Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by in...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 22388 - 15 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.12.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-023-49514-2 |
Cover
Abstract | The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information. |
---|---|
AbstractList | The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information. The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information. Abstract The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information. |
ArticleNumber | 22388 |
Author | Namgung, Eun Oh, Sohyun Hwang, Jaeuk Kang, Ilhyang Kim, Jinsol Yoon, Sujung Joo, Yoonji Jeong, Hyeonseok Lyoo, In Kyoon |
Author_xml | – sequence: 1 givenname: Yoonji surname: Joo fullname: Joo, Yoonji organization: Ewha Brain Institute, Ewha Womans University – sequence: 2 givenname: Eun surname: Namgung fullname: Namgung, Eun organization: Asan Institute for Life Sciences, Asan Medical Center – sequence: 3 givenname: Hyeonseok surname: Jeong fullname: Jeong, Hyeonseok organization: Department of Radiology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea – sequence: 4 givenname: Ilhyang surname: Kang fullname: Kang, Ilhyang organization: Ewha Brain Institute, Ewha Womans University – sequence: 5 givenname: Jinsol surname: Kim fullname: Kim, Jinsol organization: Ewha Brain Institute, Ewha Womans University – sequence: 6 givenname: Sohyun surname: Oh fullname: Oh, Sohyun organization: Ewha Brain Institute, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University – sequence: 7 givenname: In Kyoon surname: Lyoo fullname: Lyoo, In Kyoon organization: Ewha Brain Institute, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University, Graduate School of Pharmaceutical Sciences, Ewha Womans University – sequence: 8 givenname: Sujung surname: Yoon fullname: Yoon, Sujung email: sujungjyoon@ewha.ac.kr organization: Ewha Brain Institute, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University – sequence: 9 givenname: Jaeuk surname: Hwang fullname: Hwang, Jaeuk email: hju75@schmc.ac.kr organization: Department of Psychiatry, Soonchunhyang University College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38104173$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1TAQjVARLaU_wAJFYsMm4GfirBBUPCpVYgNry3YmqW8dO9hJq_v3OPdeSttFhTd-zDnHM3PmZXHkg4eieI3Re4yo-JAY5q2oEKEVazlmFXlWnBDEeEUoIUf3zsfFWUoblBcnLcPti-KYCowYbuhJcf05KutLNUA5ReismW3w5ZKsH0oTRm09dGUHMOWbvwluWePKlR6WuNvm2xCvS-W7clzcbCunthDLCaKBaY5ZS7khRDtfjelV8bxXLsHZYT8tfn398vP8e3X549vF-afLynCG56o3ghClGFUMWkPbnrWNRqZuBYJak05zjTU2mNCedw3qAWuGgFOCFRcd1PS0uNjrdkFt5BTtqOJWBmXl7iHEQao4W-NAAmaAOdAOG2C651oJwYVusGlEowTLWnSvtfhJbW-Vc3eCGMnVCbl3QmYn5M4JSTLr4541LXqEzoCfc7cepPIw4u2VHMJNFmwIZ3T9991BIYbfC6RZjjYZcE55CEuSpEWUkhrjFfr2EXQTlphN2qEIbxGvRUa9uZ_SXS5_RyEDyB5gYkgpQv9_hYpHJGNntc5ILsu6p6mHzqb8jx8g_kv7CdYfZbrqdA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_124893 crossref_primary_10_1007_s12559_024_10326_9 crossref_primary_10_1038_s41598_024_63998_6 crossref_primary_10_1186_s40708_024_00230_1 crossref_primary_10_4103_jmp_jmp_10_24 crossref_primary_10_3390_tomography10080093 |
Cites_doi | 10.1136/bmj.c2289 10.1016/j.jalz.2010.03.006 10.1109/TMI.2021.3085948 10.1093/brain/awaa160 10.1038/s41598-020-79243-9 10.1016/j.neubiorev.2021.02.026 10.1016/j.neuroimage.2022.119210 10.1016/j.neuroimage.2022.118871 10.18632/aging.101020 10.3390/app7070651 10.1016/j.biopsych.2007.03.001 10.1177/0263276412456569 10.1016/j.neuroimage.2010.01.005 10.3389/fpsyt.2021.626677 10.1523/JNEUROSCI.0391-14.2014 10.1016/j.neurobiolaging.2020.03.014 10.1016/j.bspc.2021.103318 10.3390/s20185097 10.1002/hbm.25011 10.1038/srep32527 10.3390/sym12091526 10.1016/j.cell.2013.05.039 10.1073/pnas.1902376116 10.1016/j.dcn.2023.101220 10.1038/s41467-019-13163-9 10.1002/hbm.24899 10.1210/en.2004-1142 10.1002/hbm.26292 10.1002/hbm.24462 10.1038/s41582-019-0244-7 10.1002/hbm.25837 10.1002/brb3.2413 10.1016/j.neuroimage.2012.10.064 10.1016/j.isprsjprs.2017.07.014 10.1016/j.nicl.2019.102063 10.1016/j.neuroimage.2020.117401 10.1038/s41380-022-01728-y 10.1093/bib/bbaa310 10.1016/j.mri.2019.06.018 10.1007/s12021-015-9277-2 10.1016/j.compmedimag.2021.101967 10.1210/endrev/bnz005 10.1016/j.neurobiolaging.2023.06.001 10.1177/1073858404263960 10.1016/j.neuroimage.2015.09.018 10.1002/hbm.25368 10.3389/fnagi.2018.00028 10.1001/archneur.60.7.989 10.1152/physrev.00036.2014 10.1016/j.neurobiolaging.2020.02.009 10.1523/JNEUROSCI.0115-09.2009 10.1016/j.neuroimage.2016.11.005 10.1016/j.neuroimage.2017.07.059 10.3389/fnagi.2018.00317 10.1073/pnas.0911855107 10.1016/j.tins.2017.10.001 10.3389/fpsyt.2021.615754 10.1016/j.biopsych.2022.02.027 10.1038/s41598-018-34247-4 10.3389/fnagi.2022.1019869 10.1001/archneur.55.2.169 10.1523/JNEUROSCI.23-08-03295.2003 10.1109/TNNLS.2018.2790388 10.1016/j.artmed.2023.102678 10.1016/j.neuroimage.2012.08.001 10.1037/0033-2909.88.3.622 10.1093/brain/awac126 10.1016/j.compmedimag.2021.101939 10.1016/j.ins.2012.10.039 10.1016/j.ceh.2020.11.002 10.1101/2019.12.13.19014902 10.48550/arXiv.2003.05689 10.1007/978-3-030-87444-5_7 10.48550/arXiv.2108.02497 10.48550/arXiv.1412.6980 10.1109/ICSEM.2010.14 10.1109/ICCV.2017.74 10.1007/978-3-031-43993-3_19 10.48550/arXiv.1608.03983 10.48550/arXiv.1609.04747 10.48550/arXiv.1711.00489 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
DOI | 10.1038/s41598-023-49514-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ (selected full-text) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_e14e15e3d1ce4bf5ba8858b71c787a84 10.1038/s41598-023-49514-2 PMC10725434 38104173 10_1038_s41598_023_49514_2 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: 2020M3E5D9080555; 2020R1A2C2005901 funderid: http://dx.doi.org/10.13039/501100003725 – fundername: Electronics and Telecommunications Research Institute grantid: Grant No. 23YS1110 funderid: http://dx.doi.org/10.13039/501100003696 – fundername: Electronics and Telecommunications Research Institute grantid: Grant No. 23YS1110 – fundername: National Research Foundation of Korea grantid: 2020M3E5D9080555 – fundername: National Research Foundation of Korea grantid: 2020R1A2C2005901 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c541t-fc822aa43a4e9c39f497b0c6980e6b2db5b1b1c123f5d70fe1b40e5321a58de63 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:07:32 EDT 2025 Wed Oct 01 15:54:21 EDT 2025 Tue Sep 30 17:10:24 EDT 2025 Thu Sep 04 17:14:18 EDT 2025 Wed Aug 13 03:26:22 EDT 2025 Mon Jul 21 06:06:37 EDT 2025 Wed Oct 01 01:31:12 EDT 2025 Thu Apr 24 23:06:53 EDT 2025 Fri Feb 21 02:39:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fc822aa43a4e9c39f497b0c6980e6b2db5b1b1c123f5d70fe1b40e5321a58de63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2902590568?pq-origsite=%requestingapplication% |
PMID | 38104173 |
PQID | 2902590568 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e14e15e3d1ce4bf5ba8858b71c787a84 unpaywall_primary_10_1038_s41598_023_49514_2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10725434 proquest_miscellaneous_2903326114 proquest_journals_2902590568 pubmed_primary_38104173 crossref_primary_10_1038_s41598_023_49514_2 crossref_citationtrail_10_1038_s41598_023_49514_2 springer_journals_10_1038_s41598_023_49514_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-16 |
PublicationDateYYYYMMDD | 2023-12-16 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hutcheon, Chiolero, Hanley (CR43) 2010; 340 Cole (CR53) 2022; 91 Niu, Zhang, Kounios, Liang (CR14) 2020; 41 Desai, Shah (CR18) 2021; 4 Storsve (CR3) 2014; 34 Newcombe (CR83) 2022; 145 Cole, Franke (CR7) 2017; 40 Treder (CR41) 2021; 12 So, Hooshyar, Park, Lim (CR62) 2017; 7 CR79 Bae (CR20) 2020; 10 Dinsdale (CR16) 2021; 224 CR77 CR76 Cole (CR15) 2017; 163 CR74 Karlik, Olgac (CR22) 2011; 1 Holm (CR30) 2023; 60 Liu, Tyler, Davis, Rowe, Tsvetanov (CR59) 2023; 129 Hepp (CR48) 2021; 92 Hara, Waters, McEwen, Morrison (CR54) 2015; 95 Biswal (CR70) 2010; 107 Ahsan, Alam, Trafalis, Huebner (CR17) 2020; 12 Baecker (CR56) 2021; 42 Taylor (CR73) 2017; 144 Feng (CR84) 2020; 91 López-Otín, Blasco, Partridge, Serrano, Kroemer (CR4) 2013; 153 Singh (CR36) 2020; 20 Lancaster, Lorenz, Leech, Cole (CR82) 2018; 10 Mu, Xie, Wen, Weng, Shuyun (CR51) 1999; 20 Burgos (CR63) 2021; 22 Levakov, Rosenthal, Shelef, Raviv, Avidan (CR49) 2020; 41 Gavrishchaka, Yang, Miao, Senyukova (CR26) 2018; 8 Zhang, Niu (CR28) 2023; 10 Franke, Luders, May, Wilke, Gaser (CR8) 2012; 63 Cosgrove, Mazure, Staley (CR12) 2007; 62 Beheshti, Nugent, Potvin, Duchesne (CR40) 2019; 24 CR47 Deepika, Balaji (CR61) 2022; 72 LaMontagne (CR72) 2019 CR45 Xu (CR32) 2000; 21 Chen (CR6) 2016; 8 CR81 CR80 Wang (CR88) 2019; 116 Pletzer, Harris, Hidalgo-Lopez (CR55) 2018; 8 Eliot, Ahmed, Khan, Patel (CR39) 2021; 125 Vegeto (CR35) 2020; 41 Besson, Parrish, Katsaggelos, Bandt (CR21) 2021; 91 Mahmud, Kaiser, Hussain, Vassanelli (CR60) 2018; 29 Resnick, Pham, Kraut, Zonderman, Davatzikos (CR50) 2003; 23 Fjell (CR34) 2009; 29 Bermudez (CR46) 2019; 62 Cortez, Embrechts (CR87) 2013; 225 Lydia, Francis (CR78) 2019; 6 Franke, Ziegler, Klöppel, Gaser (CR9) 2010; 50 Liem (CR68) 2017; 148 Khayretdinova (CR86) 2022; 14 CR57 Le (CR42) 2018; 10 Scahill (CR2) 2003; 60 Cheng (CR13) 2021; 40 Zhang (CR19) 2018; 140 Leonardsen (CR23) 2022; 256 Becker (CR33) 2005; 146 Karim (CR52) 2022; 27 Coffey (CR11) 1998; 55 Bergstra, Bardenet, Bengio, Kégl (CR67) 2011; 24 Anderson (CR38) 2019; 40 Rose (CR5) 2013; 30 Kuo (CR27) 2021; 12 Hou (CR1) 2019; 15 Clausen (CR25) 2022; 12 de Lange (CR85) 2022; 43 Bashyam (CR31) 2020; 143 CR69 Qiang (CR64) 2023; 145 Wood (CR37) 2022; 249 CR65 Aisen (CR89) 2010; 6 Ganzetti, Wenderoth, Mantini (CR75) 2016; 14 Henson (CR58) 2016; 6 Bacas (CR24) 2023; 44 Mennes, Biswal, Castellanos, Milham (CR71) 2013; 82 Jónsson (CR29) 2019; 10 Nesselroade, Stigler, Baltes (CR44) 1980; 88 Sowell, Thompson, Toga (CR10) 2004; 10 Cole (CR66) 2020; 92 AMG de Lange (49514_CR85) 2022; 43 P Besson (49514_CR21) 2021; 91 MC Holm (49514_CR30) 2023; 60 M Mahmud (49514_CR60) 2018; 29 JB Becker (49514_CR33) 2005; 146 Y Hou (49514_CR1) 2019; 15 RI Scahill (49514_CR2) 2003; 60 B Karlik (49514_CR22) 2011; 1 D Deepika (49514_CR61) 2022; 72 49514_CR45 JA Hutcheon (49514_CR43) 2010; 340 F Liem (49514_CR68) 2017; 148 49514_CR47 K Franke (49514_CR9) 2010; 50 J Wang (49514_CR88) 2019; 116 G Levakov (49514_CR49) 2020; 41 M Desai (49514_CR18) 2021; 4 49514_CR81 L Baecker (49514_CR56) 2021; 42 J Xu (49514_CR32) 2000; 21 C López-Otín (49514_CR4) 2013; 153 JH Cole (49514_CR66) 2020; 92 49514_CR80 AB Storsve (49514_CR3) 2014; 34 X Liu (49514_CR59) 2023; 129 BH Chen (49514_CR6) 2016; 8 S Zhang (49514_CR28) 2023; 10 J Cole (49514_CR53) 2022; 91 PS Aisen (49514_CR89) 2010; 6 AN Clausen (49514_CR25) 2022; 12 C-Y Kuo (49514_CR27) 2021; 12 Y Hara (49514_CR54) 2015; 95 X Feng (49514_CR84) 2020; 91 J Lancaster (49514_CR82) 2018; 10 K Franke (49514_CR8) 2012; 63 M Khayretdinova (49514_CR86) 2022; 14 X Niu (49514_CR14) 2020; 41 49514_CR79 NK Dinsdale (49514_CR16) 2021; 224 SP Singh (49514_CR36) 2020; 20 49514_CR74 CE Coffey (49514_CR11) 1998; 55 E Vegeto (49514_CR35) 2020; 41 49514_CR77 49514_CR76 C Zhang (49514_CR19) 2018; 140 MS Treder (49514_CR41) 2021; 12 RN Henson (49514_CR58) 2016; 6 L Eliot (49514_CR39) 2021; 125 BA Jónsson (49514_CR29) 2019; 10 N Rose (49514_CR5) 2013; 30 J Bergstra (49514_CR67) 2011; 24 C Bermudez (49514_CR46) 2019; 62 BB Biswal (49514_CR70) 2010; 107 JH Cole (49514_CR15) 2017; 163 V Gavrishchaka (49514_CR26) 2018; 8 NE Anderson (49514_CR38) 2019; 40 A Lydia (49514_CR78) 2019; 6 T Hepp (49514_CR48) 2021; 92 49514_CR69 49514_CR65 J Cheng (49514_CR13) 2021; 40 DA Wood (49514_CR37) 2022; 249 P Cortez (49514_CR87) 2013; 225 HT Karim (49514_CR52) 2022; 27 Q Mu (49514_CR51) 1999; 20 YR Qiang (49514_CR64) 2023; 145 JB Bae (49514_CR20) 2020; 10 JR Nesselroade (49514_CR44) 1980; 88 VM Bashyam (49514_CR31) 2020; 143 E Bacas (49514_CR24) 2023; 44 M Mennes (49514_CR71) 2013; 82 PJ LaMontagne (49514_CR72) 2019 M Ganzetti (49514_CR75) 2016; 14 MM Ahsan (49514_CR17) 2020; 12 JH Cole (49514_CR7) 2017; 40 VF Newcombe (49514_CR83) 2022; 145 AM Fjell (49514_CR34) 2009; 29 TT Le (49514_CR42) 2018; 10 49514_CR57 ER Sowell (49514_CR10) 2004; 10 EH Leonardsen (49514_CR23) 2022; 256 I Beheshti (49514_CR40) 2019; 24 KP Cosgrove (49514_CR12) 2007; 62 B Pletzer (49514_CR55) 2018; 8 A So (49514_CR62) 2017; 7 JR Taylor (49514_CR73) 2017; 144 N Burgos (49514_CR63) 2021; 22 SM Resnick (49514_CR50) 2003; 23 |
References_xml | – ident: CR45 – volume: 340 start-page: c2289 year: 2010 ident: CR43 article-title: Random measurement error and regression dilution bias publication-title: Bmj doi: 10.1136/bmj.c2289 – ident: CR74 – volume: 6 start-page: 239 year: 2010 end-page: 246 ident: CR89 article-title: Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: Progress and plans publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2010.03.006 – volume: 40 start-page: 3400 year: 2021 end-page: 3412 ident: CR13 article-title: Brain age estimation from MRI using cascade networks with ranking loss publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3085948 – volume: 143 start-page: 2312 year: 2020 end-page: 2324 ident: CR31 article-title: MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide publication-title: Brain doi: 10.1093/brain/awaa160 – volume: 20 start-page: 207 year: 1999 end-page: 211 ident: CR51 article-title: A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age publication-title: Am. J. Neuroradiol. – volume: 10 start-page: 22252 year: 2020 ident: CR20 article-title: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging publication-title: Sci. Rep. doi: 10.1038/s41598-020-79243-9 – volume: 125 start-page: 667 year: 2021 end-page: 697 ident: CR39 article-title: Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2021.02.026 – ident: CR80 – volume: 8 start-page: 549 year: 2018 end-page: 558 ident: CR26 article-title: Advantages of hybrid deep learning frameworks in applications with limited data publication-title: Int. J. Mach. Learn. Comput. – ident: CR77 – volume: 256 start-page: 119210 year: 2022 ident: CR23 article-title: Deep neural networks learn general and clinically relevant representations of the ageing brain publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119210 – volume: 249 start-page: 118871 year: 2022 ident: CR37 article-title: Accurate brain-age models for routine clinical MRI examinations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118871 – volume: 8 start-page: 1844 year: 2016 ident: CR6 article-title: DNA methylation-based measures of biological age: Meta-analysis predicting time to death publication-title: Aging doi: 10.18632/aging.101020 – volume: 7 start-page: 651 year: 2017 ident: CR62 article-title: Early diagnosis of dementia from clinical data by machine learning techniques publication-title: Appl. Sci. doi: 10.3390/app7070651 – volume: 24 start-page: 1 year: 2011 end-page: 9 ident: CR67 article-title: Algorithms for hyper-parameter optimization publication-title: Adv. Neural. Inf. Process. Syst. – volume: 62 start-page: 847 year: 2007 end-page: 855 ident: CR12 article-title: Evolving knowledge of sex differences in brain structure, function, and chemistry publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.03.001 – volume: 30 start-page: 3 year: 2013 end-page: 34 ident: CR5 article-title: The human sciences in a biological age publication-title: Theory Cult. Soc. doi: 10.1177/0263276412456569 – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: CR9 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 10 start-page: 712 year: 2023 ident: CR28 article-title: LcmUNet: a lightweight network combining CNN and MLP for real-time medical image segmentation publication-title: Bioeng. – volume: 12 start-page: 626677 year: 2021 ident: CR27 article-title: Improving individual brain age prediction using an ensemble deep learning framework publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2021.626677 – volume: 34 start-page: 8488 year: 2014 end-page: 8498 ident: CR3 article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0391-14.2014 – volume: 92 start-page: 34 year: 2020 end-page: 42 ident: CR66 article-title: Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2020.03.014 – volume: 72 start-page: 103318 year: 2022 ident: CR61 article-title: Effective heart disease prediction using novel MLP-EBMDA approach publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103318 – volume: 20 start-page: 5097 year: 2020 ident: CR36 article-title: 3D deep learning on medical images: A review publication-title: Sensors doi: 10.3390/s20185097 – volume: 41 start-page: 3235 year: 2020 end-page: 3252 ident: CR49 article-title: From a deep learning model back to the brain—identifying regional predictors and their relation to aging publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25011 – volume: 6 start-page: 32527 year: 2016 ident: CR58 article-title: Multiple determinants of lifespan memory differences publication-title: Sci. Rep. doi: 10.1038/srep32527 – volume: 12 start-page: 1526 year: 2020 ident: CR17 article-title: Deep MLP-CNN model using mixed-data to distinguish between COVID-19 and Non-COVID-19 patients publication-title: Symmetry doi: 10.3390/sym12091526 – volume: 153 start-page: 1194 year: 2013 end-page: 1217 ident: CR4 article-title: The hallmarks of aging publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 116 start-page: 21213 year: 2019 end-page: 21218 ident: CR88 article-title: Gray matter age prediction as a biomarker for risk of dementia publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1902376116 – volume: 60 start-page: 101220 year: 2023 ident: CR30 article-title: Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2023.101220 – volume: 10 start-page: 5409 year: 2019 ident: CR29 article-title: Brain age prediction using deep learning uncovers associated sequence variants publication-title: Nat. Commun. doi: 10.1038/s41467-019-13163-9 – ident: CR57 – volume: 41 start-page: 1626 year: 2020 end-page: 1643 ident: CR14 article-title: Improved prediction of brain age using multimodal neuroimaging data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24899 – volume: 146 start-page: 1650 year: 2005 end-page: 1673 ident: CR33 article-title: Strategies and methods for research on sex differences in brain and behavior publication-title: Endocrinology doi: 10.1210/en.2004-1142 – volume: 44 start-page: 3481 year: 2023 end-page: 3492 ident: CR24 article-title: Probing multiple algorithms to calculate brain age: Examining reliability, relations with demographics, and predictive power publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26292 – volume: 40 start-page: 1496 year: 2019 end-page: 1506 ident: CR38 article-title: Machine learning of brain gray matter differentiates sex in a large forensic sample publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24462 – ident: CR81 – volume: 15 start-page: 565 year: 2019 end-page: 581 ident: CR1 article-title: Ageing as a risk factor for neurodegenerative disease publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-019-0244-7 – volume: 43 start-page: 3113 year: 2022 end-page: 3129 ident: CR85 article-title: Mind the gap: Performance metric evaluation in brain-age prediction publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25837 – volume: 12 start-page: e2413 year: 2022 ident: CR25 article-title: Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups publication-title: Brain Behav. doi: 10.1002/brb3.2413 – volume: 82 start-page: 683 year: 2013 end-page: 691 ident: CR71 article-title: Making data sharing work: The FCP/INDI experience publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.064 – volume: 140 start-page: 133 year: 2018 end-page: 144 ident: CR19 article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.014 – volume: 24 start-page: 102063 year: 2019 ident: CR40 article-title: Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.102063 – volume: 224 start-page: 117401 year: 2021 ident: CR16 article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117401 – volume: 27 start-page: 5235 year: 2022 end-page: 5243 ident: CR52 article-title: Independent replication of advanced brain age in mild cognitive impairment and dementia: detection of future cognitive dysfunction publication-title: Mol. Psychiatry doi: 10.1038/s41380-022-01728-y – volume: 22 start-page: 1560 year: 2021 end-page: 1576 ident: CR63 article-title: Deep learning for brain disorders: From data processing to disease treatment publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa310 – volume: 62 start-page: 70 year: 2019 end-page: 77 ident: CR46 article-title: Anatomical context improves deep learning on the brain age estimation task publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.06.018 – ident: CR47 – volume: 14 start-page: 5 year: 2016 end-page: 21 ident: CR75 article-title: Quantitative evaluation of intensity inhomogeneity correction methods for structural MR brain images publication-title: Neuroinformatics doi: 10.1007/s12021-015-9277-2 – volume: 6 start-page: 566 year: 2019 end-page: 568 ident: CR78 article-title: Adagrad—an optimizer for stochastic gradient descent publication-title: Int. J. Inf. Comput. Sci. – volume: 92 start-page: 101967 year: 2021 ident: CR48 article-title: Uncertainty estimation and explainability in deep learning-based age estimation of the human brain: Results from the German National Cohort MRI study publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101967 – volume: 41 start-page: 273 year: 2020 end-page: 319 ident: CR35 article-title: The role of sex and sex hormones in neurodegenerative diseases publication-title: Endocr. Rev. doi: 10.1210/endrev/bnz005 – volume: 129 start-page: 195 year: 2023 end-page: 208 ident: CR59 article-title: Cognition’s dependence on functional network integrity with age is conditional on structural network integrity publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2023.06.001 – volume: 10 start-page: 372 year: 2004 end-page: 392 ident: CR10 article-title: Mapping changes in the human cortex throughout the span of life publication-title: Neuroscientist doi: 10.1177/1073858404263960 – volume: 144 start-page: 262 year: 2017 end-page: 269 ident: CR73 article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.018 – volume: 42 start-page: 2332 year: 2021 end-page: 2346 ident: CR56 article-title: Brain age prediction: A comparison between machine learning models using region-and voxel-based morphometric data publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25368 – volume: 10 start-page: 28 year: 2018 ident: CR82 article-title: Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00028 – volume: 60 start-page: 989 year: 2003 end-page: 994 ident: CR2 article-title: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging publication-title: Arch. Neurol. doi: 10.1001/archneur.60.7.989 – volume: 95 start-page: 785 year: 2015 end-page: 807 ident: CR54 article-title: Estrogen effects on cognitive and synaptic health over the lifecourse publication-title: Physiol. Rev. doi: 10.1152/physrev.00036.2014 – ident: CR79 – volume: 91 start-page: 15 year: 2020 end-page: 25 ident: CR84 article-title: Estimating brain age based on a uniform healthy population with deep learning and structural magnetic resonance imaging publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2020.02.009 – volume: 29 start-page: 8774 year: 2009 end-page: 8783 ident: CR34 article-title: Minute effects of sex on the aging brain: A multisample magnetic resonance imaging study of healthy aging and Alzheimer's disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0115-09.2009 – volume: 148 start-page: 179 year: 2017 end-page: 188 ident: CR68 article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.005 – ident: CR69 – volume: 163 start-page: 115 year: 2017 end-page: 124 ident: CR15 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.059 – volume: 10 start-page: 317 year: 2018 ident: CR42 article-title: A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00317 – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: CR70 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911855107 – volume: 40 start-page: 681 year: 2017 end-page: 690 ident: CR7 article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.10.001 – volume: 12 start-page: 615754 year: 2021 ident: CR41 article-title: Correlation constraints for regression models: Controlling bias in brain age prediction publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2021.615754 – volume: 91 start-page: S3 year: 2022 end-page: S4 ident: CR53 article-title: Steps towards clinical application of the brain age paradigm publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2022.02.027 – volume: 8 start-page: 16042 year: 2018 ident: CR55 article-title: Subcortical structural changes along the menstrual cycle: Beyond the hippocampus publication-title: Sci. Rep. doi: 10.1038/s41598-018-34247-4 – ident: CR65 – volume: 21 start-page: 112 year: 2000 end-page: 118 ident: CR32 article-title: Gender effects on age-related changes in brain structure publication-title: Am. J. Neuroradiol. – volume: 14 start-page: 1367 year: 2022 ident: CR86 article-title: Predicting age from resting-state scalp EEG signals with deep convolutional neural networks on TD-brain dataset publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.1019869 – volume: 55 start-page: 169 year: 1998 end-page: 179 ident: CR11 article-title: Sex differences in brain aging: A quantitative magnetic resonance imaging study publication-title: Arch. Neurol. doi: 10.1001/archneur.55.2.169 – volume: 23 start-page: 3295 year: 2003 end-page: 3301 ident: CR50 article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 29 start-page: 2063 year: 2018 end-page: 2079 ident: CR60 article-title: Applications of deep learning and reinforcement learning to biological data publication-title: IEEE Trans. Neural. Netw. Learn. doi: 10.1109/TNNLS.2018.2790388 – volume: 1 start-page: 111 year: 2011 end-page: 122 ident: CR22 article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks publication-title: Int. J. Artif. Intell. – volume: 145 start-page: 102678 year: 2023 ident: CR64 article-title: Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102678 – ident: CR76 – volume: 63 start-page: 1305 year: 2012 end-page: 1312 ident: CR8 article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.001 – volume: 88 start-page: 622 year: 1980 ident: CR44 article-title: Regression toward the mean and the study of change publication-title: Psychol. Bull. doi: 10.1037/0033-2909.88.3.622 – volume: 145 start-page: 2064 year: 2022 end-page: 2076 ident: CR83 article-title: Post-acute blood biomarkers and disease progression in traumatic brain injury publication-title: Brain doi: 10.1093/brain/awac126 – volume: 91 start-page: 101939 year: 2021 ident: CR21 article-title: Geometric deep learning on brain shape predicts sex and age publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101939 – volume: 225 start-page: 1 year: 2013 end-page: 17 ident: CR87 article-title: Using sensitivity analysis and visualization techniques to open black box data mining models publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.10.039 – volume: 4 start-page: 1 year: 2021 end-page: 11 ident: CR18 article-title: An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN) publication-title: Clin. eHealth doi: 10.1016/j.ceh.2020.11.002 – year: 2019 ident: CR72 article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease publication-title: MedRxiv doi: 10.1101/2019.12.13.19014902 – volume: 88 start-page: 622 year: 1980 ident: 49514_CR44 publication-title: Psychol. Bull. doi: 10.1037/0033-2909.88.3.622 – volume: 30 start-page: 3 year: 2013 ident: 49514_CR5 publication-title: Theory Cult. Soc. doi: 10.1177/0263276412456569 – volume: 62 start-page: 70 year: 2019 ident: 49514_CR46 publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2019.06.018 – volume: 22 start-page: 1560 year: 2021 ident: 49514_CR63 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbaa310 – volume: 41 start-page: 273 year: 2020 ident: 49514_CR35 publication-title: Endocr. Rev. doi: 10.1210/endrev/bnz005 – volume: 340 start-page: c2289 year: 2010 ident: 49514_CR43 publication-title: Bmj doi: 10.1136/bmj.c2289 – volume: 10 start-page: 712 year: 2023 ident: 49514_CR28 publication-title: Bioeng. – ident: 49514_CR76 doi: 10.48550/arXiv.2003.05689 – volume: 8 start-page: 16042 year: 2018 ident: 49514_CR55 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34247-4 – volume: 6 start-page: 566 year: 2019 ident: 49514_CR78 publication-title: Int. J. Inf. Comput. Sci. – volume: 91 start-page: 101939 year: 2021 ident: 49514_CR21 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101939 – volume: 60 start-page: 101220 year: 2023 ident: 49514_CR30 publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2023.101220 – volume: 20 start-page: 5097 year: 2020 ident: 49514_CR36 publication-title: Sensors doi: 10.3390/s20185097 – ident: 49514_CR47 doi: 10.1007/978-3-030-87444-5_7 – volume: 7 start-page: 651 year: 2017 ident: 49514_CR62 publication-title: Appl. Sci. doi: 10.3390/app7070651 – volume: 12 start-page: 615754 year: 2021 ident: 49514_CR41 publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2021.615754 – volume: 41 start-page: 3235 year: 2020 ident: 49514_CR49 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25011 – volume: 146 start-page: 1650 year: 2005 ident: 49514_CR33 publication-title: Endocrinology doi: 10.1210/en.2004-1142 – volume: 72 start-page: 103318 year: 2022 ident: 49514_CR61 publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.103318 – volume: 148 start-page: 179 year: 2017 ident: 49514_CR68 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.005 – volume: 91 start-page: 15 year: 2020 ident: 49514_CR84 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2020.02.009 – volume: 60 start-page: 989 year: 2003 ident: 49514_CR2 publication-title: Arch. Neurol. doi: 10.1001/archneur.60.7.989 – volume: 40 start-page: 1496 year: 2019 ident: 49514_CR38 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24462 – volume: 43 start-page: 3113 year: 2022 ident: 49514_CR85 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25837 – volume: 10 start-page: 5409 year: 2019 ident: 49514_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13163-9 – volume: 12 start-page: 626677 year: 2021 ident: 49514_CR27 publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2021.626677 – ident: 49514_CR74 – volume: 34 start-page: 8488 year: 2014 ident: 49514_CR3 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0391-14.2014 – volume: 21 start-page: 112 year: 2000 ident: 49514_CR32 publication-title: Am. J. Neuroradiol. – volume: 40 start-page: 3400 year: 2021 ident: 49514_CR13 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3085948 – volume: 6 start-page: 32527 year: 2016 ident: 49514_CR58 publication-title: Sci. Rep. doi: 10.1038/srep32527 – volume: 23 start-page: 3295 year: 2003 ident: 49514_CR50 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-08-03295.2003 – volume: 50 start-page: 883 year: 2010 ident: 49514_CR9 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.01.005 – ident: 49514_CR57 doi: 10.48550/arXiv.2108.02497 – volume: 82 start-page: 683 year: 2013 ident: 49514_CR71 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.064 – ident: 49514_CR79 doi: 10.48550/arXiv.1412.6980 – volume: 125 start-page: 667 year: 2021 ident: 49514_CR39 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2021.02.026 – ident: 49514_CR69 doi: 10.1109/ICSEM.2010.14 – ident: 49514_CR45 doi: 10.1109/ICCV.2017.74 – volume: 15 start-page: 565 year: 2019 ident: 49514_CR1 publication-title: Nat. Rev. Neurol. doi: 10.1038/s41582-019-0244-7 – volume: 40 start-page: 681 year: 2017 ident: 49514_CR7 publication-title: Trends Neurosci. doi: 10.1016/j.tins.2017.10.001 – volume: 153 start-page: 1194 year: 2013 ident: 49514_CR4 publication-title: Cell doi: 10.1016/j.cell.2013.05.039 – volume: 8 start-page: 549 year: 2018 ident: 49514_CR26 publication-title: Int. J. Mach. Learn. Comput. – volume: 145 start-page: 2064 year: 2022 ident: 49514_CR83 publication-title: Brain doi: 10.1093/brain/awac126 – volume: 10 start-page: 372 year: 2004 ident: 49514_CR10 publication-title: Neuroscientist doi: 10.1177/1073858404263960 – volume: 24 start-page: 102063 year: 2019 ident: 49514_CR40 publication-title: NeuroImage Clin. doi: 10.1016/j.nicl.2019.102063 – volume: 8 start-page: 1844 year: 2016 ident: 49514_CR6 publication-title: Aging doi: 10.18632/aging.101020 – volume: 6 start-page: 239 year: 2010 ident: 49514_CR89 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2010.03.006 – ident: 49514_CR65 doi: 10.1007/978-3-031-43993-3_19 – ident: 49514_CR81 doi: 10.48550/arXiv.1608.03983 – volume: 55 start-page: 169 year: 1998 ident: 49514_CR11 publication-title: Arch. Neurol. doi: 10.1001/archneur.55.2.169 – year: 2019 ident: 49514_CR72 publication-title: MedRxiv doi: 10.1101/2019.12.13.19014902 – volume: 10 start-page: 317 year: 2018 ident: 49514_CR42 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00317 – volume: 116 start-page: 21213 year: 2019 ident: 49514_CR88 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1902376116 – volume: 129 start-page: 195 year: 2023 ident: 49514_CR59 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2023.06.001 – volume: 144 start-page: 262 year: 2017 ident: 49514_CR73 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.09.018 – volume: 143 start-page: 2312 year: 2020 ident: 49514_CR31 publication-title: Brain doi: 10.1093/brain/awaa160 – volume: 91 start-page: S3 year: 2022 ident: 49514_CR53 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2022.02.027 – volume: 14 start-page: 1367 year: 2022 ident: 49514_CR86 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2022.1019869 – volume: 249 start-page: 118871 year: 2022 ident: 49514_CR37 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.118871 – volume: 95 start-page: 785 year: 2015 ident: 49514_CR54 publication-title: Physiol. Rev. doi: 10.1152/physrev.00036.2014 – volume: 29 start-page: 2063 year: 2018 ident: 49514_CR60 publication-title: IEEE Trans. Neural. Netw. Learn. doi: 10.1109/TNNLS.2018.2790388 – volume: 92 start-page: 34 year: 2020 ident: 49514_CR66 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2020.03.014 – volume: 4 start-page: 1 year: 2021 ident: 49514_CR18 publication-title: Clin. eHealth doi: 10.1016/j.ceh.2020.11.002 – volume: 62 start-page: 847 year: 2007 ident: 49514_CR12 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2007.03.001 – volume: 225 start-page: 1 year: 2013 ident: 49514_CR87 publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.10.039 – volume: 92 start-page: 101967 year: 2021 ident: 49514_CR48 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2021.101967 – volume: 41 start-page: 1626 year: 2020 ident: 49514_CR14 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24899 – volume: 10 start-page: 22252 year: 2020 ident: 49514_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-020-79243-9 – volume: 42 start-page: 2332 year: 2021 ident: 49514_CR56 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25368 – volume: 224 start-page: 117401 year: 2021 ident: 49514_CR16 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117401 – volume: 1 start-page: 111 year: 2011 ident: 49514_CR22 publication-title: Int. J. Artif. Intell. – volume: 29 start-page: 8774 year: 2009 ident: 49514_CR34 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0115-09.2009 – volume: 145 start-page: 102678 year: 2023 ident: 49514_CR64 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2023.102678 – ident: 49514_CR80 doi: 10.48550/arXiv.1609.04747 – volume: 27 start-page: 5235 year: 2022 ident: 49514_CR52 publication-title: Mol. Psychiatry doi: 10.1038/s41380-022-01728-y – volume: 24 start-page: 1 year: 2011 ident: 49514_CR67 publication-title: Adv. Neural. Inf. Process. Syst. – ident: 49514_CR77 doi: 10.48550/arXiv.1711.00489 – volume: 12 start-page: 1526 year: 2020 ident: 49514_CR17 publication-title: Symmetry doi: 10.3390/sym12091526 – volume: 256 start-page: 119210 year: 2022 ident: 49514_CR23 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119210 – volume: 12 start-page: e2413 year: 2022 ident: 49514_CR25 publication-title: Brain Behav. doi: 10.1002/brb3.2413 – volume: 20 start-page: 207 year: 1999 ident: 49514_CR51 publication-title: Am. J. Neuroradiol. – volume: 44 start-page: 3481 year: 2023 ident: 49514_CR24 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.26292 – volume: 163 start-page: 115 year: 2017 ident: 49514_CR15 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.059 – volume: 107 start-page: 4734 year: 2010 ident: 49514_CR70 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911855107 – volume: 14 start-page: 5 year: 2016 ident: 49514_CR75 publication-title: Neuroinformatics doi: 10.1007/s12021-015-9277-2 – volume: 63 start-page: 1305 year: 2012 ident: 49514_CR8 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.08.001 – volume: 140 start-page: 133 year: 2018 ident: 49514_CR19 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.07.014 – volume: 10 start-page: 28 year: 2018 ident: 49514_CR82 publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2018.00028 |
SSID | ssj0000529419 |
Score | 2.5012796 |
Snippet | The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In... Abstract The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative... |
SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22388 |
SubjectTerms | 631/378/116 631/378/2611 631/378/2612 Age Algorithms Alzheimer Disease - diagnostic imaging Alzheimer's disease Brain Brain - diagnostic imaging Cognitive ability Deep Learning Humanities and Social Sciences Humans multidisciplinary Neural networks Neural Networks, Computer Neurodegenerative diseases Neuroimaging Predictions Science Science (multidisciplinary) Sex Therapeutic applications |
SummonAdditionalLinks | – databaseName: DOAJ (selected full-text) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeQt91mhYVemtErJctH5vQEArtqYHchGSNk1DXa_ZByL_PSPY6u7SkPfS0sNYKeeabnRlm9A0hH9Fnylw4zXzggqkSAjPQFIybUEjJpWt4vO_87Xtxeqa-nuvzjVFfsSdsoAceBHcIXAHXIAOvQflGe2eMNr7kNULNmcQEim5sI5kaWL1FpXg13pLJpTlcoKeKt8mEZJgTcMXElidKhP1_ijJ_b5acKqZPyKNV17uba9e2G07p5CnZHaNJ-nl4i2fkAXTPycNhvuTNC_LzKA6AoPiXQft5rMhELdDY6n5BEWmYFEOgAaCnsfl8BCHuF0ku00dqEaeuCzQ1HrLWYYRO-6EZZo57ufZiNr9aXv5avCRnJ19-HJ-ycboCq7XiS9bUGBs4p6RTUNWyalRV-rwuKpND4UXw2nPPa_RsjQ5l3gD3KgctBXfaBCjkK7LTzTp4Q6gqtQhagohk6pAXHj2eRC-oXRlqWZiM8LWkbT1Sj8cJGK1NJXBp7KAdi9qxSTtWZOTT9Jt-IN64d_VRVOC0MpJmpy8QSnaEkv0blDKyv1a_HS15YUWsw1YYJuJbfJgeow3GworrYLZKaySGwZhaZuT1gJbpJJFBTfFSZsRs4WjrqNtPuqvLxPONmXmkKsBND9aQuzvXfbI4mGD5D6Lb-x-ie0sei2haaO-82Cc7y_kK3mG0tvTvk2HeAgy8Od4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_niagP4udZPSWC-OLlbL7a9EHEE49DOJ9cuLeSNOme2Ov2urvo_vfOtN3q4rL4VGjTkMxHZoaZ_IaQ12AzZSysZs5zwVQaPDOhTBg3PpGSS1tyvO98_jU5m6gvF_pij6zLbQcCzreGdthPatJWx7-uVx9A4d_3V8bNuzkYIbwoJiQDd58rJt401wwbS2ECduiycYPcBGMlUPDPhwigh_8WmeLZcJ1m-2wbJqtD9t_mjv5bVTmmVu-S28u6sauftqr-sl6n98m9we2kH3s5eUD2Qv2Q3OobUa4ekR8n2CmCwtlCmxZTN8guijXxUwoiCdFz8NSH0FCsUh-kFeZDNMzu0dWSU1t72lUossqCK0-bvmqmhblsNQVSLS6v5o_J5PTzt09nbGjDwAqt-IKVBTgR1ippVcgKmZUqS11cJJmJQ-KEd9pxxwswgaX2aVwG7lQctBTcauNDIp-Q_XpWh6eEqlQLr2UQiLoe4sSBaZRgLrVNfSETExG-pnReDBjl2CqjyrtcuTR5z50cuJN33MlFRN6O_zQ9QsfO0SfIwHEkomt3L2btNB-UNQ-wOK6D9LwIypXaWWO0cSkv4HizRkXkcM3-fC2xucCEbQb-JOzi1fgZlBUzMLYOs2U3RoK_DDFoRA56aRlXglBriqcyImZDjjaWuvml_n7ZAYJDCI-YBjDp0Vrk_qxrFy2ORrH8D9I9273r5-SOQKUBlefJIdlftMvwAhy2hXvZqdxv12s7lg priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhobQ9hL7rJC0q9NaIWi9bPm5KQ1hoL20gNyFZ8ibU9RrvLiX_PiP50SwJoT0ZbEmM5qEZeUafEPoIPpOnzEhiHWVE5N4R5auMUOUyzik3FQ3nnb99z87OxfxCXuwgNp6FiUX7EdIyLtNjddjnFTiacBiMcQIhPRUElt09lXMGxrg3m81_zKc_KyF3JWgxnJBJubqn85YXimD990WYdwslp2zpU_R407Tm-o-p61sO6fQZ2h8iSTzraX-OdnzzAj3q75a8fol-nYTLHzAsF7jtQjYmSACHMvcFhjnDhtg77LxvcSg8HxQQxgsAl_ERy8OxaRyORYekNhCd47YvhOlgLFMvlt3V-vL36hU6P_3688sZGW5WIKUUdE2qEuICYwQ3whclLypR5DYts0KlPrPMWWmppSV4tUq6PK08tSL1ErhtpHI-46_RbrNs_FuERS6Zk9yzAKTu08yCt-PgAaXJXckzlSA6clqXA-x4uP2i1jH9zZXupaNBOjpKR7MEfZr6tD3oxoOtT4IAp5YBMDu-WHYLPSiQ9kAclZ47WnphK2mNUlLZnJawYhklEnQ0il8PVrzSLORgCwgRYRYfps9gfyGpYhq_3MQ2HEJg2FYm6E2vLRMlAT1N0JwnSG3p0Rap21-aq8uI8Q278gBTAIMejyr3l66HeHE8qeU_sO7g_0Y_RE9YMCKwapodod11t_HvICZb2_eDEd4AWGwv_w priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KhL_Iz32CKqComKAyvKKbJjZ1t1ya72IVR-PWPnAQtVRU-RkoljjycznzXjzwBvMGaKjFtFnWecyjx4akKlKTNeC8GErVjc7_zpWB-N5ccTdbIFutsLk4r2E6VlctNdddi7JQaauBmMC4qQnkmK60Ff3YBtHRNLA9geH3_e_xZPkkOMQhEm8HaHTCbMJS9vRKFE1n8Zwvy3ULLPlt6BW-t6bi9-2On0j4B0eA--dkNp6lDO99Yrt1f-_Ivl8fpjvQ93W4xK9hvJB7AV6odwszm18uIRnB_EYyUIOiIyX8Q8T5xbEgvoJwS_gEvt4IkPYU5iSXtr2thepM5Ml1R4TmztSSpnpFOLuJ_MmxKbBbZlp5PZ4mx1-n35GMaHH768P6LtmQ20VJKtaFUi4rBWCivDqBSjSo5yl5V6ZLKgHfdOOeZYifGyUj7PqsCczIISnFllfNDiCQzqWR2eAZG54l6JwCNFe8i0wzgqMLYqm_tSaDME1s1hUbaE5vFcjWmREuvCFI0iC1RkkRRZ8CG87d-ZN3QeV0ofRNPoJSMVd7oxW0yKdrqKgJ1jKgjPyiBdpZw1RhmXsxJ9oTVyCDudYRWtf1gWPGZ3Rwg-cRSv-8f4Z8d0ja3DbJ1kBIJrXLAO4Wljh31PIi-bZLkYgtmw0I2ubj6pz04Teziu9yMBAja62xnz735dpYvd3uD_Q3XPryf-Am7zaO_oL5jegcFqsQ4vEe2t3Kv21_4FZWZOFw priority: 102 providerName: Unpaywall |
Title | Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms |
URI | https://link.springer.com/article/10.1038/s41598-023-49514-2 https://www.ncbi.nlm.nih.gov/pubmed/38104173 https://www.proquest.com/docview/2902590568 https://www.proquest.com/docview/2903326114 https://pubmed.ncbi.nlm.nih.gov/PMC10725434 https://www.nature.com/articles/s41598-023-49514-2.pdf https://doaj.org/article/e14e15e3d1ce4bf5ba8858b71c787a84 |
UnpaywallVersion | publishedVersion |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgE2I8ID5HYFRG4o1Zi78S5wm11aap0qoJqFSeIjt2OkRJQz-E9t9zdtKMClTxkkixY9m-O9_Zd_4dQu9BZ_KYaUmMpYyI1FmiXJkQqmzCOeW6pP6-89U4uZyI0VRO2wO3VRtWuV0Tw0JtF4U_Iz9j3h-WgbpWH-ufxGeN8t7VNoXGfXRIwVTxXJ1O0-6MxXuxBM3auzIxV2cr0Ff-ThnjBHYGVBC2o48CbP-_bM2_QyY7v-kj9HBT1fr2l57P_1BNF0_Q49amxP2GCZ6ie656hh40WSZvn6PvA58GAsPCgeul98t4WmAf8D7DMHbYGjuLrXM19iHoLStCex7qMrxCoDjWlcUh_JDMNdjpuG5CYpbQlp7PYKrWNz9WL9Dk4vzL8JK0ORZIIQVdk7IAC0FrwbVwWcGzUmSpiYskU7FLDLNGGmpoAfqtlDaNS0eNiJ3kjGqprEv4S3RQLSr3CmGRSmYld8xDqrs4MaD3OOhCqVNb8ERFiG5nOi9aAHKfB2OeB0c4V3lDnRyokwfq5CxCH7p_6gZ-Y2_tgSdgV9NDZ4cPi-UsbyUxd9A5Kh23tHDClNJopaQyKS1g7dJKROhkS_68ledVfsd9EXrXFYMkeveKrtxiE-pwMIZhgxmh44Zbup54HDVBUx4htcNHO13dLam-3QS0b9ife8ACaPR0y3J3_do3F6cdW_7H1L3eP-o36Ih5oQF5pskJOlgvN-4tWGNr0wsi10OH_f7o8wjeg_Px9Sf4OkyGvXDCAc8roaBkMr7uf_0NHWo4Xw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEK9CoICR4ESjxq_EOSBEgWpLH6dW2luwY2eLWLJhH6r2T_EbmcmrrEArLj1FShzLmacnM_6GkNfgM0XEjQqtYzyUiXeh9kUcMu1iIZgwBcPzzien8eBcfhmq4Qb51Z2FwbLKzibWhtpNcvxHvscxH5aCu9bvq58hdo3C7GrXQqMRiyO_vISQbfbu8BPw9w3nB5_PPg7CtqtAmCvJ5mGRg080RgojfZqLtJBpYqM8TnXkY8udVZZZloNFL5RLosIzKyOvBGdGaedjAfPeIDeliCRi9SfDpP-ng1kzydL2bE4k9N4M_COeYeMihEiEyZCv-L-6TcC_9rZ_l2j2edo7ZGtRVmZ5acbjP1zhwT1yt93D0g-N0N0nG758QG41XS2XD8n3fWw7QcFQ0WqKeSDkPcUC-xEFWkMo7h113lcUS95b0Yf5EFqzvtSF6dSUjtbljuHYQFxAq6YEZwpzmfEIWDO_-DF7RM6vhfrbZLOclP4JoTJR3CnhOUK4-yi24GcF-F5lEpeLWAeEdZTO8hbwHPtujLM68S501nAnA-5kNXcyHpC3_TtVA_exdvQ-MrAfiVDd9Y3JdJS1mp95WBxTXjiWe2kLZY3WStuE5WArjZYB2enYn7X2Y5ZdSXtAXvWPQfMxnWNKP1nUYwRsviGgDcjjRlr6lSBum2SJCIhekaOVpa4-Kb9d1OjiLEoQIAEm3e1E7mpd62ix24vlf5Du6fqvfkm2Bmcnx9nx4enRM3KbowKBLWHxDtmcTxf-OewE5_ZFrX6UfL1uff8Np3huGQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4k2ggJHgRKONX4lzQIhSVi2FigOV9hbs2NkilmzYh6r9a_w6ZvIqK9CKS0-REsdy5vGNJzOeIeQF2EwRcaNC6xgPZeJdqH0Rh0y7WAgmTMHwvPOn4_jgRH4YqdEW-dWdhcG0yg4Ta6B20xz_kQ84xsNSMNd6ULRpEZ_3h2-qnyF2kMJIa9dOoxGRI786A_dt_vpwH3j9kvPh-y_vDsK2w0CYK8kWYZGDfTRGCiN9mou0kGliozxOdeRjy51VllmWA7oXyiVR4ZmVkVeCM6O087GAeS-Ry4mQAtPJklHS_9_BCJpkaXtOJxJ6MAdbiefZuAjBK2Ey5Gu2sG4Z8K997t_pmn3M9ga5tiwrszozk8kfZnF4i9xs97P0bSOAt8mWL--QK02Hy9Vd8n0PW1BQAC1azTAmhHJAMdl-TIHu4JZ7R533FcX091YNYD4ss1lf6iR1akpH69THcGLAR6BVk44zg7nMZAysWZz-mN8jJxdC_ftku5yW_iGhMlHcKeE5lnP3UWzB5gqww8okLhexDgjrKJ3lbfFz7MExyeogvNBZw50MuJPV3Ml4QF7171RN6Y-No_eQgf1ILNtd35jOxlmLApmHxTHlhWO5l7ZQ1mittE1YDrhptAzITsf-rMWSeXYu-QF53j8GFMDQjin9dFmPEbARB-c2IA8aaelXgjXcJEtEQPSaHK0tdf1J-e20rjTOogSLJcCku53Ina9rEy12e7H8D9I92vzVz8hV0PTs4-Hx0WNynaP-AKyweIdsL2ZL_wQ2hQv7tNY-Sr5etLr_Bvi7clQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KhL_Iz32CKqComKAyvKKbJjZ1t1ya72IVR-PWPnAQtVRU-RkoljjycznzXjzwBvMGaKjFtFnWecyjx4akKlKTNeC8GErVjc7_zpWB-N5ccTdbIFutsLk4r2E6VlctNdddi7JQaauBmMC4qQnkmK60Ff3YBtHRNLA9geH3_e_xZPkkOMQhEm8HaHTCbMJS9vRKFE1n8Zwvy3ULLPlt6BW-t6bi9-2On0j4B0eA--dkNp6lDO99Yrt1f-_Ivl8fpjvQ93W4xK9hvJB7AV6odwszm18uIRnB_EYyUIOiIyX8Q8T5xbEgvoJwS_gEvt4IkPYU5iSXtr2thepM5Ml1R4TmztSSpnpFOLuJ_MmxKbBbZlp5PZ4mx1-n35GMaHH768P6LtmQ20VJKtaFUi4rBWCivDqBSjSo5yl5V6ZLKgHfdOOeZYifGyUj7PqsCczIISnFllfNDiCQzqWR2eAZG54l6JwCNFe8i0wzgqMLYqm_tSaDME1s1hUbaE5vFcjWmREuvCFI0iC1RkkRRZ8CG87d-ZN3QeV0ofRNPoJSMVd7oxW0yKdrqKgJ1jKgjPyiBdpZw1RhmXsxJ9oTVyCDudYRWtf1gWPGZ3Rwg-cRSv-8f4Z8d0ja3DbJ1kBIJrXLAO4Wljh31PIi-bZLkYgtmw0I2ubj6pz04Teziu9yMBAja62xnz735dpYvd3uD_Q3XPryf-Am7zaO_oL5jegcFqsQ4vEe2t3Kv21_4FZWZOFw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+age+prediction+using+combined+deep+convolutional+neural+network+and+multi-layer+perceptron+algorithms&rft.jtitle=Scientific+reports&rft.au=Joo%2C+Yoonji&rft.au=Namgung%2C+Eun&rft.au=Jeong%2C+Hyeonseok&rft.au=Kang%2C+Ilhyang&rft.date=2023-12-16&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=22388&rft_id=info:doi/10.1038%2Fs41598-023-49514-2&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |