Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice

The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates a...

Full description

Saved in:
Bibliographic Details
Published inExperimental & molecular medicine Vol. 55; no. 8; pp. 1820 - 1830
Main Authors Kim, Hye Jin, Kim, Youn Ju, Kim, Yong Jae, Baek, Ji Hyeon, Kim, Hak Su, Kim, Il Yong, Seong, Je Kyung
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2092-6413
1226-3613
2092-6413
DOI10.1038/s12276-023-01063-4

Cover

Abstract The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance. Gut microbes: unexpected exercise partners Gut microbes alter metabolism and enhance exercise performance in mice. Gut microbes are known to produce beneficial metabolites and improve health, but how they affect exercise is not well understood. Je Kyung Seong at Seoul National University in South Korea and co-workers compared how mice with a healthy microbiome and germ-free (GF) mice responded to exercise. Although GF mice became exhausted much sooner than non-GF mice, spent one-third less time running, and ate 1.5 times more than non-GF mice, they did not gain weight. Further investigation showed that instead of getting their energy from glucose stored in skeletal muscles, GF mice were burning fat, which reduced their performance; reinstating their gut microbes restored their exercise capacity. A healthy gut microbiome is critical for exercise capacity and future work could focus on identifying key microbial species.
AbstractList The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.Gut microbes: unexpected exercise partnersGut microbes alter metabolism and enhance exercise performance in mice. Gut microbes are known to produce beneficial metabolites and improve health, but how they affect exercise is not well understood. Je Kyung Seong at Seoul National University in South Korea and co-workers compared how mice with a healthy microbiome and germ-free (GF) mice responded to exercise. Although GF mice became exhausted much sooner than non-GF mice, spent one-third less time running, and ate 1.5 times more than non-GF mice, they did not gain weight. Further investigation showed that instead of getting their energy from glucose stored in skeletal muscles, GF mice were burning fat, which reduced their performance; reinstating their gut microbes restored their exercise capacity. A healthy gut microbiome is critical for exercise capacity and future work could focus on identifying key microbial species.
Abstract The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.
The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance. Gut microbes: unexpected exercise partners Gut microbes alter metabolism and enhance exercise performance in mice. Gut microbes are known to produce beneficial metabolites and improve health, but how they affect exercise is not well understood. Je Kyung Seong at Seoul National University in South Korea and co-workers compared how mice with a healthy microbiome and germ-free (GF) mice responded to exercise. Although GF mice became exhausted much sooner than non-GF mice, spent one-third less time running, and ate 1.5 times more than non-GF mice, they did not gain weight. Further investigation showed that instead of getting their energy from glucose stored in skeletal muscles, GF mice were burning fat, which reduced their performance; reinstating their gut microbes restored their exercise capacity. A healthy gut microbiome is critical for exercise capacity and future work could focus on identifying key microbial species.
The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.
The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance.
The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial fermentation. In this study, we discovered that germ-free (GF) mice had a reduced capacity for aerobic exercise as well as low oxygen consumption rates and glucose availability. Surprisingly, GF mice showed lower body weight gain and lower fat mass than specific pathogen-free (SPF) mice. Therefore, we hypothesized that these paradoxical phenotypes could be mediated by a compensatory increase in lipolysis in adipose tissues owing to impaired glucose utilization in skeletal muscle. Our data revealed that gut microbiota depletion impairs host aerobic exercise capacity via the deterioration of glucose storage and utilization. The improved browning ability of GF mice may have contributed to the lean phenotype and negatively affected energy generation. These adaptations limit obesity in GF mice but impede their immediate fuel supply during exercise, resulting in decreased exercise performance. Gut microbes alter metabolism and enhance exercise performance in mice. Gut microbes are known to produce beneficial metabolites and improve health, but how they affect exercise is not well understood. Je Kyung Seong at Seoul National University in South Korea and co-workers compared how mice with a healthy microbiome and germ-free (GF) mice responded to exercise. Although GF mice became exhausted much sooner than non-GF mice, spent one-third less time running, and ate 1.5 times more than non-GF mice, they did not gain weight. Further investigation showed that instead of getting their energy from glucose stored in skeletal muscles, GF mice were burning fat, which reduced their performance; reinstating their gut microbes restored their exercise capacity. A healthy gut microbiome is critical for exercise capacity and future work could focus on identifying key microbial species.
Author Kim, Hye Jin
Kim, Hak Su
Baek, Ji Hyeon
Kim, Youn Ju
Kim, Yong Jae
Kim, Il Yong
Seong, Je Kyung
Author_xml – sequence: 1
  givenname: Hye Jin
  surname: Kim
  fullname: Kim, Hye Jin
  organization: Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea Mouse Phenotyping Center (KMPC), Seoul National University
– sequence: 2
  givenname: Youn Ju
  surname: Kim
  fullname: Kim, Youn Ju
  organization: Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea Mouse Phenotyping Center (KMPC), Seoul National University, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University
– sequence: 3
  givenname: Yong Jae
  surname: Kim
  fullname: Kim, Yong Jae
  organization: Korea Mouse Phenotyping Center (KMPC), Seoul National University
– sequence: 4
  givenname: Ji Hyeon
  surname: Baek
  fullname: Baek, Ji Hyeon
  organization: Korea Mouse Phenotyping Center (KMPC), Seoul National University
– sequence: 5
  givenname: Hak Su
  surname: Kim
  fullname: Kim, Hak Su
  organization: Korea Mouse Phenotyping Center (KMPC), Seoul National University
– sequence: 6
  givenname: Il Yong
  surname: Kim
  fullname: Kim, Il Yong
  organization: Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea Mouse Phenotyping Center (KMPC), Seoul National University
– sequence: 7
  givenname: Je Kyung
  orcidid: 0000-0003-1177-6958
  surname: Seong
  fullname: Seong, Je Kyung
  email: snumouse@snu.ac.kr
  organization: Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Korea Mouse Phenotyping Center (KMPC), Seoul National University, BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37542180$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVAR_YA_wAFZ4sIl4K84yQmhCtpKRVzgbNnOZOvFiRc7qdp_z-xuKW0PPdmy33vzZuYdk4MpTUDIW84-cibbT4UL0eiKCVkxzrSs1AtyJFgnKq24PHhwPyTHpawZE7Vq1CtyKJtaCd6yIxK-B5-TC2m2NExDXGDyUOhVKjOFG8g-FKDebqwP8y29DpaOqV-inUOaaBpo-Q0RZhvpuBQfga7i4hNSRnx0KYYyoiwdg4fX5OVgY4E3d-cJ-fXt68_T8-ryx9nF6ZfLyteKz9UwCKGk9NZ612uuO8ZrX3MOWqB3KWwnhLMNtMJJxPWscd6B9d7Jnndg5Qm52Ov2ya7NJofR5luTbDC7h5RXxuY5oFnTSwbQN5ozzhW02nkBWFVIp3BoTKHW573WZnEj9B6mOdv4SPTxzxSuzCpdG87QrNAtKny4U8jpzwJlNmMoHmK0E6SlGNEq3Uneyi30_RPoOi15wlkhqu6aWnPBEfXuoaV7L_9WigCxB-BeS8kw3EM4M9vcmH1uDObG7HJjto22T0i4792Ssa0Qn6fKPbVgnWkF-b_tZ1h_ARMs2Gs
CitedBy_id crossref_primary_10_1016_j_physbeh_2024_114643
crossref_primary_10_1097_MCO_0000000000001056
crossref_primary_10_1007_s12602_025_10493_7
crossref_primary_10_1038_s41392_024_01946_6
crossref_primary_10_1039_D3FO04633H
crossref_primary_10_1002_mco2_776
crossref_primary_10_3390_foods13111680
crossref_primary_10_1113_JP285975
crossref_primary_10_3390_nu16111644
crossref_primary_10_3389_fonc_2025_1499650
Cites_doi 10.1007/s40279-017-0751-x
10.1123/ijsnem.2018-0024
10.1038/s41591-022-01688-4
10.1016/j.cmet.2019.11.001
10.1016/j.tem.2011.01.002
10.1038/s42255-020-0188-7
10.1016/j.cell.2016.05.041
10.1016/j.jshs.2016.05.001
10.1194/jlr.RA119000424
10.1113/JP282999
10.1249/JES.0000000000000183
10.1271/bbb.70474
10.4014/jmb.1501.01039
10.1038/s42255-020-0251-4
10.2337/diabetes.55.01.06.db05-0982
10.1164/arrd.1984.129.2P2.S35
10.1111/apha.13581
10.1249/01.mss.0000563088.00243.fc
10.1519/JSC.0000000000000644
10.1080/19490976.2018.1562268
10.1073/pnas.0605374104
10.1210/en.2010-0661
10.1186/s13023-022-02184-1
10.1016/j.cmet.2020.01.012
10.1016/j.cmet.2018.03.008
10.1136/bmjsem-2020-000930
10.1249/MSS.0000000000001495
10.1016/j.mayocp.2017.12.003
10.1186/s42826-019-0035-8
10.1016/j.cmet.2004.12.003
10.1016/j.chom.2018.03.011
10.1152/ajpgi.00304.2019
10.1186/s40168-019-0704-8
10.1186/s12944-019-1151-z
10.1007/BF00696368
10.1113/jphysiol.2007.143834
10.1038/s41467-021-24659-8
10.1152/ajpendo.00510.2018
10.1038/nm.3994
10.1113/JP280759
10.3389/fmicb.2019.01906
10.1126/science.1123965
10.1074/jbc.M110.106534
10.1038/s41467-018-05767-4
10.1007/s13105-021-00806-z
10.1096/fasebj.2020.34.s1.03660
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s12276-023-01063-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2092-6413
EndPage 1830
ExternalDocumentID oai_doaj_org_article_d30eed7610114e86bc2ecbd23b441304
PMC10474268
37542180
10_1038_s12276_023_01063_4
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2013M3A9D5072550
  funderid: https://doi.org/10.13039/501100003725
– fundername: National Research Foundation of Korea (NRF)
  grantid: NRF-2013M3A9D5072550
– fundername: ;
  grantid: NRF-2013M3A9D5072550
GroupedDBID ---
0R~
29G
2WC
3V.
5-W
53G
5GY
7X7
87B
88E
8FE
8FH
8FI
8FJ
8JR
9ZL
AAJSJ
ABUWG
ACGFO
ACGFS
ACPRK
ACSMW
ACYCR
ADBBV
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C1A
C6C
CCPQU
DIK
DU5
E3Z
EBLON
EBS
EF.
EJD
EMOBN
F5P
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
LK8
M1P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
TR2
UKHRP
W2D
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-ff22433caacbd6169015c511e6247432a922ba7e82b3433d07bcbeaccb3d19ea3
IEDL.DBID AAJSJ
ISSN 2092-6413
1226-3613
IngestDate Wed Aug 27 01:26:04 EDT 2025
Thu Aug 21 18:36:22 EDT 2025
Thu Sep 04 18:14:44 EDT 2025
Wed Aug 13 04:20:37 EDT 2025
Thu Apr 03 06:56:52 EDT 2025
Thu Apr 24 23:02:01 EDT 2025
Tue Jul 01 04:10:32 EDT 2025
Fri Feb 21 02:40:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ff22433caacbd6169015c511e6247432a922ba7e82b3433d07bcbeaccb3d19ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1177-6958
OpenAccessLink https://www.nature.com/articles/s12276-023-01063-4
PMID 37542180
PQID 2859756121
PQPubID 2041975
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_d30eed7610114e86bc2ecbd23b441304
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10474268
proquest_miscellaneous_2846931838
proquest_journals_2859756121
pubmed_primary_37542180
crossref_primary_10_1038_s12276_023_01063_4
crossref_citationtrail_10_1038_s12276_023_01063_4
springer_journals_10_1038_s12276_023_01063_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: Seoul
PublicationTitle Experimental & molecular medicine
PublicationTitleAbbrev Exp Mol Med
PublicationTitleAlternate Exp Mol Med
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Shiffer (CR7) 2019; 51
Trites, Clugston (CR37) 2019; 18
Lundgren, Thaiss (CR42) 2020; 318
Kim, Kim, Lee, Seong (CR45) 2020; 36
Fromentin (CR15) 2022; 28
Manca (CR25) 2020; 61
Backhed, Manchester, Semenkovich, Gordon (CR19) 2007; 104
Durk (CR9) 2019; 29
Moretti (CR31) 2021; 231
Kahn, Alquier, Carling, Hardie (CR23) 2005; 1
Haedersdal, Lund, Knop, Vilsboll (CR39) 2018; 93
Kershaw (CR35) 2006; 55
Koh, De Vadder, Kovatcheva-Datchary, Backhed (CR13) 2016; 165
Yoshida, Chida, Ichioka, Suda (CR46) 1987; 56
Brooks (CR50) 1986; 45
Allen (CR14) 2018; 50
CR49
Hargreaves, Spriet (CR2) 2020; 2
Haemmerle (CR36) 2006; 312
Joyner, Coyle (CR3) 2008; 586
Liu (CR4) 2020; 31
Matsumoto (CR12) 2008; 72
Wasserman (CR28) 1984; 129
Krisko (CR33) 2020; 31
Schreiber, Xie, Schweiger (CR34) 2019; 1864
Suarez-Zamorano (CR20) 2015; 21
Al-Asmakh, Zadjali (CR26) 2015; 25
Li (CR32) 2021; 12
Huang, Chen, Chuang, Chiu, Huang (CR18) 2019; 10
Takahashi (CR29) 2021; 77
San-Millan, Brooks (CR47) 2018; 48
Kim, Kim, Seong (CR44) 2022; 600
Hsu (CR17) 2015; 29
Rabot (CR21) 2010; 24
Martinez-Guryn (CR40) 2018; 23
Mailing, Allen, Buford, Fields, Woods (CR8) 2019; 47
Hennis (CR1) 2022; 17
Mackenzie (CR30) 2020; 598
Mach, Fuster-Botella (CR16) 2017; 6
Hoy (CR38) 2011; 152
Dougherty, Springer, Gershengorn (CR24) 2016; 111
Okamoto (CR5) 2019; 316
Kindt (CR43) 2018; 9
Carey, Montag (CR10) 2021; 7
Frampton, Murphy, Frost, Chambers (CR11) 2020; 2
Irimia (CR48) 2010; 285
Brooks (CR27) 2018; 27
Greiner, Backhed (CR22) 2011; 22
Dalton, Mermier, Zuhl (CR6) 2019; 10
Oliphant, Allen-Vercoe (CR41) 2019; 7
I San-Millan (1063_CR47) 2018; 48
GA Brooks (1063_CR27) 2018; 27
T Yoshida (1063_CR46) 1987; 56
A Koh (1063_CR13) 2016; 165
GA Brooks (1063_CR50) 1986; 45
TI Krisko (1063_CR33) 2020; 31
K Oliphant (1063_CR41) 2019; 7
MJ Trites (1063_CR37) 2019; 18
WC Huang (1063_CR18) 2019; 10
N Suarez-Zamorano (1063_CR20) 2015; 21
M Al-Asmakh (1063_CR26) 2015; 25
Y Takahashi (1063_CR29) 2021; 77
A Kindt (1063_CR43) 2018; 9
PJ Hennis (1063_CR1) 2022; 17
RP Durk (1063_CR9) 2019; 29
M Matsumoto (1063_CR12) 2008; 72
1063_CR49
S Fromentin (1063_CR15) 2022; 28
N Mach (1063_CR16) 2017; 6
JP Dougherty (1063_CR24) 2016; 111
HJ Kim (1063_CR44) 2022; 600
K Martinez-Guryn (1063_CR40) 2018; 23
Y Liu (1063_CR4) 2020; 31
RA Carey (1063_CR10) 2021; 7
F Backhed (1063_CR19) 2007; 104
S Haedersdal (1063_CR39) 2018; 93
AM Shiffer (1063_CR7) 2019; 51
YJ Hsu (1063_CR17) 2015; 29
A Dalton (1063_CR6) 2019; 10
J Frampton (1063_CR11) 2020; 2
RWA Mackenzie (1063_CR30) 2020; 598
M Li (1063_CR32) 2021; 12
AJ Hoy (1063_CR38) 2011; 152
K Wasserman (1063_CR28) 1984; 129
JM Irimia (1063_CR48) 2010; 285
EE Kershaw (1063_CR35) 2006; 55
T Okamoto (1063_CR5) 2019; 316
T Greiner (1063_CR22) 2011; 22
LJ Mailing (1063_CR8) 2019; 47
BB Kahn (1063_CR23) 2005; 1
MJ Joyner (1063_CR3) 2008; 586
C Manca (1063_CR25) 2020; 61
CH Moretti (1063_CR31) 2021; 231
P Lundgren (1063_CR42) 2020; 318
YJ Kim (1063_CR45) 2020; 36
JM Allen (1063_CR14) 2018; 50
M Hargreaves (1063_CR2) 2020; 2
G Haemmerle (1063_CR36) 2006; 312
S Rabot (1063_CR21) 2010; 24
R Schreiber (1063_CR34) 2019; 1864
References_xml – volume: 48
  start-page: 467
  year: 2018
  end-page: 479
  ident: CR47
  article-title: Assessment of metabolic flexibility by means of measuring blood lactate, fat, and carbohydrate oxidation responses to exercise in professional endurance athletes and less-fit individuals
  publication-title: Sports Med.
  doi: 10.1007/s40279-017-0751-x
– volume: 29
  start-page: 249
  year: 2019
  end-page: 253
  ident: CR9
  article-title: Gut microbiota composition is related to cardiorespiratory fitness in healthy young adults
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.2018-0024
– ident: CR49
– volume: 28
  start-page: 303
  year: 2022
  end-page: 314
  ident: CR15
  article-title: Microbiome and metabolome features of the cardiometabolic disease spectrum
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01688-4
– volume: 31
  start-page: 77
  year: 2020
  ident: CR4
  article-title: Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.11.001
– volume: 22
  start-page: 117
  year: 2011
  end-page: 123
  ident: CR22
  article-title: Effects of the gut microbiota on obesity and glucose homeostasis
  publication-title: Trends Endocrin. Met.
  doi: 10.1016/j.tem.2011.01.002
– volume: 2
  start-page: 840
  year: 2020
  end-page: 848
  ident: CR11
  article-title: Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function
  publication-title: Nat Metab.
  doi: 10.1038/s42255-020-0188-7
– volume: 165
  start-page: 1332
  year: 2016
  end-page: 1345
  ident: CR13
  article-title: From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.05.041
– volume: 6
  start-page: 179
  year: 2017
  end-page: 197
  ident: CR16
  article-title: Endurance exercise and gut microbiota: a review
  publication-title: J. Sport Health Sci.
  doi: 10.1016/j.jshs.2016.05.001
– volume: 61
  start-page: 70
  year: 2020
  end-page: 85
  ident: CR25
  article-title: Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA119000424
– volume: 600
  start-page: 2359
  year: 2022
  end-page: 2376
  ident: CR44
  article-title: AMP-activated protein kinase activation in skeletal muscle modulates exercise-induced uncoupled protein 1 expression in brown adipocyte in mouse model
  publication-title: J Physiol.
  doi: 10.1113/JP282999
– volume: 1864
  start-page: 880
  year: 2019
  end-page: 899
  ident: CR34
  article-title: Of mice and men: the physiological role of adipose triglyceride lipase (ATGL)
  publication-title: Bba-Mol. Cell Biol. L.
– volume: 47
  start-page: 75
  year: 2019
  end-page: 85
  ident: CR8
  article-title: Exercise and the gut microbiome: a review of the evidence, potential mechanisms, and implications for human health
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1249/JES.0000000000000183
– volume: 72
  start-page: 572
  year: 2008
  end-page: 576
  ident: CR12
  article-title: Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.70474
– volume: 25
  start-page: 1583
  year: 2015
  end-page: 1588
  ident: CR26
  article-title: Use of germ-free animal models in microbiota-related research
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1501.01039
– volume: 2
  start-page: 817
  year: 2020
  end-page: 828
  ident: CR2
  article-title: Skeletal muscle energy metabolism during exercise
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-020-0251-4
– volume: 55
  start-page: 148
  year: 2006
  end-page: 157
  ident: CR35
  article-title: Adipose triglyceride lipase - Function, regulation by insulin, and comparison with adiponutrin
  publication-title: Diabetes.
  doi: 10.2337/diabetes.55.01.06.db05-0982
– volume: 129
  start-page: S35
  year: 1984
  end-page: S40
  ident: CR28
  article-title: The anaerobic threshold measurement to evaluate exercise performance
  publication-title: Am. Rev. Respir Dis.
  doi: 10.1164/arrd.1984.129.2P2.S35
– volume: 231
  start-page: e13581
  year: 2021
  ident: CR31
  article-title: Germ-free mice are not protected against diet-induced obesity and metabolic dysfunction
  publication-title: Acta Physiol.
  doi: 10.1111/apha.13581
– volume: 51
  start-page: 866
  year: 2019
  end-page: 866
  ident: CR7
  article-title: The exercise microbiome project: an 8 week cardiovascular intervention on the human gut microbiome
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.mss.0000563088.00243.fc
– volume: 29
  start-page: 552
  year: 2015
  end-page: 558
  ident: CR17
  article-title: Effect of intestinal microbiota on exercise performance in mice
  publication-title: J. Strength Cond. Res.
  doi: 10.1519/JSC.0000000000000644
– volume: 10
  start-page: 555
  year: 2019
  end-page: 568
  ident: CR6
  article-title: Exercise influence on the microbiome-gut-brain axis
  publication-title: Gut Microbes.
  doi: 10.1080/19490976.2018.1562268
– volume: 104
  start-page: 979
  year: 2007
  end-page: 984
  ident: CR19
  article-title: Mechanisms underlying the resistance to diet-induced obesity in germ-free mice
  publication-title: Proc. Natl. Acad Sci. USA.
  doi: 10.1073/pnas.0605374104
– volume: 152
  start-page: 48
  year: 2011
  end-page: 58
  ident: CR38
  article-title: Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation
  publication-title: Endocrinology.
  doi: 10.1210/en.2010-0661
– volume: 17
  start-page: 28
  year: 2022
  ident: CR1
  article-title: Aerobic capacity and skeletal muscle characteristics in glycogen storage disease IIIa: an observational study
  publication-title: Orphanet J Rare Dis.
  doi: 10.1186/s13023-022-02184-1
– volume: 31
  start-page: 592
  year: 2020
  ident: CR33
  article-title: Dissociation of adaptive thermogenesis from glucose homeostasis in microbiome-deficient mice
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.01.012
– volume: 27
  start-page: 757
  year: 2018
  end-page: 785
  ident: CR27
  article-title: The science and translation of lactate shuttle theory
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.03.008
– volume: 7
  start-page: e000930
  year: 2021
  ident: CR10
  article-title: Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism
  publication-title: BMJ Open Sport Exerc. Med.
  doi: 10.1136/bmjsem-2020-000930
– volume: 50
  start-page: 747
  year: 2018
  end-page: 757
  ident: CR14
  article-title: Exercise alters gut microbiota composition and function in lean and obese humans
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000001495
– volume: 93
  start-page: 217
  year: 2018
  end-page: 239
  ident: CR39
  article-title: The role of glucagon in the pathophysiology and treatment of type 2 diabetes
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2017.12.003
– volume: 36
  start-page: 3
  year: 2020
  ident: CR45
  article-title: A comparison of the metabolic effects of treadmill and wheel running exercise in mouse model
  publication-title: Lab Anim Res.
  doi: 10.1186/s42826-019-0035-8
– volume: 1
  start-page: 15
  year: 2005
  end-page: 25
  ident: CR23
  article-title: AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2004.12.003
– volume: 23
  start-page: 458
  year: 2018
  ident: CR40
  article-title: Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2018.03.011
– volume: 318
  start-page: G717
  year: 2020
  end-page: G724
  ident: CR42
  article-title: The microbiome-adipose tissue axis in systemic metabolism
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00304.2019
– volume: 7
  start-page: 91
  year: 2019
  ident: CR41
  article-title: Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health
  publication-title: Microbiome.
  doi: 10.1186/s40168-019-0704-8
– volume: 18
  start-page: 204
  year: 2019
  ident: CR37
  article-title: The role of adipose triglyceride lipase in lipid and glucose homeostasis: lessons from transgenic mice
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-019-1151-z
– volume: 56
  start-page: 7
  year: 1987
  end-page: 11
  ident: CR46
  article-title: Blood lactate parameters related to aerobic capacity and endurance performance
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00696368
– volume: 586
  start-page: 35
  year: 2008
  end-page: 44
  ident: CR3
  article-title: Endurance exercise performance: the physiology of champions
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.143834
– volume: 12
  start-page: 4725
  year: 2021
  ident: CR32
  article-title: Brown adipose tissue is the key depot for glucose clearance in microbiota depleted mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24659-8
– volume: 24
  start-page: 4948
  year: 2010
  end-page: 4959
  ident: CR21
  article-title: Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism
  publication-title: FASEB J.
– volume: 316
  start-page: E956
  year: 2019
  end-page: E966
  ident: CR5
  article-title: Microbiome potentiates endurance exercise through intestinal acetate production
  publication-title: Am. J. Physiol. Endocrinol. Metabol.
  doi: 10.1152/ajpendo.00510.2018
– volume: 21
  start-page: 1497
  year: 2015
  end-page: 1501
  ident: CR20
  article-title: Microbiota depletion promotes browning of white adipose tissue and reduces obesity
  publication-title: Nat. Med.
  doi: 10.1038/nm.3994
– volume: 598
  start-page: 5593
  year: 2020
  end-page: 5594
  ident: CR30
  article-title: Skeletal muscle glycogen synthesis - it turns out we still know very little
  publication-title: J. Physiol-London.
  doi: 10.1113/JP280759
– volume: 45
  start-page: 2924
  year: 1986
  end-page: 2929
  ident: CR50
  article-title: Lactate production under fully aerobic conditions - the lactate shuttle during rest and exercise
  publication-title: Fed. Proc.
– volume: 10
  start-page: 1906
  year: 2019
  ident: CR18
  article-title: Investigation of the effects of microbiota on exercise physiological adaption, performance, and energy utilization using a gnotobiotic animal model
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2019.01906
– volume: 312
  start-page: 734
  year: 2006
  end-page: 737
  ident: CR36
  article-title: Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase
  publication-title: Science.
  doi: 10.1126/science.1123965
– volume: 111
  start-page: e54052
  year: 2016
  ident: CR24
  article-title: The treadmill fatigue test: a simple, high-throughput assay of fatigue-like behavior for the mouse
  publication-title: Jove -J. Vis. Exp.
– volume: 285
  start-page: 12851
  year: 2010
  end-page: 12861
  ident: CR48
  article-title: Impaired glucose tolerance and predisposition to the fasted state in liver glycogen synthase knock-out mice
  publication-title: J Biol. Chem.
  doi: 10.1074/jbc.M110.106534
– volume: 9
  start-page: 3760
  year: 2018
  ident: CR43
  article-title: The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05767-4
– volume: 77
  start-page: 469
  year: 2021
  end-page: 480
  ident: CR29
  article-title: Enhanced skeletal muscle glycogen repletion after endurance exercise is associated with higher plasma insulin and skeletal muscle hexokinase 2 protein levels in mice: comparison of level running and downhill running model
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-021-00806-z
– volume: 23
  start-page: 458
  year: 2018
  ident: 1063_CR40
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2018.03.011
– volume: 285
  start-page: 12851
  year: 2010
  ident: 1063_CR48
  publication-title: J Biol. Chem.
  doi: 10.1074/jbc.M110.106534
– volume: 231
  start-page: e13581
  year: 2021
  ident: 1063_CR31
  publication-title: Acta Physiol.
  doi: 10.1111/apha.13581
– volume: 600
  start-page: 2359
  year: 2022
  ident: 1063_CR44
  publication-title: J Physiol.
  doi: 10.1113/JP282999
– volume: 29
  start-page: 249
  year: 2019
  ident: 1063_CR9
  publication-title: Int. J. Sport Nutr. Exerc. Metab.
  doi: 10.1123/ijsnem.2018-0024
– volume: 77
  start-page: 469
  year: 2021
  ident: 1063_CR29
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-021-00806-z
– volume: 10
  start-page: 1906
  year: 2019
  ident: 1063_CR18
  publication-title: Front Microbiol.
  doi: 10.3389/fmicb.2019.01906
– volume: 318
  start-page: G717
  year: 2020
  ident: 1063_CR42
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00304.2019
– volume: 27
  start-page: 757
  year: 2018
  ident: 1063_CR27
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2018.03.008
– volume: 129
  start-page: S35
  year: 1984
  ident: 1063_CR28
  publication-title: Am. Rev. Respir Dis.
  doi: 10.1164/arrd.1984.129.2P2.S35
– volume: 45
  start-page: 2924
  year: 1986
  ident: 1063_CR50
  publication-title: Fed. Proc.
– volume: 31
  start-page: 592
  year: 2020
  ident: 1063_CR33
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2020.01.012
– volume: 598
  start-page: 5593
  year: 2020
  ident: 1063_CR30
  publication-title: J. Physiol-London.
  doi: 10.1113/JP280759
– volume: 104
  start-page: 979
  year: 2007
  ident: 1063_CR19
  publication-title: Proc. Natl. Acad Sci. USA.
  doi: 10.1073/pnas.0605374104
– volume: 31
  start-page: 77
  year: 2020
  ident: 1063_CR4
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2019.11.001
– volume: 28
  start-page: 303
  year: 2022
  ident: 1063_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-022-01688-4
– volume: 165
  start-page: 1332
  year: 2016
  ident: 1063_CR13
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.05.041
– volume: 24
  start-page: 4948
  year: 2010
  ident: 1063_CR21
  publication-title: FASEB J.
– volume: 50
  start-page: 747
  year: 2018
  ident: 1063_CR14
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000001495
– volume: 61
  start-page: 70
  year: 2020
  ident: 1063_CR25
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.RA119000424
– volume: 1864
  start-page: 880
  year: 2019
  ident: 1063_CR34
  publication-title: Bba-Mol. Cell Biol. L.
– ident: 1063_CR49
  doi: 10.1096/fasebj.2020.34.s1.03660
– volume: 10
  start-page: 555
  year: 2019
  ident: 1063_CR6
  publication-title: Gut Microbes.
  doi: 10.1080/19490976.2018.1562268
– volume: 7
  start-page: 91
  year: 2019
  ident: 1063_CR41
  publication-title: Microbiome.
  doi: 10.1186/s40168-019-0704-8
– volume: 48
  start-page: 467
  year: 2018
  ident: 1063_CR47
  publication-title: Sports Med.
  doi: 10.1007/s40279-017-0751-x
– volume: 51
  start-page: 866
  year: 2019
  ident: 1063_CR7
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/01.mss.0000563088.00243.fc
– volume: 312
  start-page: 734
  year: 2006
  ident: 1063_CR36
  publication-title: Science.
  doi: 10.1126/science.1123965
– volume: 586
  start-page: 35
  year: 2008
  ident: 1063_CR3
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.143834
– volume: 72
  start-page: 572
  year: 2008
  ident: 1063_CR12
  publication-title: Biosci. Biotechnol. Biochem.
  doi: 10.1271/bbb.70474
– volume: 21
  start-page: 1497
  year: 2015
  ident: 1063_CR20
  publication-title: Nat. Med.
  doi: 10.1038/nm.3994
– volume: 152
  start-page: 48
  year: 2011
  ident: 1063_CR38
  publication-title: Endocrinology.
  doi: 10.1210/en.2010-0661
– volume: 2
  start-page: 840
  year: 2020
  ident: 1063_CR11
  publication-title: Nat Metab.
  doi: 10.1038/s42255-020-0188-7
– volume: 29
  start-page: 552
  year: 2015
  ident: 1063_CR17
  publication-title: J. Strength Cond. Res.
  doi: 10.1519/JSC.0000000000000644
– volume: 12
  start-page: 4725
  year: 2021
  ident: 1063_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24659-8
– volume: 18
  start-page: 204
  year: 2019
  ident: 1063_CR37
  publication-title: Lipids Health Dis.
  doi: 10.1186/s12944-019-1151-z
– volume: 25
  start-page: 1583
  year: 2015
  ident: 1063_CR26
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1501.01039
– volume: 36
  start-page: 3
  year: 2020
  ident: 1063_CR45
  publication-title: Lab Anim Res.
  doi: 10.1186/s42826-019-0035-8
– volume: 17
  start-page: 28
  year: 2022
  ident: 1063_CR1
  publication-title: Orphanet J Rare Dis.
  doi: 10.1186/s13023-022-02184-1
– volume: 6
  start-page: 179
  year: 2017
  ident: 1063_CR16
  publication-title: J. Sport Health Sci.
  doi: 10.1016/j.jshs.2016.05.001
– volume: 55
  start-page: 148
  year: 2006
  ident: 1063_CR35
  publication-title: Diabetes.
  doi: 10.2337/diabetes.55.01.06.db05-0982
– volume: 56
  start-page: 7
  year: 1987
  ident: 1063_CR46
  publication-title: Eur. J. Appl. Physiol. Occup. Physiol.
  doi: 10.1007/BF00696368
– volume: 9
  start-page: 3760
  year: 2018
  ident: 1063_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05767-4
– volume: 7
  start-page: e000930
  year: 2021
  ident: 1063_CR10
  publication-title: BMJ Open Sport Exerc. Med.
  doi: 10.1136/bmjsem-2020-000930
– volume: 93
  start-page: 217
  year: 2018
  ident: 1063_CR39
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2017.12.003
– volume: 1
  start-page: 15
  year: 2005
  ident: 1063_CR23
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2004.12.003
– volume: 47
  start-page: 75
  year: 2019
  ident: 1063_CR8
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1249/JES.0000000000000183
– volume: 22
  start-page: 117
  year: 2011
  ident: 1063_CR22
  publication-title: Trends Endocrin. Met.
  doi: 10.1016/j.tem.2011.01.002
– volume: 316
  start-page: E956
  year: 2019
  ident: 1063_CR5
  publication-title: Am. J. Physiol. Endocrinol. Metabol.
  doi: 10.1152/ajpendo.00510.2018
– volume: 2
  start-page: 817
  year: 2020
  ident: 1063_CR2
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-020-0251-4
– volume: 111
  start-page: e54052
  year: 2016
  ident: 1063_CR24
  publication-title: Jove -J. Vis. Exp.
SSID ssj0025474
Score 2.4468954
Snippet The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial...
Abstract The microbiota enhances exercise performance and regulates host physiology and energy metabolism by producing beneficial metabolites via bacterial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1820
SubjectTerms 13/1
13/51
631/443/319/1557
631/443/319/1642/2037
64/60
82/80
Adipose tissue
Aerobic capacity
Aerobics
Animal models
Biomedical and Life Sciences
Biomedicine
Body fat
Body weight gain
Energy metabolism
Exercise
Fermentation
Germfree
Glucose
Glucose metabolism
Intestinal microflora
Lipolysis
Medical Biochemistry
Metabolism
Metabolites
Microbiomes
Microbiota
Molecular Medicine
Musculoskeletal system
Oxygen consumption
Phenotypes
Physical fitness
Physical training
Skeletal muscle
Specific pathogen free
Stem Cells
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5VPaBeELQFAgUZqeICUeNXHseCqCqk7amVerNixysimqQiu0j8e2YcZ9vleeGaeLPe8djzzc7k-wCOG146K5xOtfcuVXnjUotxMNWysF56VeSB1GdxkZ9fqU_X-vqe1Bf1hE30wJPhThqZ4TGOyTYhd1_m1gnvbCOkVXT-BibQrMrmZCqmWloVKr4ik8nyZORCFNRsS71DGJRTtRWGAlv_7yDmr52SP5VLQxQ6ewQPI3xkp9O0H8OO7_fh4LTH1Ln7zt6w0NAZ_infhweLWDc_gHbRToRLq5q1syzJyOgNDzaLLjGHcdMhKGff2pp1QxOFvdiwZOMXjE4I01m3HvF7WWx0Zx1etMNNO3b4WEbK9odwdfbx8sN5GkUWUqcVX6XLJQZxKV1do1VzKppx7RCF-VygDaWoKyFsXfhSWInjmqywzuJp7axseOVr-QR2-6H3z4BlHrMfaRslLaKaitu8ooSm0tohEFlmCfDZ5sZFBnISwrgxoRIuSzOtk8F1MmGdjErg7eYztxP_xl9Hv6el3Iwk7uxwAT3KRI8y__KoBI5mRzBxQ4-GeP4KUhLlCbze3MatSPWVuvfDmsbgr6Yzskzg6eQ3m5kEpWFeog3KLY_amur2nb79HOi-iUwDcRQ-9N3sfHfz-rMtnv8PW7yAPRF2DXU8HsHu6uvav0QUtrKvwob7AQtvLV0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagSIgXBC3HloKMhHgBq_GV4wkVRFUhLU9U2jcrPhaiNklpdpH675lxnF0tR18dx_Ex9nzjmcxHyBvPS2eF00yH4JjKvWMW9CDTsrBBBlXkManP_Gt-dq6-LPQiXbgNKaxyOhPjQe17h3fkx5horUAqR_7h6idD1ij0riYKjbvkHgckgtQNxWJrcGkVszBzgBhMgt5KP81ksjweoLDA8FuMJgI1zdSOYor5-_8FOv-OnfzDgRr10ukj8jABSnoySsBjcid0--TgpANjur2hb2kM8Yx35_vk_jx50g9IM2_GFEyrmjYTUclA8Z8POtEwUQea1AFMp7-amra9T1RftF_S4QL0FQB32q4H-C5Noe-0hULbXzZDC81S5Lp_Qs5PP3_7dMYS7QJzWvEVWy5BrUvp6tpZn6MbjWsHuCzkAuZTiroSwtZFKIWVUM9nhXUWzm9npedVqOVTstf1XXhOaBbAHpLWK2kB51Tc5hWaOJXWDqDJMpsRPs25cSknOVJjXJroG5elGdfJwDqZuE5Gzci7zTtXY0aOW2t_xKXc1MRs2rGgv_5u0uY0XmYAFQpAkmAdhjK3TgQYu5BWoY6HRo4mQTBpiw9mK5Az8nrzGDYnelzqLvRrrAOjxlOznJFno9xsehK5h3kJc1DuSNROV3efdM2PmAAc02sAsoJG30_Ct-3X_-fi8PZhvCAPRNwPGN14RPZW1-vwEhDXyr6K2-o3ikImzw
  priority: 102
  providerName: ProQuest
Title Microbiota influences host exercise capacity via modulation of skeletal muscle glucose metabolism in mice
URI https://link.springer.com/article/10.1038/s12276-023-01063-4
https://www.ncbi.nlm.nih.gov/pubmed/37542180
https://www.proquest.com/docview/2859756121
https://www.proquest.com/docview/2846931838
https://pubmed.ncbi.nlm.nih.gov/PMC10474268
https://doaj.org/article/d30eed7610114e86bc2ecbd23b441304
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aFMZextbuI10XVBh72cxsSbbsxzS0lEBK2VbIm7BkZTWr7VEnhf33O8myR9Z2sKeAfFb0cdL95Dv9DuB9EaVaUR0HsTE64EmhA4V2MIiZUIYZLhJH6rO4SM6v-HwZL3eA9ndhXNC-o7R023QfHfa5jSgVNlzWRv-gWQ34LuylArffEexNp_Ov8-GYFXPB_fWYkKUPvLllghxT_0Pw8n6U5F-uUmeBzp7DMw8dybRr7AvYMfU-HEyxH031i3wgLpjTfSXfhycL7zM_gHJRdmRL65yUfUqSltjbHaRPuEQ02kyNgJzclTmpmsIn9SLNirQ_0DIhRCfVpsX_JT7InVRYqJqbsq2wWmKz2r-Eq7PTb7PzwCdYCHTMo3WwWqEBZ0znuVZFYh1mUawRgZmE4hgymmeUqlyYlCqGckUolFa4U2vFiigzOXsFo7qpzRsgocGTD1MFZwoRTRapJLOHmSyONYKQVTiGqB9zqT37uE2CcSOdF5ylspsnifMk3TxJPoaPwzs_O-6Nf0qf2KkcJC1vtitobr9Lr0eyYCGCAoGYEc-BJk2Upgb7Tpni1ppjJUe9Iki_mFtpOf6EzSIajeF4eIzL0PpW8to0GyuDvbb7YzqG153eDC1xWYajFMcg3dKoraZuP6nLa0f1bYk0EENhpZ965fvTrsfH4vD_xN_CU-rWh41rPILR-nZj3iHWWqsJ7IqlmPglhr8npxeXX7B0lswm7vvFb1tDKFU
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXBC2UhQJGAi5gdWM7rwNC5VFtabenVtqbiR0vRDRJaXZB_VP8RmacZFfLo7deHcexPeOZbzLjGYDneZBYI2zIQ-csV1FuuUE9yEMZGyediiOf1Gd8FI1O1KdJOFmDX_1dGAqr7GWiF9R5bekf-Q4lWouplGPw9uw7p6pR5F3tS2i0bHHgLn6iyda82f-A9H0hxN7H4_cj3lUV4DZUwYxPp6i1pLRZZk0ekZcoCC3CDhcJhepUZKkQJotdIozEfvkwNtageLJG5kHqMonjXoPrilyMeH7iydLAC5XP-hwgpOES9WR3SWcok50GG2MK96XoJYQFXK0oQl8v4F8g9-9YzT8ctl4P7t2B2x2AZbstx92FNVdtwOZuhcZ7ecFeMh9S6v_Vb8CNcee534RiXLQpn2YZK_rCKA2jOyasL_vELGpui2YB-1FkrKzzrrQYq6es-Yb6EQ0FVs4b_C7rQu1ZiY2mPi2aEodlJYq9e3ByJQS5D-tVXbkHwIYO7S9pciUN4qo0MFFKJlUahhah0HQ4gKDfc227HOhUiuNUe1-8THRLJ4100p5OWg3g1eKdszYDyKW93xEpFz0pe7dvqM-_6E4Y6FwOEZrEiFzRGnVJZKxwuHYhjSJMgYNs94ygO5HS6OUBGMCzxWMUBuThySpXz6kPrpqkdDKArZZvFjPxtY6DBPcgWeGolamuPqmKrz7hOKXzQCSHg77umW85r__vxcPLl_EUbo6Ox4f6cP_o4BHcEv5sUGTlNqzPzufuMaK9mXnijxiDz1d9pn8DXttkRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1VcELQ8thQwEnABaxPbeeyhQi3tqqXsqkJU6s2NH4GoTVKaXVD_Ir-KseOkWh699Zp4vbbHnvkmM54PoVc6TJWkKiKRMYrwWCsiwQ6SiCXSMMOT2BX1mUzj_WP-8SQ6WUK_urswNq2y04lOUeta2W_kQ1toLbFUjuEw92kRR7vj9xffiWWQspHWjk4j8zQLesuVG_OXPA7N1U9w55qtg12Q_WtKx3tfPuwTzzhAVMTDGclzsGiMqSxTUsc2ghRGCiCJiSkHU0uzEaUyS0xKJYN2OkikkqC6lGQ6HJmMQb930EoCswVHcGVnb3r0uXf_Iu5qQocAeAgDK-qv8AQsHTbwMLHJwDa3CUAD4Qtm0rEJ_AsC_53J-Uc411nJ8X10z8NbvN3uxwdoyVRraH27Ate-vMJvsEs4dV_y19DqxMf111ExKdqCULMMFx1tSoPtDRTckUJhBXZdgdOAfxQZLmvticdwnePmDKwnuBG4nDfwv9gn4uMSHsr6vGhK6BaXoBQfouNbEckjtFzVlXmCcGDAO2NScyYBdY1CGY-swzWKIgVAKQ8GKOzWXChfId0SdZwLF6lnqWjlJEBOwslJ8AF62__moq0PcmPrHSvKvqWt7e0e1JdfhVcVQrMAgEsCuBZ8VZPGUlEDc6dMcos4oJPNbiMIr3AacX08Buhl_xpUhY3_ZJWp57YNzNrq8HSAHrf7ph-JY0IOU1iDdGFHLQx18U1VfHPlyG2xD8B50Om7bvNdj-v_a7Fx8zReoFU43-LTwfTwKbpL3dGwaZebaHl2OTfPAArO5HN_xjA6ve1j_RtsR28f
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiota+influences+host+exercise+capacity+via+modulation+of+skeletal+muscle+glucose+metabolism+in+mice&rft.jtitle=Experimental+%26+molecular+medicine&rft.au=Kim%2C+Hye+Jin&rft.au=Kim%2C+Youn+Ju&rft.au=Kim%2C+Yong+Jae&rft.au=Baek%2C+Ji+Hyeon&rft.date=2023-08-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2092-6413&rft.volume=55&rft.issue=8&rft.spage=1820&rft.epage=1830&rft_id=info:doi/10.1038%2Fs12276-023-01063-4&rft.externalDocID=10_1038_s12276_023_01063_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2092-6413&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2092-6413&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2092-6413&client=summon