGohrJaNBIX6vjf5p-7_htKAU53gIkhpWi7ZwQjtQ1clcDVU-CFPX_BGrcLsszt-rcU9663D69bq9_Ti53iEfxVuRY |
CitedBy_id | crossref_primary_10_1093_plcell_koab120 crossref_primary_10_1007_s00122_023_04388_w crossref_primary_10_1093_plcell_koac253 crossref_primary_10_3390_ijms25179336 crossref_primary_10_1007_s00344_024_11355_2 crossref_primary_10_3390_ijms232214472 crossref_primary_10_3390_synbio1010006 crossref_primary_10_1093_plphys_kiae123 crossref_primary_10_1111_tpj_15870 crossref_primary_10_1016_j_eja_2022_126473 crossref_primary_10_1111_tpj_15950 crossref_primary_10_3390_antiox11020287 crossref_primary_10_1016_j_stress_2025_100772 crossref_primary_10_3390_plants12234058 crossref_primary_10_3390_plants14071026 crossref_primary_10_3390_ijms241411447 crossref_primary_10_1002_fes3_433 crossref_primary_10_1016_j_gene_2025_149225 crossref_primary_10_3390_plants12152809 crossref_primary_10_1002_tpg2_20402 crossref_primary_10_1016_j_cj_2024_07_014 crossref_primary_10_3389_fpls_2024_1404879 crossref_primary_10_1080_15592324_2024_2318514 crossref_primary_10_1111_pbi_14600 crossref_primary_10_1270_jsbbs_21096 crossref_primary_10_1111_nph_19514 crossref_primary_10_3389_fpls_2023_1139961 crossref_primary_10_3389_fpls_2023_1134308 crossref_primary_10_3389_fpls_2022_822618 crossref_primary_10_1038_s41467_025_56174_5 crossref_primary_10_1002_advs_202411357 crossref_primary_10_1016_j_stress_2024_100700 crossref_primary_10_3390_biology13060442 crossref_primary_10_1007_s42106_024_00282_7 crossref_primary_10_1111_pce_15053 crossref_primary_10_1111_jipb_13585 crossref_primary_10_1093_plphys_kiae118 |
Cites_doi | 10.1105/tpc.114.126292 10.1111/tpj.13299 10.1105/tpc.105.034090 10.1104/pp.18.00209 10.4238/2013.November.11.4 10.1007/s12374-009-9017-y 10.1007/s11103-011-9855-0 10.1093/mp/ssn028 10.3389/fpls.2017.01258 10.1111/pbi.13104 10.1111/tpj.12487 10.1073/pnas.1308942110 10.3389/fpls.2015.00420 10.1104/pp.111.175760 10.1016/j.tplants.2011.10.001 10.1093/jxb/err144 10.1111/pce.13373 10.1038/ncomms2396 10.1016/j.gpb.2017.01.007 10.1093/jxb/ert375 10.1042/BJ20111792 10.1111/nph.13550 10.1016/j.plantsci.2010.04.004 10.1111/pce.12498 10.1111/pce.13394 10.1038/ng.143 10.1073/pnas.1819769116 10.1186/s12870-017-1025-3 10.1007/s00299-010-0985-7 10.1016/j.jgg.2011.08.001 10.1111/tpj.13548 10.1016/j.tplants.2016.08.002 10.1073/pnas.1213962110 10.1186/1471-2164-8-175 10.1007/s12374-011-9194-3 10.3390/antiox7110169 10.1093/mp/sst046 10.1038/nbt1173 10.1104/pp.17.01419 10.1038/s41467-018-05753-w 10.1007/s00726-017-2491-5 10.1105/tpc.110.074369 10.1038/ncomms14788 10.1104/pp.15.01561 10.1016/j.plaphy.2016.11.001 10.1038/ng.2570 10.1186/s12284-014-0024-3 10.1016/j.bbrc.2016.02.004 10.1105/tpc.114.125427 10.1105/tpc.106.044107 10.1016/j.pbi.2011.07.014 10.1016/S0378-1119(97)00502-7 10.1073/pnas.1817675116 10.1105/tpc.114.123745 10.3389/fpls.2016.00402 10.1104/pp.16.00016 10.1111/pce.13146 10.1111/nph.14011 10.1111/tpj.13444 10.1111/j.1365-313X.2010.04146.x 10.1038/srep26411 10.1016/j.cell.2015.01.046 10.1073/pnas.0805303105 10.1007/s12298-012-0117-7 10.1093/pcp/pcr028 10.1111/tpj.12832 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by John Wiley & Sons Ltd. 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by John Wiley & Sons Ltd. – notice: 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. – notice: 2020. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST C1K SOI 7X8 7S9 L.6 5PM |
DOI | 10.1111/pce.13717 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Calcium & Calcified Tissue Abstracts Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Botany |
DocumentTitleAlternate | Xu et al |
EISSN | 1365-3040 |
EndPage | 1007 |
ExternalDocumentID | PMC7154693 31922260 10_1111_pce_13717 PCE13717 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: the State Key Laboratory of Plant Genomics funderid: SKLPG2011B0403 – fundername: the National Key Research and Development Program of China funderid: 2016YFD0101801 – fundername: the National Key Research and Development Program of China grantid: 2016YFD0101801 – fundername: the State Key Laboratory of Plant Genomics grantid: SKLPG2011B0403 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 186 1OB 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BIYOS BMNLL BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE FIJ FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WH7 WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XSW YNT ZZTAW ~02 ~IA ~KM ~WT AAYXX AETEA AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7ST AAMMB AEFGJ AGXDD AIDQK AIDYY C1K SOI 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c5427-2988f6258648c05b4f50642240b1f80c4cfa94f19884d93ab14c076b54b4f36d3 |
IEDL.DBID | DR2 |
ISSN | 0140-7791 1365-3040 |
IngestDate | Thu Aug 21 18:15:29 EDT 2025 Fri Jul 11 18:38:39 EDT 2025 Fri Jul 11 12:13:16 EDT 2025 Fri Jul 25 10:52:36 EDT 2025 Wed Feb 19 02:30:31 EST 2025 Tue Jul 01 04:28:43 EDT 2025 Thu Apr 24 23:07:04 EDT 2025 Wed Jan 22 16:36:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | booting stage cold tolerance rice ROS acclimation LTT1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2020 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5427-2988f6258648c05b4f50642240b1f80c4cfa94f19884d93ab14c076b54b4f36d3 |
Notes | Funding information the National Key Research and Development Program of China, Grant/Award Number: 2016YFD0101801; the State Key Laboratory of Plant Genomics, Grant/Award Number: SKLPG2011B0403 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Funding information the National Key Research and Development Program of China, Grant/Award Number: 2016YFD0101801; the State Key Laboratory of Plant Genomics, Grant/Award Number: SKLPG2011B0403 |
ORCID | 0000-0002-3018-0722 0000-0001-9398-785X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13717 |
PMID | 31922260 |
PQID | 2383457891 |
PQPubID | 37957 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7154693 proquest_miscellaneous_2439428372 proquest_miscellaneous_2336260109 proquest_journals_2383457891 pubmed_primary_31922260 crossref_primary_10_1111_pce_13717 crossref_citationtrail_10_1111_pce_13717 wiley_primary_10_1111_pce_13717_PCE13717 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: United States – name: Oxford |
PublicationTitle | Plant, cell and environment |
PublicationTitleAlternate | Plant Cell Environ |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2017; 8 2013; 4 2015; 38 2012; 443 2016; 109 2011; 62 2019; 17 2014; 26 2011; 52 2011; 55 2008; 105 2012; 18 2018; 41 2012; 17 2011; 14 2008; 1 2017b; 91 2018; 42 2013; 6 2011; 156 2010; 62 2014; 65 2018; 7 2018; 9 2018; 177 2018; 176 2009; 52 2006; 24 2015; 83 2013; 12 2007; 8 2019; 116 2011; 23 2013; 110 2014; 7 2016; 471 2015; 160 2015; 6 2013; 45 2017; 22 2011; 30 2006; 18 2017a; 15 2015; 208 2014; 111 2011; 38 2012; 78 2016; 6 1997; 203 2016; 7 2017; 90 2019; 42 2017; 17 2010; 179 2016; 211 2018; 50 2016; 171 2008; 40 2016; 170 2005; 17 2014; 78 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 105 start-page: 12623 issue: 34 year: 2008 end-page: 12628 article-title: Molecular identification of a major quantitative trait locus, , controlling low‐temperature germinability in rice publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 443 start-page: 95 issue: 1 year: 2012 end-page: 102 article-title: Biochemical identification of the OsMKK6‐OsMPK3 signalling pathway for chilling stress tolerance in rice publication-title: Biochemical Journal – volume: 171 start-page: 2085 issue: 3 year: 2016 end-page: 2100 article-title: Regulatory role of a receptor‐like kinase in specifying anther cell identity publication-title: Plant Physiology – volume: 91 start-page: 85 issue: 1 year: 2017b end-page: 96 article-title: for culm development in rice publication-title: Plant Journal – volume: 110 start-page: 2775 issue: 8 year: 2013 end-page: 2780 article-title: Association of functional nucleotide polymorphisms at with the northward expansion of rice cultivation in Asia publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 50 start-page: 79 issue: 1 year: 2018 end-page: 94 article-title: Structural complexity and functional diversity of plant NADPH oxidases publication-title: Amino Acids – volume: 179 start-page: 97 issue: 1–2 year: 2010 end-page: 102 article-title: Map‐based cloning of the rice cold tolerance gene publication-title: Plant Science – volume: 24 start-page: 105 issue: 1 year: 2006 end-page: 109 article-title: Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice publication-title: Nature Biotechnology – volume: 109 start-page: 525 year: 2016 end-page: 535 article-title: Rice mutants deficient in ‐3 fatty acid desaturase (FAD8) fail to acclimate to cold temperatures publication-title: Plant Physiology and Biochemistry – volume: 40 start-page: 761 issue: 6 year: 2008 end-page: 767 article-title: Natural variation in is an important regulator of heading date and yield potential in rice publication-title: Nature Genetics – volume: 7 start-page: 169 issue: 11 year: 2018 article-title: Reactive oxygen species and the redox‐regulatory network in cold stress acclimation publication-title: Antioxidants – volume: 7 start-page: 402 year: 2016 article-title: Regulatory networks in pollen development under cold stress publication-title: Frontiers in Plant Science – volume: 6 year: 2016 article-title: The Fd‐GOGAT1 mutant gene confers resistance to pv. in rice publication-title: Scientific Reports – volume: 52 start-page: 154 issue: 2 year: 2009 end-page: 160 article-title: Ectopic expression of a cold‐responsive CuZn superoxide dismutase gene, , in transgenic rice ( L.) publication-title: Journal of Plant Biology – volume: 83 start-page: 149 issue: 1 year: 2015 end-page: 159 article-title: Transcriptional 'memory’ of a stress: Transient chromatin and memory (epigenetic) marks at stress‐response genes publication-title: Plant Journal – volume: 14 start-page: 691 issue: 6 year: 2011 end-page: 699 article-title: Respiratory burst oxidases: The engines of ROS signaling publication-title: Current Opinion in Plant Biology – volume: 15 start-page: 301 issue: 5 year: 2017a end-page: 312 article-title: Non‐coding RNAs and their roles in stress response in plants publication-title: Genomics, Proteomics & Bioinformatics – volume: 65 start-page: 1229 issue: 5 year: 2014 end-page: 1240 article-title: ROS as key players in plant stress signalling publication-title: Journal of Experimental Botany – volume: 211 start-page: 1295 issue: 4 year: 2016 end-page: 1310 article-title: Comparative metabolomic analysis reveals a reactive oxygen species‐dominated dynamic model underlying chilling environment adaptation and tolerance in rice publication-title: New Phytologist – volume: 52 start-page: 689 issue: 4 year: 2011 end-page: 698 article-title: ABA controls H O accumulation through the induction of in rice leaves under water stress publication-title: Plant and Cell Physiology – volume: 30 start-page: 399 issue: 3 year: 2011 end-page: 406 article-title: Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, publication-title: Plant Cell Reports – volume: 208 start-page: 1138 issue: 4 year: 2015 end-page: 1148 article-title: Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in publication-title: New Phytologist – volume: 17 start-page: 9 issue: 1 year: 2012 end-page: 15 article-title: A burst of plant NADPH oxidases publication-title: Trends in Plant Science – volume: 17 start-page: 2705 issue: 10 year: 2005 end-page: 2722 article-title: Rice is a major regulator of early tapetum development publication-title: Plant Cell – volume: 26 start-page: 2486 issue: 6 year: 2014 end-page: 2504 article-title: The bHLH142 transcription factor coordinates with TDR1 to modulate the expression of and regulate pollen development in rice publication-title: Plant Cell – volume: 23 start-page: 515 issue: 2 year: 2011 end-page: 533 article-title: Rice MADS3 regulates ROS homeostasis during late anther development publication-title: Plant Cell – volume: 26 start-page: 2007 issue: 5 year: 2014 end-page: 2023 article-title: Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for tapetal programmed cell death and pollen development in publication-title: Plant Cell – volume: 38 start-page: 379 issue: 9 year: 2011 end-page: 390 article-title: Cytological analysis and genetic control of rice anther development publication-title: Journal of Genetics and Genomics – volume: 78 start-page: 468 issue: 3 year: 2014 end-page: 480 article-title: Rice is involved in adaptive growth and fitness under low ambient temperature publication-title: Plant Journal – volume: 26 start-page: 1512 issue: 4 year: 2014 end-page: 1524 article-title: The rice basic helix‐loop‐helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development publication-title: Plant Cell – volume: 177 start-page: 1108 issue: 3 year: 2018 end-page: 1123 article-title: Identification of genes related to cold tolerance and a functional allele that confers cold tolerance publication-title: Plant Physiology – volume: 38 start-page: 1255 issue: 7 year: 2015 end-page: 1274 article-title: Cooling water before panicle initiation increases chilling‐induced male sterility and disables chilling‐induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets publication-title: Plant, Cell and Environment – volume: 116 start-page: 3494 issue: 9 year: 2019 end-page: 3501 article-title: Natural variation in the gene confers chilling tolerance in rice and allowed adaptation to a temperate climate publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 7 issue: 1 year: 2014 article-title: Rice and cold stress: Methods for its evaluation and summary of cold tolerance‐related quantitative trait loci publication-title: Rice – volume: 90 start-page: 654 issue: 4 year: 2017 end-page: 670 article-title: The functions of plant small RNAs in development and in stress responses publication-title: Plant Journal – volume: 1 start-page: 599 issue: 4 year: 2008 end-page: 610 article-title: Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development publication-title: Molecular Plant – volume: 111 start-page: 6190 issue: 17 year: 2014 end-page: 6197 article-title: Archaeological and genetic insights into the origins of domesticated rice publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 9 issue: 1 year: 2018 article-title: Early selection of facilitated adaptation of rice to cold climates publication-title: Nature Communications – volume: 62 start-page: 4863 issue: 14 year: 2011 end-page: 4874 article-title: alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice publication-title: Journal of Experimental Botany – volume: 42 start-page: 782 issue: 3 year: 2019 end-page: 800 article-title: Preparing plants for improved cold tolerance by priming publication-title: Plant, Cell and Environment – volume: 45 start-page: 573 issue: 5 year: 2013 end-page: 577 article-title: A detrimental mitochondrial‐nuclear interaction causes cytoplasmic male sterility in rice publication-title: Nature Genetics – volume: 90 start-page: 856 issue: 5 year: 2017 end-page: 867 article-title: Reactive oxygen species, abiotic stress and stress combination publication-title: Plant Journal – volume: 116 start-page: 7549 issue: 15 year: 2019 end-page: 7558 article-title: OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating expression in rice anthers publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 12 start-page: 5424 issue: 4 year: 2013 end-page: 5432 article-title: Overexpression of an alternative oxidase gene, , improves cold tolerance in L publication-title: Genetics and Molecular Research – volume: 42 start-page: 762 issue: 3 year: 2018 end-page: 770 article-title: Chromatin‐based mechanisms of temperature memory in plants publication-title: Plant, Cell and Environment – volume: 22 start-page: 11 issue: 1 year: 2017 end-page: 19 article-title: ROS are good publication-title: Trends in Plant Science – volume: 41 start-page: 1287 issue: 6 year: 2018 end-page: 1297 article-title: Pollen germination and in vivo fertilization in response to high‐temperature during flowering in hybrid and inbred rice publication-title: Plant, Cell and Environment – volume: 17 start-page: 1834 issue: 9 year: 2019 end-page: 1849 article-title: The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage publication-title: Plant Biotechnology Journal – volume: 18 start-page: 217 issue: 3 year: 2012 end-page: 228 article-title: A comprehensive study on dehydration‐induced antioxidative responses during germination of Indian bread wheat ( L. em Thell) cultivars collected from different agroclimatic zones publication-title: Physiology and Molecular Biology of Plants – volume: 4 year: 2013 article-title: EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice publication-title: Nature Communications – volume: 8 start-page: 14788 year: 2017 article-title: Natural variation in enhances rice adaptation to cold habitats publication-title: Nature Communications – volume: 156 start-page: 615 issue: 2 year: 2011 end-page: 630 article-title: encodes a PHD‐finger protein that is required for tapetal cell death and pollen development in rice publication-title: Plant Physiology – volume: 170 start-page: 1611 issue: 3 year: 2016 end-page: 1623 article-title: Defective tapetum cell death 1 (DTC1) regulates ROS levels by binding to metallothionein during tapetum degeneration publication-title: Plant Physiology – volume: 6 start-page: 420 year: 2015 article-title: Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: Insights from ROS detoxification and scavenging publication-title: Frontiers in Plant Science – volume: 78 start-page: 171 issue: 1–2 year: 2012 end-page: 183 article-title: MYB80, a regulator of tapetal and pollen development, is functionally conserved in crops publication-title: Plant Molecular Biology – volume: 471 start-page: 253 issue: 1 year: 2016 end-page: 259 article-title: Comparative analysis of gene expression in response to cold stress in diverse rice genotypes publication-title: Biochemical and Biophysical Research Communications – volume: 17 issue: 1 year: 2017 article-title: Reactive oxygen species mediate tapetal programmed cell death in tobacco and tomato publication-title: BMC Plant Biology – volume: 203 start-page: 121 issue: 2 year: 1997 end-page: 129 article-title: Transcript levels of tandem‐arranged alternative oxidase genes in rice are increased by low temperature publication-title: Gene – volume: 6 start-page: 1715 issue: 5 year: 2013 end-page: 1718 article-title: A novel rice bHLH transcription factor, DTD, acts coordinately with TDR in controlling tapetum function and pollen development publication-title: Molecular Plant – volume: 55 start-page: 123 issue: 2 year: 2011 end-page: 131 article-title: Cold‐responsive regulation of a flower‐preferential class III peroxidase gene, , in rice ( L.) publication-title: Journal of Plant Biology – volume: 62 start-page: 316 issue: 2 year: 2010 end-page: 329 article-title: Receptor‐like kinase OsSIK1 improves drought and salt stress tolerance in rice ( ) plants publication-title: Plant Journal – volume: 160 start-page: 1209 issue: 6 year: 2015 end-page: 1221 article-title: confers chilling tolerance in rice publication-title: Cell – volume: 18 start-page: 2999 issue: 11 year: 2006 end-page: 3014 article-title: The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development publication-title: Plant Cell – volume: 176 start-page: 819 issue: 1 year: 2018 end-page: 835 article-title: Transcription factor OsTGA10 is a target of the MADS protein OsMADS8 and is required for tapetum development publication-title: Plant Physiology – volume: 8 start-page: 1258 year: 2017 article-title: Tightly controlled expression of is essential for timely tapetal programmed cell death and pollen development in rice publication-title: Frontiers in Plant Science – volume: 8 start-page: 175 year: 2007 article-title: An early response regulatory cluster induced by low temperature and hydrogen peroxide in seedlings of chilling‐tolerant japonica rice publication-title: BMC Genomics – ident: e_1_2_6_24_1 doi: 10.1105/tpc.114.126292 – ident: e_1_2_6_9_1 doi: 10.1111/tpj.13299 – ident: e_1_2_6_20_1 doi: 10.1105/tpc.105.034090 – ident: e_1_2_6_54_1 doi: 10.1104/pp.18.00209 – ident: e_1_2_6_26_1 doi: 10.4238/2013.November.11.4 – ident: e_1_2_6_25_1 doi: 10.1007/s12374-009-9017-y – ident: e_1_2_6_41_1 doi: 10.1007/s11103-011-9855-0 – ident: e_1_2_6_63_1 doi: 10.1093/mp/ssn028 – ident: e_1_2_6_23_1 doi: 10.3389/fpls.2017.01258 – ident: e_1_2_6_31_1 doi: 10.1111/pbi.13104 – ident: e_1_2_6_32_1 doi: 10.1111/tpj.12487 – ident: e_1_2_6_15_1 doi: 10.1073/pnas.1308942110 – ident: e_1_2_6_16_1 doi: 10.3389/fpls.2015.00420 – ident: e_1_2_6_27_1 doi: 10.1104/pp.111.175760 – ident: e_1_2_6_36_1 doi: 10.1016/j.tplants.2011.10.001 – ident: e_1_2_6_49_1 doi: 10.1093/jxb/err144 – ident: e_1_2_6_11_1 doi: 10.1111/pce.13373 – ident: e_1_2_6_38_1 doi: 10.1038/ncomms2396 – ident: e_1_2_6_51_1 doi: 10.1016/j.gpb.2017.01.007 – ident: e_1_2_6_4_1 doi: 10.1093/jxb/ert375 – ident: e_1_2_6_55_1 doi: 10.1042/BJ20111792 – ident: e_1_2_6_5_1 doi: 10.1111/nph.13550 – ident: e_1_2_6_42_1 doi: 10.1016/j.plantsci.2010.04.004 – ident: e_1_2_6_47_1 doi: 10.1111/pce.12498 – ident: e_1_2_6_3_1 doi: 10.1111/pce.13394 – ident: e_1_2_6_57_1 doi: 10.1038/ng.143 – ident: e_1_2_6_35_1 doi: 10.1073/pnas.1819769116 – ident: e_1_2_6_61_1 doi: 10.1186/s12870-017-1025-3 – ident: e_1_2_6_44_1 doi: 10.1007/s00299-010-0985-7 – ident: e_1_2_6_62_1 doi: 10.1016/j.jgg.2011.08.001 – ident: e_1_2_6_52_1 doi: 10.1111/tpj.13548 – ident: e_1_2_6_37_1 doi: 10.1016/j.tplants.2016.08.002 – ident: e_1_2_6_53_1 doi: 10.1073/pnas.1213962110 – ident: e_1_2_6_8_1 doi: 10.1186/1471-2164-8-175 – ident: e_1_2_6_22_1 doi: 10.1007/s12374-011-9194-3 – ident: e_1_2_6_10_1 doi: 10.3390/antiox7110169 – ident: e_1_2_6_19_1 doi: 10.1093/mp/sst046 – ident: e_1_2_6_43_1 doi: 10.1038/nbt1173 – ident: e_1_2_6_7_1 doi: 10.1104/pp.17.01419 – ident: e_1_2_6_30_1 doi: 10.1038/s41467-018-05753-w – ident: e_1_2_6_21_1 doi: 10.1007/s00726-017-2491-5 – ident: e_1_2_6_17_1 doi: 10.1105/tpc.110.074369 – ident: e_1_2_6_66_1 doi: 10.1038/ncomms14788 – ident: e_1_2_6_60_1 doi: 10.1104/pp.15.01561 – ident: e_1_2_6_50_1 doi: 10.1016/j.plaphy.2016.11.001 – ident: e_1_2_6_33_1 doi: 10.1038/ng.2570 – ident: e_1_2_6_65_1 doi: 10.1186/s12284-014-0024-3 – ident: e_1_2_6_40_1 doi: 10.1016/j.bbrc.2016.02.004 – ident: e_1_2_6_56_1 doi: 10.1105/tpc.114.125427 – ident: e_1_2_6_28_1 doi: 10.1105/tpc.106.044107 – ident: e_1_2_6_48_1 doi: 10.1016/j.pbi.2011.07.014 – ident: e_1_2_6_18_1 doi: 10.1016/S0378-1119(97)00502-7 – ident: e_1_2_6_67_1 doi: 10.1073/pnas.1817675116 – ident: e_1_2_6_12_1 doi: 10.1105/tpc.114.123745 – ident: e_1_2_6_45_1 doi: 10.3389/fpls.2016.00402 – ident: e_1_2_6_58_1 doi: 10.1104/pp.16.00016 – ident: e_1_2_6_46_1 doi: 10.1111/pce.13146 – ident: e_1_2_6_64_1 doi: 10.1111/nph.14011 – ident: e_1_2_6_29_1 doi: 10.1111/tpj.13444 – ident: e_1_2_6_39_1 doi: 10.1111/j.1365-313X.2010.04146.x – ident: e_1_2_6_6_1 doi: 10.1038/srep26411 – ident: e_1_2_6_34_1 doi: 10.1016/j.cell.2015.01.046 – ident: e_1_2_6_13_1 doi: 10.1073/pnas.0805303105 – ident: e_1_2_6_14_1 doi: 10.1007/s12298-012-0117-7 – ident: e_1_2_6_59_1 doi: 10.1093/pcp/pcr028 – ident: e_1_2_6_2_1 doi: 10.1111/tpj.12832 |
SSID | ssj0001479 |
Score | 2.5000217 |
Snippet | The cold tolerance of rice at the booting stage is a main factor determining sustainability and regional adaptability. However, relatively few cold tolerance... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 992 |
SubjectTerms | abortion (plants) Accumulation Adaptability Anthers Apoptosis Apoptosis - genetics Apoptosis - physiology booting stage breeding programs Cell death Cold cold stress Cold Temperature Cold tolerance Degradation Gene expression Genes Genes, Plant - genetics Genes, Plant - physiology Genetic resources In Situ Nick-End Labeling LTT1 Microscopy, Electron, Scanning Mutants Mutation Original Oryza - genetics Oryza - metabolism Oryza - physiology Oryza - ultrastructure Oryza sativa Peroxidases - metabolism Plant breeding Point mutation Point Mutation - genetics Pollen programmed cell death proteins Quantitative Trait, Heritable Reactive oxygen species Reactive Oxygen Species - metabolism Rice ROS acclimation seed set Superoxide Dismutase - metabolism temperature Temperature tolerance |
Title | A point mutation in LTT1 enhances cold tolerance at the booting stage in rice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fpce.13717 https://www.ncbi.nlm.nih.gov/pubmed/31922260 https://www.proquest.com/docview/2383457891 https://www.proquest.com/docview/2336260109 https://www.proquest.com/docview/2439428372 https://pubmed.ncbi.nlm.nih.gov/PMC7154693 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VCiQuBcorUCqDOHDJKk6cOBan0ofKo6hCW6kHpMh2bLqiTVZs9lB-PTN50aWAEJcokj9LfszYn-3xZ4CXOAnryCsfZqlJQ4E2ERpdmjBSWhoZmTySdN_56GN2eCLenaana_B6uAvT6UOMG27kGe14TQ6uzeKKk8-tm_AEVyM4_vIkI938vU8_paO46HT2KHxRSsV7VSGK4hlzrs5F1wjm9TjJq_y1nYAO7sDnoehd3MnXybIxE_v9F1XH_6zbXdjoiSnb6SzpHqy5ahNudU9VXm7CzTc10sjL-3C0w-b1rGrYxbI7xWezin2YTjlz1RmZ0IKhbZWsqc8dPdrhmG4YskyGdJ5CrBnS0S-OMpGc0QM4Odif7h6G_ZsMoU1FLMNY5bnHNVOeidxGqRGeFO-IFxju88gK67USniNMlCrRhgsbycykAqFJViYPYb2qK_cYmHRKKo_81IoUsVbrSLuyjH0ZOy3LJIBXQ-8Uthcsp3czzoth4YLNVLTNFMCLETrvVDp-B9oaurjoHXVRIGNJyEIVD-D5mIwuRucmunL1kjCk2UNniH_B0A1jUhKKA3jUWc1YEhzlkIVlUQByxZ5GAEl8r6ZUs7NW6lsiw80UNUVrLn-uXHG8u9_-PPl36FO4HdPuQRuHtAXrzbele4YUqzHbcCMWx_jde_t-u_WrHwwWImw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VAoJLgVJooIBBHLhk5SROHEu9lKrVArsVQlupFxTZjkNXlGTVZg_l1zOTL7oUEOIWyc-SY8_Yz57xM8BrXIQ1L1ThJ7GJfYE24RudG58rLY3kJuWS7jtPj5LxsXh_Ep-swW5_F6bVhxgO3MgzmvmaHJwOpK94-cK6URDhduQG3Gzic0SJPv0UjwpEq7RHCYxSqqDTFaI8nqHq6mp0jWJez5S8ymCbJejwHnzuG99mnnwdLWszst9_0XX837-7DxsdN2V7rTE9gDVXbsLt9rXKy0249bZCJnn5EKZ7bFHNy5p9W7aBfDYv2WQ2C5grT8mKLhiaV87q6szRux2O6Zoh0WTI6CnLmiEj_eKoEikabcHx4cFsf-x3zzL4Nhah9EOVpgVum9JEpJbHRhQkekfUwARFyq2whVaiCBAmchVpEwjLZWJigdAoyaNHsF5WpdsGJp2SqkCKakWMWKs11y7PwyIPnZZ55MGbfngy22mW09MZZ1m_d8Fuyppu8uDVAF20Qh2_A-30Y5x1vnqRIWmJyEhV4MHLoRi9jEInunTVkjAk20NhxL9g6JIxiQmFHjxuzWZoCU50SMQS7oFcMagBQCrfqyXl_LRR-5ZIchNFXdHYy59_Lvu4f9B8PPl36Au4M55NJ9nk3dGHp3A3pMOEJi1pB9br86V7hoyrNs8bx_oBeCokug |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2V8iEuCAqUQAGDOHAJchInjsWpLV0VaKs9bKXeIn-2K5VkRbOH_ntmkmzUVSniFinPSuLxeJ7j8RuATxiENQ8qxEVu8ljgmIiNdibmSksjuSm5pPPOxyfF4an4cZafbcDX1VmYXh9i_OFGntHN1-TgCxduOPnC-i9JhquRe3CfnkHDOxXTcRpORC-0R_mLUqpkkBWiNJ6x6XowusUwbydK3iSwXQSaPIUnA3Vku72tn8GGr7fgYV9M8noLHuw1SPSun8PxLls087plv5b9Pjub1-xoNkuYry_IyFcMre9Y21x6KqvhmW4Z8kCGhJuSoBkSxnNPjUhw6AWcTg5m-4fxUDUhtrlIZZyqsgy4qikLUVqeGxFIk44it0lCya2wQSsREoQJpzJtEmG5LEwuEJoVLnsJm3VT-1fApFdSBWSQVuSItVpz7Z1Lg0u9li6L4POq-yo7SIpTZYvLarW0wJ6uup6O4OMIXfQ6Gn8D7axsUA2udFUhp8jIviqJ4MN4G52AdjZ07ZslYUhVh3b5_oGhM8Ck9ZNGsN2bdXwTnIeQJxU8Arlm8BFAItzrd-r5RSfGLZGDFoq6ohsad39cNd0_6C5e_z_0PTyafptUR99Pfr6Bxykt9bukoR3YbH8v_VvkQ6151437P8ZiAzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+point+mutation+in+LTT1+enhances+cold+tolerance+at+the+booting+stage+in+rice&rft.jtitle=Plant%2C+cell+and+environment&rft.au=Xu%2C+Yufang&rft.au=Wang%2C+Ruci&rft.au=Wang%2C+Yueming&rft.au=Zhang%2C+Li&rft.date=2020-04-01&rft.issn=0140-7791&rft.eissn=1365-3040&rft.volume=43&rft.issue=4&rft.spage=992&rft.epage=1007&rft_id=info:doi/10.1111%2Fpce.13717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_pce_13717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7791&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7791&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7791&client=summon |