Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms

The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by in...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 22388 - 15
Main Authors Joo, Yoonji, Namgung, Eun, Jeong, Hyeonseok, Kang, Ilhyang, Kim, Jinsol, Oh, Sohyun, Lyoo, In Kyoon, Yoon, Sujung, Hwang, Jaeuk
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.12.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-023-49514-2

Cover

Abstract The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
AbstractList The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer's disease groups by identifying variances in brain age gaps between them, highlighting the algorithm's potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
Abstract The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In the current study, we proposed a deep learning algorithm that leverages brain structural imaging data and enhances prediction accuracy by integrating biological sex information. Our model for brain age prediction, built on deep neural networks, employed a dataset of 3004 healthy subjects aged 18 and above. The T1-weighted images were minimally preprocessed and analyzed using the convolutional neural network (CNN) algorithm. The categorical sex information was then incorporated using the multi-layer perceptron (MLP) algorithm. We trained and validated both a CNN-only algorithm (utilizing only brain structural imaging data), and a combined CNN-MLP algorithm (using both structural brain imaging data and sex information) for age prediction. By integrating sex information with T1-weighted imaging data, our proposed CNN-MLP algorithm outperformed not only the CNN-only algorithm but also established algorithms, such as brainageR, in prediction accuracy. Notably, this hybrid CNN-MLP algorithm effectively distinguished between mild cognitive impairment and Alzheimer’s disease groups by identifying variances in brain age gaps between them, highlighting the algorithm’s potential for clinical application. Overall, these results underscore the enhanced precision of the CNN-MLP algorithm in brain age prediction, achieved through the integration of sex information.
ArticleNumber 22388
Author Namgung, Eun
Oh, Sohyun
Hwang, Jaeuk
Kang, Ilhyang
Kim, Jinsol
Yoon, Sujung
Joo, Yoonji
Jeong, Hyeonseok
Lyoo, In Kyoon
Author_xml – sequence: 1
  givenname: Yoonji
  surname: Joo
  fullname: Joo, Yoonji
  organization: Ewha Brain Institute, Ewha Womans University
– sequence: 2
  givenname: Eun
  surname: Namgung
  fullname: Namgung, Eun
  organization: Asan Institute for Life Sciences, Asan Medical Center
– sequence: 3
  givenname: Hyeonseok
  surname: Jeong
  fullname: Jeong, Hyeonseok
  organization: Department of Radiology, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea
– sequence: 4
  givenname: Ilhyang
  surname: Kang
  fullname: Kang, Ilhyang
  organization: Ewha Brain Institute, Ewha Womans University
– sequence: 5
  givenname: Jinsol
  surname: Kim
  fullname: Kim, Jinsol
  organization: Ewha Brain Institute, Ewha Womans University
– sequence: 6
  givenname: Sohyun
  surname: Oh
  fullname: Oh, Sohyun
  organization: Ewha Brain Institute, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University
– sequence: 7
  givenname: In Kyoon
  surname: Lyoo
  fullname: Lyoo, In Kyoon
  organization: Ewha Brain Institute, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University, Graduate School of Pharmaceutical Sciences, Ewha Womans University
– sequence: 8
  givenname: Sujung
  surname: Yoon
  fullname: Yoon, Sujung
  email: sujungjyoon@ewha.ac.kr
  organization: Ewha Brain Institute, Ewha Womans University, Department of Brain and Cognitive Sciences, Ewha Womans University
– sequence: 9
  givenname: Jaeuk
  surname: Hwang
  fullname: Hwang, Jaeuk
  email: hju75@schmc.ac.kr
  organization: Department of Psychiatry, Soonchunhyang University College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38104173$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAQjVARLaU_wAJFYsMm4GfirBBUPCpVYgNry3YmqW8dO9hJq_v3OPdeSttFhTd-zDnHM3PmZXHkg4eieI3Re4yo-JAY5q2oEKEVazlmFXlWnBDEeEUoIUf3zsfFWUoblBcnLcPti-KYCowYbuhJcf05KutLNUA5ReismW3w5ZKsH0oTRm09dGUHMOWbvwluWePKlR6WuNvm2xCvS-W7clzcbCunthDLCaKBaY5ZS7khRDtfjelV8bxXLsHZYT8tfn398vP8e3X549vF-afLynCG56o3ghClGFUMWkPbnrWNRqZuBYJak05zjTU2mNCedw3qAWuGgFOCFRcd1PS0uNjrdkFt5BTtqOJWBmXl7iHEQao4W-NAAmaAOdAOG2C651oJwYVusGlEowTLWnSvtfhJbW-Vc3eCGMnVCbl3QmYn5M4JSTLr4541LXqEzoCfc7cepPIw4u2VHMJNFmwIZ3T9991BIYbfC6RZjjYZcE55CEuSpEWUkhrjFfr2EXQTlphN2qEIbxGvRUa9uZ_SXS5_RyEDyB5gYkgpQv9_hYpHJGNntc5ILsu6p6mHzqb8jx8g_kv7CdYfZbrqdA
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124893
crossref_primary_10_1007_s12559_024_10326_9
crossref_primary_10_1038_s41598_024_63998_6
crossref_primary_10_1186_s40708_024_00230_1
crossref_primary_10_4103_jmp_jmp_10_24
crossref_primary_10_3390_tomography10080093
Cites_doi 10.1136/bmj.c2289
10.1016/j.jalz.2010.03.006
10.1109/TMI.2021.3085948
10.1093/brain/awaa160
10.1038/s41598-020-79243-9
10.1016/j.neubiorev.2021.02.026
10.1016/j.neuroimage.2022.119210
10.1016/j.neuroimage.2022.118871
10.18632/aging.101020
10.3390/app7070651
10.1016/j.biopsych.2007.03.001
10.1177/0263276412456569
10.1016/j.neuroimage.2010.01.005
10.3389/fpsyt.2021.626677
10.1523/JNEUROSCI.0391-14.2014
10.1016/j.neurobiolaging.2020.03.014
10.1016/j.bspc.2021.103318
10.3390/s20185097
10.1002/hbm.25011
10.1038/srep32527
10.3390/sym12091526
10.1016/j.cell.2013.05.039
10.1073/pnas.1902376116
10.1016/j.dcn.2023.101220
10.1038/s41467-019-13163-9
10.1002/hbm.24899
10.1210/en.2004-1142
10.1002/hbm.26292
10.1002/hbm.24462
10.1038/s41582-019-0244-7
10.1002/hbm.25837
10.1002/brb3.2413
10.1016/j.neuroimage.2012.10.064
10.1016/j.isprsjprs.2017.07.014
10.1016/j.nicl.2019.102063
10.1016/j.neuroimage.2020.117401
10.1038/s41380-022-01728-y
10.1093/bib/bbaa310
10.1016/j.mri.2019.06.018
10.1007/s12021-015-9277-2
10.1016/j.compmedimag.2021.101967
10.1210/endrev/bnz005
10.1016/j.neurobiolaging.2023.06.001
10.1177/1073858404263960
10.1016/j.neuroimage.2015.09.018
10.1002/hbm.25368
10.3389/fnagi.2018.00028
10.1001/archneur.60.7.989
10.1152/physrev.00036.2014
10.1016/j.neurobiolaging.2020.02.009
10.1523/JNEUROSCI.0115-09.2009
10.1016/j.neuroimage.2016.11.005
10.1016/j.neuroimage.2017.07.059
10.3389/fnagi.2018.00317
10.1073/pnas.0911855107
10.1016/j.tins.2017.10.001
10.3389/fpsyt.2021.615754
10.1016/j.biopsych.2022.02.027
10.1038/s41598-018-34247-4
10.3389/fnagi.2022.1019869
10.1001/archneur.55.2.169
10.1523/JNEUROSCI.23-08-03295.2003
10.1109/TNNLS.2018.2790388
10.1016/j.artmed.2023.102678
10.1016/j.neuroimage.2012.08.001
10.1037/0033-2909.88.3.622
10.1093/brain/awac126
10.1016/j.compmedimag.2021.101939
10.1016/j.ins.2012.10.039
10.1016/j.ceh.2020.11.002
10.1101/2019.12.13.19014902
10.48550/arXiv.2003.05689
10.1007/978-3-030-87444-5_7
10.48550/arXiv.2108.02497
10.48550/arXiv.1412.6980
10.1109/ICSEM.2010.14
10.1109/ICCV.2017.74
10.1007/978-3-031-43993-3_19
10.48550/arXiv.1608.03983
10.48550/arXiv.1609.04747
10.48550/arXiv.1711.00489
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-023-49514-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (selected full-text)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_e14e15e3d1ce4bf5ba8858b71c787a84
10.1038/s41598-023-49514-2
PMC10725434
38104173
10_1038_s41598_023_49514_2
Genre Journal Article
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: 2020M3E5D9080555; 2020R1A2C2005901
  funderid: http://dx.doi.org/10.13039/501100003725
– fundername: Electronics and Telecommunications Research Institute
  grantid: Grant No. 23YS1110
  funderid: http://dx.doi.org/10.13039/501100003696
– fundername: Electronics and Telecommunications Research Institute
  grantid: Grant No. 23YS1110
– fundername: National Research Foundation of Korea
  grantid: 2020M3E5D9080555
– fundername: National Research Foundation of Korea
  grantid: 2020R1A2C2005901
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c541t-fc822aa43a4e9c39f497b0c6980e6b2db5b1b1c123f5d70fe1b40e5321a58de63
IEDL.DBID 7X7
ISSN 2045-2322
IngestDate Wed Aug 27 01:07:32 EDT 2025
Wed Oct 01 15:54:21 EDT 2025
Tue Sep 30 17:10:24 EDT 2025
Thu Sep 04 17:14:18 EDT 2025
Wed Aug 13 03:26:22 EDT 2025
Mon Jul 21 06:06:37 EDT 2025
Wed Oct 01 01:31:12 EDT 2025
Thu Apr 24 23:06:53 EDT 2025
Fri Feb 21 02:39:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-fc822aa43a4e9c39f497b0c6980e6b2db5b1b1c123f5d70fe1b40e5321a58de63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2902590568?pq-origsite=%requestingapplication%
PMID 38104173
PQID 2902590568
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_e14e15e3d1ce4bf5ba8858b71c787a84
unpaywall_primary_10_1038_s41598_023_49514_2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10725434
proquest_miscellaneous_2903326114
proquest_journals_2902590568
pubmed_primary_38104173
crossref_primary_10_1038_s41598_023_49514_2
crossref_citationtrail_10_1038_s41598_023_49514_2
springer_journals_10_1038_s41598_023_49514_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-16
PublicationDateYYYYMMDD 2023-12-16
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hutcheon, Chiolero, Hanley (CR43) 2010; 340
Cole (CR53) 2022; 91
Niu, Zhang, Kounios, Liang (CR14) 2020; 41
Desai, Shah (CR18) 2021; 4
Storsve (CR3) 2014; 34
Newcombe (CR83) 2022; 145
Cole, Franke (CR7) 2017; 40
Treder (CR41) 2021; 12
So, Hooshyar, Park, Lim (CR62) 2017; 7
CR79
Bae (CR20) 2020; 10
Dinsdale (CR16) 2021; 224
CR77
CR76
Cole (CR15) 2017; 163
CR74
Karlik, Olgac (CR22) 2011; 1
Holm (CR30) 2023; 60
Liu, Tyler, Davis, Rowe, Tsvetanov (CR59) 2023; 129
Hepp (CR48) 2021; 92
Hara, Waters, McEwen, Morrison (CR54) 2015; 95
Biswal (CR70) 2010; 107
Ahsan, Alam, Trafalis, Huebner (CR17) 2020; 12
Baecker (CR56) 2021; 42
Taylor (CR73) 2017; 144
Feng (CR84) 2020; 91
López-Otín, Blasco, Partridge, Serrano, Kroemer (CR4) 2013; 153
Singh (CR36) 2020; 20
Lancaster, Lorenz, Leech, Cole (CR82) 2018; 10
Mu, Xie, Wen, Weng, Shuyun (CR51) 1999; 20
Burgos (CR63) 2021; 22
Levakov, Rosenthal, Shelef, Raviv, Avidan (CR49) 2020; 41
Gavrishchaka, Yang, Miao, Senyukova (CR26) 2018; 8
Zhang, Niu (CR28) 2023; 10
Franke, Luders, May, Wilke, Gaser (CR8) 2012; 63
Cosgrove, Mazure, Staley (CR12) 2007; 62
Beheshti, Nugent, Potvin, Duchesne (CR40) 2019; 24
CR47
Deepika, Balaji (CR61) 2022; 72
LaMontagne (CR72) 2019
CR45
Xu (CR32) 2000; 21
Chen (CR6) 2016; 8
CR81
CR80
Wang (CR88) 2019; 116
Pletzer, Harris, Hidalgo-Lopez (CR55) 2018; 8
Eliot, Ahmed, Khan, Patel (CR39) 2021; 125
Vegeto (CR35) 2020; 41
Besson, Parrish, Katsaggelos, Bandt (CR21) 2021; 91
Mahmud, Kaiser, Hussain, Vassanelli (CR60) 2018; 29
Resnick, Pham, Kraut, Zonderman, Davatzikos (CR50) 2003; 23
Fjell (CR34) 2009; 29
Bermudez (CR46) 2019; 62
Cortez, Embrechts (CR87) 2013; 225
Lydia, Francis (CR78) 2019; 6
Franke, Ziegler, Klöppel, Gaser (CR9) 2010; 50
Liem (CR68) 2017; 148
Khayretdinova (CR86) 2022; 14
CR57
Le (CR42) 2018; 10
Scahill (CR2) 2003; 60
Cheng (CR13) 2021; 40
Zhang (CR19) 2018; 140
Leonardsen (CR23) 2022; 256
Becker (CR33) 2005; 146
Karim (CR52) 2022; 27
Coffey (CR11) 1998; 55
Bergstra, Bardenet, Bengio, Kégl (CR67) 2011; 24
Anderson (CR38) 2019; 40
Rose (CR5) 2013; 30
Kuo (CR27) 2021; 12
Hou (CR1) 2019; 15
Clausen (CR25) 2022; 12
de Lange (CR85) 2022; 43
Bashyam (CR31) 2020; 143
CR69
Qiang (CR64) 2023; 145
Wood (CR37) 2022; 249
CR65
Aisen (CR89) 2010; 6
Ganzetti, Wenderoth, Mantini (CR75) 2016; 14
Henson (CR58) 2016; 6
Bacas (CR24) 2023; 44
Mennes, Biswal, Castellanos, Milham (CR71) 2013; 82
Jónsson (CR29) 2019; 10
Nesselroade, Stigler, Baltes (CR44) 1980; 88
Sowell, Thompson, Toga (CR10) 2004; 10
Cole (CR66) 2020; 92
AMG de Lange (49514_CR85) 2022; 43
P Besson (49514_CR21) 2021; 91
MC Holm (49514_CR30) 2023; 60
M Mahmud (49514_CR60) 2018; 29
JB Becker (49514_CR33) 2005; 146
Y Hou (49514_CR1) 2019; 15
RI Scahill (49514_CR2) 2003; 60
B Karlik (49514_CR22) 2011; 1
D Deepika (49514_CR61) 2022; 72
49514_CR45
JA Hutcheon (49514_CR43) 2010; 340
F Liem (49514_CR68) 2017; 148
49514_CR47
K Franke (49514_CR9) 2010; 50
J Wang (49514_CR88) 2019; 116
G Levakov (49514_CR49) 2020; 41
M Desai (49514_CR18) 2021; 4
49514_CR81
L Baecker (49514_CR56) 2021; 42
J Xu (49514_CR32) 2000; 21
C López-Otín (49514_CR4) 2013; 153
JH Cole (49514_CR66) 2020; 92
49514_CR80
AB Storsve (49514_CR3) 2014; 34
X Liu (49514_CR59) 2023; 129
BH Chen (49514_CR6) 2016; 8
S Zhang (49514_CR28) 2023; 10
J Cole (49514_CR53) 2022; 91
PS Aisen (49514_CR89) 2010; 6
AN Clausen (49514_CR25) 2022; 12
C-Y Kuo (49514_CR27) 2021; 12
Y Hara (49514_CR54) 2015; 95
X Feng (49514_CR84) 2020; 91
J Lancaster (49514_CR82) 2018; 10
K Franke (49514_CR8) 2012; 63
M Khayretdinova (49514_CR86) 2022; 14
X Niu (49514_CR14) 2020; 41
49514_CR79
NK Dinsdale (49514_CR16) 2021; 224
SP Singh (49514_CR36) 2020; 20
49514_CR74
CE Coffey (49514_CR11) 1998; 55
E Vegeto (49514_CR35) 2020; 41
49514_CR77
49514_CR76
C Zhang (49514_CR19) 2018; 140
MS Treder (49514_CR41) 2021; 12
RN Henson (49514_CR58) 2016; 6
L Eliot (49514_CR39) 2021; 125
BA Jónsson (49514_CR29) 2019; 10
N Rose (49514_CR5) 2013; 30
J Bergstra (49514_CR67) 2011; 24
C Bermudez (49514_CR46) 2019; 62
BB Biswal (49514_CR70) 2010; 107
JH Cole (49514_CR15) 2017; 163
V Gavrishchaka (49514_CR26) 2018; 8
NE Anderson (49514_CR38) 2019; 40
A Lydia (49514_CR78) 2019; 6
T Hepp (49514_CR48) 2021; 92
49514_CR69
49514_CR65
J Cheng (49514_CR13) 2021; 40
DA Wood (49514_CR37) 2022; 249
P Cortez (49514_CR87) 2013; 225
HT Karim (49514_CR52) 2022; 27
Q Mu (49514_CR51) 1999; 20
YR Qiang (49514_CR64) 2023; 145
JB Bae (49514_CR20) 2020; 10
JR Nesselroade (49514_CR44) 1980; 88
VM Bashyam (49514_CR31) 2020; 143
E Bacas (49514_CR24) 2023; 44
M Mennes (49514_CR71) 2013; 82
PJ LaMontagne (49514_CR72) 2019
M Ganzetti (49514_CR75) 2016; 14
MM Ahsan (49514_CR17) 2020; 12
JH Cole (49514_CR7) 2017; 40
VF Newcombe (49514_CR83) 2022; 145
AM Fjell (49514_CR34) 2009; 29
TT Le (49514_CR42) 2018; 10
49514_CR57
ER Sowell (49514_CR10) 2004; 10
EH Leonardsen (49514_CR23) 2022; 256
I Beheshti (49514_CR40) 2019; 24
KP Cosgrove (49514_CR12) 2007; 62
B Pletzer (49514_CR55) 2018; 8
A So (49514_CR62) 2017; 7
JR Taylor (49514_CR73) 2017; 144
N Burgos (49514_CR63) 2021; 22
SM Resnick (49514_CR50) 2003; 23
References_xml – ident: CR45
– volume: 340
  start-page: c2289
  year: 2010
  ident: CR43
  article-title: Random measurement error and regression dilution bias
  publication-title: Bmj
  doi: 10.1136/bmj.c2289
– ident: CR74
– volume: 6
  start-page: 239
  year: 2010
  end-page: 246
  ident: CR89
  article-title: Clinical core of the Alzheimer’s Disease Neuroimaging Initiative: Progress and plans
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2010.03.006
– volume: 40
  start-page: 3400
  year: 2021
  end-page: 3412
  ident: CR13
  article-title: Brain age estimation from MRI using cascade networks with ranking loss
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3085948
– volume: 143
  start-page: 2312
  year: 2020
  end-page: 2324
  ident: CR31
  article-title: MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide
  publication-title: Brain
  doi: 10.1093/brain/awaa160
– volume: 20
  start-page: 207
  year: 1999
  end-page: 211
  ident: CR51
  article-title: A quantitative MR study of the hippocampal formation, the amygdala, and the temporal horn of the lateral ventricle in healthy subjects 40 to 90 years of age
  publication-title: Am. J. Neuroradiol.
– volume: 10
  start-page: 22252
  year: 2020
  ident: CR20
  article-title: Identification of Alzheimer’s disease using a convolutional neural network model based on T1-weighted magnetic resonance imaging
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79243-9
– volume: 125
  start-page: 667
  year: 2021
  end-page: 697
  ident: CR39
  article-title: Dump the “dimorphism”: Comprehensive synthesis of human brain studies reveals few male-female differences beyond size
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2021.02.026
– ident: CR80
– volume: 8
  start-page: 549
  year: 2018
  end-page: 558
  ident: CR26
  article-title: Advantages of hybrid deep learning frameworks in applications with limited data
  publication-title: Int. J. Mach. Learn. Comput.
– ident: CR77
– volume: 256
  start-page: 119210
  year: 2022
  ident: CR23
  article-title: Deep neural networks learn general and clinically relevant representations of the ageing brain
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119210
– volume: 249
  start-page: 118871
  year: 2022
  ident: CR37
  article-title: Accurate brain-age models for routine clinical MRI examinations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118871
– volume: 8
  start-page: 1844
  year: 2016
  ident: CR6
  article-title: DNA methylation-based measures of biological age: Meta-analysis predicting time to death
  publication-title: Aging
  doi: 10.18632/aging.101020
– volume: 7
  start-page: 651
  year: 2017
  ident: CR62
  article-title: Early diagnosis of dementia from clinical data by machine learning techniques
  publication-title: Appl. Sci.
  doi: 10.3390/app7070651
– volume: 24
  start-page: 1
  year: 2011
  end-page: 9
  ident: CR67
  article-title: Algorithms for hyper-parameter optimization
  publication-title: Adv. Neural. Inf. Process. Syst.
– volume: 62
  start-page: 847
  year: 2007
  end-page: 855
  ident: CR12
  article-title: Evolving knowledge of sex differences in brain structure, function, and chemistry
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.03.001
– volume: 30
  start-page: 3
  year: 2013
  end-page: 34
  ident: CR5
  article-title: The human sciences in a biological age
  publication-title: Theory Cult. Soc.
  doi: 10.1177/0263276412456569
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: CR9
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: Exploring the influence of various parameters
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 10
  start-page: 712
  year: 2023
  ident: CR28
  article-title: LcmUNet: a lightweight network combining CNN and MLP for real-time medical image segmentation
  publication-title: Bioeng.
– volume: 12
  start-page: 626677
  year: 2021
  ident: CR27
  article-title: Improving individual brain age prediction using an ensemble deep learning framework
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2021.626677
– volume: 34
  start-page: 8488
  year: 2014
  end-page: 8498
  ident: CR3
  article-title: Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0391-14.2014
– volume: 92
  start-page: 34
  year: 2020
  end-page: 42
  ident: CR66
  article-title: Multimodality neuroimaging brain-age in UK biobank: Relationship to biomedical, lifestyle, and cognitive factors
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2020.03.014
– volume: 72
  start-page: 103318
  year: 2022
  ident: CR61
  article-title: Effective heart disease prediction using novel MLP-EBMDA approach
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103318
– volume: 20
  start-page: 5097
  year: 2020
  ident: CR36
  article-title: 3D deep learning on medical images: A review
  publication-title: Sensors
  doi: 10.3390/s20185097
– volume: 41
  start-page: 3235
  year: 2020
  end-page: 3252
  ident: CR49
  article-title: From a deep learning model back to the brain—identifying regional predictors and their relation to aging
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25011
– volume: 6
  start-page: 32527
  year: 2016
  ident: CR58
  article-title: Multiple determinants of lifespan memory differences
  publication-title: Sci. Rep.
  doi: 10.1038/srep32527
– volume: 12
  start-page: 1526
  year: 2020
  ident: CR17
  article-title: Deep MLP-CNN model using mixed-data to distinguish between COVID-19 and Non-COVID-19 patients
  publication-title: Symmetry
  doi: 10.3390/sym12091526
– volume: 153
  start-page: 1194
  year: 2013
  end-page: 1217
  ident: CR4
  article-title: The hallmarks of aging
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 116
  start-page: 21213
  year: 2019
  end-page: 21218
  ident: CR88
  article-title: Gray matter age prediction as a biomarker for risk of dementia
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1902376116
– volume: 60
  start-page: 101220
  year: 2023
  ident: CR30
  article-title: Linking brain maturation and puberty during early adolescence using longitudinal brain age prediction in the ABCD cohort
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2023.101220
– volume: 10
  start-page: 5409
  year: 2019
  ident: CR29
  article-title: Brain age prediction using deep learning uncovers associated sequence variants
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13163-9
– ident: CR57
– volume: 41
  start-page: 1626
  year: 2020
  end-page: 1643
  ident: CR14
  article-title: Improved prediction of brain age using multimodal neuroimaging data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24899
– volume: 146
  start-page: 1650
  year: 2005
  end-page: 1673
  ident: CR33
  article-title: Strategies and methods for research on sex differences in brain and behavior
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1142
– volume: 44
  start-page: 3481
  year: 2023
  end-page: 3492
  ident: CR24
  article-title: Probing multiple algorithms to calculate brain age: Examining reliability, relations with demographics, and predictive power
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26292
– volume: 40
  start-page: 1496
  year: 2019
  end-page: 1506
  ident: CR38
  article-title: Machine learning of brain gray matter differentiates sex in a large forensic sample
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24462
– ident: CR81
– volume: 15
  start-page: 565
  year: 2019
  end-page: 581
  ident: CR1
  article-title: Ageing as a risk factor for neurodegenerative disease
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-019-0244-7
– volume: 43
  start-page: 3113
  year: 2022
  end-page: 3129
  ident: CR85
  article-title: Mind the gap: Performance metric evaluation in brain-age prediction
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25837
– volume: 12
  start-page: e2413
  year: 2022
  ident: CR25
  article-title: Assessment of brain age in posttraumatic stress disorder: Findings from the ENIGMA PTSD and brain age working groups
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2413
– volume: 82
  start-page: 683
  year: 2013
  end-page: 691
  ident: CR71
  article-title: Making data sharing work: The FCP/INDI experience
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.064
– volume: 140
  start-page: 133
  year: 2018
  end-page: 144
  ident: CR19
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.014
– volume: 24
  start-page: 102063
  year: 2019
  ident: CR40
  article-title: Bias-adjustment in neuroimaging-based brain age frameworks: A robust scheme
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.102063
– volume: 224
  start-page: 117401
  year: 2021
  ident: CR16
  article-title: Learning patterns of the ageing brain in MRI using deep convolutional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117401
– volume: 27
  start-page: 5235
  year: 2022
  end-page: 5243
  ident: CR52
  article-title: Independent replication of advanced brain age in mild cognitive impairment and dementia: detection of future cognitive dysfunction
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-022-01728-y
– volume: 22
  start-page: 1560
  year: 2021
  end-page: 1576
  ident: CR63
  article-title: Deep learning for brain disorders: From data processing to disease treatment
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa310
– volume: 62
  start-page: 70
  year: 2019
  end-page: 77
  ident: CR46
  article-title: Anatomical context improves deep learning on the brain age estimation task
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.06.018
– ident: CR47
– volume: 14
  start-page: 5
  year: 2016
  end-page: 21
  ident: CR75
  article-title: Quantitative evaluation of intensity inhomogeneity correction methods for structural MR brain images
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9277-2
– volume: 6
  start-page: 566
  year: 2019
  end-page: 568
  ident: CR78
  article-title: Adagrad—an optimizer for stochastic gradient descent
  publication-title: Int. J. Inf. Comput. Sci.
– volume: 92
  start-page: 101967
  year: 2021
  ident: CR48
  article-title: Uncertainty estimation and explainability in deep learning-based age estimation of the human brain: Results from the German National Cohort MRI study
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101967
– volume: 41
  start-page: 273
  year: 2020
  end-page: 319
  ident: CR35
  article-title: The role of sex and sex hormones in neurodegenerative diseases
  publication-title: Endocr. Rev.
  doi: 10.1210/endrev/bnz005
– volume: 129
  start-page: 195
  year: 2023
  end-page: 208
  ident: CR59
  article-title: Cognition’s dependence on functional network integrity with age is conditional on structural network integrity
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2023.06.001
– volume: 10
  start-page: 372
  year: 2004
  end-page: 392
  ident: CR10
  article-title: Mapping changes in the human cortex throughout the span of life
  publication-title: Neuroscientist
  doi: 10.1177/1073858404263960
– volume: 144
  start-page: 262
  year: 2017
  end-page: 269
  ident: CR73
  article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.09.018
– volume: 42
  start-page: 2332
  year: 2021
  end-page: 2346
  ident: CR56
  article-title: Brain age prediction: A comparison between machine learning models using region-and voxel-based morphometric data
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25368
– volume: 10
  start-page: 28
  year: 2018
  ident: CR82
  article-title: Bayesian optimization for neuroimaging pre-processing in brain age classification and prediction
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00028
– volume: 60
  start-page: 989
  year: 2003
  end-page: 994
  ident: CR2
  article-title: A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.60.7.989
– volume: 95
  start-page: 785
  year: 2015
  end-page: 807
  ident: CR54
  article-title: Estrogen effects on cognitive and synaptic health over the lifecourse
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00036.2014
– ident: CR79
– volume: 91
  start-page: 15
  year: 2020
  end-page: 25
  ident: CR84
  article-title: Estimating brain age based on a uniform healthy population with deep learning and structural magnetic resonance imaging
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2020.02.009
– volume: 29
  start-page: 8774
  year: 2009
  end-page: 8783
  ident: CR34
  article-title: Minute effects of sex on the aging brain: A multisample magnetic resonance imaging study of healthy aging and Alzheimer's disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0115-09.2009
– volume: 148
  start-page: 179
  year: 2017
  end-page: 188
  ident: CR68
  article-title: Predicting brain-age from multimodal imaging data captures cognitive impairment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.005
– ident: CR69
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  ident: CR15
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 10
  start-page: 317
  year: 2018
  ident: CR42
  article-title: A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00317
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: CR70
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911855107
– volume: 40
  start-page: 681
  year: 2017
  end-page: 690
  ident: CR7
  article-title: Predicting age using neuroimaging: innovative brain ageing biomarkers
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.10.001
– volume: 12
  start-page: 615754
  year: 2021
  ident: CR41
  article-title: Correlation constraints for regression models: Controlling bias in brain age prediction
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2021.615754
– volume: 91
  start-page: S3
  year: 2022
  end-page: S4
  ident: CR53
  article-title: Steps towards clinical application of the brain age paradigm
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2022.02.027
– volume: 8
  start-page: 16042
  year: 2018
  ident: CR55
  article-title: Subcortical structural changes along the menstrual cycle: Beyond the hippocampus
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34247-4
– ident: CR65
– volume: 21
  start-page: 112
  year: 2000
  end-page: 118
  ident: CR32
  article-title: Gender effects on age-related changes in brain structure
  publication-title: Am. J. Neuroradiol.
– volume: 14
  start-page: 1367
  year: 2022
  ident: CR86
  article-title: Predicting age from resting-state scalp EEG signals with deep convolutional neural networks on TD-brain dataset
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.1019869
– volume: 55
  start-page: 169
  year: 1998
  end-page: 179
  ident: CR11
  article-title: Sex differences in brain aging: A quantitative magnetic resonance imaging study
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.55.2.169
– volume: 23
  start-page: 3295
  year: 2003
  end-page: 3301
  ident: CR50
  article-title: Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– volume: 29
  start-page: 2063
  year: 2018
  end-page: 2079
  ident: CR60
  article-title: Applications of deep learning and reinforcement learning to biological data
  publication-title: IEEE Trans. Neural. Netw. Learn.
  doi: 10.1109/TNNLS.2018.2790388
– volume: 1
  start-page: 111
  year: 2011
  end-page: 122
  ident: CR22
  article-title: Performance analysis of various activation functions in generalized MLP architectures of neural networks
  publication-title: Int. J. Artif. Intell.
– volume: 145
  start-page: 102678
  year: 2023
  ident: CR64
  article-title: Diagnosis of Alzheimer’s disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102678
– ident: CR76
– volume: 63
  start-page: 1305
  year: 2012
  end-page: 1312
  ident: CR8
  article-title: Brain maturation: Predicting individual BrainAGE in children and adolescents using structural MRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.001
– volume: 88
  start-page: 622
  year: 1980
  ident: CR44
  article-title: Regression toward the mean and the study of change
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.88.3.622
– volume: 145
  start-page: 2064
  year: 2022
  end-page: 2076
  ident: CR83
  article-title: Post-acute blood biomarkers and disease progression in traumatic brain injury
  publication-title: Brain
  doi: 10.1093/brain/awac126
– volume: 91
  start-page: 101939
  year: 2021
  ident: CR21
  article-title: Geometric deep learning on brain shape predicts sex and age
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101939
– volume: 225
  start-page: 1
  year: 2013
  end-page: 17
  ident: CR87
  article-title: Using sensitivity analysis and visualization techniques to open black box data mining models
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.10.039
– volume: 4
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR18
  article-title: An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network (MLP) and Convolutional neural network (CNN)
  publication-title: Clin. eHealth
  doi: 10.1016/j.ceh.2020.11.002
– year: 2019
  ident: CR72
  article-title: OASIS-3: Longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease
  publication-title: MedRxiv
  doi: 10.1101/2019.12.13.19014902
– volume: 88
  start-page: 622
  year: 1980
  ident: 49514_CR44
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.88.3.622
– volume: 30
  start-page: 3
  year: 2013
  ident: 49514_CR5
  publication-title: Theory Cult. Soc.
  doi: 10.1177/0263276412456569
– volume: 62
  start-page: 70
  year: 2019
  ident: 49514_CR46
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2019.06.018
– volume: 22
  start-page: 1560
  year: 2021
  ident: 49514_CR63
  publication-title: Brief. Bioinform.
  doi: 10.1093/bib/bbaa310
– volume: 41
  start-page: 273
  year: 2020
  ident: 49514_CR35
  publication-title: Endocr. Rev.
  doi: 10.1210/endrev/bnz005
– volume: 340
  start-page: c2289
  year: 2010
  ident: 49514_CR43
  publication-title: Bmj
  doi: 10.1136/bmj.c2289
– volume: 10
  start-page: 712
  year: 2023
  ident: 49514_CR28
  publication-title: Bioeng.
– ident: 49514_CR76
  doi: 10.48550/arXiv.2003.05689
– volume: 8
  start-page: 16042
  year: 2018
  ident: 49514_CR55
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34247-4
– volume: 6
  start-page: 566
  year: 2019
  ident: 49514_CR78
  publication-title: Int. J. Inf. Comput. Sci.
– volume: 91
  start-page: 101939
  year: 2021
  ident: 49514_CR21
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101939
– volume: 60
  start-page: 101220
  year: 2023
  ident: 49514_CR30
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2023.101220
– volume: 20
  start-page: 5097
  year: 2020
  ident: 49514_CR36
  publication-title: Sensors
  doi: 10.3390/s20185097
– ident: 49514_CR47
  doi: 10.1007/978-3-030-87444-5_7
– volume: 7
  start-page: 651
  year: 2017
  ident: 49514_CR62
  publication-title: Appl. Sci.
  doi: 10.3390/app7070651
– volume: 12
  start-page: 615754
  year: 2021
  ident: 49514_CR41
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2021.615754
– volume: 41
  start-page: 3235
  year: 2020
  ident: 49514_CR49
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25011
– volume: 146
  start-page: 1650
  year: 2005
  ident: 49514_CR33
  publication-title: Endocrinology
  doi: 10.1210/en.2004-1142
– volume: 72
  start-page: 103318
  year: 2022
  ident: 49514_CR61
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.103318
– volume: 148
  start-page: 179
  year: 2017
  ident: 49514_CR68
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.005
– volume: 91
  start-page: 15
  year: 2020
  ident: 49514_CR84
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2020.02.009
– volume: 60
  start-page: 989
  year: 2003
  ident: 49514_CR2
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.60.7.989
– volume: 40
  start-page: 1496
  year: 2019
  ident: 49514_CR38
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24462
– volume: 43
  start-page: 3113
  year: 2022
  ident: 49514_CR85
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25837
– volume: 10
  start-page: 5409
  year: 2019
  ident: 49514_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13163-9
– volume: 12
  start-page: 626677
  year: 2021
  ident: 49514_CR27
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2021.626677
– ident: 49514_CR74
– volume: 34
  start-page: 8488
  year: 2014
  ident: 49514_CR3
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0391-14.2014
– volume: 21
  start-page: 112
  year: 2000
  ident: 49514_CR32
  publication-title: Am. J. Neuroradiol.
– volume: 40
  start-page: 3400
  year: 2021
  ident: 49514_CR13
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3085948
– volume: 6
  start-page: 32527
  year: 2016
  ident: 49514_CR58
  publication-title: Sci. Rep.
  doi: 10.1038/srep32527
– volume: 23
  start-page: 3295
  year: 2003
  ident: 49514_CR50
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-08-03295.2003
– volume: 50
  start-page: 883
  year: 2010
  ident: 49514_CR9
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.01.005
– ident: 49514_CR57
  doi: 10.48550/arXiv.2108.02497
– volume: 82
  start-page: 683
  year: 2013
  ident: 49514_CR71
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.064
– ident: 49514_CR79
  doi: 10.48550/arXiv.1412.6980
– volume: 125
  start-page: 667
  year: 2021
  ident: 49514_CR39
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2021.02.026
– ident: 49514_CR69
  doi: 10.1109/ICSEM.2010.14
– ident: 49514_CR45
  doi: 10.1109/ICCV.2017.74
– volume: 15
  start-page: 565
  year: 2019
  ident: 49514_CR1
  publication-title: Nat. Rev. Neurol.
  doi: 10.1038/s41582-019-0244-7
– volume: 40
  start-page: 681
  year: 2017
  ident: 49514_CR7
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2017.10.001
– volume: 153
  start-page: 1194
  year: 2013
  ident: 49514_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.05.039
– volume: 8
  start-page: 549
  year: 2018
  ident: 49514_CR26
  publication-title: Int. J. Mach. Learn. Comput.
– volume: 145
  start-page: 2064
  year: 2022
  ident: 49514_CR83
  publication-title: Brain
  doi: 10.1093/brain/awac126
– volume: 10
  start-page: 372
  year: 2004
  ident: 49514_CR10
  publication-title: Neuroscientist
  doi: 10.1177/1073858404263960
– volume: 24
  start-page: 102063
  year: 2019
  ident: 49514_CR40
  publication-title: NeuroImage Clin.
  doi: 10.1016/j.nicl.2019.102063
– volume: 8
  start-page: 1844
  year: 2016
  ident: 49514_CR6
  publication-title: Aging
  doi: 10.18632/aging.101020
– volume: 6
  start-page: 239
  year: 2010
  ident: 49514_CR89
  publication-title: Alzheimers Dement.
  doi: 10.1016/j.jalz.2010.03.006
– ident: 49514_CR65
  doi: 10.1007/978-3-031-43993-3_19
– ident: 49514_CR81
  doi: 10.48550/arXiv.1608.03983
– volume: 55
  start-page: 169
  year: 1998
  ident: 49514_CR11
  publication-title: Arch. Neurol.
  doi: 10.1001/archneur.55.2.169
– year: 2019
  ident: 49514_CR72
  publication-title: MedRxiv
  doi: 10.1101/2019.12.13.19014902
– volume: 10
  start-page: 317
  year: 2018
  ident: 49514_CR42
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00317
– volume: 116
  start-page: 21213
  year: 2019
  ident: 49514_CR88
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1902376116
– volume: 129
  start-page: 195
  year: 2023
  ident: 49514_CR59
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2023.06.001
– volume: 144
  start-page: 262
  year: 2017
  ident: 49514_CR73
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.09.018
– volume: 143
  start-page: 2312
  year: 2020
  ident: 49514_CR31
  publication-title: Brain
  doi: 10.1093/brain/awaa160
– volume: 91
  start-page: S3
  year: 2022
  ident: 49514_CR53
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2022.02.027
– volume: 14
  start-page: 1367
  year: 2022
  ident: 49514_CR86
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2022.1019869
– volume: 249
  start-page: 118871
  year: 2022
  ident: 49514_CR37
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.118871
– volume: 95
  start-page: 785
  year: 2015
  ident: 49514_CR54
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00036.2014
– volume: 29
  start-page: 2063
  year: 2018
  ident: 49514_CR60
  publication-title: IEEE Trans. Neural. Netw. Learn.
  doi: 10.1109/TNNLS.2018.2790388
– volume: 92
  start-page: 34
  year: 2020
  ident: 49514_CR66
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2020.03.014
– volume: 4
  start-page: 1
  year: 2021
  ident: 49514_CR18
  publication-title: Clin. eHealth
  doi: 10.1016/j.ceh.2020.11.002
– volume: 62
  start-page: 847
  year: 2007
  ident: 49514_CR12
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2007.03.001
– volume: 225
  start-page: 1
  year: 2013
  ident: 49514_CR87
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.10.039
– volume: 92
  start-page: 101967
  year: 2021
  ident: 49514_CR48
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2021.101967
– volume: 41
  start-page: 1626
  year: 2020
  ident: 49514_CR14
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24899
– volume: 10
  start-page: 22252
  year: 2020
  ident: 49514_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79243-9
– volume: 42
  start-page: 2332
  year: 2021
  ident: 49514_CR56
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25368
– volume: 224
  start-page: 117401
  year: 2021
  ident: 49514_CR16
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117401
– volume: 1
  start-page: 111
  year: 2011
  ident: 49514_CR22
  publication-title: Int. J. Artif. Intell.
– volume: 29
  start-page: 8774
  year: 2009
  ident: 49514_CR34
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0115-09.2009
– volume: 145
  start-page: 102678
  year: 2023
  ident: 49514_CR64
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2023.102678
– ident: 49514_CR80
  doi: 10.48550/arXiv.1609.04747
– volume: 27
  start-page: 5235
  year: 2022
  ident: 49514_CR52
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-022-01728-y
– volume: 24
  start-page: 1
  year: 2011
  ident: 49514_CR67
  publication-title: Adv. Neural. Inf. Process. Syst.
– ident: 49514_CR77
  doi: 10.48550/arXiv.1711.00489
– volume: 12
  start-page: 1526
  year: 2020
  ident: 49514_CR17
  publication-title: Symmetry
  doi: 10.3390/sym12091526
– volume: 256
  start-page: 119210
  year: 2022
  ident: 49514_CR23
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119210
– volume: 12
  start-page: e2413
  year: 2022
  ident: 49514_CR25
  publication-title: Brain Behav.
  doi: 10.1002/brb3.2413
– volume: 20
  start-page: 207
  year: 1999
  ident: 49514_CR51
  publication-title: Am. J. Neuroradiol.
– volume: 44
  start-page: 3481
  year: 2023
  ident: 49514_CR24
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.26292
– volume: 163
  start-page: 115
  year: 2017
  ident: 49514_CR15
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 107
  start-page: 4734
  year: 2010
  ident: 49514_CR70
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911855107
– volume: 14
  start-page: 5
  year: 2016
  ident: 49514_CR75
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9277-2
– volume: 63
  start-page: 1305
  year: 2012
  ident: 49514_CR8
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.08.001
– volume: 140
  start-page: 133
  year: 2018
  ident: 49514_CR19
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.014
– volume: 10
  start-page: 28
  year: 2018
  ident: 49514_CR82
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2018.00028
SSID ssj0000529419
Score 2.5012796
Snippet The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative diseases. In...
Abstract The clinical applications of brain age prediction have expanded, particularly in anticipating the onset and prognosis of various neurodegenerative...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22388
SubjectTerms 631/378/116
631/378/2611
631/378/2612
Age
Algorithms
Alzheimer Disease - diagnostic imaging
Alzheimer's disease
Brain
Brain - diagnostic imaging
Cognitive ability
Deep Learning
Humanities and Social Sciences
Humans
multidisciplinary
Neural networks
Neural Networks, Computer
Neurodegenerative diseases
Neuroimaging
Predictions
Science
Science (multidisciplinary)
Sex
Therapeutic applications
SummonAdditionalLinks – databaseName: DOAJ (selected full-text)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeQt91mhYVemtErJctH5vQEArtqYHchGSNk1DXa_ZByL_PSPY6u7SkPfS0sNYKeeabnRlm9A0hH9Fnylw4zXzggqkSAjPQFIybUEjJpWt4vO_87Xtxeqa-nuvzjVFfsSdsoAceBHcIXAHXIAOvQflGe2eMNr7kNULNmcQEim5sI5kaWL1FpXg13pLJpTlcoKeKt8mEZJgTcMXElidKhP1_ijJ_b5acKqZPyKNV17uba9e2G07p5CnZHaNJ-nl4i2fkAXTPycNhvuTNC_LzKA6AoPiXQft5rMhELdDY6n5BEWmYFEOgAaCnsfl8BCHuF0ku00dqEaeuCzQ1HrLWYYRO-6EZZo57ufZiNr9aXv5avCRnJ19-HJ-ycboCq7XiS9bUGBs4p6RTUNWyalRV-rwuKpND4UXw2nPPa_RsjQ5l3gD3KgctBXfaBCjkK7LTzTp4Q6gqtQhagohk6pAXHj2eRC-oXRlqWZiM8LWkbT1Sj8cJGK1NJXBp7KAdi9qxSTtWZOTT9Jt-IN64d_VRVOC0MpJmpy8QSnaEkv0blDKyv1a_HS15YUWsw1YYJuJbfJgeow3GworrYLZKaySGwZhaZuT1gJbpJJFBTfFSZsRs4WjrqNtPuqvLxPONmXmkKsBND9aQuzvXfbI4mGD5D6Lb-x-ie0sei2haaO-82Cc7y_kK3mG0tvTvk2HeAgy8Od4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_niagP4udZPSWC-OLlbL7a9EHEE49DOJ9cuLeSNOme2Ov2urvo_vfOtN3q4rL4VGjTkMxHZoaZ_IaQ12AzZSysZs5zwVQaPDOhTBg3PpGSS1tyvO98_jU5m6gvF_pij6zLbQcCzreGdthPatJWx7-uVx9A4d_3V8bNuzkYIbwoJiQDd58rJt401wwbS2ECduiycYPcBGMlUPDPhwigh_8WmeLZcJ1m-2wbJqtD9t_mjv5bVTmmVu-S28u6sauftqr-sl6n98m9we2kH3s5eUD2Qv2Q3OobUa4ekR8n2CmCwtlCmxZTN8guijXxUwoiCdFz8NSH0FCsUh-kFeZDNMzu0dWSU1t72lUossqCK0-bvmqmhblsNQVSLS6v5o_J5PTzt09nbGjDwAqt-IKVBTgR1ippVcgKmZUqS11cJJmJQ-KEd9pxxwswgaX2aVwG7lQctBTcauNDIp-Q_XpWh6eEqlQLr2UQiLoe4sSBaZRgLrVNfSETExG-pnReDBjl2CqjyrtcuTR5z50cuJN33MlFRN6O_zQ9QsfO0SfIwHEkomt3L2btNB-UNQ-wOK6D9LwIypXaWWO0cSkv4HizRkXkcM3-fC2xucCEbQb-JOzi1fgZlBUzMLYOs2U3RoK_DDFoRA56aRlXglBriqcyImZDjjaWuvml_n7ZAYJDCI-YBjDp0Vrk_qxrFy2ORrH8D9I9273r5-SOQKUBlefJIdlftMvwAhy2hXvZqdxv12s7lg
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBYhobQ9hL7rJC0q9NaIWi9bPm5KQ1hoL20gNyFZ8ibU9RrvLiX_PiP50SwJoT0ZbEmM5qEZeUafEPoIPpOnzEhiHWVE5N4R5auMUOUyzik3FQ3nnb99z87OxfxCXuwgNp6FiUX7EdIyLtNjddjnFTiacBiMcQIhPRUElt09lXMGxrg3m81_zKc_KyF3JWgxnJBJubqn85YXimD990WYdwslp2zpU_R407Tm-o-p61sO6fQZ2h8iSTzraX-OdnzzAj3q75a8fol-nYTLHzAsF7jtQjYmSACHMvcFhjnDhtg77LxvcSg8HxQQxgsAl_ERy8OxaRyORYekNhCd47YvhOlgLFMvlt3V-vL36hU6P_3688sZGW5WIKUUdE2qEuICYwQ3whclLypR5DYts0KlPrPMWWmppSV4tUq6PK08tSL1ErhtpHI-46_RbrNs_FuERS6Zk9yzAKTu08yCt-PgAaXJXckzlSA6clqXA-x4uP2i1jH9zZXupaNBOjpKR7MEfZr6tD3oxoOtT4IAp5YBMDu-WHYLPSiQ9kAclZ47WnphK2mNUlLZnJawYhklEnQ0il8PVrzSLORgCwgRYRYfps9gfyGpYhq_3MQ2HEJg2FYm6E2vLRMlAT1N0JwnSG3p0Rap21-aq8uI8Q278gBTAIMejyr3l66HeHE8qeU_sO7g_0Y_RE9YMCKwapodod11t_HvICZb2_eDEd4AWGwv_w
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KhL_Iz32CKqComKAyvKKbJjZ1t1ya72IVR-PWPnAQtVRU-RkoljjycznzXjzwBvMGaKjFtFnWecyjx4akKlKTNeC8GErVjc7_zpWB-N5ccTdbIFutsLk4r2E6VlctNdddi7JQaauBmMC4qQnkmK60Ff3YBtHRNLA9geH3_e_xZPkkOMQhEm8HaHTCbMJS9vRKFE1n8Zwvy3ULLPlt6BW-t6bi9-2On0j4B0eA--dkNp6lDO99Yrt1f-_Ivl8fpjvQ93W4xK9hvJB7AV6odwszm18uIRnB_EYyUIOiIyX8Q8T5xbEgvoJwS_gEvt4IkPYU5iSXtr2thepM5Ml1R4TmztSSpnpFOLuJ_MmxKbBbZlp5PZ4mx1-n35GMaHH768P6LtmQ20VJKtaFUi4rBWCivDqBSjSo5yl5V6ZLKgHfdOOeZYifGyUj7PqsCczIISnFllfNDiCQzqWR2eAZG54l6JwCNFe8i0wzgqMLYqm_tSaDME1s1hUbaE5vFcjWmREuvCFI0iC1RkkRRZ8CG87d-ZN3QeV0ofRNPoJSMVd7oxW0yKdrqKgJ1jKgjPyiBdpZw1RhmXsxJ9oTVyCDudYRWtf1gWPGZ3Rwg-cRSv-8f4Z8d0ja3DbJ1kBIJrXLAO4Wljh31PIi-bZLkYgtmw0I2ubj6pz04Teziu9yMBAja62xnz735dpYvd3uD_Q3XPryf-Am7zaO_oL5jegcFqsQ4vEe2t3Kv21_4FZWZOFw
  priority: 102
  providerName: Unpaywall
Title Brain age prediction using combined deep convolutional neural network and multi-layer perceptron algorithms
URI https://link.springer.com/article/10.1038/s41598-023-49514-2
https://www.ncbi.nlm.nih.gov/pubmed/38104173
https://www.proquest.com/docview/2902590568
https://www.proquest.com/docview/2903326114
https://pubmed.ncbi.nlm.nih.gov/PMC10725434
https://www.nature.com/articles/s41598-023-49514-2.pdf
https://doaj.org/article/e14e15e3d1ce4bf5ba8858b71c787a84
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdgE2I8ID5HYFRG4o1Zi78S5wm11aap0qoJqFSeIjt2OkRJQz-E9t9zdtKMClTxkkixY9m-O9_Zd_4dQu9BZ_KYaUmMpYyI1FmiXJkQqmzCOeW6pP6-89U4uZyI0VRO2wO3VRtWuV0Tw0JtF4U_Iz9j3h-WgbpWH-ufxGeN8t7VNoXGfXRIwVTxXJ1O0-6MxXuxBM3auzIxV2cr0Ff-ThnjBHYGVBC2o48CbP-_bM2_QyY7v-kj9HBT1fr2l57P_1BNF0_Q49amxP2GCZ6ie656hh40WSZvn6PvA58GAsPCgeul98t4WmAf8D7DMHbYGjuLrXM19iHoLStCex7qMrxCoDjWlcUh_JDMNdjpuG5CYpbQlp7PYKrWNz9WL9Dk4vzL8JK0ORZIIQVdk7IAC0FrwbVwWcGzUmSpiYskU7FLDLNGGmpoAfqtlDaNS0eNiJ3kjGqprEv4S3RQLSr3CmGRSmYld8xDqrs4MaD3OOhCqVNb8ERFiG5nOi9aAHKfB2OeB0c4V3lDnRyokwfq5CxCH7p_6gZ-Y2_tgSdgV9NDZ4cPi-UsbyUxd9A5Kh23tHDClNJopaQyKS1g7dJKROhkS_68ledVfsd9EXrXFYMkeveKrtxiE-pwMIZhgxmh44Zbup54HDVBUx4htcNHO13dLam-3QS0b9ife8ACaPR0y3J3_do3F6cdW_7H1L3eP-o36Ih5oQF5pskJOlgvN-4tWGNr0wsi10OH_f7o8wjeg_Px9Sf4OkyGvXDCAc8roaBkMr7uf_0NHWo4Xw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEK9CoICR4ESjxq_EOSBEgWpLH6dW2luwY2eLWLJhH6r2T_EbmcmrrEArLj1FShzLmacnM_6GkNfgM0XEjQqtYzyUiXeh9kUcMu1iIZgwBcPzzien8eBcfhmq4Qb51Z2FwbLKzibWhtpNcvxHvscxH5aCu9bvq58hdo3C7GrXQqMRiyO_vISQbfbu8BPw9w3nB5_PPg7CtqtAmCvJ5mGRg080RgojfZqLtJBpYqM8TnXkY8udVZZZloNFL5RLosIzKyOvBGdGaedjAfPeIDeliCRi9SfDpP-ng1kzydL2bE4k9N4M_COeYeMihEiEyZCv-L-6TcC_9rZ_l2j2edo7ZGtRVmZ5acbjP1zhwT1yt93D0g-N0N0nG758QG41XS2XD8n3fWw7QcFQ0WqKeSDkPcUC-xEFWkMo7h113lcUS95b0Yf5EFqzvtSF6dSUjtbljuHYQFxAq6YEZwpzmfEIWDO_-DF7RM6vhfrbZLOclP4JoTJR3CnhOUK4-yi24GcF-F5lEpeLWAeEdZTO8hbwHPtujLM68S501nAnA-5kNXcyHpC3_TtVA_exdvQ-MrAfiVDd9Y3JdJS1mp95WBxTXjiWe2kLZY3WStuE5WArjZYB2enYn7X2Y5ZdSXtAXvWPQfMxnWNKP1nUYwRsviGgDcjjRlr6lSBum2SJCIhekaOVpa4-Kb9d1OjiLEoQIAEm3e1E7mpd62ix24vlf5Du6fqvfkm2Bmcnx9nx4enRM3KbowKBLWHxDtmcTxf-OewE5_ZFrX6UfL1uff8Np3huGQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4k2ggJHgRKONX4lzQIhSVi2FigOV9hbs2NkilmzYh6r9a_w6ZvIqK9CKS0-REsdy5vGNJzOeIeQF2EwRcaNC6xgPZeJdqH0Rh0y7WAgmTMHwvPOn4_jgRH4YqdEW-dWdhcG0yg4Ta6B20xz_kQ84xsNSMNd6ULRpEZ_3h2-qnyF2kMJIa9dOoxGRI786A_dt_vpwH3j9kvPh-y_vDsK2w0CYK8kWYZGDfTRGCiN9mou0kGliozxOdeRjy51VllmWA7oXyiVR4ZmVkVeCM6O087GAeS-Ry4mQAtPJklHS_9_BCJpkaXtOJxJ6MAdbiefZuAjBK2Ey5Gu2sG4Z8K997t_pmn3M9ga5tiwrszozk8kfZnF4i9xs97P0bSOAt8mWL--QK02Hy9Vd8n0PW1BQAC1azTAmhHJAMdl-TIHu4JZ7R533FcX091YNYD4ss1lf6iR1akpH69THcGLAR6BVk44zg7nMZAysWZz-mN8jJxdC_ftku5yW_iGhMlHcKeE5lnP3UWzB5gqww8okLhexDgjrKJ3lbfFz7MExyeogvNBZw50MuJPV3Ml4QF7171RN6Y-No_eQgf1ILNtd35jOxlmLApmHxTHlhWO5l7ZQ1mittE1YDrhptAzITsf-rMWSeXYu-QF53j8GFMDQjin9dFmPEbARB-c2IA8aaelXgjXcJEtEQPSaHK0tdf1J-e20rjTOogSLJcCku53Ina9rEy12e7H8D9I92vzVz8hV0PTs4-Hx0WNynaP-AKyweIdsL2ZL_wQ2hQv7tNY-Sr5etLr_Bvi7clQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrRBw4P1YKMhI3KhL_Iz32CKqComKAyvKKbJjZ1t1ya72IVR-PWPnAQtVRU-RkoljjycznzXjzwBvMGaKjFtFnWecyjx4akKlKTNeC8GErVjc7_zpWB-N5ccTdbIFutsLk4r2E6VlctNdddi7JQaauBmMC4qQnkmK60Ff3YBtHRNLA9geH3_e_xZPkkOMQhEm8HaHTCbMJS9vRKFE1n8Zwvy3ULLPlt6BW-t6bi9-2On0j4B0eA--dkNp6lDO99Yrt1f-_Ivl8fpjvQ93W4xK9hvJB7AV6odwszm18uIRnB_EYyUIOiIyX8Q8T5xbEgvoJwS_gEvt4IkPYU5iSXtr2thepM5Ml1R4TmztSSpnpFOLuJ_MmxKbBbZlp5PZ4mx1-n35GMaHH768P6LtmQ20VJKtaFUi4rBWCivDqBSjSo5yl5V6ZLKgHfdOOeZYifGyUj7PqsCczIISnFllfNDiCQzqWR2eAZG54l6JwCNFe8i0wzgqMLYqm_tSaDME1s1hUbaE5vFcjWmREuvCFI0iC1RkkRRZ8CG87d-ZN3QeV0ofRNPoJSMVd7oxW0yKdrqKgJ1jKgjPyiBdpZw1RhmXsxJ9oTVyCDudYRWtf1gWPGZ3Rwg-cRSv-8f4Z8d0ja3DbJ1kBIJrXLAO4Wljh31PIi-bZLkYgtmw0I2ubj6pz04Teziu9yMBAja62xnz735dpYvd3uD_Q3XPryf-Am7zaO_oL5jegcFqsQ4vEe2t3Kv21_4FZWZOFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+age+prediction+using+combined+deep+convolutional+neural+network+and+multi-layer+perceptron+algorithms&rft.jtitle=Scientific+reports&rft.au=Joo%2C+Yoonji&rft.au=Namgung%2C+Eun&rft.au=Jeong%2C+Hyeonseok&rft.au=Kang%2C+Ilhyang&rft.date=2023-12-16&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=22388&rft_id=info:doi/10.1038%2Fs41598-023-49514-2&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon