Single cell transcriptomes and multiscale networks from persons with and without Alzheimer’s disease
The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks w...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 5815 - 16 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-024-49790-0 |
Cover
Abstract | The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with
CR1
expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.
Multi-omic profiling of matched brain and peripheral tissues offer rare opportunities to uncover extra-CNS drivers of Alzheimer’s pathobiology. Here, authors report an Alzheimer’s linked CD83(+) microglia subtype that is associated with immunoglobulin IgG4 production in the transverse colon. |
---|---|
AbstractList | The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with
CR1
expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.
Multi-omic profiling of matched brain and peripheral tissues offer rare opportunities to uncover extra-CNS drivers of Alzheimer’s pathobiology. Here, authors report an Alzheimer’s linked CD83(+) microglia subtype that is associated with immunoglobulin IgG4 production in the transverse colon. The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.Multi-omic profiling of matched brain and peripheral tissues offer rare opportunities to uncover extra-CNS drivers of Alzheimer’s pathobiology. Here, authors report an Alzheimer’s linked CD83(+) microglia subtype that is associated with immunoglobulin IgG4 production in the transverse colon. The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology. Abstract The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology. The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology. The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology. |
ArticleNumber | 5815 |
Author | Karr, Timothy L. Funk, Cory Alsop, Eric Mastroeni, Diego Reiman, Rebecca Bennett, David A. Antone, Jerry Roussos, Panos Liang, Winnie S. Bendl, Jaroslav Serrano, Geidy E. Reiman, Eric M. Wang, Qi Readhead, Benjamin P. Van Keuren-Jensen, Kendall Dudley, Joel T. Beach, Thomas G. De Jager, Philip L. |
Author_xml | – sequence: 1 givenname: Qi orcidid: 0000-0002-5026-8529 surname: Wang fullname: Wang, Qi organization: ASU-Banner Neurodegenerative Disease Research Center, Arizona State University – sequence: 2 givenname: Jerry surname: Antone fullname: Antone, Jerry organization: Division of Neurogenomics, The Translational Genomics Research Institute – sequence: 3 givenname: Eric orcidid: 0000-0002-2717-7573 surname: Alsop fullname: Alsop, Eric organization: Division of Neurogenomics, The Translational Genomics Research Institute – sequence: 4 givenname: Rebecca surname: Reiman fullname: Reiman, Rebecca organization: Division of Neurogenomics, The Translational Genomics Research Institute – sequence: 5 givenname: Cory orcidid: 0000-0002-5229-9011 surname: Funk fullname: Funk, Cory organization: Institute for Systems Biology – sequence: 6 givenname: Jaroslav orcidid: 0000-0001-9989-2720 surname: Bendl fullname: Bendl, Jaroslav organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 7 givenname: Joel T. surname: Dudley fullname: Dudley, Joel T. organization: ASU-Banner Neurodegenerative Disease Research Center, Arizona State University – sequence: 8 givenname: Winnie S. surname: Liang fullname: Liang, Winnie S. organization: Division of Neurogenomics, The Translational Genomics Research Institute – sequence: 9 givenname: Timothy L. orcidid: 0000-0002-4180-6583 surname: Karr fullname: Karr, Timothy L. organization: ASU-Banner Neurodegenerative Disease Research Center, Arizona State University – sequence: 10 givenname: Panos orcidid: 0000-0002-4640-6239 surname: Roussos fullname: Roussos, Panos organization: Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai – sequence: 11 givenname: David A. surname: Bennett fullname: Bennett, David A. organization: Rush Alzheimer’s Disease Center, Rush University Medical Center – sequence: 12 givenname: Philip L. orcidid: 0000-0002-8057-2505 surname: De Jager fullname: De Jager, Philip L. organization: Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center – sequence: 13 givenname: Geidy E. surname: Serrano fullname: Serrano, Geidy E. organization: Civin Laboratory for Neuropathology, Banner Sun Health Research Institute – sequence: 14 givenname: Thomas G. surname: Beach fullname: Beach, Thomas G. organization: Civin Laboratory for Neuropathology, Banner Sun Health Research Institute – sequence: 15 givenname: Kendall surname: Van Keuren-Jensen fullname: Van Keuren-Jensen, Kendall organization: Division of Neurogenomics, The Translational Genomics Research Institute – sequence: 16 givenname: Diego orcidid: 0000-0001-5878-9372 surname: Mastroeni fullname: Mastroeni, Diego organization: ASU-Banner Neurodegenerative Disease Research Center, Arizona State University – sequence: 17 givenname: Eric M. orcidid: 0000-0002-0705-3696 surname: Reiman fullname: Reiman, Eric M. organization: Banner Alzheimer’s Institute – sequence: 18 givenname: Benjamin P. orcidid: 0000-0003-4353-9965 surname: Readhead fullname: Readhead, Benjamin P. email: ben.readhead@asu.edu organization: ASU-Banner Neurodegenerative Disease Research Center, Arizona State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38987616$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1DAUhSNUREvpC7BAkdiwCfgvsb1CVcVPpUosgLXl2DczHhJ7sJ1WsOI1eD2eBM-khbaLeuMr-ztHx9f3aXXgg4eqeo7Ra4yoeJMYZh1vEGENk1yiBj2qjghiuMGc0INb9WF1ktIGlUUlFow9qQ6pkIJ3uDuqhs_Or0aoDYxjnaP2yUS3zWGCVGtv62kes0tGF8RDvgrxW6qHGKZ6CzEFn-orl9d7cleEOden4881uAnin1-_U21dAp3gWfV40GOCk-v9uPr6_t2Xs4_NxacP52enF41pGc7NYFhLB0oQR9gSMRikJRKyhMXMthy1hlBtSS9E3_Z9TykVLcYCi97KjoGmx9X54muD3qhtdJOOP1TQTu0PQlwpHbMzI6hWUOCadQYxyqRoteSklZoj27eWAS1ebxev7dxPYA340p_xjundG-_WahUuFcaEciREcXh17RDD9xlSVlPpZem09hDmpCji5WUdYaSgL--hmzBHX3q1pwhCuJOFenE70r8sN_9ZALEAJoaUIgzKuKyzC7uEblQYqd30qGV6VJketZ8ehYqU3JPeuD8ooosoFdivIP6P_YDqLxJj19I |
CitedBy_id | crossref_primary_10_1016_j_brainresbull_2024_111165 crossref_primary_10_1016_j_it_2025_02_011 crossref_primary_10_3390_brainsci14111101 |
Cites_doi | 10.1159/000204229 10.1128/JVI.02327-06 10.1038/nature11234 10.1038/s41586-021-04369-3 10.1016/j.jalz.2017.05.002 10.1111/j.1365-2567.2011.03411.x 10.1038/s41586-023-05788-0 10.3389/fimmu.2023.1087532 10.1038/s41587-023-01767-y 10.1016/j.neuron.2022.10.021 10.1093/nar/gkac1010 10.1038/s41586-019-1195-2 10.1111/j.1365-2222.2009.03207.x 10.1212/01.WNL.0000042478.08543.F7 10.1111/j.2517-6161.1995.tb02031.x 10.1186/s13024-022-00517-z 10.1182/blood-2003-12-4350 10.1038/s41467-020-19319-2 10.1016/j.ajhg.2018.07.015 10.3390/cells11121954 10.1186/s12987-023-00425-4 10.1016/j.celrep.2019.03.099 10.1016/j.immuni.2017.08.008 10.1111/neup.12189 10.1038/s41467-020-19737-2 10.1038/s41588-022-01149-1 10.1016/j.immuni.2018.11.004 10.1016/S0306-4522(02)00230-0 10.1007/s00401-020-02200-3 10.1152/physiolgenomics.00242.2007 10.1128/JVI.79.13.7990-8003.2005 10.1038/s41467-023-40370-2 10.1126/science.abj1541 10.1038/s41588-022-01024-z 10.1093/bioinformatics/btt730 10.1186/1471-2156-10-23 10.1016/j.neurobiolaging.2013.03.008 10.1073/pnas.2218915120 10.1016/j.jalz.2018.02.018 10.1371/journal.pone.0149792 10.1371/journal.pgen.1004383 10.1101/2023.02.18.23286037 10.1016/j.cell.2017.05.018 10.1038/nrg3891 10.1038/s41591-019-0695-9 10.1186/s13059-019-1874-1 10.1093/bioinformatics/btw135 10.1371/journal.pcbi.1004219 10.1038/ncomms14049 10.1002/bimj.201900254 10.1093/bioinformatics/btr064 10.1186/s13059-015-0844-5 10.1101/2021.01.07.21249410 10.1038/s41588-019-0538-0 10.1186/s13059-021-02407-x 10.1002/glia.24355 10.1038/s41597-020-00642-8 10.1038/nature15393 10.1038/ng.439 10.1186/s13073-022-01136-5 10.1016/j.cell.2021.04.048 10.1038/s41467-020-18035-1 10.21105/joss.00861 10.1002/ana.25380 10.1016/j.cels.2019.03.003 10.1093/qjmed/hct103 10.1038/s41588-021-00894-z 10.1016/j.jalz.2018.04.003 10.1038/nmeth.3439 10.1038/s43587-023-00424-y 10.1111/jnc.14860 10.1038/s41576-023-00580-2 10.1038/ng.167 10.1016/j.cell.2009.01.038 10.1001/archneurol.2010.147 10.3233/JAD-179939 10.3390/genes12121990 10.1038/s41593-022-01166-7 10.1016/j.xgen.2023.100263 10.1001/archneurol.2010.201 10.1016/j.cell.2023.08.039 10.1084/jem.166.5.1351 10.1093/database/bax028 10.1038/s41598-019-41918-3 10.1371/journal.pcbi.1004574 10.1038/s41398-018-0150-6 10.1111/acel.12866 10.1097/00005072-199911000-00004 10.1038/s41588-024-01685-y 10.1038/s41588-021-00921-z 10.1038/s41593-019-0539-4 10.1038/s41593-022-01128-z 10.1038/s41467-023-37437-5 10.1084/jem.20202717 10.1001/archneur.58.9.1395 10.1111/jnc.12935 10.1002/cne.20828 10.1073/pnas.2100293118 10.1016/j.neurobiolaging.2005.09.043 10.1073/pnas.2008762117 10.1093/hmg/ddq221 10.1186/s13024-017-0184-x 10.1101/2021.11.30.21267072 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-49790-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_583e7a46c0434985a97259a70db5d4e3 PMC11237088 38987616 10_1038_s41467_024_49790_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NOMIS Stiftung (NOMIS Foundation) funderid: https://doi.org/10.13039/501100008483 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: U24 NS072026 funderid: https://doi.org/10.13039/100000065 – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) – fundername: U.S. Department of Health & Human Services | NIH | National Institute on Aging (U.S. National Institute on Aging) grantid: U01AG061835; R21AG063068 funderid: https://doi.org/10.13039/100000049 – fundername: NINDS NIH HHS grantid: U24 NS072026 – fundername: NIA NIH HHS grantid: P30 AG072975 – fundername: NIA NIH HHS grantid: R21 AG063068 – fundername: NIA NIH HHS grantid: P30 AG072980 – fundername: NIA NIH HHS grantid: R01 AG015819 – fundername: NIA NIH HHS grantid: R01 AG017917 – fundername: NIA NIH HHS grantid: P30 AG019610 – fundername: NIA NIH HHS grantid: U01 AG046152 – fundername: NIA NIH HHS grantid: U01 AG061835 – fundername: NIA NIH HHS grantid: U01 AG046139 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-fc453f320701d28fc0a908998714d5705c23ad2b88b5bbb3338511818bd964ea3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:18:58 EDT 2025 Thu Aug 21 18:32:22 EDT 2025 Fri Sep 05 07:34:08 EDT 2025 Wed Aug 13 09:30:33 EDT 2025 Thu Apr 03 07:08:11 EDT 2025 Tue Jul 01 02:11:16 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-fc453f320701d28fc0a908998714d5705c23ad2b88b5bbb3338511818bd964ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5878-9372 0000-0002-5026-8529 0000-0002-4640-6239 0000-0002-4180-6583 0000-0002-0705-3696 0000-0002-2717-7573 0000-0003-4353-9965 0000-0002-8057-2505 0000-0002-5229-9011 0000-0001-9989-2720 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-49790-0 |
PMID | 38987616 |
PQID | 3078200169 |
PQPubID | 546298 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_583e7a46c0434985a97259a70db5d4e3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11237088 proquest_miscellaneous_3078716242 proquest_journals_3078200169 pubmed_primary_38987616 crossref_citationtrail_10_1038_s41467_024_49790_0 crossref_primary_10_1038_s41467_024_49790_0 springer_journals_10_1038_s41467_024_49790_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-10 |
PublicationDateYYYYMMDD | 2024-07-10 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | MathysHSingle-cell transcriptomic analysis of Alzheimer’s diseaseNature20195703323372019Natur.570..332M1:CAS:528:DC%2BC1MXhtVajsrjI31042697686582210.1038/s41586-019-1195-2 NguyenATAPOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s diseaseActa Neuropathol.20201404774931:CAS:528:DC%2BB3cXhs1OisLnF32840654752005110.1007/s00401-020-02200-3 HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019201:CAS:528:DC%2BC1MXisVyht7fF31870423692718110.1186/s13059-019-1874-1 HaoYDictionary learning for integrative, multimodal and scalable single-cell analysisNat. Biotechnol.202310.1038/s41587-023-01767-y3723126110928517 SiebertsSKLarge eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regionsSci. Data202071:CAS:528:DC%2BB3cXitVyiurfM33046718755058710.1038/s41597-020-00642-8 LileyJWallaceCAccurate error control in high-dimensional association testing using conditional false discovery ratesBiom. J.20216310961130426895633682201761231510.1002/bimj.201900254 ChenXMicroglia-mediated T cell infiltration drives neurodegeneration in tauopathyNature20236156686772023Natur.615..668C1:CAS:528:DC%2BB3sXkslymsLc%3D368902311025862710.1038/s41586-023-05788-0 PietznerMMapping the proteo-genomic convergence of human diseasesScience2021374eabj154134648354990420710.1126/science.abj1541 ZhuJIntegrating large-scale functional genomic data to dissect the complexity of yeast regulatory networksNat. Genet.2008408548611:CAS:528:DC%2BD1cXnslKkurk%3D18552845257385910.1038/ng.167 MarioniREGWAS on family history of Alzheimer’s diseaseTransl. Psychiatry2018829777097595989010.1038/s41398-018-0150-6 TorvellMGenetic insights into the impact of complement in Alzheimer’s diseaseGenes (Basel)20211219901:CAS:528:DC%2BB38XptVOmtQ%3D%3D3494693910.3390/genes12121990 MillsteinJChenGKBretonCVcit: hypothesis testing software for mediation analysis in genomic applicationsBioinformatics201632236423651:CAS:528:DC%2BC2sXhtVajsLnO27153715496563210.1093/bioinformatics/btw135 SenechalBBoruchovAMReaganJLHartDNYoungJWInfection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83Blood2004103420742151:CAS:528:DC%2BD2cXkvVyit7k%3D1496289610.1182/blood-2003-12-4350 HaubergMECommon schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neuronsNat. Commun.2020112020NatCo..11.5581H1:CAS:528:DC%2BB3cXit1OqtL3I33149216764317110.1038/s41467-020-19319-2 Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford)https://doi.org/10.1093/database/bax028 (2017). GiambartolomeiCBayesian test for colocalisation between pairs of genetic association studies using summary statisticsPLoS Genet.201410e100438324830394402249110.1371/journal.pgen.1004383 BellenguezCNew insights into the genetic etiology of Alzheimer’s disease and related dementiasNat. Genet.2022544124361:CAS:528:DC%2BB38XptVShtrg%3D35379992900534710.1038/s41588-022-01024-z CorneveauxJJAssociation of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individualsHum. Mol. Genet.201019329533011:CAS:528:DC%2BC3cXpt1Omsb8%3D20534741290846910.1093/hmg/ddq221 MoonMCorrelation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer’s diseaseJ. Neurochem.20151322542621:CAS:528:DC%2BC2MXhtFCms7o%3D2515641210.1111/jnc.12935 AngelovaDMBrownDRMicroglia and the aging brain: are senescent microglia the key to neurodegenerationJ. Neurochem.20191516766881:CAS:528:DC%2BC1MXhvFymtL7N3147820810.1111/jnc.14860 AalberseRCStapelSOSchuurmanJRispensTImmunoglobulin G4: an odd antibodyClin. Exp. Allergy2009394694771:CAS:528:DC%2BD1MXksVKjs7k%3D1922249610.1111/j.1365-2222.2009.03207.x LiangWSAltered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data setPhysiol. Genomics2008332402561:CAS:528:DC%2BD1cXmt1WisL8%3D1827032010.1152/physiolgenomics.00242.2007 GrimesTPotterSSDattaSIntegrating gene regulatory pathways into differential network analysis of gene expression dataSci. Rep.201992019NatSR...9.5479G30940863644515110.1038/s41598-019-41918-3 ZhouYHuman and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s diseaseNat. Med.2020261311421:CAS:528:DC%2BB3cXotFOitA%3D%3D31932797698079310.1038/s41591-019-0695-9 BenjaminiYHochbergYControlling the false discovery rate: a practical and powerful approach to multiple testingJ. R. Stat. Soc. Ser. B (Methodol.)199557289300132539210.1111/j.2517-6161.1995.tb02031.x McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw.https://doi.org/10.21105/joss.00861 (2018). LauSFCaoHFuAKYIpNYSingle-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s diseaseProc. Natl Acad. Sci. USA202011725800258092020PNAS..11725800L1:CAS:528:DC%2BB3cXitVKktLrK32989152756828310.1073/pnas.2008762117 ZhaoHCrossMap: a versatile tool for coordinate conversion between genome assembliesBioinformatics201430100610072435170910.1093/bioinformatics/btt730 de LeeuwCAMooijJMHeskesTPosthumaDMAGMA: generalized gene-set analysis of GWAS dataPLoS Comput. Biol.201511e100421925885710440165710.1371/journal.pcbi.1004219 JohanssonJUPeripheral complement interactions with amyloid beta peptide in Alzheimer’s disease: polymorphisms, structure, and function of complement receptor 1Alzheimers Dement.201814143814492979287010.1016/j.jalz.2018.04.003 MajumderBHuman immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escapeJ. Virol.200579799080031:CAS:528:DC%2BD2MXlslGjt7o%3D15956545114373410.1128/JVI.79.13.7990-8003.2005 QiuYDefinition of the contribution of an osteopontin-producing CD11c(+) microglial subset to Alzheimer’s diseaseProc. Natl Acad. Sci. USA2023120e22189151201:CAS:528:DC%2BB3sXktlagsrY%3D36730200996336510.1073/pnas.2218915120 Li, H. (arXiv, 2013). KosoyRGenetics of the human microglia regulome refines Alzheimer’s disease risk lociNat. Genet.202254114511541:CAS:528:DC%2BB38XitV2lt7bI35931864938836710.1038/s41588-022-01149-1 OskamNFactors affecting IgG4-mediated complement activationFront. Immunol.20231410875321:CAS:528:DC%2BB3sXislamtbs%3D36776883991030910.3389/fimmu.2023.1087532 MillsteinJZhangBZhuJSchadtEEDisentangling molecular relationships with a causal inference testBMC Genet.20091019473544322466110.1186/1471-2156-10-23 McGinnisCSMurrowLMGartnerZJDoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighborsCell Syst.20198329337.e3241:CAS:528:DC%2BC1MXosVyhtbk%3D30954475685361210.1016/j.cels.2019.03.003 JackCRJr.NIA-AA research framework: toward a biological definition of Alzheimer’s diseaseAlzheimers Dement.2018145355622965360610.1016/j.jalz.2018.02.018 HaoYIntegrated analysis of multimodal single-cell dataCell202118435733587.e35291:CAS:528:DC%2BB3MXhtlSrtrvE34062119823849910.1016/j.cell.2021.04.048 ZhengGXMassively parallel digital transcriptional profiling of single cellsNat. Commun.201782017NatCo...814049Z1:CAS:528:DC%2BC2sXht1WlsLo%3D28091601524181810.1038/ncomms14049 ToddSBarrSPassmoreAPCause of death in Alzheimer’s disease: a cohort studyQJM20131067477531:STN:280:DC%2BC3snhs1Kjsg%3D%3D2365348410.1093/qjmed/hct103 Human Microbiome Project, C.Structure, function and diversity of the healthy human microbiomeNature20124862072142012Natur.486..207T10.1038/nature11234 GohYSHuman IgG isotypes and activating Fcgamma receptors in the interaction of Salmonella enterica serovar Typhimurium with phagocytic cellsImmunology201113374831:CAS:528:DC%2BC3MXltFGhsbY%3D21323662308896910.1111/j.1365-2567.2011.03411.x Genomes ProjectCA global reference for human genetic variationNature201552668742015Natur.526...68T10.1038/nature15393 Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011). NewellKLHymanBTGrowdonJHHedley-WhyteETApplication of the National Institute on Aging (NIA)-Reagan Institute Criteria for the Neuropathological Diagnosis of Alzheimer DiseaseJ. Neuropathol. Exp. Neurol.199958114711551:STN:280:DC%2BD3c%2FitleisQ%3D%3D1056065710.1097/00005072-199911000-00004 Brase, L. et al. A landscape of the genetic and cellular heterogeneity in Alzheimer disease. medRxivhttps://doi.org/10.1101/2021.11.30.21267072 (2022). BruggemannMComparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodiesJ. Exp. Med.1987166135113611:STN:280:DyaL1c%2FmtFSmsw%3D%3D350025910.1084/jem.166.5.1351 MorabitoSSingle-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s diseaseNat. Genet.202153114311551:CAS:528:DC%2BB3MXhsFSktLjK34239132876621710.1038/s41588-021-00894-z Fujita, M. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat. Genet.56, 605–614 (2024). FonsecaMIAnalysis of the putative role of CR1 in Alzheimer’s disease: genetic association, expression and functionPLoS ONE201611e014979226914463476781510.1371/journal.pone.0149792 PalholJSCDirect association with the vascular basement membrane is a frequent feature of myelinating oligodendrocytes in the neocortexFluids Barriers CNS202320241:CAS:528:DC%2BB3sXntlGlu7o%3D370136591006906810.1186/s12987-023-00425-4 SaijoKA Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced deathCell200913747591:CAS:528:DC%2BD1MXls1Srsro%3D19345186275427910.1016/j.cell.2009.01.038 BendlJThe three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s diseaseNat. Neurosci.202210.1038/s41593-022-01166-7361714289581463 Keren-ShaulHA unique microg M Pietzner (49790_CR65) 2021; 374 J Millstein (49790_CR99) 2016; 32 KE Prater (49790_CR41) 2023; 3 49790_CR66 C Giambartolomei (49790_CR95) 2014; 10 M Wang (49790_CR37) 2022; 17 WS Liang (49790_CR79) 2008; 33 J Rogers (49790_CR63) 2006; 27 AC Yang (49790_CR4) 2022; 603 Y Chu (49790_CR70) 2006; 494 M Kummer (49790_CR44) 2007; 81 TR Hammond (49790_CR69) 2019; 50 FP Casale (49790_CR91) 2015; 12 FW Albert (49790_CR29) 2015; 16 A Grubman (49790_CR10) 2019; 22 DP Wightman (49790_CR35) 2021; 53 C Van Cauwenberghe (49790_CR58) 2013; 34 JSC Palhol (49790_CR67) 2023; 20 J Hu (49790_CR13) 2023; 111 AT Nguyen (49790_CR39) 2020; 140 JU Johansson (49790_CR62) 2018; 14 DM Angelova (49790_CR42) 2019; 151 JL Price (49790_CR23) 2001; 58 SF Lau (49790_CR8) 2020; 117 CR Jack Jr. (49790_CR20) 2018; 14 YS Goh (49790_CR77) 2011; 133 RE Marioni (49790_CR31) 2018; 8 T Luquez (49790_CR12) 2022; 14 C Sala Frigerio (49790_CR15) 2019; 27 49790_CR85 49790_CR86 J Bryois (49790_CR28) 2022; 25 Human Microbiome Project, C. (49790_CR53) 2012; 486 H Keren-Shaul (49790_CR16) 2017; 169 H Mathys (49790_CR33) 2023; 186 49790_CR84 Y Zhou (49790_CR6) 2020; 26 B Majumder (49790_CR45) 2005; 79 CP Fulco (49790_CR51) 2019; 51 L Yu (49790_CR104) 2017; 13 BL Browning (49790_CR87) 2018; 103 TG Beach (49790_CR19) 2015; 35 AT Lun (49790_CR90) 2016; 5 N Daskoulidou (49790_CR60) 2023; 71 P Sinner (49790_CR40) 2023; 14 Y Chen (49790_CR38) 2021; 218 49790_CR11 M Moon (49790_CR73) 2015; 132 DA Bennett (49790_CR34) 2018; 64 WM Song (49790_CR96) 2015; 11 Y Hao (49790_CR106) 2023 M Torvell (49790_CR59) 2021; 12 JJ Corneveaux (49790_CR54) 2010; 19 49790_CR27 J Liley (49790_CR92) 2021; 63 G Jun (49790_CR55) 2010; 67 AG Anderson (49790_CR3) 2023 M Olah (49790_CR7) 2020; 11 S Krasemann (49790_CR17) 2017; 47 J Millstein (49790_CR36) 2009; 10 49790_CR101 CA de Leeuw (49790_CR25) 2015; 11 49790_CR100 S Morabito (49790_CR5) 2021; 53 RC Aalberse (49790_CR75) 2009; 39 T Grimes (49790_CR98) 2019; 9 C Genomes Project (49790_CR88) 2015; 526 K Saijo (49790_CR74) 2009; 137 M Bruggemann (49790_CR76) 1987; 166 C Hafemeister (49790_CR83) 2019; 20 MI Fonseca (49790_CR64) 2016; 11 S Todd (49790_CR46) 2013; 106 M Moon (49790_CR72) 2019; 18 CS McGinnis (49790_CR82) 2019; 8 J Bendl (49790_CR102) 2022 ASE Cuomo (49790_CR89) 2021; 22 H Zhao (49790_CR93) 2014; 30 KA Bates (49790_CR22) 2002; 113 E Sollis (49790_CR30) 2023; 51 49790_CR49 ME Hauberg (49790_CR50) 2020; 11 GX Zheng (49790_CR80) 2017; 8 PA Boyle (49790_CR103) 2019; 85 KL Newell (49790_CR107) 1999; 58 49790_CR47 X Fan (49790_CR71) 2009; 16 Y Hao (49790_CR81) 2021; 184 Y Qiu (49790_CR68) 2023; 120 JC Lambert (49790_CR57) 2009; 41 X Chen (49790_CR14) 2023; 615 M Bentsen (49790_CR52) 2020; 11 49790_CR2 J Zhu (49790_CR97) 2008; 40 49790_CR1 J Zhao (49790_CR21) 2021; 118 L Brase (49790_CR61) 2023; 14 G Finak (49790_CR94) 2015; 16 H Mathys (49790_CR9) 2019; 570 N Oskam (49790_CR78) 2023; 14 SK Sieberts (49790_CR26) 2020; 7 Y Benjamini (49790_CR32) 1995; 57 B Senechal (49790_CR43) 2004; 103 DA Bennett (49790_CR105) 2003; 60 C Bellenguez (49790_CR24) 2022; 54 MM Carrasquillo (49790_CR56) 2010; 67 R Kosoy (49790_CR48) 2022; 54 AG Efthymiou (49790_CR18) 2017; 12 |
References_xml | – reference: AndersonAGSingle nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer’s disease-specific cis-regulatory elementsCell Genomics202310.1016/j.xgen.2023.1002633722874910203047 – reference: ToddSBarrSPassmoreAPCause of death in Alzheimer’s disease: a cohort studyQJM20131067477531:STN:280:DC%2BC3snhs1Kjsg%3D%3D2365348410.1093/qjmed/hct103 – reference: Van CauwenbergheCComplement receptor 1 coding variant p.Ser1610Thr in Alzheimer’s disease and related endophenotypesNeurobiol. Aging2013342235 e2231e2236 – reference: EfthymiouAGGoateAMLate onset Alzheimer’s disease genetics implicates microglial pathways in disease riskMol. Neurodegener.2017124328549481544675210.1186/s13024-017-0184-x – reference: BellenguezCNew insights into the genetic etiology of Alzheimer’s disease and related dementiasNat. Genet.2022544124361:CAS:528:DC%2BB38XptVShtrg%3D35379992900534710.1038/s41588-022-01024-z – reference: DaskoulidouNComplement receptor 1 is expressed on brain cells and in the human brainGlia202371152215351:CAS:528:DC%2BB3sXjvV2msLY%3D368255341095333910.1002/glia.24355 – reference: Keren-ShaulHA unique microglia type associated with restricting development of Alzheimer’s diseaseCell201716912761290.e12171:CAS:528:DC%2BC2sXpslCqtbY%3D2860235110.1016/j.cell.2017.05.018 – reference: SenechalBBoruchovAMReaganJLHartDNYoungJWInfection of mature monocyte-derived dendritic cells with human cytomegalovirus inhibits stimulation of T-cell proliferation via the release of soluble CD83Blood2004103420742151:CAS:528:DC%2BD2cXkvVyit7k%3D1496289610.1182/blood-2003-12-4350 – reference: BendlJThe three-dimensional landscape of cortical chromatin accessibility in Alzheimer’s diseaseNat. Neurosci.202210.1038/s41593-022-01166-7361714289581463 – reference: TorvellMGenetic insights into the impact of complement in Alzheimer’s diseaseGenes (Basel)20211219901:CAS:528:DC%2BB38XptVOmtQ%3D%3D3494693910.3390/genes12121990 – reference: MarioniREGWAS on family history of Alzheimer’s diseaseTransl. Psychiatry2018829777097595989010.1038/s41398-018-0150-6 – reference: PalholJSCDirect association with the vascular basement membrane is a frequent feature of myelinating oligodendrocytes in the neocortexFluids Barriers CNS202320241:CAS:528:DC%2BB3sXntlGlu7o%3D370136591006906810.1186/s12987-023-00425-4 – reference: MorabitoSSingle-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s diseaseNat. Genet.202153114311551:CAS:528:DC%2BB3MXhsFSktLjK34239132876621710.1038/s41588-021-00894-z – reference: BrowningBLZhouYBrowningSRA one-penny imputed genome from next-generation reference panelsAm. J. Hum. Genet.20181033383481:CAS:528:DC%2BC1cXhsVOlu7bK30100085612830810.1016/j.ajhg.2018.07.015 – reference: BennettDAApolipoprotein E ε4 allele, AD pathology, and the clinical expression of Alzheimer’s diseaseNeurology2003602462521:CAS:528:DC%2BD3sXhtVKjsw%3D%3D1255203910.1212/01.WNL.0000042478.08543.F7 – reference: JunGMeta-analysis confirms CR1, CLU, and PICALM as alzheimer disease risk loci and reveals interactions with APOE genotypesArch. Neurol.2010671473148420697030304880510.1001/archneurol.2010.201 – reference: ZhaoHCrossMap: a versatile tool for coordinate conversion between genome assembliesBioinformatics201430100610072435170910.1093/bioinformatics/btt730 – reference: WightmanDPA genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimer’s diseaseNat. Genet.202153127612821:CAS:528:DC%2BB3MXhvFyjtbbF344938701024360010.1038/s41588-021-00921-z – reference: MathysHSingle-cell transcriptomic analysis of Alzheimer’s diseaseNature20195703323372019Natur.570..332M1:CAS:528:DC%2BC1MXhtVajsrjI31042697686582210.1038/s41586-019-1195-2 – reference: Sala FrigerioCThe major risk factors for Alzheimer’s disease: age, sex, and genes modulate the microglia response to abeta plaquesCell Rep.20192712931306 e12961:CAS:528:DC%2BC1MXotFamurY%3D3101814110.1016/j.celrep.2019.03.099 – reference: SiebertsSKLarge eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regionsSci. Data202071:CAS:528:DC%2BB3cXitVyiurfM33046718755058710.1038/s41597-020-00642-8 – reference: McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw.https://doi.org/10.21105/joss.00861 (2018). – reference: Human Microbiome Project, C.Structure, function and diversity of the healthy human microbiomeNature20124862072142012Natur.486..207T10.1038/nature11234 – reference: MajumderBHuman immunodeficiency virus type 1 Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune escapeJ. Virol.200579799080031:CAS:528:DC%2BD2MXlslGjt7o%3D15956545114373410.1128/JVI.79.13.7990-8003.2005 – reference: CasaleFPRakitschBLippertCStegleOEfficient set tests for the genetic analysis of correlated traitsNat. Methods2015127557581:CAS:528:DC%2BC2MXhtFWqur7F2607642510.1038/nmeth.3439 – reference: GohYSHuman IgG isotypes and activating Fcgamma receptors in the interaction of Salmonella enterica serovar Typhimurium with phagocytic cellsImmunology201113374831:CAS:528:DC%2BC3MXltFGhsbY%3D21323662308896910.1111/j.1365-2567.2011.03411.x – reference: MoonMNurr1 (NR4A2) regulates Alzheimer’s disease-related pathogenesis and cognitive function in the 5XFAD mouse modelAging Cell201918e128663051596310.1111/acel.12866 – reference: ZhuJIntegrating large-scale functional genomic data to dissect the complexity of yeast regulatory networksNat. Genet.2008408548611:CAS:528:DC%2BD1cXnslKkurk%3D18552845257385910.1038/ng.167 – reference: Genomes ProjectCA global reference for human genetic variationNature201552668742015Natur.526...68T10.1038/nature15393 – reference: trena: Fit transcriptional regulatory networks using gene expression, priors, machine learning. v. R package version 1.21.0 (2022). – reference: YuLNeuropathologic features of TOMM40 ‘523 variant on late-life cognitive declineAlzheimers Dement.201713138013882862433510.1016/j.jalz.2017.05.002 – reference: LuquezTCell type-specific changes identified by single-cell transcriptomics in Alzheimer’s diseaseGenome Med.20221436447241971012010.1186/s13073-022-01136-5 – reference: Van der Auwera, G. A. & O’Connor, B. D. Genomics in the Cloud: Using Docker, GATK, and WDL in Terra. 1st edition edn, (O’Reilly Media, Inc., 2020). – reference: BryoisJCell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disordersNat. Neurosci.202225110411121:CAS:528:DC%2BB38XitVehsLrL3591517710.1038/s41593-022-01128-z – reference: HaubergMECommon schizophrenia risk variants are enriched in open chromatin regions of human glutamatergic neuronsNat. Commun.2020112020NatCo..11.5581H1:CAS:528:DC%2BB3cXit1OqtL3I33149216764317110.1038/s41467-020-19319-2 – reference: HafemeisterCSatijaRNormalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regressionGenome Biol.2019201:CAS:528:DC%2BC1MXisVyht7fF31870423692718110.1186/s13059-019-1874-1 – reference: FanXNurr1 expression and its modulation in microgliaNeuroimmunomodulation2009161621701:CAS:528:DC%2BD1MXjtlOls78%3D1924693810.1159/000204229 – reference: JackCRJr.NIA-AA research framework: toward a biological definition of Alzheimer’s diseaseAlzheimers Dement.2018145355622965360610.1016/j.jalz.2018.02.018 – reference: PietznerMMapping the proteo-genomic convergence of human diseasesScience2021374eabj154134648354990420710.1126/science.abj1541 – reference: CorneveauxJJAssociation of CR1, CLU and PICALM with Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individualsHum. Mol. Genet.201019329533011:CAS:528:DC%2BC3cXpt1Omsb8%3D20534741290846910.1093/hmg/ddq221 – reference: Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011). – reference: AalberseRCStapelSOSchuurmanJRispensTImmunoglobulin G4: an odd antibodyClin. Exp. Allergy2009394694771:CAS:528:DC%2BD1MXksVKjs7k%3D1922249610.1111/j.1365-2222.2009.03207.x – reference: SollisEThe NHGRI-EBI GWAS Catalog: knowledgebase and deposition resourceNucleic Acids Res.202351D977D9851:CAS:528:DC%2BB3sXht1GhsLzK3635065610.1093/nar/gkac1010 – reference: BoylePAAttributable risk of Alzheimer’s dementia attributed to age-related neuropathologiesAnn. Neurol.2019851141241:CAS:528:DC%2BC1MXhsFyls7k%3D3042145410.1002/ana.25380 – reference: OlahMSingle cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s diseaseNat. Commun.2020112020NatCo..11.6129O1:CAS:528:DC%2BB3cXisFWlu7vP33257666770470310.1038/s41467-020-19737-2 – reference: HuJMicroglial Piezo1 senses Abeta fibril stiffness to restrict Alzheimer’s diseaseNeuron20231111529 e181:CAS:528:DC%2BB38XivVGjurvI3636831610.1016/j.neuron.2022.10.021 – reference: BenjaminiYHochbergYControlling the false discovery rate: a practical and powerful approach to multiple testingJ. R. Stat. Soc. Ser. B (Methodol.)199557289300132539210.1111/j.2517-6161.1995.tb02031.x – reference: NguyenATAPOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s diseaseActa Neuropathol.20201404774931:CAS:528:DC%2BB3cXhs1OisLnF32840654752005110.1007/s00401-020-02200-3 – reference: HaoYDictionary learning for integrative, multimodal and scalable single-cell analysisNat. Biotechnol.202310.1038/s41587-023-01767-y3723126110928517 – reference: AlbertFWKruglyakLThe role of regulatory variation in complex traits and diseaseNat. Rev. Genet.2015161972121:CAS:528:DC%2BC2MXjt1Sgu7Y%3D2570792710.1038/nrg3891 – reference: FinakGMAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing dataGenome Biol.20151626653891467616210.1186/s13059-015-0844-5 – reference: GiambartolomeiCBayesian test for colocalisation between pairs of genetic association studies using summary statisticsPLoS Genet.201410e100438324830394402249110.1371/journal.pgen.1004383 – reference: SongWMZhangBMultiscale embedded gene co-expression network analysisPLoS Comput. Biol.201511e100457426618778466455310.1371/journal.pcbi.1004574 – reference: ChuYNurr1 in Parkinson’s disease and related disordersJ. Comp. Neurol.20064944955141:CAS:528:DC%2BD28XktVeltA%3D%3D16320253256461510.1002/cne.20828 – reference: LunATMcCarthyDJMarioniJCA step-by-step workflow for low-level analysis of single-cell RNA-seq data with BioconductorF1000Res201652122279095755112579 – reference: HammondTRSingle-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changesImmunity201950253271.e2561:CAS:528:DC%2BC1cXit1KjsbbJ3047192610.1016/j.immuni.2018.11.004 – reference: BeachTGArizona study of aging and neurodegenerative disorders and brain and body donation programNeuropathology20153535438925619230459339110.1111/neup.12189 – reference: JohanssonJUPeripheral complement interactions with amyloid beta peptide in Alzheimer’s disease: polymorphisms, structure, and function of complement receptor 1Alzheimers Dement.201814143814492979287010.1016/j.jalz.2018.04.003 – reference: FonsecaMIAnalysis of the putative role of CR1 in Alzheimer’s disease: genetic association, expression and functionPLoS ONE201611e014979226914463476781510.1371/journal.pone.0149792 – reference: GrubmanAA single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulationNat. Neurosci.201922208720971:CAS:528:DC%2BC1MXit1Ohs7zF3176805210.1038/s41593-019-0539-4 – reference: BruggemannMComparison of the effector functions of human immunoglobulins using a matched set of chimeric antibodiesJ. Exp. Med.1987166135113611:STN:280:DyaL1c%2FmtFSmsw%3D%3D350025910.1084/jem.166.5.1351 – reference: YangACA human brain vascular atlas reveals diverse mediators of Alzheimer’s riskNature20226038858922022Natur.603..885Y1:CAS:528:DC%2BB38Xjs12kurY%3D35165441963504210.1038/s41586-021-04369-3 – reference: LambertJCGenome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s diseaseNat. Genet.200941109410991:CAS:528:DC%2BD1MXhtV2gsb%2FK1973490310.1038/ng.439 – reference: WangMGuidelines for bioinformatics of single-cell sequencing data analysis in Alzheimer’s disease: review, recommendation, implementation and applicationMol. Neurodegener.2022171735236372888940210.1186/s13024-022-00517-z – reference: Zhang, L. et al. Single-cell transcriptomic atlas of Alzheimer’s disease middle temporal gyrus reveals region, cell type and sex specificity of gene expression with novel genetic risk for MERTK in female. medRxivhttps://doi.org/10.1101/2023.02.18.23286037 (2023). – reference: Brase, L. et al. A landscape of the genetic and cellular heterogeneity in Alzheimer disease. medRxivhttps://doi.org/10.1101/2021.11.30.21267072 (2022). – reference: de LeeuwCAMooijJMHeskesTPosthumaDMAGMA: generalized gene-set analysis of GWAS dataPLoS Comput. Biol.201511e100421925885710440165710.1371/journal.pcbi.1004219 – reference: SaijoKA Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced deathCell200913747591:CAS:528:DC%2BD1MXls1Srsro%3D19345186275427910.1016/j.cell.2009.01.038 – reference: KummerMHerpes simplex virus type 1 induces CD83 degradation in mature dendritic cells with immediate-early kinetics via the cellular proteasomeJ. Virol.200781632663381:CAS:528:DC%2BD2sXmt1Ors7k%3D17428858190008310.1128/JVI.02327-06 – reference: ZhouYHuman and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s diseaseNat. Med.2020261311421:CAS:528:DC%2BB3cXotFOitA%3D%3D31932797698079310.1038/s41591-019-0695-9 – reference: ChenYColonnaMMicroglia in Alzheimer’s disease at single-cell level. Are there common patterns in humans and mice?J. Exp. Med.2021218e202027171:CAS:528:DC%2BB3MXhvFOitLrO34292312830244810.1084/jem.20202717 – reference: SinnerPMicroglial expression of CD83 governs cellular activation and restrains neuroinflammation in experimental autoimmune encephalomyelitisNat. Commun.2023142023NatCo..14.4601S1:CAS:528:DC%2BB3sXhs1Snsb3O375280701039408810.1038/s41467-023-40370-2 – reference: CuomoASEOptimizing expression quantitative trait locus mapping workflows for single-cell studiesGenome Biol.2021221:CAS:528:DC%2BB3MXhvFKmtb7O34167583822330010.1186/s13059-021-02407-x – reference: McGinnisCSMurrowLMGartnerZJDoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighborsCell Syst.20198329337.e3241:CAS:528:DC%2BC1MXosVyhtbk%3D30954475685361210.1016/j.cels.2019.03.003 – reference: BentsenMATAC-seq footprinting unravels kinetics of transcription factor binding during zygotic genome activationNat. Commun.2020112020NatCo..11.4267B1:CAS:528:DC%2BB3cXhslWqtb3I32848148744996310.1038/s41467-020-18035-1 – reference: LileyJWallaceCAccurate error control in high-dimensional association testing using conditional false discovery ratesBiom. J.20216310961130426895633682201761231510.1002/bimj.201900254 – reference: ChenXMicroglia-mediated T cell infiltration drives neurodegeneration in tauopathyNature20236156686772023Natur.615..668C1:CAS:528:DC%2BB3sXkslymsLc%3D368902311025862710.1038/s41586-023-05788-0 – reference: OskamNFactors affecting IgG4-mediated complement activationFront. Immunol.20231410875321:CAS:528:DC%2BB3sXislamtbs%3D36776883991030910.3389/fimmu.2023.1087532 – reference: LiangWSAltered neuronal gene expression in brain regions differentially affected by Alzheimer’s disease: a reference data setPhysiol. Genomics2008332402561:CAS:528:DC%2BD1cXmt1WisL8%3D1827032010.1152/physiolgenomics.00242.2007 – reference: MoonMCorrelation between orphan nuclear receptor Nurr1 expression and amyloid deposition in 5XFAD mice, an animal model of Alzheimer’s diseaseJ. Neurochem.20151322542621:CAS:528:DC%2BC2MXhtFCms7o%3D2515641210.1111/jnc.12935 – reference: BennettDAReligious orders study and rush memory and aging projectJ. Alzheimer’s Dis.201864S161S18910.3233/JAD-179939 – reference: BatesKAFonteJRobertsonTAMartinsRNHarveyARChronic gliosis triggers Alzheimer’s disease-like processing of amyloid precursor proteinNeuroscience20021137857961:CAS:528:DC%2BD38Xmtlent7k%3D1218288610.1016/S0306-4522(02)00230-0 – reference: Li, H. (arXiv, 2013). – reference: GrimesTPotterSSDattaSIntegrating gene regulatory pathways into differential network analysis of gene expression dataSci. Rep.201992019NatSR...9.5479G30940863644515110.1038/s41598-019-41918-3 – reference: FulcoCPActivity-by-contact model of enhancer-promoter regulation from thousands of CRISPR perturbationsNat. Genet.201951166416691:CAS:528:DC%2BC1MXit1Ohs77M31784727688658510.1038/s41588-019-0538-0 – reference: MillsteinJChenGKBretonCVcit: hypothesis testing software for mediation analysis in genomic applicationsBioinformatics201632236423651:CAS:528:DC%2BC2sXhtVajsLnO27153715496563210.1093/bioinformatics/btw135 – reference: PraterKEHuman microglia show unique transcriptional changes in Alzheimer’s diseaseNat. Aging202338949071:CAS:528:DC%2BB3sXhtFGns77F372483281035394210.1038/s43587-023-00424-y – reference: AngelovaDMBrownDRMicroglia and the aging brain: are senescent microglia the key to neurodegenerationJ. Neurochem.20191516766881:CAS:528:DC%2BC1MXhvFymtL7N3147820810.1111/jnc.14860 – reference: CarrasquilloMMReplication of CLU, CR1, and PICALM associations with alzheimer diseaseArch. Neurol.20106796196420554627291963810.1001/archneurol.2010.147 – reference: ZhengGXMassively parallel digital transcriptional profiling of single cellsNat. Commun.201782017NatCo...814049Z1:CAS:528:DC%2BC2sXht1WlsLo%3D28091601524181810.1038/ncomms14049 – reference: HaoYIntegrated analysis of multimodal single-cell dataCell202118435733587.e35291:CAS:528:DC%2BB3MXhtlSrtrvE34062119823849910.1016/j.cell.2021.04.048 – reference: Fujita, M. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat. Genet.56, 605–614 (2024). – reference: KrasemannSThe TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseasesImmunity201747566581.e5691:CAS:528:DC%2BC2sXhsFemtrbI28930663571989310.1016/j.immuni.2017.08.008 – reference: LauSFCaoHFuAKYIpNYSingle-nucleus transcriptome analysis reveals dysregulation of angiogenic endothelial cells and neuroprotective glia in Alzheimer’s diseaseProc. Natl Acad. Sci. USA202011725800258092020PNAS..11725800L1:CAS:528:DC%2BB3cXitVKktLrK32989152756828310.1073/pnas.2008762117 – reference: KosoyRGenetics of the human microglia regulome refines Alzheimer’s disease risk lociNat. Genet.202254114511541:CAS:528:DC%2BB38XitV2lt7bI35931864938836710.1038/s41588-022-01149-1 – reference: PriceJLNeuron number in the entorhinal cortex and CA1 in preclinical Alzheimer diseaseArch. Neurol.200158139514021:STN:280:DC%2BD3MrjslKguw%3D%3D1155931010.1001/archneur.58.9.1395 – reference: QiuYDefinition of the contribution of an osteopontin-producing CD11c(+) microglial subset to Alzheimer’s diseaseProc. Natl Acad. Sci. USA2023120e22189151201:CAS:528:DC%2BB3sXktlagsrY%3D36730200996336510.1073/pnas.2218915120 – reference: RogersJPeripheral clearance of amyloid beta peptide by complement C3-dependent adherence to erythrocytesNeurobiol. Aging200627173317391:CAS:528:DC%2BD28XhtFSlu7zJ1629027010.1016/j.neurobiolaging.2005.09.043 – reference: Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 1–22 (2023). – reference: ZhaoJDetection of differentially abundant cell subpopulations in scRNA-seq dataProc. Natl Acad. Sci. USA2021118e21002931181:CAS:528:DC%2BB3MXht1ehtLvI34001664817914910.1073/pnas.2100293118 – reference: Pfeiffer, F. Reciprocal interactions between oligodendrocyte precursor cells and the neurovascular unit in health and disease. Cellshttps://doi.org/10.3390/cells11121954 (2022). – reference: MathysHSingle-cell atlas reveals correlates of high cognitive function, dementia, and resilience to Alzheimer’s disease pathologyCell202318643654385 e43271:CAS:528:DC%2BB3sXitVaqtrbM3777467710.1016/j.cell.2023.08.039 – reference: NewellKLHymanBTGrowdonJHHedley-WhyteETApplication of the National Institute on Aging (NIA)-Reagan Institute Criteria for the Neuropathological Diagnosis of Alzheimer DiseaseJ. Neuropathol. Exp. Neurol.199958114711551:STN:280:DC%2BD3c%2FitleisQ%3D%3D1056065710.1097/00005072-199911000-00004 – reference: Beach, T. G. et al. Increased risk of autopsy-proven pneumonia with sex, season and neurodegenerative disease. medRxivhttps://doi.org/10.1101/2021.01.07.21249410 (2021). – reference: Fishilevich, S. et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford)https://doi.org/10.1093/database/bax028 (2017). – reference: BraseLSingle-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriersNat. Commun.2023142023NatCo..14.2314B1:CAS:528:DC%2BB3sXos1yqsbw%3D370854921012171210.1038/s41467-023-37437-5 – reference: MillsteinJZhangBZhuJSchadtEEDisentangling molecular relationships with a causal inference testBMC Genet.20091019473544322466110.1186/1471-2156-10-23 – volume: 16 start-page: 162 year: 2009 ident: 49790_CR71 publication-title: Neuroimmunomodulation doi: 10.1159/000204229 – volume: 81 start-page: 6326 year: 2007 ident: 49790_CR44 publication-title: J. Virol. doi: 10.1128/JVI.02327-06 – volume: 486 start-page: 207 year: 2012 ident: 49790_CR53 publication-title: Nature doi: 10.1038/nature11234 – volume: 603 start-page: 885 year: 2022 ident: 49790_CR4 publication-title: Nature doi: 10.1038/s41586-021-04369-3 – volume: 13 start-page: 1380 year: 2017 ident: 49790_CR104 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2017.05.002 – volume: 5 start-page: 2122 year: 2016 ident: 49790_CR90 publication-title: F1000Res – volume: 133 start-page: 74 year: 2011 ident: 49790_CR77 publication-title: Immunology doi: 10.1111/j.1365-2567.2011.03411.x – volume: 615 start-page: 668 year: 2023 ident: 49790_CR14 publication-title: Nature doi: 10.1038/s41586-023-05788-0 – volume: 14 start-page: 1087532 year: 2023 ident: 49790_CR78 publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1087532 – year: 2023 ident: 49790_CR106 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-023-01767-y – volume: 111 start-page: 15 year: 2023 ident: 49790_CR13 publication-title: Neuron doi: 10.1016/j.neuron.2022.10.021 – volume: 51 start-page: D977 year: 2023 ident: 49790_CR30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkac1010 – volume: 570 start-page: 332 year: 2019 ident: 49790_CR9 publication-title: Nature doi: 10.1038/s41586-019-1195-2 – volume: 39 start-page: 469 year: 2009 ident: 49790_CR75 publication-title: Clin. Exp. Allergy doi: 10.1111/j.1365-2222.2009.03207.x – volume: 60 start-page: 246 year: 2003 ident: 49790_CR105 publication-title: Neurology doi: 10.1212/01.WNL.0000042478.08543.F7 – volume: 57 start-page: 289 year: 1995 ident: 49790_CR32 publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 17 start-page: 17 year: 2022 ident: 49790_CR37 publication-title: Mol. Neurodegener. doi: 10.1186/s13024-022-00517-z – volume: 103 start-page: 4207 year: 2004 ident: 49790_CR43 publication-title: Blood doi: 10.1182/blood-2003-12-4350 – volume: 11 year: 2020 ident: 49790_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19319-2 – volume: 103 start-page: 338 year: 2018 ident: 49790_CR87 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2018.07.015 – ident: 49790_CR66 doi: 10.3390/cells11121954 – volume: 20 start-page: 24 year: 2023 ident: 49790_CR67 publication-title: Fluids Barriers CNS doi: 10.1186/s12987-023-00425-4 – ident: 49790_CR85 – volume: 27 start-page: 1293 year: 2019 ident: 49790_CR15 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.03.099 – volume: 47 start-page: 566 year: 2017 ident: 49790_CR17 publication-title: Immunity doi: 10.1016/j.immuni.2017.08.008 – volume: 35 start-page: 354 year: 2015 ident: 49790_CR19 publication-title: Neuropathology doi: 10.1111/neup.12189 – volume: 11 year: 2020 ident: 49790_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19737-2 – volume: 54 start-page: 1145 year: 2022 ident: 49790_CR48 publication-title: Nat. Genet. doi: 10.1038/s41588-022-01149-1 – volume: 50 start-page: 253 year: 2019 ident: 49790_CR69 publication-title: Immunity doi: 10.1016/j.immuni.2018.11.004 – volume: 113 start-page: 785 year: 2002 ident: 49790_CR22 publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00230-0 – volume: 140 start-page: 477 year: 2020 ident: 49790_CR39 publication-title: Acta Neuropathol. doi: 10.1007/s00401-020-02200-3 – volume: 33 start-page: 240 year: 2008 ident: 49790_CR79 publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.00242.2007 – volume: 79 start-page: 7990 year: 2005 ident: 49790_CR45 publication-title: J. Virol. doi: 10.1128/JVI.79.13.7990-8003.2005 – volume: 14 year: 2023 ident: 49790_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-023-40370-2 – volume: 374 start-page: eabj1541 year: 2021 ident: 49790_CR65 publication-title: Science doi: 10.1126/science.abj1541 – volume: 54 start-page: 412 year: 2022 ident: 49790_CR24 publication-title: Nat. Genet. doi: 10.1038/s41588-022-01024-z – volume: 30 start-page: 1006 year: 2014 ident: 49790_CR93 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt730 – volume: 10 year: 2009 ident: 49790_CR36 publication-title: BMC Genet. doi: 10.1186/1471-2156-10-23 – volume: 34 start-page: 2235 e2231 year: 2013 ident: 49790_CR58 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.03.008 – volume: 120 start-page: e2218915120 year: 2023 ident: 49790_CR68 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2218915120 – volume: 14 start-page: 535 year: 2018 ident: 49790_CR20 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.02.018 – volume: 11 start-page: e0149792 year: 2016 ident: 49790_CR64 publication-title: PLoS ONE doi: 10.1371/journal.pone.0149792 – volume: 10 start-page: e1004383 year: 2014 ident: 49790_CR95 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004383 – ident: 49790_CR2 doi: 10.1101/2023.02.18.23286037 – volume: 169 start-page: 1276 year: 2017 ident: 49790_CR16 publication-title: Cell doi: 10.1016/j.cell.2017.05.018 – volume: 16 start-page: 197 year: 2015 ident: 49790_CR29 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3891 – volume: 26 start-page: 131 year: 2020 ident: 49790_CR6 publication-title: Nat. Med. doi: 10.1038/s41591-019-0695-9 – volume: 20 year: 2019 ident: 49790_CR83 publication-title: Genome Biol. doi: 10.1186/s13059-019-1874-1 – volume: 32 start-page: 2364 year: 2016 ident: 49790_CR99 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw135 – volume: 11 start-page: e1004219 year: 2015 ident: 49790_CR25 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004219 – volume: 8 year: 2017 ident: 49790_CR80 publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 63 start-page: 1096 year: 2021 ident: 49790_CR92 publication-title: Biom. J. doi: 10.1002/bimj.201900254 – ident: 49790_CR101 doi: 10.1093/bioinformatics/btr064 – volume: 16 year: 2015 ident: 49790_CR94 publication-title: Genome Biol. doi: 10.1186/s13059-015-0844-5 – ident: 49790_CR47 doi: 10.1101/2021.01.07.21249410 – volume: 51 start-page: 1664 year: 2019 ident: 49790_CR51 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0538-0 – volume: 22 year: 2021 ident: 49790_CR89 publication-title: Genome Biol. doi: 10.1186/s13059-021-02407-x – ident: 49790_CR49 – volume: 71 start-page: 1522 year: 2023 ident: 49790_CR60 publication-title: Glia doi: 10.1002/glia.24355 – volume: 7 year: 2020 ident: 49790_CR26 publication-title: Sci. Data doi: 10.1038/s41597-020-00642-8 – volume: 526 start-page: 68 year: 2015 ident: 49790_CR88 publication-title: Nature doi: 10.1038/nature15393 – volume: 41 start-page: 1094 year: 2009 ident: 49790_CR57 publication-title: Nat. Genet. doi: 10.1038/ng.439 – volume: 14 year: 2022 ident: 49790_CR12 publication-title: Genome Med. doi: 10.1186/s13073-022-01136-5 – volume: 184 start-page: 3573 year: 2021 ident: 49790_CR81 publication-title: Cell doi: 10.1016/j.cell.2021.04.048 – volume: 11 year: 2020 ident: 49790_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18035-1 – ident: 49790_CR86 – ident: 49790_CR84 doi: 10.21105/joss.00861 – volume: 85 start-page: 114 year: 2019 ident: 49790_CR103 publication-title: Ann. Neurol. doi: 10.1002/ana.25380 – volume: 8 start-page: 329 year: 2019 ident: 49790_CR82 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.03.003 – volume: 106 start-page: 747 year: 2013 ident: 49790_CR46 publication-title: QJM doi: 10.1093/qjmed/hct103 – volume: 53 start-page: 1143 year: 2021 ident: 49790_CR5 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00894-z – volume: 14 start-page: 1438 year: 2018 ident: 49790_CR62 publication-title: Alzheimers Dement. doi: 10.1016/j.jalz.2018.04.003 – volume: 12 start-page: 755 year: 2015 ident: 49790_CR91 publication-title: Nat. Methods doi: 10.1038/nmeth.3439 – volume: 3 start-page: 894 year: 2023 ident: 49790_CR41 publication-title: Nat. Aging doi: 10.1038/s43587-023-00424-y – volume: 151 start-page: 676 year: 2019 ident: 49790_CR42 publication-title: J. Neurochem. doi: 10.1111/jnc.14860 – ident: 49790_CR1 doi: 10.1038/s41576-023-00580-2 – volume: 40 start-page: 854 year: 2008 ident: 49790_CR97 publication-title: Nat. Genet. doi: 10.1038/ng.167 – volume: 137 start-page: 47 year: 2009 ident: 49790_CR74 publication-title: Cell doi: 10.1016/j.cell.2009.01.038 – volume: 67 start-page: 961 year: 2010 ident: 49790_CR56 publication-title: Arch. Neurol. doi: 10.1001/archneurol.2010.147 – volume: 64 start-page: S161 year: 2018 ident: 49790_CR34 publication-title: J. Alzheimer’s Dis. doi: 10.3233/JAD-179939 – volume: 12 start-page: 1990 year: 2021 ident: 49790_CR59 publication-title: Genes (Basel) doi: 10.3390/genes12121990 – year: 2022 ident: 49790_CR102 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01166-7 – year: 2023 ident: 49790_CR3 publication-title: Cell Genomics doi: 10.1016/j.xgen.2023.100263 – volume: 67 start-page: 1473 year: 2010 ident: 49790_CR55 publication-title: Arch. Neurol. doi: 10.1001/archneurol.2010.201 – volume: 186 start-page: 4365 year: 2023 ident: 49790_CR33 publication-title: Cell doi: 10.1016/j.cell.2023.08.039 – volume: 166 start-page: 1351 year: 1987 ident: 49790_CR76 publication-title: J. Exp. Med. doi: 10.1084/jem.166.5.1351 – ident: 49790_CR100 doi: 10.1093/database/bax028 – volume: 9 year: 2019 ident: 49790_CR98 publication-title: Sci. Rep. doi: 10.1038/s41598-019-41918-3 – volume: 11 start-page: e1004574 year: 2015 ident: 49790_CR96 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004574 – volume: 8 year: 2018 ident: 49790_CR31 publication-title: Transl. Psychiatry doi: 10.1038/s41398-018-0150-6 – volume: 18 start-page: e12866 year: 2019 ident: 49790_CR72 publication-title: Aging Cell doi: 10.1111/acel.12866 – volume: 58 start-page: 1147 year: 1999 ident: 49790_CR107 publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-199911000-00004 – ident: 49790_CR27 doi: 10.1038/s41588-024-01685-y – volume: 53 start-page: 1276 year: 2021 ident: 49790_CR35 publication-title: Nat. Genet. doi: 10.1038/s41588-021-00921-z – volume: 22 start-page: 2087 year: 2019 ident: 49790_CR10 publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0539-4 – volume: 25 start-page: 1104 year: 2022 ident: 49790_CR28 publication-title: Nat. Neurosci. doi: 10.1038/s41593-022-01128-z – volume: 14 year: 2023 ident: 49790_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37437-5 – volume: 218 start-page: e20202717 year: 2021 ident: 49790_CR38 publication-title: J. Exp. Med. doi: 10.1084/jem.20202717 – volume: 58 start-page: 1395 year: 2001 ident: 49790_CR23 publication-title: Arch. Neurol. doi: 10.1001/archneur.58.9.1395 – volume: 132 start-page: 254 year: 2015 ident: 49790_CR73 publication-title: J. Neurochem. doi: 10.1111/jnc.12935 – volume: 494 start-page: 495 year: 2006 ident: 49790_CR70 publication-title: J. Comp. Neurol. doi: 10.1002/cne.20828 – volume: 118 start-page: e2100293118 year: 2021 ident: 49790_CR21 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2100293118 – volume: 27 start-page: 1733 year: 2006 ident: 49790_CR63 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2005.09.043 – volume: 117 start-page: 25800 year: 2020 ident: 49790_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008762117 – volume: 19 start-page: 3295 year: 2010 ident: 49790_CR54 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddq221 – volume: 12 start-page: 43 year: 2017 ident: 49790_CR18 publication-title: Mol. Neurodegener. doi: 10.1186/s13024-017-0184-x – ident: 49790_CR11 doi: 10.1101/2021.11.30.21267072 |
SSID | ssj0000391844 |
Score | 2.5057192 |
Snippet | The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with complementary... The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary... Abstract The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer’s disease (AD). Integration with... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5815 |
SubjectTerms | 38/23 38/39 38/91 45 631/378/1689/1283 631/378/2583 631/378/2596/1953 Aged Aged, 80 and over Alzheimer Disease - genetics Alzheimer Disease - metabolism Alzheimer's disease Brain Brain - metabolism Brain - pathology CD83 antigen Colon Female Frontal gyrus Gene expression Gene Expression Profiling Gene Regulatory Networks Gene sequencing Genetics Humanities and Social Sciences Humans Immunoglobulin G Immunoglobulin G - metabolism Immunoglobulins Male Microglia Microglia - metabolism Middle Aged multidisciplinary Networks Neurodegenerative diseases Oligodendrocytes Oligodendroglia - metabolism Proteomics Science Science (multidisciplinary) Sequence Analysis, RNA Single-Cell Analysis snRNA Subpopulations Transcriptome Transcriptomes Transcriptomics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMLchI3CCqHduJfSyIqkKCC1TqzfJjolbaZqsme4ATf4O_xy9hbGeXLs8LtygZR5bnbY-_IeQ5dyCd7lnNW-ZraXRfe6egVgJ6FkwbIBfRvHvfHp_It6fq9Fqrr1QTVuCBy8IdKC2gc7INTAr8lXKmw4jddSx6FSVknE9m2LVkKttgYTB1kfMtGSb0wSizTUCXlJqqGVazLU-UAft_F2X-Wiz504lpdkRHd8jtOYKkh2Xmu-QGDHfJzdJT8tM90n_AUQugaUeeTskTZbuwvICRuiHSXEE4ImeADqUEfKTpjgm9zLH3SNPObKZMD8vVRA8Xn8_g_AKuvn35OtL5ROc-OTl68_H1cT03U6iDknyq-yCV6EWDKs5jo_vAXD7yw4RJRtUxFRrhYuO19sp7LzB1TckH1z6aVoITD8jOsBzgEaHOc4zLveORadlH42PQUQcfRQPeBFYRvl5YG2ak8dTwYmHzibfQtjDDIjNsZobFMS82Yy4LzsZfqV8lfm0oE0Z2foGSY2fJsf-SnIrsr7ltZ8UdrcgAggmipiLPNp9R5RLX3ADLVaFJwFuyqcjDIhybmWD8h_6FtxXRW2KzNdXtL8P5WYb1xshXdGj0K_JyLWE_5vXntXj8P9Zij9xqkmokxFC2T3amqxU8wWhr8k-zYn0HWA8l9g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrZC4IN4ECjISN4jqxHbiHBBqUasKiRUCKvUW-ZW20jZZNtlDe-Jv8Pf4JXicR7U8eosSW3I8T8-MvwF4nSjHlaxonGRUx7yQVayVcLFgrqKmyIwLRTSf5tnRMf94Ik62YD7ehcGyylEnBkVtG4Mx8l0WkN0QO-T98nuMXaMwuzq20FBDawX7LkCM3YJtr5IFncH2_sH885cp6oJ46JLz4fYMZXK35UFXeFOFzdYKGtMNCxWA_P_lff5dRPlHJjUYqMN7cHfwLMlezwr3YcvVD-B232vy8iFUX_2shSMYqScdWqigL5oL1xJVWxIqC1tPMUfqvjS8JXj3hCyDT94SjNiGkfjQrDuyt7g6c-cXbvXrx8-WDJmeR3B8ePDtw1E8NFmIjeBJF1eGC1ax1It-YlNZGapCKtAfpLgVORUmZcqmWkottNbMH2nxUJJIbYuMO8Uew6xuavcUiNKJ99e1SiyVvLKFtkZaabRlqdOFoREk48aWZkAgx0YYizJkwpkse2KUnhhlIEbp57yZ5ix7_I0bR-8jvaaRiJ0dXjSr03IQxVJI5nLFM0M588wpVJH7M6DKqdXCcsci2BmpXQ4C3ZbX7BfBq-mzF0Wkmqpds-7HICAXTyN40jPHtBLvF3q7k2QRyA222Vjq5pf6_CzAfXuPmOXeGETwduSw63X9fy-e3fwbz-FOikyPGKF0B2bdau1eeP-q0y8HofkNGYEk5Q priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEA_LiuBF_La6SgRvWkyapE2P68NlEfSiC3sL-aq78LZdXvsO68l_w3_Pv8TJ9EOeroK30szAkJnJzCSTXwh5yW2UVjcs5yVzuax1kzurYq5EbJivSx-xiebDx_L4RL4_Vad7pJjvwmDTPkJa4jI9d4e96SW6NESU9CZazXIo02_oSqhk1atyteyrJMRzLeV0P4YJfQ3rTgxCqP7r8ss_2yR_OyvFEHR0h9yeckd6OEp7l-zF9h65Ob4meXWfNJ-Aax1p2ounQ4pBuCJ0F7Gntg0Uewd70Emk7dj83dN0u4ReYtbd07Qni5Tpo9sO9HD99SyeX8TNj2_fezqd5TwgJ0fvPq-O8-kZhdwryYe88VKJRhTg3DwUuvHM4mEflEoyqIopXwgbCqe1U845AUVrKju4dqEuZbTiIdlvuzY-JtQ6Dhm5szwwLZtQu-B10N4FUURXe5YRPk-s8RPGeHrqYm3wrFtoMyrDgDIMKsMAz6uF53JE2Pgn9dukr4UyoWPjj27zxUzWYpQWsbKy9EwKMD9l6wqqPFux4FSQUWTkYNa2mVy2NwKhAxM4TUZeLMPgbElrto3ddqRJkFuyyMij0TgWSSDzg8jCy4zoHbPZEXV3pD0_Q0BvyHlFBct9Rl7PFvZLrr_PxZP_I39KbhXJCRIqKDsg-8NmG59BRjW45-hCPwGWcBw6 priority: 102 providerName: Springer Nature |
Title | Single cell transcriptomes and multiscale networks from persons with and without Alzheimer’s disease |
URI | https://link.springer.com/article/10.1038/s41467-024-49790-0 https://www.ncbi.nlm.nih.gov/pubmed/38987616 https://www.proquest.com/docview/3078200169 https://www.proquest.com/docview/3078716242 https://pubmed.ncbi.nlm.nih.gov/PMC11237088 https://doaj.org/article/583e7a46c0434985a97259a70db5d4e3 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZKK1AvFf8EyspI3CDgxHbiHBDarrpUK1Ehykp7i_yXttI2KZus1HLiNXg9noSxkywsLBy4JFFiK5ZnxjPjGX-D0PNIWiZFQcIoISpkmShCJbkNObUF0VmirU-ieX-cHE3ZZMZnW6gvd9RNYL3RtXP1pKaL-aurz9dvQeDftEfGxeuaeXEHbePqpWUkBBd-x8eLXCpfZ-77lZlm4NCw7uzM5q676BbocFgjXAX0X1SVR_TfZIb-mU35W0jVa6rxbbTXmZh42PLEHbRly7voZlt08voeKk6g19xit2WPG6eq_MJRXdgay9Jgn2JYA-ksLtsc8Rq7Qyj40hvnNXZbt76le6iWDR7Ov5zZ8wu7-P71W427kM99NB0ffhodhV21hVBzFjVhoRmnBY1hDYhMLApNpI8JgkfFDE8J1zGVJlZCKK6UouDbOu8kEspkCbOSPkDbZVXaRwhLFYHhrmRkiGCFyZTRwgitDI2tyjQJUNRPbK47KHJXEWOe-5A4FXlLlxzoknu65NDnxarPZQvE8c_WB45eq5YORNu_qBaneSeTORfUppIlmjAKXMplloIzKFNiFDfM0gDt99TOe8bMqUcYdBg2AXq2-gwy6agmS1st2zYOmYvFAXrYMsdqJD1zBUissc3aUNe_lOdnHvcbTGOaglYI0Muew36O6-9z8fj___QE7cZONhyQKNlH281iaZ-CEdaoAbqRzlK4ivG7AdoZDicnE7gfHB5_-AhvR8lo4Lc3Bl4CfwAR7DXo |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anRC8IO5kDDASPEE0J7ZT52FCG2zq2FYh2KS9Gd-yTeqS0rRC44m_wZ_hx_BLsJ2kU7nsbW9RY0euz93n-DsALxJpqeQFjpMMq5jmvIiVZDZmxBZY55m2oYhmf5gNDun7I3a0BD-7uzC-rLLTiUFRm0r7M_I1EpDdPHbIm_GX2HeN8tnVroWGbFsrmPUAMdZe7Ni1519dCFev77xz9H6ZpttbB28HcdtlINaMJtO40JSRgqSO9xOT8kJjGXJhLpKghvUx0ymRJlWcK6aUIi6m8155wpXJM2olcd-9BsvUH6D0YHlza_jh4_yUx-Ovc0rb2zqY8LWaBt3kTKNv7pbjGC9YxNA44F_e7t9Fm39kboNB3L4Nt1pPFm00rHcHlmx5F643vS3P70Hxyc0aWeQzA2jqLWLQT9WZrZEsDQqVjLXjEIvKphS9Rv6uCxqHGKBG_oQ4jPQP1WyKNkbfTuzpmZ38-v6jRm1m6T4cXsl2P4BeWZX2ESCpEhcfKJkYzGlhcmU0N1wrQ1Krco0jSLqNFbpFPPeNN0YiZN4JFw0xhCOGCMQQbs6r-Zxxg_dx6ehNT6_5SI_VHX6oJseiFX3BOLF9STONKXHCwGTedzGn7GOjmKGWRLDaUVu0CqQWF-wewfP5ayf6nmqytNWsGeMBwGgawcOGOeYrcX6os3NJFgFfYJuFpS6-KU9PAry488BJ3xmfCF53HHaxrv_vxcrlf-MZ3Bgc7O-JvZ3h7mO4mXoB8PikeBV608nMPnG-3VQ9bQUIweerltnf5pxgCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKKxAbxJtAASPBCqJxYjtxFhVqaUcthVEFVOrO9Su00jQZJlOhsuI3-CU-gy_h2kmmGh7ddRdN7Mjj-_a9Pheh54lyTImSxElGdMwKUcZacRdz6kpiisy4UETzfpRt77O3B_xgCf3s78L4sspeJwZFbWvjz8gHNCC7eeyQQdmVRextDl9PvsS-g5TPtPbtNFTXZsGuBbix7pLHrjv7CuFcs7azCbR_kabDrU9vtuOu40BsOEtmcWkYpyVNQQ4Sm4rSEBXyYhBVMMtzwk1KlU21EJprrSnEd95DT4S2RcacovDdK2glB6sPgeDKxtZo78P8xMdjsQvGups7hIpBw4KeAjPpG70VJCYL1jE0EfiX5_t3AecfWdxgHIc30Y3Oq8XrLRveQkuuuo2utn0uz-6g8iPMGjvsswR45q1j0FX1iWuwqiwOVY0NcIvDVVuW3mB_7wVPQjzQYH9aHEb6h_p0htfH347c8Ymb_vr-o8Fdluku2r-U7b6Hlqu6cg8QVjqBWEGrxBLBSltoa4QVRluaOl0YEqGk31hpOvRz34RjLEMWngrZEkMCMWQghoQ5L-dzJi32x4WjNzy95iM9bnf4oZ5-lp0akFxQlyuWGcIoCAZXRQ7xp8qJ1dwyRyO02lNbdsqkkeesH6Fn89egBjzVVOXq03aMBwNjaYTut8wxXwn4pGDzkixCYoFtFpa6-KY6PgpQ4-CN0xwMUYRe9Rx2vq7_78XDi__GU3QNZFe-2xntPkLXU8__HqqUrKLl2fTUPQY3b6afdPKD0eFli-xvoyhkTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+cell+transcriptomes+and+multiscale+networks+from+persons+with+and+without+Alzheimer%E2%80%99s+disease&rft.jtitle=Nature+communications&rft.au=Wang%2C+Qi&rft.au=Antone%2C+Jerry&rft.au=Alsop%2C+Eric&rft.au=Reiman%2C+Rebecca&rft.date=2024-07-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft_id=info:doi/10.1038%2Fs41467-024-49790-0&rft_id=info%3Apmid%2F38987616&rft.externalDocID=PMC11237088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |