A population-wide gene-environment interaction study on how genes, schools, and residential areas shape achievement

A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood...

Full description

Saved in:
Bibliographic Details
Published inNPJ science of learning Vol. 7; no. 1; pp. 29 - 9
Main Authors Cheesman, Rosa, Borgen, Nicolai T., Lyngstad, Torkild H., Eilertsen, Espen M., Ayorech, Ziada, Torvik, Fartein A., Andreassen, Ole A., Zachrisson, Henrik D., Ystrom, Eivind
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.10.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2056-7936
2056-7936
DOI10.1038/s41539-022-00145-8

Cover

Abstract A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties.
AbstractList A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties.
Abstract A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children’s standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students’ EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children’s individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties.
A child's environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children's standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students' EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children's individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties.A child's environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested this theory comprehensively across multiple environmental levels. Here, we quantify the contributions of child, parent, school, neighbourhood, district, and municipality factors to achievement, and investigate interactions between polygenic indices for educational attainment (EA-PGI) and environmental levels. We link population-wide administrative data on children's standardised test results, schools and residential identifiers to the Norwegian Mother, Father, and Child Cohort Study (MoBa), which includes >23,000 genotyped parent-child trios. We test for gene-environment interactions using multilevel models with interactions between EA-PGI and random effects for school and residential environments (thus remaining agnostic to specific features of environments). We use parent EA-PGI to control for gene-environment correlation. We found an interaction between students' EA-PGI and schools suggesting compensation: higher-performing schools can raise overall achievement without leaving children with lower EA-PGI behind. Differences between schools matter more for students with lower EA-PGI, explaining 4 versus 2% of the variance in achievement for students 2 SD below versus 2 SD above the mean EA-PGI. Neighbourhood, district, and municipality variation contribute little to achievement (<2% of the variance collectively), and do not interact with children's individual EA-PGI. Policy to reduce social inequality in achievement in Norway should focus on tackling unequal support across schools for children with difficulties.
ArticleNumber 29
Author Lyngstad, Torkild H.
Zachrisson, Henrik D.
Torvik, Fartein A.
Borgen, Nicolai T.
Ayorech, Ziada
Ystrom, Eivind
Eilertsen, Espen M.
Andreassen, Ole A.
Cheesman, Rosa
Author_xml – sequence: 1
  givenname: Rosa
  orcidid: 0000-0002-6543-0402
  surname: Cheesman
  fullname: Cheesman, Rosa
  email: rosacg@uio.no
  organization: PROMENTA Research Center, Department of Psychology, University of Oslo
– sequence: 2
  givenname: Nicolai T.
  orcidid: 0000-0002-7638-3293
  surname: Borgen
  fullname: Borgen, Nicolai T.
  organization: Department of Special Needs Education, Faculty of Educational Sciences, University of Oslo
– sequence: 3
  givenname: Torkild H.
  orcidid: 0000-0001-7830-9305
  surname: Lyngstad
  fullname: Lyngstad, Torkild H.
  organization: Department of Sociology & Human Geography, University of Oslo
– sequence: 4
  givenname: Espen M.
  surname: Eilertsen
  fullname: Eilertsen, Espen M.
  organization: PROMENTA Research Center, Department of Psychology, University of Oslo
– sequence: 5
  givenname: Ziada
  surname: Ayorech
  fullname: Ayorech, Ziada
  organization: PROMENTA Research Center, Department of Psychology, University of Oslo
– sequence: 6
  givenname: Fartein A.
  surname: Torvik
  fullname: Torvik, Fartein A.
  organization: PROMENTA Research Center, Department of Psychology, University of Oslo, Centre for Fertility and Health, Norwegian Institute of Public Health
– sequence: 7
  givenname: Ole A.
  orcidid: 0000-0002-4461-3568
  surname: Andreassen
  fullname: Andreassen, Ole A.
  organization: NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo
– sequence: 8
  givenname: Henrik D.
  surname: Zachrisson
  fullname: Zachrisson, Henrik D.
  organization: Department of Special Needs Education, Faculty of Educational Sciences, University of Oslo
– sequence: 9
  givenname: Eivind
  orcidid: 0000-0003-4390-6171
  surname: Ystrom
  fullname: Ystrom, Eivind
  organization: PROMENTA Research Center, Department of Psychology, University of Oslo, Department of Mental Disorders, Norwegian Institute of Public Health
BookMark eNp9kktv1DAUhSNUREvpH2BDJDYsCPgRvzZIVcWjUiU2sLYc52biUcYebGeq_nucSXm0i658ZX_n3Hut87I68cFDVb3G6ANGVH5MLWZUNYiQBiHcskY-q84IYrwRivKT_-rT6iKlLSqU4Ey16kV1SjlFREh2VqXLeh_282SyC765dT3UG_DQgD-4GPwOfK6dzxCNXYg65bm_q0sxhtsjmd7XyY4hTKUwvq8jpGLiszNTbSKYVKfR7KE2dnRwgMXwVfV8MFOCi_vzvPr55fOPq2_Nzfev11eXN41lLc7NYHs8kJ4xwYnsBoS5NK0ghjDUKSqIUBiDHSShVg2CESxoh0THqGlJ13NCz6vr1bcPZqv30e1MvNPBOH28CHGjTczOTqCBS9ILKiVHsrUcKTww2YFQZukiRfH6tHrt524HvS1rRDM9MH344t2oN-GgFceUs2WYN6uBjS5l57UP0WiMJCNaiVbhQry7bxHDrxlS1juXLEyT8RDmpImgiJYlFS_o20foNszRl88sFFEUcyZYocifliGlCMPfcTHSS4j0GiJdQqSPIdKyiOQjkXX5mI6ylpueltJVmkofv4H4b6onVL8B97_ajQ
CitedBy_id crossref_primary_10_1016_j_jad_2023_03_043
crossref_primary_10_1016_j_ssresearch_2025_103174
crossref_primary_10_1038_s41539_024_00225_x
crossref_primary_10_1038_s41562_024_01967_9
crossref_primary_10_1016_j_pnpbp_2023_110932
crossref_primary_10_1186_s40359_024_01997_y
crossref_primary_10_1016_j_tics_2023_07_001
crossref_primary_10_1093_esr_jcaf001
crossref_primary_10_1038_s41539_024_00260_8
crossref_primary_10_1016_j_rssm_2024_100960
crossref_primary_10_1177_09526951251314314
Cites_doi 10.2105/AJPH.2013.301252
10.1111/jcpp.12083
10.1007/978-94-007-2309-2_2
10.1073/pnas.1708491114
10.1038/s41562-019-0562-1
10.1038/s41539-020-0060-2
10.1007/s10519-006-9113-4
10.1093/esr/jcz066
10.1515/9780691226705
10.1111/desc.12434
10.18637/jss.v067.i01
10.1177/0956797615612727
10.1111/1468-0297.00134
10.2105/AJPH.2013.301355
10.1016/j.biopsych.2013.09.006
10.1101/865360
10.1038/s41539-018-0019-8
10.1126/science.174.4016.1285
10.1177/00031224211027800
10.1037/0033-2909.84.2.309
10.1073/pnas.2201869119
10.1111/jcpp.13276
10.1093/oso/9780197545706.003.0006
10.1038/s41588-018-0147-3
10.1111/ecca.12010
10.1093/ije/dyw029
10.1093/esr/jcac014
10.1126/sciadv.aaw3538
10.1086/658881
10.1186/s13742-015-0047-8
10.1038/mp.2016.107
10.1002/9780470147658.chpsy0114
10.15195/v5.a22
10.1111/jcpp.13656
10.1111/obes.12161
10.1007/s10519-011-9480-3
10.1016/j.econedurev.2012.03.004
10.1126/science.1186149
10.1177/003172171409500603
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022. The Author(s).
info:eu-repo/semantics/openAccess
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022. The Author(s).
– notice: info:eu-repo/semantics/openAccess
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AHOVV
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEDU
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
3HK
5PM
DOA
DOI 10.1038/s41539-022-00145-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Education Research Index
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Education
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
NORA - Norwegian Open Research Archives
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Education
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Education
EISSN 2056-7936
EndPage 9
ExternalDocumentID oai_doaj_org_article_e682d73886084c6091f58be79a791187
PMC9613652
10852_97491
10_1038_s41539_022_00145_8
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
  grantid: 894675
  funderid: https://doi.org/10.13039/100010665
– fundername: Norges Forskningsråd (Research Council of Norway)
  grantid: 288083; 300668; 223273; 273291; 288083
  funderid: https://doi.org/10.13039/501100005416
– fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
– fundername: EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
  grantid: 818425; 818420; 818425
  funderid: https://doi.org/10.13039/100011199
– fundername: ;
– fundername: ;
  grantid: 818425; 818420; 818425
– fundername: ;
  grantid: 288083; 300668; 223273; 273291; 288083
– fundername: ;
  grantid: 894675
GroupedDBID 0R~
5VS
7X7
8FE
8FH
8FI
AAHSB
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HYE
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PUEGO
RNT
RPM
SNYQT
UKHRP
8FJ
AAYXX
ALIPV
CCPQU
CITATION
HMCUK
PHGZM
PHGZT
PQEDU
3V.
7XB
8FK
AEUYN
AHOVV
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
3HK
ACSMW
EJD
5PM
ID FETCH-LOGICAL-c541t-fcd1f2d557628bf0168a472a250b93727911ecf823c9f752173b07b53a42bd623
IEDL.DBID 7X7
ISSN 2056-7936
IngestDate Wed Aug 27 01:27:06 EDT 2025
Thu Aug 21 18:38:45 EDT 2025
Sat Apr 29 05:43:57 EDT 2023
Fri Sep 05 03:02:26 EDT 2025
Thu Aug 28 18:12:57 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Tue Jul 01 04:20:38 EDT 2025
Sun Aug 31 08:58:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-fcd1f2d557628bf0168a472a250b93727911ecf823c9f752173b07b53a42bd623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
EU/101045526
ORCID 0000-0002-4461-3568
0000-0001-7830-9305
0000-0002-6543-0402
0000-0002-7638-3293
0000-0003-4390-6171
OpenAccessLink https://www.proquest.com/docview/2729316575?pq-origsite=%requestingapplication%
PMID 36302785
PQID 2729316575
PQPubID 2041916
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_e682d73886084c6091f58be79a791187
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9613652
cristin_nora_10852_97491
proquest_miscellaneous_2730317396
proquest_journals_2729316575
crossref_primary_10_1038_s41539_022_00145_8
crossref_citationtrail_10_1038_s41539_022_00145_8
springer_journals_10_1038_s41539_022_00145_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-27
PublicationDateYYYYMMDD 2022-10-27
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle NPJ science of learning
PublicationTitleAbbrev npj Sci. Learn
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References TrejoSSchools as Moderators of Genetic Associations with Life Course Attainments: Evidence from the WLS and Add HealthSociol. Sci.2018551354010.15195/v5.a22306137606314676
Cheesman, R. et al. How interactions between ADHD and schools affect educational achievement: a family‐based genetically sensitive study. J. Child Psychol. Psychiat.https://doi.org/10.1111/jcpp.13656 (2022).
MagnusPCohort profile update: the norwegian mother and child cohort study (moba)Int. J. Epidemiol.20164538238810.1093/ije/dyw02927063603
PlominRDeFriesJCLoehlinJCGenotype-environment interaction and correlation in the analysis of human behaviorPsychol. Bull.1977843093221:STN:280:DyaE2s7is1SltQ%3D%3D10.1037/0033-2909.84.2.309557211
van der SluisSPosthumaDDolanCVA note on false positives and power in G × E modelling of twin dataBehav. Genet20124217018610.1007/s10519-011-9480-321748401
IsungsetMASocial and genetic associations with educational performance in a Scandinavian welfare stateProc. Natl Acad. Sci. USA2022119e22018691191:CAS:528:DC%2BB38XhvVSrsr3F10.1073/pnas.220186911935709318
HardenKPTurkheimerELoehlinJCGenotype by environment interaction in adolescents’ cognitive aptitudeBehav. Genet20073727328310.1007/s10519-006-9113-416977503
von Stumm, S. et al. School quality ratings are weak predictors of students’ achievement and well-being. J. Child Psychol. Psychiatryhttps://doi.org/10.1111/jcpp.13276 (2020).
HægelandTRaaumOSalvanesKGPennies from heaven? Using exogenous tax variation to identify effects of school resources on pupil achievementEcon. Educ. Rev.20123160161410.1016/j.econedurev.2012.03.004
BelskyDWGenetics and the geography of health, behaviour and attainmentNat. Hum. Behav.2019357658610.1038/s41562-019-0562-1309626126565482
Harden, K. P. The Genetic Lottery: Why DNA Matters for Social Equality. (2021).
D’OnofrioBMLaheyBBTurkheimerELichtensteinPCritical need for family-based, quasi-experimental designs in integrating genetic and social science researchAm. J. Public Health2013103S46S5510.2105/AJPH.2013.301252239275163778076
Smith-WoolleyEDifferences in exam performance between pupils attending selective and non-selective schools mirror the genetic differences between themNPJ Sci. Learn.20183310.1038/s41539-018-0019-8306314646220309
Bronfenbrenner, U. & Morris, P. A. In Handbook of child psychology (eds. Damon, W. & Lerner, R. M.) (John Wiley & Sons, Inc., 2007). https://doi.org/10.1002/9780470147658.chpsy0114.
HartSASodenBJohnsonWSchatschneiderCTaylorJExpanding the environment: gene × school-level SES interaction on reading comprehensionJ. Child Psychol. Psychiatry2013541047105510.1111/jcpp.12083237255493766464
DuncanGJMurnaneRJGrowing income inequality threatens american educationPhi Delta Kappan20149581410.1177/003172171409500603
Tucker-DrobEMBatesTCLarge Cross-National Differences in Gene × Socioeconomic Status Interaction on IntelligencePsychol. Sci.20162713814910.1177/095679761561272726671911
Pfeffer, F. T. & Waitkus, N. The wealth inequality of nations. Am. Sociol. Rev. 000312242110278 (2021). https://doi.org/10.1177/00031224211027800.
The easier way to create a map of Norway using {fhimaps} - Daniel Roelfs. https://danielroelfs.com/blog/the-easier-way-to-create-a-map-of-norway-using-fhimaps/.
SelzamSPredicting educational achievement from DNAMol. Psychiatry2017222672721:STN:280:DC%2BC2s3itFartw%3D%3D10.1038/mp.2016.10727431296
WangHGenotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK BiobankSci. Adv.20195eaaw353810.1126/sciadv.aaw3538314533256693916
LeeJJGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat. Genet.201850111211211:CAS:528:DC%2BC1cXhtlOis7zI10.1038/s41588-018-0147-3300383966393768
RøedKRaaumOAdministrative registers – Unexplored reservoirs of Scientific Knowledge?Economic J.2003113F258F28110.1111/1468-0297.00134
NicolettiCRabeBInequality in pupils’ test scores: how much do family, sibling type and neighbourhood matter?Economica20138019721810.1111/ecca.12010
Barth, E., Moene, K. & Pedersen, A. W. In Europe’s income, wealth, consumption, and inequality 218–245 (Oxford University Press, 2021). https://doi.org/10.1093/oso/9780197545706.003.0006.
KellerMCGene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solutionBiol. Psychiatry201475182410.1016/j.biopsych.2013.09.00624135711
Allegrini, A. G. et al. Multivariable G-E interplay in the prediction of educational achievement. BioRxivhttps://doi.org/10.1101/865360 (2019).
Hovde LyngstadTSkardhamarTNordic register data and their untapped potential for criminological knowledgeCrime. Justice20114061364510.1086/658881
Eurofound. Annual review of working life. https://www.eurofound.europa.eu/publications/report/2018/annual-review-of-working-life-2017. (2017).
Bromann, K. Randomized Controlled Trials Commissioned by the Institute of Education Sciences Since 2002: How Man. Policy Commons (2013).
LalibertéJ-WLong-Term Contextual Effects in Education: Schools and NeighborhoodsAm. Economic J.: Economic Policy202113336377
BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01
Galster, G. C. in Neighbourhood Effects Research: New Perspectives (eds. van Ham, M., Manley, D., Bailey, N., Simpson, L. & Maclennan, D.) 23–56 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-2309-2_2.
ChangCCSecond-generation PLINK: rising to the challenge of larger and richer datasetsGigascience2015410.1186/s13742-015-0047-8257228524342193
Scarr-SalapatekSRace, social class, and IQScience1971174128512951:STN:280:DyaE38%2Foslehug%3D%3D10.1126/science.174.4016.12855167501
Baier, T. et al. Genetic Influences on Educational Achievement in Cross-National Perspective. Eur. Sociol Rev.https://doi.org/10.1093/esr/jcac014 (2022).
HermansenASBorgenNTMastekaasaALong-Term Trends in Adult Socio-Economic Resemblance between Former Schoolmates and Neighbouring ChildrenEur. Socio. Rev.20203636638010.1093/esr/jcz066
Esping-Andersen, G. The Three Worlds of Welfare Capitalism. (1990).
HardenKPGenetic associations with mathematics tracking and persistence in secondary schoolNPJ Sci. Learn.20205110.1038/s41539-020-0060-2320476517002519
FiglioDNFreeseJKarbownikKRothJSocioeconomic status and genetic influences on cognitive developmentProc. Natl Acad. Sci. USA201711413441134461:CAS:528:DC%2BC2sXhvVSisbvI10.1073/pnas.1708491114291334135754768
FalchTSandsørAMJStrømBDo Smaller Classes Always Improve Students’ Long-run Outcomes?Oxf. Bull. Econ. Stat.20177965468810.1111/obes.12161
Haughbrook, R., Hart, S. A., Schatschneider, C. & Taylor, J. Genetic and environmental influences on early literacy skills across school grade contexts. Dev. Sci. 20, (2017).
TaylorJRoehrigADSoden HenslerBConnorCMSchatschneiderCTeacher quality moderates the genetic effects on early readingScience20103285125141:CAS:528:DC%2BC3cXkvFegsr8%3D10.1126/science.1186149204135042905841
BoardmanJDDawJFreeseJDefining the environment in gene-environment research: lessons from social epidemiologyAm. J. Public Health2013103S64S7210.2105/AJPH.2013.301355239275143786759
KP Harden (145_CR15) 2007; 37
T Hægeland (145_CR26) 2012; 31
CC Chang (145_CR41) 2015; 4
AS Hermansen (145_CR27) 2020; 36
145_CR29
EM Tucker-Drob (145_CR10) 2016; 27
R Plomin (145_CR6) 1977; 84
C Nicoletti (145_CR4) 2013; 80
J Taylor (145_CR17) 2010; 328
J-W Laliberté (145_CR5) 2021; 13
KP Harden (145_CR28) 2020; 5
T Falch (145_CR30) 2017; 79
145_CR11
145_CR33
145_CR12
145_CR34
D Bates (145_CR44) 2015; 67
145_CR35
BM D’Onofrio (145_CR22) 2013; 103
145_CR36
T Hovde Lyngstad (145_CR40) 2011; 40
MC Keller (145_CR24) 2014; 75
GJ Duncan (145_CR3) 2014; 95
MA Isungset (145_CR14) 2022; 119
H Wang (145_CR31) 2019; 5
145_CR37
S Selzam (145_CR13) 2017; 22
145_CR18
S Trejo (145_CR20) 2018; 5
S Scarr-Salapatek (145_CR7) 1971; 174
P Magnus (145_CR38) 2016; 45
145_CR1
145_CR2
E Smith-Woolley (145_CR32) 2018; 3
145_CR21
145_CR43
JJ Lee (145_CR42) 2018; 50
JD Boardman (145_CR16) 2013; 103
145_CR8
SA Hart (145_CR19) 2013; 54
DN Figlio (145_CR9) 2017; 114
S van der Sluis (145_CR25) 2012; 42
K Røed (145_CR39) 2003; 113
DW Belsky (145_CR23) 2019; 3
References_xml – reference: van der SluisSPosthumaDDolanCVA note on false positives and power in G × E modelling of twin dataBehav. Genet20124217018610.1007/s10519-011-9480-321748401
– reference: D’OnofrioBMLaheyBBTurkheimerELichtensteinPCritical need for family-based, quasi-experimental designs in integrating genetic and social science researchAm. J. Public Health2013103S46S5510.2105/AJPH.2013.301252239275163778076
– reference: Cheesman, R. et al. How interactions between ADHD and schools affect educational achievement: a family‐based genetically sensitive study. J. Child Psychol. Psychiat.https://doi.org/10.1111/jcpp.13656 (2022).
– reference: The easier way to create a map of Norway using {fhimaps} - Daniel Roelfs. https://danielroelfs.com/blog/the-easier-way-to-create-a-map-of-norway-using-fhimaps/.
– reference: SelzamSPredicting educational achievement from DNAMol. Psychiatry2017222672721:STN:280:DC%2BC2s3itFartw%3D%3D10.1038/mp.2016.10727431296
– reference: ChangCCSecond-generation PLINK: rising to the challenge of larger and richer datasetsGigascience2015410.1186/s13742-015-0047-8257228524342193
– reference: Haughbrook, R., Hart, S. A., Schatschneider, C. & Taylor, J. Genetic and environmental influences on early literacy skills across school grade contexts. Dev. Sci. 20, (2017).
– reference: Pfeffer, F. T. & Waitkus, N. The wealth inequality of nations. Am. Sociol. Rev. 000312242110278 (2021). https://doi.org/10.1177/00031224211027800.
– reference: Tucker-DrobEMBatesTCLarge Cross-National Differences in Gene × Socioeconomic Status Interaction on IntelligencePsychol. Sci.20162713814910.1177/095679761561272726671911
– reference: IsungsetMASocial and genetic associations with educational performance in a Scandinavian welfare stateProc. Natl Acad. Sci. USA2022119e22018691191:CAS:528:DC%2BB38XhvVSrsr3F10.1073/pnas.220186911935709318
– reference: BelskyDWGenetics and the geography of health, behaviour and attainmentNat. Hum. Behav.2019357658610.1038/s41562-019-0562-1309626126565482
– reference: WangHGenotype-by-environment interactions inferred from genetic effects on phenotypic variability in the UK BiobankSci. Adv.20195eaaw353810.1126/sciadv.aaw3538314533256693916
– reference: Harden, K. P. The Genetic Lottery: Why DNA Matters for Social Equality. (2021).
– reference: Smith-WoolleyEDifferences in exam performance between pupils attending selective and non-selective schools mirror the genetic differences between themNPJ Sci. Learn.20183310.1038/s41539-018-0019-8306314646220309
– reference: Bronfenbrenner, U. & Morris, P. A. In Handbook of child psychology (eds. Damon, W. & Lerner, R. M.) (John Wiley & Sons, Inc., 2007). https://doi.org/10.1002/9780470147658.chpsy0114.
– reference: Allegrini, A. G. et al. Multivariable G-E interplay in the prediction of educational achievement. BioRxivhttps://doi.org/10.1101/865360 (2019).
– reference: LalibertéJ-WLong-Term Contextual Effects in Education: Schools and NeighborhoodsAm. Economic J.: Economic Policy202113336377
– reference: TrejoSSchools as Moderators of Genetic Associations with Life Course Attainments: Evidence from the WLS and Add HealthSociol. Sci.2018551354010.15195/v5.a22306137606314676
– reference: Scarr-SalapatekSRace, social class, and IQScience1971174128512951:STN:280:DyaE38%2Foslehug%3D%3D10.1126/science.174.4016.12855167501
– reference: BatesDMächlerMBolkerBWalkerSFitting linear mixed-effects models using lme4J. Stat. Softw.20156714810.18637/jss.v067.i01
– reference: RøedKRaaumOAdministrative registers – Unexplored reservoirs of Scientific Knowledge?Economic J.2003113F258F28110.1111/1468-0297.00134
– reference: Barth, E., Moene, K. & Pedersen, A. W. In Europe’s income, wealth, consumption, and inequality 218–245 (Oxford University Press, 2021). https://doi.org/10.1093/oso/9780197545706.003.0006.
– reference: Hovde LyngstadTSkardhamarTNordic register data and their untapped potential for criminological knowledgeCrime. Justice20114061364510.1086/658881
– reference: Galster, G. C. in Neighbourhood Effects Research: New Perspectives (eds. van Ham, M., Manley, D., Bailey, N., Simpson, L. & Maclennan, D.) 23–56 (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-2309-2_2.
– reference: Eurofound. Annual review of working life. https://www.eurofound.europa.eu/publications/report/2018/annual-review-of-working-life-2017. (2017).
– reference: MagnusPCohort profile update: the norwegian mother and child cohort study (moba)Int. J. Epidemiol.20164538238810.1093/ije/dyw02927063603
– reference: HartSASodenBJohnsonWSchatschneiderCTaylorJExpanding the environment: gene × school-level SES interaction on reading comprehensionJ. Child Psychol. Psychiatry2013541047105510.1111/jcpp.12083237255493766464
– reference: LeeJJGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat. Genet.201850111211211:CAS:528:DC%2BC1cXhtlOis7zI10.1038/s41588-018-0147-3300383966393768
– reference: TaylorJRoehrigADSoden HenslerBConnorCMSchatschneiderCTeacher quality moderates the genetic effects on early readingScience20103285125141:CAS:528:DC%2BC3cXkvFegsr8%3D10.1126/science.1186149204135042905841
– reference: FalchTSandsørAMJStrømBDo Smaller Classes Always Improve Students’ Long-run Outcomes?Oxf. Bull. Econ. Stat.20177965468810.1111/obes.12161
– reference: NicolettiCRabeBInequality in pupils’ test scores: how much do family, sibling type and neighbourhood matter?Economica20138019721810.1111/ecca.12010
– reference: HardenKPTurkheimerELoehlinJCGenotype by environment interaction in adolescents’ cognitive aptitudeBehav. Genet20073727328310.1007/s10519-006-9113-416977503
– reference: HardenKPGenetic associations with mathematics tracking and persistence in secondary schoolNPJ Sci. Learn.20205110.1038/s41539-020-0060-2320476517002519
– reference: HermansenASBorgenNTMastekaasaALong-Term Trends in Adult Socio-Economic Resemblance between Former Schoolmates and Neighbouring ChildrenEur. Socio. Rev.20203636638010.1093/esr/jcz066
– reference: Esping-Andersen, G. The Three Worlds of Welfare Capitalism. (1990).
– reference: BoardmanJDDawJFreeseJDefining the environment in gene-environment research: lessons from social epidemiologyAm. J. Public Health2013103S64S7210.2105/AJPH.2013.301355239275143786759
– reference: PlominRDeFriesJCLoehlinJCGenotype-environment interaction and correlation in the analysis of human behaviorPsychol. Bull.1977843093221:STN:280:DyaE2s7is1SltQ%3D%3D10.1037/0033-2909.84.2.309557211
– reference: HægelandTRaaumOSalvanesKGPennies from heaven? Using exogenous tax variation to identify effects of school resources on pupil achievementEcon. Educ. Rev.20123160161410.1016/j.econedurev.2012.03.004
– reference: von Stumm, S. et al. School quality ratings are weak predictors of students’ achievement and well-being. J. Child Psychol. Psychiatryhttps://doi.org/10.1111/jcpp.13276 (2020).
– reference: DuncanGJMurnaneRJGrowing income inequality threatens american educationPhi Delta Kappan20149581410.1177/003172171409500603
– reference: Baier, T. et al. Genetic Influences on Educational Achievement in Cross-National Perspective. Eur. Sociol Rev.https://doi.org/10.1093/esr/jcac014 (2022).
– reference: Bromann, K. Randomized Controlled Trials Commissioned by the Institute of Education Sciences Since 2002: How Man. Policy Commons (2013).
– reference: KellerMCGene × environment interaction studies have not properly controlled for potential confounders: the problem and the (simple) solutionBiol. Psychiatry201475182410.1016/j.biopsych.2013.09.00624135711
– reference: FiglioDNFreeseJKarbownikKRothJSocioeconomic status and genetic influences on cognitive developmentProc. Natl Acad. Sci. USA201711413441134461:CAS:528:DC%2BC2sXhvVSisbvI10.1073/pnas.1708491114291334135754768
– volume: 103
  start-page: S46
  year: 2013
  ident: 145_CR22
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2013.301252
– volume: 54
  start-page: 1047
  year: 2013
  ident: 145_CR19
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/jcpp.12083
– ident: 145_CR2
  doi: 10.1007/978-94-007-2309-2_2
– volume: 114
  start-page: 13441
  year: 2017
  ident: 145_CR9
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708491114
– volume: 3
  start-page: 576
  year: 2019
  ident: 145_CR23
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-019-0562-1
– volume: 5
  start-page: 1
  year: 2020
  ident: 145_CR28
  publication-title: NPJ Sci. Learn.
  doi: 10.1038/s41539-020-0060-2
– volume: 37
  start-page: 273
  year: 2007
  ident: 145_CR15
  publication-title: Behav. Genet
  doi: 10.1007/s10519-006-9113-4
– volume: 36
  start-page: 366
  year: 2020
  ident: 145_CR27
  publication-title: Eur. Socio. Rev.
  doi: 10.1093/esr/jcz066
– ident: 145_CR8
  doi: 10.1515/9780691226705
– ident: 145_CR18
  doi: 10.1111/desc.12434
– volume: 67
  start-page: 1
  year: 2015
  ident: 145_CR44
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v067.i01
– volume: 27
  start-page: 138
  year: 2016
  ident: 145_CR10
  publication-title: Psychol. Sci.
  doi: 10.1177/0956797615612727
– volume: 113
  start-page: F258
  year: 2003
  ident: 145_CR39
  publication-title: Economic J.
  doi: 10.1111/1468-0297.00134
– volume: 103
  start-page: S64
  year: 2013
  ident: 145_CR16
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2013.301355
– volume: 75
  start-page: 18
  year: 2014
  ident: 145_CR24
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2013.09.006
– ident: 145_CR12
  doi: 10.1101/865360
– volume: 3
  start-page: 3
  year: 2018
  ident: 145_CR32
  publication-title: NPJ Sci. Learn.
  doi: 10.1038/s41539-018-0019-8
– ident: 145_CR34
– volume: 174
  start-page: 1285
  year: 1971
  ident: 145_CR7
  publication-title: Science
  doi: 10.1126/science.174.4016.1285
– ident: 145_CR36
  doi: 10.1177/00031224211027800
– volume: 84
  start-page: 309
  year: 1977
  ident: 145_CR6
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.84.2.309
– volume: 119
  start-page: e2201869119
  year: 2022
  ident: 145_CR14
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2201869119
– ident: 145_CR29
  doi: 10.1111/jcpp.13276
– ident: 145_CR35
– ident: 145_CR37
  doi: 10.1093/oso/9780197545706.003.0006
– volume: 50
  start-page: 1112
  year: 2018
  ident: 145_CR42
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-018-0147-3
– volume: 80
  start-page: 197
  year: 2013
  ident: 145_CR4
  publication-title: Economica
  doi: 10.1111/ecca.12010
– volume: 45
  start-page: 382
  year: 2016
  ident: 145_CR38
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyw029
– ident: 145_CR11
  doi: 10.1093/esr/jcac014
– ident: 145_CR43
– volume: 5
  start-page: eaaw3538
  year: 2019
  ident: 145_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw3538
– volume: 40
  start-page: 613
  year: 2011
  ident: 145_CR40
  publication-title: Crime. Justice
  doi: 10.1086/658881
– volume: 4
  year: 2015
  ident: 145_CR41
  publication-title: Gigascience
  doi: 10.1186/s13742-015-0047-8
– volume: 22
  start-page: 267
  year: 2017
  ident: 145_CR13
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2016.107
– ident: 145_CR1
  doi: 10.1002/9780470147658.chpsy0114
– volume: 13
  start-page: 336
  year: 2021
  ident: 145_CR5
  publication-title: Am. Economic J.: Economic Policy
– volume: 5
  start-page: 513
  year: 2018
  ident: 145_CR20
  publication-title: Sociol. Sci.
  doi: 10.15195/v5.a22
– ident: 145_CR21
  doi: 10.1111/jcpp.13656
– volume: 79
  start-page: 654
  year: 2017
  ident: 145_CR30
  publication-title: Oxf. Bull. Econ. Stat.
  doi: 10.1111/obes.12161
– ident: 145_CR33
– volume: 42
  start-page: 170
  year: 2012
  ident: 145_CR25
  publication-title: Behav. Genet
  doi: 10.1007/s10519-011-9480-3
– volume: 31
  start-page: 601
  year: 2012
  ident: 145_CR26
  publication-title: Econ. Educ. Rev.
  doi: 10.1016/j.econedurev.2012.03.004
– volume: 328
  start-page: 512
  year: 2010
  ident: 145_CR17
  publication-title: Science
  doi: 10.1126/science.1186149
– volume: 95
  start-page: 8
  year: 2014
  ident: 145_CR3
  publication-title: Phi Delta Kappan
  doi: 10.1177/003172171409500603
SSID ssj0001765949
Score 2.3022957
Snippet A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested...
A child's environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have not tested...
Abstract A child’s environment is thought to be composed of different levels that interact with their individual genetic propensities. However, studies have...
SourceID doaj
pubmedcentral
cristin
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 29
SubjectTerms 631/477/2811
706/648/160
706/689/477/2811
706/689/523
Biomedical and Life Sciences
Children
Children & youth
Educational Attainment
Educational Technology
Environment
Genotype-environment interactions
Life Sciences
Mathematical Models of Cognitive Processes and Neural Networks
Municipalities
Neurobiology
Neuropsychology
Neurosciences
Parents
Population studies
Residential areas
Schools
Students
Test Results
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlp15Km7bEbRoU6K0RsSXr65iEhlBoTw3kJiRZYheKd4k35O93RvZu14G2l9yMrcX26I3nzWr0hpDPKYXcQJLGVJCBtSFnFqIPLOnWdlEqHUrJ__cf6ua2_XYn7_ZafWFN2CgPPBruPCnDOy2MUbVpo4LwlqUJSVuvLbbKxq9vbeu9ZKr8u6KVtK2ddsnUwpwPEKmEZVi8jmmBZAYYbyyO1M9iUpHun_HNp9WST5ZMSyS6fk1eTRSSXoyP_oa8SP0hdl-eKjXekuGCrnd9udjjsksUYJLY3qY2ijIR9-OmBlokZikcLFaPZeRwRoeizgkHvu8opOTLsqEXbuuxip0OC79OFAsxUxEc37wjt9dff17dsKm5AouybTYsx67JvJOQb3ATMjA_41vNPVCiAJSFo3VTzIaLaLOGIK9FqHWQwrc8dECa3pODftWnI0KTMdkrkYHZNG1OjTFAwwAcSWufIeOpyNFkaNcDrlGTVHIHiYxtKtJsLe_iJEqOvTF-ubI4Lowb583BvLkyb85U5MvuN-tRkuOfoy9xQncjUU67nACQuQlk7n8gq8jxFg5u8vHBcchLRIMLVxU53V0G78QlF9-n1QOOAYoAprOqInoGo9kDza_0y0XR-bYKaxB5Rc62gPtz87-_8IfneOGP5CVHV4EgzfUxOdjcP6RPwL424aQ42m8wTCl3
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Na9wwEB3SzaWX0k_iNi0q9NaIrmTr67gpDWGhvbSB3IRkS92F4l3WG_L3O5LtTRzaQm_CHmNbGklvpDdPAB9C8JFhkEalF55WPkbqa-dpUJVpaiGVz5T_r9_k5VW1vBbXR8DHXJhM2s-SlnmYHtlhnzqcaEpDE_c8oXpB9SM41gqH3xkcLxbL78u7lRUlhanMkCEzL_UfHka0W-dO1E7moyzbP8GaD5mSD7ZL8yx08RSeDPCRLPoPfgZHoX2eTl4eWBovoFuQ7eFMLnq7bgJBFwn0XkIbSRIRuz6hgWR5WYKF1eY2W3ZnpMvKnFhwbUMwHF_nZF58rUsMdtKt3DaQRMIMWWx8_xKuLr78-HxJh4MVaC0qtqexbljkjcBYg2sfEfVpVynuEA55hCtc4QgY6qh5WZuocIJXpZ8rL0pXcd8gYHoFs3bThhMgQevoZBkR1bAqBqY1QjB0jKCUixjtFHAyVLRt0aeTHqngFoMYwwpgY83behAkT-di_LJ5Y7zUtm83i-1mc7tZXcDHwzPbXo7jn9bnqUEPlklKO1_Y7H7awbVskJo3qtRaznVVS8RPUWgflHGpGrQq4HR0Bzv0785yjElKljatCnh_uI09M223uDZsbpINwgOsOiMLUBM3mnzQ9E67XmWNbyMT_5AXcDY63N3L__7Dr__P_A087pfIBWX8FGb73U14ixhr798Nneo3liwhjg
  priority: 102
  providerName: Springer Nature
Title A population-wide gene-environment interaction study on how genes, schools, and residential areas shape achievement
URI https://link.springer.com/article/10.1038/s41539-022-00145-8
https://www.proquest.com/docview/2729316575
https://www.proquest.com/docview/2730317396
http://hdl.handle.net/10852/97491
https://pubmed.ncbi.nlm.nih.gov/PMC9613652
https://doaj.org/article/e682d73886084c6091f58be79a791187
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb-7KXsU_qrQsa7G0VjWXrw08jDS0lsDK2FfImJFtaAsPO4pT--7tTlGQurE82toxt3Z3ud9Lpd4R88t6FHII0Jp1wrHQhMFdbx7wqq6YWUrmY8v_1Rl7flrO5mKcJtz6lVe7GxDhQN12Nc-TnHFBgkeMywZfVH4ZVo3B1NZXQeEqOc0AiWLpBzdVhjkVJUZVV2iszLvR5D_6qqBimsGNwIJgG3FtHc2oHnikS-A9Q58OcyQcLp9EfXb0gzxOQpJOt5F-SJ759hTWYU77Ga9JP6GpfnYvdLxtPQVk8-2drG0WyiPV2awONRLMUThbdfWzZn9E-cnTCiW0bCoH5Mm7rhddazGWn_cKuPMV0TB9pxzdvyO3V5c_pNUslFlgtynzDQt3kgTcCog6uXQD8p22puAVg5AC4cAVjoa-D5kVdBQWuXhVurJwobMldA9DpLTlqu9afEOq1DlYWAfBNXgafaw1gDFTEK2UDxD0ZOUkdbVrQbmQmFdxAOFPlGcl3PW_qRE2OFTJ-m7hEXmizlZsBuZkoN6Mz8nn_zGpLzPFo6wsU6L4lkmrHC936l0k2arzUvFGF1nKsy1oCkgpCO68qi92gVUZOd-pgkqX35qCXGfm4vw02igsvtvXdHbYBoABdV8mMqIEaDT5oeKddLiLbdyUxE5Fn5GyncIeX__-H3z3-re_JM45GAE6Yq1NytFnf-Q-ArjZuFE1oRI4nk9mPGRwvLm--fYerUzkdxRmLv84TJ3c
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqcoAL4qkGChgJTtTqxnFs54BQeVRb-ji10t6MndhspSpZNlut-FP8Rma8yS6pRG-9RRuvNjsvf5MZf0PIO-9dSCFJY9LljgkXAnOldcwrUVRlLpWLLf-nZ3J8Ib5P8skW-dOfhcG2yj4mxkBdNSW-I9_ngAKzFMsEn2a_GE6NwupqP0JjZRbH_vcSUrb249FX0O97zg-_nX8Zs26qACtzkS5YKKs08CoHoM21CwB5tBWKW8ACDvZqrsD9fRk0z8oiKNjdVOZGyuWZFdxVEokOIOTfE1hiBP9RE7V5p6NkXoiiO5szyvR-C_tjVjBsmcdkJGcacHYZ3bce7IRxYMAA5d7s0bxRqI373-Ej8rADrvRgZWmPyZavn-DM564_5ClpD-hsPQ2MLS8rT8E4PfvnKB1Fcor56igFjcS2FC6mzTKubPdoGzlB4cLWFZ17HCVaQwi6ohZ752k7tTNPsf3TR5rzxTNycSfCf06266b2O4R6rYOVWQA8lYrgU60B_IFJeqVsgDwrITudoE0N3oRMqDk3kD4VaULSXvKm7KjQcSLHlYkl-Uybld4M6M1EvRmdkA_r78xWRCC3rv6MCl2vRBLv-EEz_2m6mGC81LxSmdZypEUpAbmFXDuvCoti0Cohu705mC6ytGbjBwl5u74NMQELPbb2zTWuAWACoitkQtTAjAYPNLxTX04ju3ghsfORJ2SvN7jNj___D7-4_VnfkPvj89MTc3J0dvySPODoEAAAuNol24v5tX8FyG7hXkd3ouTHXfvvXyHCXZo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTUK8oHHTAgOMBE_MauMktvMwoY2t2hhUE2LS3oyd2HQSSrumU8Vf5Fdxjuu0dBJ721uUOEric_tOfPwdQt45Z30KSRoTtrAst94zWxnLnMzLuiqEtKHk_-tQnFzkny-Lyw3yp9sLg2WVnU8MjroeV_iPvMcBBWYpLhP0fCyLOD8afJxcM-wghSutXTsNE9ss1PuBbixu8jhzv-eQzrX7p0cg-_ecD46_fzphseMAq4o8nTFf1anndQEgnCvrAQ4pk0tuACdYiONcgmtwlVc8q0ovIfLJzPalLTKTc1sLJEGAcLAlIepDIrh1eDw8_7b64yNFUeZl3LnTz1SvheiZlQwL6jFVKZgCFF4F427W4mRoJ7CGgW9XcN5axg3RcbBNHkVYSw8WeviYbLjmCXaEjtUjT0l7QCfLXmFsflU7Cqrr2D8b7ShSV0wXGy1ooL2lcDAaz8PIdo-2gTEUDkxT06nDRqMgAHiswcp62o7MxFEsDnWBBH32jFzcy_Q_J5vNuHE7hDqlvBGZB7SV5t6lSoEugMI6KY2HLCwhO3GidQO2hjypBdeQXJVpQtJu5nUVidKxX8cvHRbsM6UXctMgNx3kplVCPizvmSxoQu4cfYgCXY5Eiu9wYjz9qaPH0E4oXstMKdFXeSUA1_lCWSdLg9OgZEJ2O3XQ0e-0emUlCXm7vAweA5eBTOPGNzgGYAtMXSkSItfUaO2F1q80V6PAPV4KrIvkCdnrFG718P9_8Iu73_UNeQC2rL-cDs9ekocc7QHQAZe7ZHM2vXGvAPbN7OtoT5T8uG8T_gt15mh1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+population-wide+gene-environment+interaction+study+on+how+genes%2C+schools%2C+and+residential+areas+shape+achievement&rft.jtitle=NPJ+science+of+learning&rft.au=Cheesman%2C+Rosa&rft.au=Borgen%2C+Nicolai+T&rft.au=Lyngstad%2C+Torkild+H&rft.au=Eilertsen%2C+Espen+M&rft.date=2022-10-27&rft.issn=2056-7936&rft.eissn=2056-7936&rft.volume=7&rft.issue=1&rft.spage=29&rft_id=info:doi/10.1038%2Fs41539-022-00145-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2056-7936&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2056-7936&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2056-7936&client=summon