A population-wide gene-environment interaction study on how genes, schools, and residential areas shape achievement
A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood...
Saved in:
Published in | NPJ science of learning Vol. 7; no. 1; pp. 29 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.10.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2056-7936 2056-7936 |
DOI | 10.1038/s41539-022-00145-8 |
Cover
Abstract | A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties. |
---|---|
AbstractList | A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties. Abstract A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties. A child's environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children's standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students' EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children's individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties.A child's environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children's standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students' EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children's individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties. |
ArticleNumber | 29 |
Author | Lyngstad, Torkild H. Zachrisson, Henrik D. Torvik, Fartein A. Borgen, Nicolai T. Ayorech, Ziada Ystrom, Eivind Eilertsen, Espen M. Andreassen, Ole A. Cheesman, Rosa |
Author_xml | – sequence: 1 givenname: Rosa orcidid: 0000-0002-6543-0402 surname: Cheesman fullname: Cheesman, Rosa email: rosacg@uio.no organization: PROMENTA Research Center, Department of Psychology, University of Oslo – sequence: 2 givenname: Nicolai T. orcidid: 0000-0002-7638-3293 surname: Borgen fullname: Borgen, Nicolai T. organization: Department of Special Needs Education, Faculty of Educational Sciences, University of Oslo – sequence: 3 givenname: Torkild H. orcidid: 0000-0001-7830-9305 surname: Lyngstad fullname: Lyngstad, Torkild H. organization: Department of Sociology & Human Geography, University of Oslo – sequence: 4 givenname: Espen M. surname: Eilertsen fullname: Eilertsen, Espen M. organization: PROMENTA Research Center, Department of Psychology, University of Oslo – sequence: 5 givenname: Ziada surname: Ayorech fullname: Ayorech, Ziada organization: PROMENTA Research Center, Department of Psychology, University of Oslo – sequence: 6 givenname: Fartein A. surname: Torvik fullname: Torvik, Fartein A. organization: PROMENTA Research Center, Department of Psychology, University of Oslo, Centre for Fertility and Health, Norwegian Institute of Public Health – sequence: 7 givenname: Ole A. orcidid: 0000-0002-4461-3568 surname: Andreassen fullname: Andreassen, Ole A. organization: NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo – sequence: 8 givenname: Henrik D. surname: Zachrisson fullname: Zachrisson, Henrik D. organization: Department of Special Needs Education, Faculty of Educational Sciences, University of Oslo – sequence: 9 givenname: Eivind orcidid: 0000-0003-4390-6171 surname: Ystrom fullname: Ystrom, Eivind organization: PROMENTA Research Center, Department of Psychology, University of Oslo, Department of Mental Disorders, Norwegian Institute of Public Health |
BookMark | eNp9kktv1DAUhSNUREvpH2BDJDYsCPgRvzZIVcWjUiU2sLYc52biUcYebGeq_nucSXm0i658ZX_n3Hut87I68cFDVb3G6ANGVH5MLWZUNYiQBiHcskY-q84IYrwRivKT_-rT6iKlLSqU4Ey16kV1SjlFREh2VqXLeh_282SyC765dT3UG_DQgD-4GPwOfK6dzxCNXYg65bm_q0sxhtsjmd7XyY4hTKUwvq8jpGLiszNTbSKYVKfR7KE2dnRwgMXwVfV8MFOCi_vzvPr55fOPq2_Nzfev11eXN41lLc7NYHs8kJ4xwYnsBoS5NK0ghjDUKSqIUBiDHSShVg2CESxoh0THqGlJ13NCz6vr1bcPZqv30e1MvNPBOH28CHGjTczOTqCBS9ILKiVHsrUcKTww2YFQZukiRfH6tHrt524HvS1rRDM9MH344t2oN-GgFceUs2WYN6uBjS5l57UP0WiMJCNaiVbhQry7bxHDrxlS1juXLEyT8RDmpImgiJYlFS_o20foNszRl88sFFEUcyZYocifliGlCMPfcTHSS4j0GiJdQqSPIdKyiOQjkXX5mI6ylpueltJVmkofv4H4b6onVL8B97_ajQ |
CitedBy_id | crossref_primary_10_1016_j_jad_2023_03_043 crossref_primary_10_1016_j_ssresearch_2025_103174 crossref_primary_10_1038_s41539_024_00225_x crossref_primary_10_1038_s41562_024_01967_9 crossref_primary_10_1016_j_pnpbp_2023_110932 crossref_primary_10_1186_s40359_024_01997_y crossref_primary_10_1016_j_tics_2023_07_001 crossref_primary_10_1093_esr_jcaf001 crossref_primary_10_1038_s41539_024_00260_8 crossref_primary_10_1016_j_rssm_2024_100960 crossref_primary_10_1177_09526951251314314 |
Cites_doi | 10.2105/AJPH.2013.301252 10.1111/jcpp.12083 10.1007/978-94-007-2309-2_2 10.1073/pnas.1708491114 10.1038/s41562-019-0562-1 10.1038/s41539-020-0060-2 10.1007/s10519-006-9113-4 10.1093/esr/jcz066 10.1515/9780691226705 10.1111/desc.12434 10.18637/jss.v067.i01 10.1177/0956797615612727 10.1111/1468-0297.00134 10.2105/AJPH.2013.301355 10.1016/j.biopsych.2013.09.006 10.1101/865360 10.1038/s41539-018-0019-8 10.1126/science.174.4016.1285 10.1177/00031224211027800 10.1037/0033-2909.84.2.309 10.1073/pnas.2201869119 10.1111/jcpp.13276 10.1093/oso/9780197545706.003.0006 10.1038/s41588-018-0147-3 10.1111/ecca.12010 10.1093/ije/dyw029 10.1093/esr/jcac014 10.1126/sciadv.aaw3538 10.1086/658881 10.1186/s13742-015-0047-8 10.1038/mp.2016.107 10.1002/9780470147658.chpsy0114 10.15195/v5.a22 10.1111/jcpp.13656 10.1111/obes.12161 10.1007/s10519-011-9480-3 10.1016/j.econedurev.2012.03.004 10.1126/science.1186149 10.1177/003172171409500603 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022. The Author(s). info:eu-repo/semantics/openAccess |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022. The Author(s). – notice: info:eu-repo/semantics/openAccess |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AHOVV AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEDU PQEST PQGLB PQQKQ PQUKI PRINS 7X8 3HK 5PM DOA |
DOI | 10.1038/s41539-022-00145-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Education Research Index ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Education ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic NORA - Norwegian Open Research Archives PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Education ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Education |
EISSN | 2056-7936 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_e682d73886084c6091f58be79a791187 PMC9613652 10852_97491 10_1038_s41539_022_00145_8 |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions) grantid: 894675 funderid: https://doi.org/10.13039/100010665 – fundername: Norges Forskningsråd (Research Council of Norway) grantid: 288083; 300668; 223273; 273291; 288083 funderid: https://doi.org/10.13039/501100005416 – fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)) – fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013)) grantid: 818425; 818420; 818425 funderid: https://doi.org/10.13039/100011199 – fundername: ; – fundername: ; grantid: 818425; 818420; 818425 – fundername: ; grantid: 288083; 300668; 223273; 273291; 288083 – fundername: ; grantid: 894675 |
GroupedDBID | 0R~ 5VS 7X7 8FE 8FH 8FI AAHSB AAJSJ AASML ABUWG ACGFS ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M7P M~E NAO NO~ OK1 PGMZT PIMPY PQQKQ PROAC PUEGO RNT RPM SNYQT UKHRP 8FJ AAYXX ALIPV CCPQU CITATION HMCUK PHGZM PHGZT PQEDU 3V. 7XB 8FK AEUYN AHOVV AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 3HK ACSMW EJD 5PM |
ID | FETCH-LOGICAL-c541t-fcd1f2d557628bf0168a472a250b93727911ecf823c9f752173b07b53a42bd623 |
IEDL.DBID | 7X7 |
ISSN | 2056-7936 |
IngestDate | Wed Aug 27 01:27:06 EDT 2025 Thu Aug 21 18:38:45 EDT 2025 Sat Apr 29 05:43:57 EDT 2023 Fri Sep 05 03:02:26 EDT 2025 Thu Aug 28 18:12:57 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Tue Jul 01 04:20:38 EDT 2025 Sun Aug 31 08:58:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fcd1f2d557628bf0168a472a250b93727911ecf823c9f752173b07b53a42bd623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 EU/101045526 |
ORCID | 0000-0002-4461-3568 0000-0001-7830-9305 0000-0002-6543-0402 0000-0002-7638-3293 0000-0003-4390-6171 |
OpenAccessLink | https://www.proquest.com/docview/2729316575?pq-origsite=%requestingapplication% |
PMID | 36302785 |
PQID | 2729316575 |
PQPubID | 2041916 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e682d73886084c6091f58be79a791187 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9613652 cristin_nora_10852_97491 proquest_miscellaneous_2730317396 proquest_journals_2729316575 crossref_primary_10_1038_s41539_022_00145_8 crossref_citationtrail_10_1038_s41539_022_00145_8 springer_journals_10_1038_s41539_022_00145_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-27 |
PublicationDateYYYYMMDD | 2022-10-27 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ science of learning |
PublicationTitleAbbrev | npj Sci. Learn |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | TrejoSSchools as Moderators of Genetic Associations with Life Course Attainments: Evidence from the WLS and Add HealthSociol. Sci.2018551354010.15195/v5.a22306137606314676 Cheesman, R. et al. How interactions between ADHD and schools affect educational achievement: a family‐based genetically sensitive study. J. Child Psychol. Psychiat.https://doi.org/10.1111/jcpp.13656 (2022). MagnusPCohort profile update: the norwegian mother and child cohort study (moba)Int. J. Epidemiol.20164538238810.1093/ije/dyw02927063603 PlominRDeFriesJCLoehlinJCGenotype-environment interaction and correlation in the analysis of human behaviorPsychol. Bull.1977843093221:STN:280:DyaE2s7is1SltQ%3D%3D10.1037/0033-2909.84.2.309557211 van der SluisSPosthumaDDolanCVA note on false positives and power in G × E modelling of twin dataBehav. Genet20124217018610.1007/s10519-011-9480-321748401 IsungsetMASocial and genetic associations with educational performance in a Scandinavian welfare stateProc. Natl Acad. Sci. USA2022119e22018691191:CAS:528:DC%2BB38XhvVSrsr3F10.1073/pnas.220186911935709318 HardenKPTurkheimerELoehlinJCGenotype by environment interaction in adolescents’ cognitive aptitudeBehav. Genet20073727328310.1007/s10519-006-9113-416977503 von Stumm, S. et al. School quality ratings are weak predictors of students’ achievement and well-being. J. Child Psychol. Psychiatryhttps://doi.org/10.1111/jcpp.13276 (2020). HægelandTRaaumOSalvanesKGPennies from heaven? Using exogenous tax variation to identify effects of school resources on pupil achievementEcon. Educ. Rev.20123160161410.1016/j.econedurev.2012.03.004 BelskyDWGenetics and the geography of health, behaviour and attainmentNat. Hum. Behav.2019357658610.1038/s41562-019-0562-1309626126565482 Harden, K. P. The Genetic Lottery: Why DNA Matters for Social Equality. (2021). D’OnofrioBMLaheyBBTurkheimerELichtensteinPCritical need for family-based, quasi-experimental designs in integrating genetic and social science researchAm. J. Public Health2013103S46S5510.2105/AJPH.2013.301252239275163778076 Smith-WoolleyEDifferences in exam performance between pupils attending selective and non-selective schools mirror the genetic differences between themNPJ Sci. Learn.20183310.1038/s41539-018-0019-8306314646220309 Bronfenbrenner, U. & Morris, P. A. In Handbook of child psychology (eds. Damon, W. & Lerner, R. M.) (John Wiley & Sons, Inc., 2007). https://doi.org/10.1002/9780470147658.chpsy0114. HartSASodenBJohnsonWSchatschneiderCTaylorJExpanding the environment: gene × school-level SES interaction on reading comprehensionJ. Child Psychol. Psychiatry2013541047105510.1111/jcpp.12083237255493766464 DuncanGJMurnaneRJGrowing income inequality threatens american educationPhi Delta Kappan20149581410.1177/003172171409500603 Tucker-DrobEMBatesTCLarge Cross-National Differences in Gene × Socioeconomic Status Interaction on IntelligencePsychol. Sci.20162713814910.1177/095679761561272726671911 Pfeffer, F. T. & Waitkus, N. The wealth inequality of nations. Am. Sociol. Rev. 000312242110278 (2021). https://doi.org/10.1177/00031224211027800. The easier way to create a map of Norway using {fhimaps} - Daniel Roelfs. https://danielroelfs.com/blog/the-easier-way-to-create-a-map-of-norway-using-fhimaps/. SelzamSPredicting educational achievement from DNAMol. Psychiatry2017222672721:STN:280:DC%2BC2s3itFartw%3D%3D10.1038/mp.2016.10727431296 WangHGenotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK BiobankSci. Adv.20195eaaw353810.1126/sciadv.aaw3538314533256693916 LeeJJGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat. Genet.201850111211211:CAS:528:DC%2BC1cXhtlOis7zI10.1038/s41588-018-0147-3300383966393768 RøedKRaaumOAdministrative registers – Unexplored reservoirs of Scientific Knowledge?Economic J.2003113F258F28110.1111/1468-0297.00134 NicolettiCRabeBInequality in pupils’ test scores: how much do family, sibling type and neighbourhood matter?Economica20138019721810.1111/ecca.12010 Barth, E., Moene, K. & Pedersen, A. W. In Europe’s income, wealth, consumption, and inequality 218–245 (Oxford University Press, 2021). https://doi.org/10.1093/oso/9780197545706.003.0006. KellerMCGene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solutionBiol. Psychiatry201475182410.1016/j.biopsych.2013.09.00624135711 Allegrini, A. G. et al. Multivariable G-E interplay in the prediction of educational achievement. BioRxivhttps://doi.org/10.1101/865360 (2019). Hovde LyngstadTSkardhamarTNordic register data and their untapped potential for criminological knowledgeCrime. Justice20114061364510.1086/658881 Eurofound. Annual review of working life. https://www.eurofound.europa.eu/publications/report/2018/annual-review-of-working-life-2017. (2017). Bromann, K. Randomized Controlled Trials Commissioned by the Institute of Education Sciences Since 2002: How Man. Policy Commons (2013). LalibertéJ-WLong-Term Contextual Effects in Education: Schools and NeighborhoodsAm. Economic J.: Economic Policy202113336377 BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01 Galster, G. C. in Neighbourhood Effects Research: New Perspectives (eds. van Ham, M., Manley, D., Bailey, N., Simpson, L. & Maclennan, D.) 23–56 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-2309-2_2. ChangCCSecond-generation PLINK: rising to the challenge of larger and richer datasetsGigascience2015410.1186/s13742-015-0047-8257228524342193 Scarr-SalapatekSRace, social class, and IQScience1971174128512951:STN:280:DyaE38%2Foslehug%3D%3D10.1126/science.174.4016.12855167501 Baier, T. et al. Genetic Influences on Educational Achievement in Cross-National Perspective. Eur. Sociol Rev.https://doi.org/10.1093/esr/jcac014 (2022). HermansenASBorgenNTMastekaasaALong-Term Trends in Adult Socio-Economic Resemblance between Former Schoolmates and Neighbouring ChildrenEur. Socio. Rev.20203636638010.1093/esr/jcz066 Esping-Andersen, G. The Three Worlds of Welfare Capitalism. (1990). HardenKPGenetic associations with mathematics tracking and persistence in secondary schoolNPJ Sci. Learn.20205110.1038/s41539-020-0060-2320476517002519 FiglioDNFreeseJKarbownikKRothJSocioeconomic status and genetic influences on cognitive developmentProc. Natl Acad. Sci. USA201711413441134461:CAS:528:DC%2BC2sXhvVSisbvI10.1073/pnas.1708491114291334135754768 FalchTSandsørAMJStrømBDo Smaller Classes Always Improve Students’ Long-run Outcomes?Oxf. Bull. Econ. Stat.20177965468810.1111/obes.12161 Haughbrook, R., Hart, S. A., Schatschneider, C. & Taylor, J. Genetic and environmental influences on early literacy skills across school grade contexts. Dev. Sci. 20, (2017). TaylorJRoehrigADSoden HenslerBConnorCMSchatschneiderCTeacher quality moderates the genetic effects on early readingScience20103285125141:CAS:528:DC%2BC3cXkvFegsr8%3D10.1126/science.1186149204135042905841 BoardmanJDDawJFreeseJDefining the environment in gene-environment research: lessons from social epidemiologyAm. J. Public Health2013103S64S7210.2105/AJPH.2013.301355239275143786759 KP Harden (145_CR15) 2007; 37 T Hægeland (145_CR26) 2012; 31 CC Chang (145_CR41) 2015; 4 AS Hermansen (145_CR27) 2020; 36 145_CR29 EM Tucker-Drob (145_CR10) 2016; 27 R Plomin (145_CR6) 1977; 84 C Nicoletti (145_CR4) 2013; 80 J Taylor (145_CR17) 2010; 328 J-W Laliberté (145_CR5) 2021; 13 KP Harden (145_CR28) 2020; 5 T Falch (145_CR30) 2017; 79 145_CR11 145_CR33 145_CR12 145_CR34 D Bates (145_CR44) 2015; 67 145_CR35 BM D’Onofrio (145_CR22) 2013; 103 145_CR36 T Hovde Lyngstad (145_CR40) 2011; 40 MC Keller (145_CR24) 2014; 75 GJ Duncan (145_CR3) 2014; 95 MA Isungset (145_CR14) 2022; 119 H Wang (145_CR31) 2019; 5 145_CR37 S Selzam (145_CR13) 2017; 22 145_CR18 S Trejo (145_CR20) 2018; 5 S Scarr-Salapatek (145_CR7) 1971; 174 P Magnus (145_CR38) 2016; 45 145_CR1 145_CR2 E Smith-Woolley (145_CR32) 2018; 3 145_CR21 145_CR43 JJ Lee (145_CR42) 2018; 50 JD Boardman (145_CR16) 2013; 103 145_CR8 SA Hart (145_CR19) 2013; 54 DN Figlio (145_CR9) 2017; 114 S van der Sluis (145_CR25) 2012; 42 K Røed (145_CR39) 2003; 113 DW Belsky (145_CR23) 2019; 3 |
References_xml | – reference: van der SluisSPosthumaDDolanCVA note on false positives and power in G × E modelling of twin dataBehav. Genet20124217018610.1007/s10519-011-9480-321748401 – reference: D’OnofrioBMLaheyBBTurkheimerELichtensteinPCritical need for family-based, quasi-experimental designs in integrating genetic and social science researchAm. J. Public Health2013103S46S5510.2105/AJPH.2013.301252239275163778076 – reference: Cheesman, R. et al. How interactions between ADHD and schools affect educational achievement: a family‐based genetically sensitive study. J. Child Psychol. Psychiat.https://doi.org/10.1111/jcpp.13656 (2022). – reference: The easier way to create a map of Norway using {fhimaps} - Daniel Roelfs. https://danielroelfs.com/blog/the-easier-way-to-create-a-map-of-norway-using-fhimaps/. – reference: SelzamSPredicting educational achievement from DNAMol. Psychiatry2017222672721:STN:280:DC%2BC2s3itFartw%3D%3D10.1038/mp.2016.10727431296 – reference: ChangCCSecond-generation PLINK: rising to the challenge of larger and richer datasetsGigascience2015410.1186/s13742-015-0047-8257228524342193 – reference: Haughbrook, R., Hart, S. A., Schatschneider, C. & Taylor, J. Genetic and environmental influences on early literacy skills across school grade contexts. Dev. Sci. 20, (2017). – reference: Pfeffer, F. T. & Waitkus, N. The wealth inequality of nations. Am. Sociol. Rev. 000312242110278 (2021). https://doi.org/10.1177/00031224211027800. – reference: Tucker-DrobEMBatesTCLarge Cross-National Differences in Gene × Socioeconomic Status Interaction on IntelligencePsychol. Sci.20162713814910.1177/095679761561272726671911 – reference: IsungsetMASocial and genetic associations with educational performance in a Scandinavian welfare stateProc. Natl Acad. Sci. USA2022119e22018691191:CAS:528:DC%2BB38XhvVSrsr3F10.1073/pnas.220186911935709318 – reference: BelskyDWGenetics and the geography of health, behaviour and attainmentNat. Hum. Behav.2019357658610.1038/s41562-019-0562-1309626126565482 – reference: WangHGenotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK BiobankSci. Adv.20195eaaw353810.1126/sciadv.aaw3538314533256693916 – reference: Harden, K. P. The Genetic Lottery: Why DNA Matters for Social Equality. (2021). – reference: Smith-WoolleyEDifferences in exam performance between pupils attending selective and non-selective schools mirror the genetic differences between themNPJ Sci. Learn.20183310.1038/s41539-018-0019-8306314646220309 – reference: Bronfenbrenner, U. & Morris, P. A. In Handbook of child psychology (eds. Damon, W. & Lerner, R. M.) (John Wiley & Sons, Inc., 2007). https://doi.org/10.1002/9780470147658.chpsy0114. – reference: Allegrini, A. G. et al. Multivariable G-E interplay in the prediction of educational achievement. BioRxivhttps://doi.org/10.1101/865360 (2019). – reference: LalibertéJ-WLong-Term Contextual Effects in Education: Schools and NeighborhoodsAm. Economic J.: Economic Policy202113336377 – reference: TrejoSSchools as Moderators of Genetic Associations with Life Course Attainments: Evidence from the WLS and Add HealthSociol. Sci.2018551354010.15195/v5.a22306137606314676 – reference: Scarr-SalapatekSRace, social class, and IQScience1971174128512951:STN:280:DyaE38%2Foslehug%3D%3D10.1126/science.174.4016.12855167501 – reference: BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01 – reference: RøedKRaaumOAdministrative registers – Unexplored reservoirs of Scientific Knowledge?Economic J.2003113F258F28110.1111/1468-0297.00134 – reference: Barth, E., Moene, K. & Pedersen, A. W. In Europe’s income, wealth, consumption, and inequality 218–245 (Oxford University Press, 2021). https://doi.org/10.1093/oso/9780197545706.003.0006. – reference: Hovde LyngstadTSkardhamarTNordic register data and their untapped potential for criminological knowledgeCrime. Justice20114061364510.1086/658881 – reference: Galster, G. C. in Neighbourhood Effects Research: New Perspectives (eds. van Ham, M., Manley, D., Bailey, N., Simpson, L. & Maclennan, D.) 23–56 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-2309-2_2. – reference: Eurofound. Annual review of working life. https://www.eurofound.europa.eu/publications/report/2018/annual-review-of-working-life-2017. (2017). – reference: MagnusPCohort profile update: the norwegian mother and child cohort study (moba)Int. J. Epidemiol.20164538238810.1093/ije/dyw02927063603 – reference: HartSASodenBJohnsonWSchatschneiderCTaylorJExpanding the environment: gene × school-level SES interaction on reading comprehensionJ. Child Psychol. Psychiatry2013541047105510.1111/jcpp.12083237255493766464 – reference: LeeJJGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat. Genet.201850111211211:CAS:528:DC%2BC1cXhtlOis7zI10.1038/s41588-018-0147-3300383966393768 – reference: TaylorJRoehrigADSoden HenslerBConnorCMSchatschneiderCTeacher quality moderates the genetic effects on early readingScience20103285125141:CAS:528:DC%2BC3cXkvFegsr8%3D10.1126/science.1186149204135042905841 – reference: FalchTSandsørAMJStrømBDo Smaller Classes Always Improve Students’ Long-run Outcomes?Oxf. Bull. Econ. Stat.20177965468810.1111/obes.12161 – reference: NicolettiCRabeBInequality in pupils’ test scores: how much do family, sibling type and neighbourhood matter?Economica20138019721810.1111/ecca.12010 – reference: HardenKPTurkheimerELoehlinJCGenotype by environment interaction in adolescents’ cognitive aptitudeBehav. Genet20073727328310.1007/s10519-006-9113-416977503 – reference: HardenKPGenetic associations with mathematics tracking and persistence in secondary schoolNPJ Sci. Learn.20205110.1038/s41539-020-0060-2320476517002519 – reference: HermansenASBorgenNTMastekaasaALong-Term Trends in Adult Socio-Economic Resemblance between Former Schoolmates and Neighbouring ChildrenEur. Socio. Rev.20203636638010.1093/esr/jcz066 – reference: Esping-Andersen, G. The Three Worlds of Welfare Capitalism. (1990). – reference: BoardmanJDDawJFreeseJDefining the environment in gene-environment research: lessons from social epidemiologyAm. J. Public Health2013103S64S7210.2105/AJPH.2013.301355239275143786759 – reference: PlominRDeFriesJCLoehlinJCGenotype-environment interaction and correlation in the analysis of human behaviorPsychol. Bull.1977843093221:STN:280:DyaE2s7is1SltQ%3D%3D10.1037/0033-2909.84.2.309557211 – reference: HægelandTRaaumOSalvanesKGPennies from heaven? Using exogenous tax variation to identify effects of school resources on pupil achievementEcon. Educ. Rev.20123160161410.1016/j.econedurev.2012.03.004 – reference: von Stumm, S. et al. School quality ratings are weak predictors of students’ achievement and well-being. J. Child Psychol. Psychiatryhttps://doi.org/10.1111/jcpp.13276 (2020). – reference: DuncanGJMurnaneRJGrowing income inequality threatens american educationPhi Delta Kappan20149581410.1177/003172171409500603 – reference: Baier, T. et al. Genetic Influences on Educational Achievement in Cross-National Perspective. Eur. Sociol Rev.https://doi.org/10.1093/esr/jcac014 (2022). – reference: Bromann, K. Randomized Controlled Trials Commissioned by the Institute of Education Sciences Since 2002: How Man. Policy Commons (2013). – reference: KellerMCGene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solutionBiol. Psychiatry201475182410.1016/j.biopsych.2013.09.00624135711 – reference: FiglioDNFreeseJKarbownikKRothJSocioeconomic status and genetic influences on cognitive developmentProc. Natl Acad. Sci. USA201711413441134461:CAS:528:DC%2BC2sXhvVSisbvI10.1073/pnas.1708491114291334135754768 – volume: 103 start-page: S46 year: 2013 ident: 145_CR22 publication-title: Am. J. Public Health doi: 10.2105/AJPH.2013.301252 – volume: 54 start-page: 1047 year: 2013 ident: 145_CR19 publication-title: J. Child Psychol. Psychiatry doi: 10.1111/jcpp.12083 – ident: 145_CR2 doi: 10.1007/978-94-007-2309-2_2 – volume: 114 start-page: 13441 year: 2017 ident: 145_CR9 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708491114 – volume: 3 start-page: 576 year: 2019 ident: 145_CR23 publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-019-0562-1 – volume: 5 start-page: 1 year: 2020 ident: 145_CR28 publication-title: NPJ Sci. Learn. doi: 10.1038/s41539-020-0060-2 – volume: 37 start-page: 273 year: 2007 ident: 145_CR15 publication-title: Behav. Genet doi: 10.1007/s10519-006-9113-4 – volume: 36 start-page: 366 year: 2020 ident: 145_CR27 publication-title: Eur. Socio. Rev. doi: 10.1093/esr/jcz066 – ident: 145_CR8 doi: 10.1515/9780691226705 – ident: 145_CR18 doi: 10.1111/desc.12434 – volume: 67 start-page: 1 year: 2015 ident: 145_CR44 publication-title: J. Stat. Softw. doi: 10.18637/jss.v067.i01 – volume: 27 start-page: 138 year: 2016 ident: 145_CR10 publication-title: Psychol. Sci. doi: 10.1177/0956797615612727 – volume: 113 start-page: F258 year: 2003 ident: 145_CR39 publication-title: Economic J. doi: 10.1111/1468-0297.00134 – volume: 103 start-page: S64 year: 2013 ident: 145_CR16 publication-title: Am. J. Public Health doi: 10.2105/AJPH.2013.301355 – volume: 75 start-page: 18 year: 2014 ident: 145_CR24 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2013.09.006 – ident: 145_CR12 doi: 10.1101/865360 – volume: 3 start-page: 3 year: 2018 ident: 145_CR32 publication-title: NPJ Sci. Learn. doi: 10.1038/s41539-018-0019-8 – ident: 145_CR34 – volume: 174 start-page: 1285 year: 1971 ident: 145_CR7 publication-title: Science doi: 10.1126/science.174.4016.1285 – ident: 145_CR36 doi: 10.1177/00031224211027800 – volume: 84 start-page: 309 year: 1977 ident: 145_CR6 publication-title: Psychol. Bull. doi: 10.1037/0033-2909.84.2.309 – volume: 119 start-page: e2201869119 year: 2022 ident: 145_CR14 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2201869119 – ident: 145_CR29 doi: 10.1111/jcpp.13276 – ident: 145_CR35 – ident: 145_CR37 doi: 10.1093/oso/9780197545706.003.0006 – volume: 50 start-page: 1112 year: 2018 ident: 145_CR42 publication-title: Nat. Genet. doi: 10.1038/s41588-018-0147-3 – volume: 80 start-page: 197 year: 2013 ident: 145_CR4 publication-title: Economica doi: 10.1111/ecca.12010 – volume: 45 start-page: 382 year: 2016 ident: 145_CR38 publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyw029 – ident: 145_CR11 doi: 10.1093/esr/jcac014 – ident: 145_CR43 – volume: 5 start-page: eaaw3538 year: 2019 ident: 145_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw3538 – volume: 40 start-page: 613 year: 2011 ident: 145_CR40 publication-title: Crime. Justice doi: 10.1086/658881 – volume: 4 year: 2015 ident: 145_CR41 publication-title: Gigascience doi: 10.1186/s13742-015-0047-8 – volume: 22 start-page: 267 year: 2017 ident: 145_CR13 publication-title: Mol. Psychiatry doi: 10.1038/mp.2016.107 – ident: 145_CR1 doi: 10.1002/9780470147658.chpsy0114 – volume: 13 start-page: 336 year: 2021 ident: 145_CR5 publication-title: Am. Economic J.: Economic Policy – volume: 5 start-page: 513 year: 2018 ident: 145_CR20 publication-title: Sociol. Sci. doi: 10.15195/v5.a22 – ident: 145_CR21 doi: 10.1111/jcpp.13656 – volume: 79 start-page: 654 year: 2017 ident: 145_CR30 publication-title: Oxf. Bull. Econ. Stat. doi: 10.1111/obes.12161 – ident: 145_CR33 – volume: 42 start-page: 170 year: 2012 ident: 145_CR25 publication-title: Behav. Genet doi: 10.1007/s10519-011-9480-3 – volume: 31 start-page: 601 year: 2012 ident: 145_CR26 publication-title: Econ. Educ. Rev. doi: 10.1016/j.econedurev.2012.03.004 – volume: 328 start-page: 512 year: 2010 ident: 145_CR17 publication-title: Science doi: 10.1126/science.1186149 – volume: 95 start-page: 8 year: 2014 ident: 145_CR3 publication-title: Phi Delta Kappan doi: 10.1177/003172171409500603 |
SSID | ssj0001765949 |
Score | 2.3022957 |
Snippet | A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested... A child's environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested... Abstract A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have... |
SourceID | doaj pubmedcentral cristin proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 29 |
SubjectTerms | 631/477/2811 706/648/160 706/689/477/2811 706/689/523 Biomedical and Life Sciences Children Children & youth Educational Attainment Educational Technology Environment Genotype-environment interactions Life Sciences Mathematical Models of Cognitive Processes and Neural Networks Municipalities Neurobiology Neuropsychology Neurosciences Parents Population studies Residential areas Schools Students Test Results |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15Km7bEbRoU6K0RsSXr65iEhlBoTw3kJiRZYheKd4k35O93RvZu14G2l9yMrcX26I3nzWr0hpDPKYXcQJLGVJCBtSFnFqIPLOnWdlEqHUrJ__cf6ua2_XYn7_ZafWFN2CgPPBruPCnDOy2MUbVpo4LwlqUJSVuvLbbKxq9vbeu9ZKr8u6KVtK2ddsnUwpwPEKmEZVi8jmmBZAYYbyyO1M9iUpHun_HNp9WST5ZMSyS6fk1eTRSSXoyP_oa8SP0hdl-eKjXekuGCrnd9udjjsksUYJLY3qY2ijIR9-OmBlokZikcLFaPZeRwRoeizgkHvu8opOTLsqEXbuuxip0OC79OFAsxUxEc37wjt9dff17dsKm5AouybTYsx67JvJOQb3ATMjA_41vNPVCiAJSFo3VTzIaLaLOGIK9FqHWQwrc8dECa3pODftWnI0KTMdkrkYHZNG1OjTFAwwAcSWufIeOpyNFkaNcDrlGTVHIHiYxtKtJsLe_iJEqOvTF-ubI4Lowb583BvLkyb85U5MvuN-tRkuOfoy9xQncjUU67nACQuQlk7n8gq8jxFg5u8vHBcchLRIMLVxU53V0G78QlF9-n1QOOAYoAprOqInoGo9kDza_0y0XR-bYKaxB5Rc62gPtz87-_8IfneOGP5CVHV4EgzfUxOdjcP6RPwL424aQ42m8wTCl3 priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SzaWX0k_iNi0q9NaIrmTr67gpDWGhvbSB3IRkS92F4l3WG_L3O5LtTRzaQm_CHmNbGklvpDdPAB9C8JFhkEalF55WPkbqa-dpUJVpaiGVz5T_r9_k5VW1vBbXR8DHXJhM2s-SlnmYHtlhnzqcaEpDE_c8oXpB9SM41gqH3xkcLxbL78u7lRUlhanMkCEzL_UfHka0W-dO1E7moyzbP8GaD5mSD7ZL8yx08RSeDPCRLPoPfgZHoX2eTl4eWBovoFuQ7eFMLnq7bgJBFwn0XkIbSRIRuz6hgWR5WYKF1eY2W3ZnpMvKnFhwbUMwHF_nZF58rUsMdtKt3DaQRMIMWWx8_xKuLr78-HxJh4MVaC0qtqexbljkjcBYg2sfEfVpVynuEA55hCtc4QgY6qh5WZuocIJXpZ8rL0pXcd8gYHoFs3bThhMgQevoZBkR1bAqBqY1QjB0jKCUixjtFHAyVLRt0aeTHqngFoMYwwpgY83behAkT-di_LJ5Y7zUtm83i-1mc7tZXcDHwzPbXo7jn9bnqUEPlklKO1_Y7H7awbVskJo3qtRaznVVS8RPUWgflHGpGrQq4HR0Bzv0785yjElKljatCnh_uI09M223uDZsbpINwgOsOiMLUBM3mnzQ9E67XmWNbyMT_5AXcDY63N3L__7Dr__P_A087pfIBWX8FGb73U14ixhr798Nneo3liwhjg priority: 102 providerName: Springer Nature |
Title | A population-wide gene-environment interaction study on how genes, schools, and residential areas shape achievement |
URI | https://link.springer.com/article/10.1038/s41539-022-00145-8 https://www.proquest.com/docview/2729316575 https://www.proquest.com/docview/2730317396 http://hdl.handle.net/10852/97491 https://pubmed.ncbi.nlm.nih.gov/PMC9613652 https://doaj.org/article/e682d73886084c6091f58be79a791187 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb-7KXsU_qrQsa7G0VjWXrw08jDS0lsDK2FfImJFtaAsPO4pT--7tTlGQurE82toxt3Z3ud9Lpd4R88t6FHII0Jp1wrHQhMFdbx7wqq6YWUrmY8v_1Rl7flrO5mKcJtz6lVe7GxDhQN12Nc-TnHFBgkeMywZfVH4ZVo3B1NZXQeEqOc0AiWLpBzdVhjkVJUZVV2iszLvR5D_6qqBimsGNwIJgG3FtHc2oHnikS-A9Q58OcyQcLp9EfXb0gzxOQpJOt5F-SJ759hTWYU77Ga9JP6GpfnYvdLxtPQVk8-2drG0WyiPV2awONRLMUThbdfWzZn9E-cnTCiW0bCoH5Mm7rhddazGWn_cKuPMV0TB9pxzdvyO3V5c_pNUslFlgtynzDQt3kgTcCog6uXQD8p22puAVg5AC4cAVjoa-D5kVdBQWuXhVurJwobMldA9DpLTlqu9afEOq1DlYWAfBNXgafaw1gDFTEK2UDxD0ZOUkdbVrQbmQmFdxAOFPlGcl3PW_qRE2OFTJ-m7hEXmizlZsBuZkoN6Mz8nn_zGpLzPFo6wsU6L4lkmrHC936l0k2arzUvFGF1nKsy1oCkgpCO68qi92gVUZOd-pgkqX35qCXGfm4vw02igsvtvXdHbYBoABdV8mMqIEaDT5oeKddLiLbdyUxE5Fn5GyncIeX__-H3z3-re_JM45GAE6Yq1NytFnf-Q-ArjZuFE1oRI4nk9mPGRwvLm--fYerUzkdxRmLv84TJ3c |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4qkGChgJTtTqxnFs54BQeVRb-ji10t6MndhspSpZNlut-FP8Rma8yS6pRG-9RRuvNjsvf5MZf0PIO-9dSCFJY9LljgkXAnOldcwrUVRlLpWLLf-nZ3J8Ib5P8skW-dOfhcG2yj4mxkBdNSW-I9_ngAKzFMsEn2a_GE6NwupqP0JjZRbH_vcSUrb249FX0O97zg-_nX8Zs26qACtzkS5YKKs08CoHoM21CwB5tBWKW8ACDvZqrsD9fRk0z8oiKNjdVOZGyuWZFdxVEokOIOTfE1hiBP9RE7V5p6NkXoiiO5szyvR-C_tjVjBsmcdkJGcacHYZ3bce7IRxYMAA5d7s0bxRqI373-Ej8rADrvRgZWmPyZavn-DM564_5ClpD-hsPQ2MLS8rT8E4PfvnKB1Fcor56igFjcS2FC6mzTKubPdoGzlB4cLWFZ17HCVaQwi6ohZ752k7tTNPsf3TR5rzxTNycSfCf06266b2O4R6rYOVWQA8lYrgU60B_IFJeqVsgDwrITudoE0N3oRMqDk3kD4VaULSXvKm7KjQcSLHlYkl-Uybld4M6M1EvRmdkA_r78xWRCC3rv6MCl2vRBLv-EEz_2m6mGC81LxSmdZypEUpAbmFXDuvCoti0Cohu705mC6ytGbjBwl5u74NMQELPbb2zTWuAWACoitkQtTAjAYPNLxTX04ju3ghsfORJ2SvN7jNj___D7-4_VnfkPvj89MTc3J0dvySPODoEAAAuNol24v5tX8FyG7hXkd3ouTHXfvvXyHCXZo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTUK8oHHTAgOMBE_MauMktvMwoY2t2hhUE2LS3oyd2HQSSrumU8Vf5Fdxjuu0dBJ721uUOEric_tOfPwdQt45Z30KSRoTtrAst94zWxnLnMzLuiqEtKHk_-tQnFzkny-Lyw3yp9sLg2WVnU8MjroeV_iPvMcBBWYpLhP0fCyLOD8afJxcM-wghSutXTsNE9ss1PuBbixu8jhzv-eQzrX7p0cg-_ecD46_fzphseMAq4o8nTFf1anndQEgnCvrAQ4pk0tuACdYiONcgmtwlVc8q0ovIfLJzPalLTKTc1sLJEGAcLAlIepDIrh1eDw8_7b64yNFUeZl3LnTz1SvheiZlQwL6jFVKZgCFF4F427W4mRoJ7CGgW9XcN5axg3RcbBNHkVYSw8WeviYbLjmCXaEjtUjT0l7QCfLXmFsflU7Cqrr2D8b7ShSV0wXGy1ooL2lcDAaz8PIdo-2gTEUDkxT06nDRqMgAHiswcp62o7MxFEsDnWBBH32jFzcy_Q_J5vNuHE7hDqlvBGZB7SV5t6lSoEugMI6KY2HLCwhO3GidQO2hjypBdeQXJVpQtJu5nUVidKxX8cvHRbsM6UXctMgNx3kplVCPizvmSxoQu4cfYgCXY5Eiu9wYjz9qaPH0E4oXstMKdFXeSUA1_lCWSdLg9OgZEJ2O3XQ0e-0emUlCXm7vAweA5eBTOPGNzgGYAtMXSkSItfUaO2F1q80V6PAPV4KrIvkCdnrFG718P9_8Iu73_UNeQC2rL-cDs9ekocc7QHQAZe7ZHM2vXGvAPbN7OtoT5T8uG8T_gt15mh1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+population-wide+gene-environment+interaction+study+on+how+genes%2C+schools%2C+and+residential+areas+shape+achievement&rft.jtitle=NPJ+science+of+learning&rft.au=Cheesman%2C+Rosa&rft.au=Borgen%2C+Nicolai+T&rft.au=Lyngstad%2C+Torkild+H&rft.au=Eilertsen%2C+Espen+M&rft.date=2022-10-27&rft.issn=2056-7936&rft.eissn=2056-7936&rft.volume=7&rft.issue=1&rft.spage=29&rft_id=info:doi/10.1038%2Fs41539-022-00145-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7936&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7936&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7936&client=summon |