White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control
Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 1740 - 12 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.03.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-37330-1 |
Cover
Abstract | Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.
The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance. |
---|---|
AbstractList | Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions. Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions. The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance. Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions. Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance. The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance. |
ArticleNumber | 1740 |
Author | Jiang, Jiefeng Bruss, Joel Boes, Aaron D. Tranel, Daniel Lee, Woo-Tek |
Author_xml | – sequence: 1 givenname: Jiefeng orcidid: 0000-0002-4264-6382 surname: Jiang fullname: Jiang, Jiefeng email: jiefeng-jiang@uiowa.edu organization: Department of Psychological and Brain Sciences, University of Iowa, Cognitive Control Collaborative, University of Iowa, Iowa Neuroscience Institute, University of Iowa – sequence: 2 givenname: Joel surname: Bruss fullname: Bruss, Joel organization: Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Department of Psychiatry, Carver College of Medicine – sequence: 3 givenname: Woo-Tek surname: Lee fullname: Lee, Woo-Tek organization: Department of Psychological and Brain Sciences, University of Iowa, Cognitive Control Collaborative, University of Iowa, Behavioral-biomedical Interface Training Program, University of Iowa – sequence: 4 givenname: Daniel surname: Tranel fullname: Tranel, Daniel organization: Department of Psychological and Brain Sciences, University of Iowa, Iowa Neuroscience Institute, University of Iowa, Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine – sequence: 5 givenname: Aaron D. orcidid: 0000-0002-7865-9257 surname: Boes fullname: Boes, Aaron D. email: aaron-boes@uiowa.edu organization: Iowa Neuroscience Institute, University of Iowa, Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Department of Psychiatry, Carver College of Medicine, Department of Pediatrics, Carver College of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36990985$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFCEYnpgaW2v_gAdD4sXLKF8Dw8mYxmqTJl40HgnDvLPLysAKbDf992V3a217KBfewPPxfr1ujkIM0DRvCf5IMOs_ZU64kC2mrGWSMdySF80JxZy0RFJ29CA-bs5yXuF6mCI956-aYyaUwqrvTprt76UrgGZTCiQ0umxjCGCLiwHFCXmYCpo3vri1BzTCbMKIApRtTH-Qy8jkHK0zBUa0dWWJ1jGX1kPe0UeYnHUlIxeQjYvgiruGGoWSon_TvJyMz3B2d582vy6-_jz_3l79-HZ5_uWqtR0npZ2kERP0dMBCCcak4Z0d6GDEoKapp1QMgiprBCHCMCUpKEP7USjOO8LtYNhpc3nQHaNZ6XVys0k3Ohqn9w8xLbRJxVkPWkkzUcU7wB3lrIZDN1GDmYTqZGVftT4ftNabYYbRQq3E-Eeij3-CW-pFvNYEY4EpZVXhw51Cin83kIuea8fBexMgbrKmUlFVR0p2Zu-fQFdxk0Lt1R5FVCexqqh3D1O6z-XfgCuAHgA2xZwTTPcQgvVukfRhkXR11ftF0qSS-iekOkez24lalvPPU9mBmqtPWED6n_YzrFv76N3N |
CitedBy_id | crossref_primary_10_1093_brain_awaf055 crossref_primary_10_1016_j_neuroimage_2024_120863 crossref_primary_10_1093_brain_awad308 crossref_primary_10_3233_JCM_247189 crossref_primary_10_1016_j_cortex_2024_11_010 crossref_primary_10_1093_cercor_bhae008 crossref_primary_10_1093_brain_awae315 crossref_primary_10_1016_j_ynirp_2025_100236 |
Cites_doi | 10.1038/35097575 10.1038/sdata.2015.31 10.1016/j.tics.2021.06.001 10.1038/nature18933 10.1016/j.celrep.2019.07.100 10.1093/cercor/bhaa023 10.1016/j.tics.2008.07.001 10.1093/brain/awv228 10.1073/pnas.2018784118 10.3758/PBR.16.3.609 10.1016/j.biopsycho.2013.05.008 10.1162/jocn_a_01628 10.1016/j.neuroimage.2020.117307 10.1016/j.neuroimage.2013.04.127 10.1038/nprot.2016.178 10.1093/brain/awaa156 10.1093/brain/awr065 10.1038/nn.4135 10.1038/nn.2277 10.1002/9781118920497 10.1016/j.neuron.2013.09.015 10.1016/S1364-6613(03)00028-7 10.1152/jn.90777.2008 10.1146/annurev.neuro.24.1.167 10.1523/JNEUROSCI.1415-20.2020 10.1016/j.neuroimage.2018.05.027 10.1016/j.neubiorev.2017.09.032 10.1016/j.neubiorev.2021.07.021 10.1016/j.neuroimage.2016.11.052 10.1152/jn.00783.2009 10.1016/j.neuron.2016.12.013 10.1016/j.bandc.2013.04.013 10.1038/s41386-021-01152-w 10.1016/j.neuroimage.2013.05.078 10.1037/0033-295X.108.3.624 10.1002/ana.24974 10.1016/j.neuroimage.2007.02.049 10.1016/j.neuroimage.2012.03.035 10.1016/j.neuron.2017.11.026 10.1038/nn.3045 10.1038/nn1594 10.1111/psyp.12769 10.1016/j.biopsych.2012.04.028 10.1201/b12207 10.5281/zenodo.7633964 10.1038/nn.4179 10.1016/j.tics.2013.12.003 10.1016/j.tics.2007.04.005 10.1073/pnas.1002431107 10.1006/nimg.2001.1037 10.1016/j.neuroimage.2007.07.053 10.1073/pnas.0504136102 10.1016/j.neuroimage.2013.09.069 10.1093/sleep/zsy108 10.1093/cercor/bht029 10.1016/j.bbr.2017.11.005 10.1016/j.neuropsychologia.2017.08.027 10.3758/s13415-011-0083-5 10.1016/j.cortex.2016.04.023 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-37330-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_97af2945e05243f29b5f2a037ef82c78 PMC10060223 36990985 10_1038_s41467_023_37330_1 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS) grantid: R01NS114405 funderid: https://doi.org/10.13039/100000065 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH) grantid: R01MH131559 funderid: https://doi.org/10.13039/100000025 – fundername: NIMH NIH HHS grantid: R01 MH131559 – fundername: ; grantid: R01MH131559 – fundername: ; grantid: R01NS114405 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-f7a6fe82b0696337a45cb2ba6b9ff8226b629ca6116a3972e9a28d6944514cba3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:18:01 EDT 2025 Thu Aug 21 18:39:02 EDT 2025 Fri Sep 05 08:32:37 EDT 2025 Wed Aug 13 11:00:05 EDT 2025 Mon Jul 21 06:05:11 EDT 2025 Tue Jul 01 00:58:46 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Fri Feb 21 02:40:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-f7a6fe82b0696337a45cb2ba6b9ff8226b629ca6116a3972e9a28d6944514cba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7865-9257 0000-0002-4264-6382 |
OpenAccessLink | https://www.proquest.com/docview/2792195709?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 36990985 |
PQID | 2792195709 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_97af2945e05243f29b5f2a037ef82c78 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10060223 proquest_miscellaneous_2792902318 proquest_journals_2792195709 pubmed_primary_36990985 crossref_primary_10_1038_s41467_023_37330_1 crossref_citationtrail_10_1038_s41467_023_37330_1 springer_journals_10_1038_s41467_023_37330_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-29 |
PublicationDateYYYYMMDD | 2023-03-29 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | MurphyKFoxMDTowards a consensus regarding global signal regression for resting state functional connectivity MRINeuroImage20171541691732788805910.1016/j.neuroimage.2016.11.052 LiQConflict detection and resolution rely on a combination of common and distinct cognitive control networksNeurosci. Biobehav. Rev.2017831231312901791610.1016/j.neubiorev.2017.09.032 HwangKBrussJTranelDBoesADNetwork localization of executive function deficits in patients with focal thalamic lesionsJ. Cogn. Neurosci.2020322303231932902335760656910.1162/jocn_a_01628 AronARRobbinsTWPoldrackRAInhibition and the right inferior frontal cortex: one decade onTrends Cogn. Sci.2014181771852444011610.1016/j.tics.2013.12.003 WakanaSReproducibility of quantitative tractography methods applied to cerebral white matterNeuroImage2007366306441748192510.1016/j.neuroimage.2007.02.049 NomuraEMDouble dissociation of two cognitive control networks in patients with focal brain lesionsProc. Natl Acad. Sci. USA201010712017120222010PNAS..10712017N1:CAS:528:DC%2BC3cXovVartbw%3D20547857290065710.1073/pnas.1002431107 HolmesAJBrain Genomics Superstruct Project initial data release with structural, functional, and behavioral measuresSci. Data2015211610.1038/sdata.2015.31 BoekelWForstmannBKeukenMA test‐retest reliability analysis of diffusion measures of white matter tracts relevant for cognitive controlPsychophysiology20175424331:STN:280:DC%2BC1c%2FntVejtQ%3D%3D2800026010.1111/psyp.12769 JiangJEgnerTUsing neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brainCereb. Cortex201424179318052340276210.1093/cercor/bht029 DuncanJThe structure of cognition: attentional episodes in mind and brainNeuron20138035501:CAS:528:DC%2BC3sXhsFGqsrvF24094101379140610.1016/j.neuron.2013.09.015 YehF-CPopulation-averaged atlas of the macroscale human structural connectome and its network topologyNeuroImage201817857682975833910.1016/j.neuroimage.2018.05.027 SalvalaggioADe Filippo De GraziaMZorziMThiebaut de SchottenMCorbettaMPost-stroke deficit prediction from lesion and indirect structural and functional disconnectionBrain20201432173218832572442736349410.1093/brain/awaa156 NiendamTAMeta-analytic evidence for a superordinate cognitive control network subserving diverse executive functionsCogn. Affect. Behav. Neurosci.20121224126822282036366073110.3758/s13415-011-0083-5 Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci.25, 757–775 (2021). GlasserMFThe minimal preprocessing pipelines for the Human Connectome ProjectNeuroImage2013801051242366897010.1016/j.neuroimage.2013.04.127 ReberJCognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubsProc. Natl Acad. Sci. USA2021118e20187841181:CAS:528:DC%2BB3MXhtVyhtb3O33941692812686010.1073/pnas.2018784118 Mori, S., Wakana, S., Van Zijl, P. C. & Nagae-Poetscher, L. MRI Atlas of Human White Matter (Elsevier, 2005). MaydaABWestphalACarterCSDeCarliCLate life cognitive control deficits are accentuated by white matter disease burdenBrain20111341673168321482547310223810.1093/brain/awr065 GenoveseCRLazarNANicholsTThresholding of statistical maps in functional neuroimaging using the false discovery rateNeuroImage2002158708781190622710.1006/nimg.2001.1037 DuncanJAn adaptive coding model of neural function in prefrontal cortexNat. Rev. Neurosci.200128208291:CAS:528:DC%2BD38Xmt1WitLk%3D1171505810.1038/35097575 VanderhasseltM-ADe RaedtRBaekenCDorsolateral prefrontal cortex and Stroop performance: tackling the lateralizationPsychon. Bull. Rev.2009166096121945139210.3758/PBR.16.3.609 MenonVD’EspositoMThe role of PFC networks in cognitive control and executive functionNeuropsychopharmacology202247901033440827610.1038/s41386-021-01152-w Jiang, J., Bruss, J., Lee, W-T., Tranel, D. & Boes, A. D. White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control, https://github.com/JiefengJiang/CPMCognitiveControl, https://doi.org/10.5281/zenodo.7633964 (2023). RosenbergMDA neuromarker of sustained attention from whole-brain functional connectivityNat. Neurosci.2016191651711:CAS:528:DC%2BC2MXhvVOgtLfO2659565310.1038/nn.4179 MillerEKCohenJDAn integrative theory of prefrontal cortex functionAnnu. Rev. Neurosci.2001241672021:CAS:528:DC%2BD3MXls1Shsro%3D1128330910.1146/annurev.neuro.24.1.167 BoesADNetwork localization of neurological symptoms from focal brain lesionsBrain20151383061307526264514467147810.1093/brain/awv228 BadreDHoffmanJCooneyJWD’espositoMHierarchical cognitive control deficits following damage to the human frontal lobeNat. Neurosci.2009125155221:CAS:528:DC%2BD1MXisVOrt70%3D19252496299034210.1038/nn.2277 SerrienDJSovijärvi-SpapéMMCognitive control of response inhibition and switching: hemispheric lateralization and hand preferenceBrain Cogn.2013822832902374281310.1016/j.bandc.2013.04.013 FoxMDBucknerRLWhiteMPGreiciusMDPascual-LeoneAEfficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulateBiol. Psychiatry20127259560322658708412027510.1016/j.biopsych.2012.04.028 GlasserMFA multi-modal parcellation of human cerebral cortexNature20165361711782016Natur.536..171G1:CAS:528:DC%2BC28Xht1GrurnK27437579499012710.1038/nature18933 HornAConnectivity predicts deep brain stimulation outcome in Parkinson diseaseAnn. Neurol.201782677828586141588067810.1002/ana.24974 GriffisJCMetcalfNVCorbettaMShulmanGLStructural disconnections explain brain network dysfunction after strokeCell Rep.20192825272540.e25291:CAS:528:DC%2BC1MXhslaqsLvF31484066703204710.1016/j.celrep.2019.07.100 ShenXUsing connectome-based predictive modeling to predict individual behavior from brain connectivityNat. Protoc.2017125065181:CAS:528:DC%2BC2sXitVWnt70%3D28182017552668110.1038/nprot.2016.178 BotvinickMBraverTSBarchDMCarterCSCohenJDConflict monitoring and cognitive controlPsychol. Rev.20011086246521:STN:280:DC%2BD3Mvkt1WltQ%3D%3D1148838010.1037/0033-295X.108.3.624 KoechlinESummerfieldCAn information theoretical approach to prefrontal executive functionTrends Cogn. Sci.2007112292351747553610.1016/j.tics.2007.04.005 Egner, T. The Wiley Handbook of Cognitive Control (Wiley Blackwell, 2017). WesselJRAronAROn the globality of motor suppression: unexpected events and their influence on behavior and cognitionNeuron2017932592801:CAS:528:DC%2BC2sXht12kuro%3D28103476526080310.1016/j.neuron.2016.12.013 FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI26457551500868610.1038/nn.4135 AssemMGlasserMFVan EssenDCDuncanJA domain-general cognitive core defined in multimodally parcellated human cortexCereb. Cortex2020304361438032244253732580110.1093/cercor/bhaa023 FoxMDZhangDSnyderAZRaichleMEThe global signal and observed anticorrelated resting state brain networksJ. Neurophysiol.20091013270328319339462269410910.1152/jn.90777.2008 BowrenMMultivariate lesion-behavior mapping of general cognitive ability and its psychometric constituentsJ. Neurosci.202040892489371:CAS:528:DC%2BB3cXisFygsL%2FI33046547765945610.1523/JNEUROSCI.1415-20.2020 BoesADConnectivity of sleep-and wake-promoting regions of the human hypothalamus observed during resting wakefulnessSleep201841zsy10829850898645445610.1093/sleep/zsy108 FoxMDHalkoMAEldaiefMCPascual-LeoneAMeasuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)NeuroImage201262223222432246529710.1016/j.neuroimage.2012.03.035 WangQNormative vs. patient-specific brain connectivity in deep brain stimulationNeuroImage20212241173073286178710.1016/j.neuroimage.2020.117307 MonsellSTask switchingTrends Cogn. Sci.200371341401263969510.1016/S1364-6613(03)00028-7 ZatorreRJFieldsRDJohansen-BergHPlasticity in gray and white: neuroimaging changes in brain structure during learningNat. Neurosci.2012155285361:CAS:528:DC%2BC38XktVartr8%3D22426254366065610.1038/nn.3045 SetsompopKPushing the limits of in vivo diffusion MRI for the Human Connectome ProjectNeuroImage2013802202331:STN:280:DC%2BC3snmvVWmsQ%3D%3D2370757910.1016/j.neuroimage.2013.05.078 HuaKTract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantificationNeuroImage2008393363471793189010.1016/j.neuroimage.2007.07.053 EgnerTHirschJCognitive control mechanisms resolve conflict through cortical amplification of task-relevant informationNat. Neurosci.20058178417901:CAS:528:DC%2BD2MXht1Gis77F1628692810.1038/nn1594 Chaddock-HeymanLWhite matter microstructure is associated with cognitive control in childrenBiol. Psychol.20139410911523714226374273410.1016/j.biopsycho.2013.05.008 FoxMDThe human brain is intrinsically organized into dynamic, anticorrelated functional networksProc. Natl Acad. Sci. USA2005102967396782005PNAS..102.9673F1:CAS:528:DC%2BD2MXmsVaktb8%3D15976020115710510.1073/pnas.0504136102 HornAOstwaldDReisertMBlankenburgFThe structural–functional connectome and the default mode network of the human brainNeuroImage20141021421512409985110.1016/j.neuroimage.2013.09.069 Sampaio-BaptistaCJohansen-BergHWhite matter plasticity in the adult brainNeuron201796123912511:CAS:528:DC%2BC2sXitVWlt7rF29268094576682610.1016/j.neuron.2017.11.026 FriedmanNPMiyakeAUnity and diversity of executive functions: Individual differences as a window on cognitive structureCortex2017861862042725112310.1016/j.cortex.2016.04.023 Van DijkKRIntrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimizationJ. Neurophysiol.20101032973211988984910.1152/jn.00783.2009 Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms. (CRC Press, 2012). PustinaDAvantsBFaseyitanOKMedagliaJDCoslettHBImproved accuracy of lesion to symptom mapping with multivariate sparse canonical correlationsNeuropsychologia20181151541662888247910.1016/j.neuropsychologia. AB Mayda (37330_CR15) 2011; 134 MD Rosenberg (37330_CR24) 2016; 19 MD Fox (37330_CR49) 2012; 62 K Setsompop (37330_CR43) 2013; 80 J Jiang (37330_CR21) 2014; 24 AD Boes (37330_CR45) 2018; 41 M Bowren (37330_CR40) 2020; 40 37330_CR60 F-C Yeh (37330_CR55) 2018; 178 M-A Vanderhasselt (37330_CR30) 2009; 16 37330_CR57 S Monsell (37330_CR3) 2003; 7 X Shen (37330_CR25) 2017; 12 AD Boes (37330_CR46) 2015; 138 AJ Holmes (37330_CR47) 2015; 2 L Chaddock-Heyman (37330_CR14) 2013; 94 D Badre (37330_CR12) 2009; 12 A Horn (37330_CR42) 2017; 82 Q Li (37330_CR20) 2017; 83 J Reber (37330_CR18) 2021; 118 A Horn (37330_CR41) 2014; 102 C Sampaio-Baptista (37330_CR29) 2017; 96 KR Van Dijk (37330_CR51) 2010; 103 J Duncan (37330_CR10) 2001; 2 M Assem (37330_CR8) 2020; 30 K Hua (37330_CR56) 2008; 39 D Pustina (37330_CR22) 2018; 115 DJ Serrien (37330_CR31) 2013; 82 J Duncan (37330_CR11) 2013; 80 NP Friedman (37330_CR33) 2017; 86 MD Fox (37330_CR48) 2012; 72 Q Wang (37330_CR44) 2021; 224 P Li (37330_CR17) 2018; 339 37330_CR34 37330_CR38 EM Nomura (37330_CR13) 2010; 107 W Boekel (37330_CR16) 2017; 54 T Egner (37330_CR19) 2008; 12 MF Glasser (37330_CR23) 2016; 536 T Egner (37330_CR36) 2005; 8 CR Genovese (37330_CR54) 2002; 15 JR Wessel (37330_CR5) 2017; 93 A Salvalaggio (37330_CR26) 2020; 143 RJ Zatorre (37330_CR28) 2012; 15 AR Aron (37330_CR32) 2014; 18 MF Glasser (37330_CR59) 2013; 80 MD Fox (37330_CR52) 2009; 101 37330_CR6 E Koechlin (37330_CR4) 2007; 11 M Botvinick (37330_CR35) 2001; 108 EK Miller (37330_CR2) 2001; 24 K Murphy (37330_CR53) 2017; 154 V Menon (37330_CR9) 2022; 47 K Hwang (37330_CR39) 2020; 32 37330_CR1 ES Finn (37330_CR37) 2015; 18 MD Fox (37330_CR50) 2005; 102 TA Niendam (37330_CR7) 2012; 12 JC Griffis (37330_CR27) 2019; 28 S Wakana (37330_CR58) 2007; 36 |
References_xml | – reference: Van DijkKRIntrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimizationJ. Neurophysiol.20101032973211988984910.1152/jn.00783.2009 – reference: MenonVD’EspositoMThe role of PFC networks in cognitive control and executive functionNeuropsychopharmacology202247901033440827610.1038/s41386-021-01152-w – reference: GlasserMFA multi-modal parcellation of human cerebral cortexNature20165361711782016Natur.536..171G1:CAS:528:DC%2BC28Xht1GrurnK27437579499012710.1038/nature18933 – reference: HwangKBrussJTranelDBoesADNetwork localization of executive function deficits in patients with focal thalamic lesionsJ. Cogn. Neurosci.2020322303231932902335760656910.1162/jocn_a_01628 – reference: MillerEKCohenJDAn integrative theory of prefrontal cortex functionAnnu. Rev. Neurosci.2001241672021:CAS:528:DC%2BD3MXls1Shsro%3D1128330910.1146/annurev.neuro.24.1.167 – reference: FoxMDHalkoMAEldaiefMCPascual-LeoneAMeasuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)NeuroImage201262223222432246529710.1016/j.neuroimage.2012.03.035 – reference: GenoveseCRLazarNANicholsTThresholding of statistical maps in functional neuroimaging using the false discovery rateNeuroImage2002158708781190622710.1006/nimg.2001.1037 – reference: MonsellSTask switchingTrends Cogn. Sci.200371341401263969510.1016/S1364-6613(03)00028-7 – reference: DuncanJAn adaptive coding model of neural function in prefrontal cortexNat. Rev. Neurosci.200128208291:CAS:528:DC%2BD38Xmt1WitLk%3D1171505810.1038/35097575 – reference: AronARRobbinsTWPoldrackRAInhibition and the right inferior frontal cortex: one decade onTrends Cogn. Sci.2014181771852444011610.1016/j.tics.2013.12.003 – reference: FriedmanNPMiyakeAUnity and diversity of executive functions: Individual differences as a window on cognitive structureCortex2017861862042725112310.1016/j.cortex.2016.04.023 – reference: WangQNormative vs. patient-specific brain connectivity in deep brain stimulationNeuroImage20212241173073286178710.1016/j.neuroimage.2020.117307 – reference: NiendamTAMeta-analytic evidence for a superordinate cognitive control network subserving diverse executive functionsCogn. Affect. Behav. Neurosci.20121224126822282036366073110.3758/s13415-011-0083-5 – reference: YehF-CPopulation-averaged atlas of the macroscale human structural connectome and its network topologyNeuroImage201817857682975833910.1016/j.neuroimage.2018.05.027 – reference: FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI26457551500868610.1038/nn.4135 – reference: JiangJEgnerTUsing neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brainCereb. Cortex201424179318052340276210.1093/cercor/bht029 – reference: RosenbergMDA neuromarker of sustained attention from whole-brain functional connectivityNat. Neurosci.2016191651711:CAS:528:DC%2BC2MXhvVOgtLfO2659565310.1038/nn.4179 – reference: LiPTsapanouAQolamrezaRRGazesYWhite matter integrity mediates decline in age-related inhibitory controlBehav. Brain Res.20183392492542912693010.1016/j.bbr.2017.11.005 – reference: BotvinickMBraverTSBarchDMCarterCSCohenJDConflict monitoring and cognitive controlPsychol. Rev.20011086246521:STN:280:DC%2BD3Mvkt1WltQ%3D%3D1148838010.1037/0033-295X.108.3.624 – reference: Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms. (CRC Press, 2012). – reference: SerrienDJSovijärvi-SpapéMMCognitive control of response inhibition and switching: hemispheric lateralization and hand preferenceBrain Cogn.2013822832902374281310.1016/j.bandc.2013.04.013 – reference: EgnerTHirschJCognitive control mechanisms resolve conflict through cortical amplification of task-relevant informationNat. Neurosci.20058178417901:CAS:528:DC%2BD2MXht1Gis77F1628692810.1038/nn1594 – reference: NomuraEMDouble dissociation of two cognitive control networks in patients with focal brain lesionsProc. Natl Acad. Sci. USA201010712017120222010PNAS..10712017N1:CAS:528:DC%2BC3cXovVartbw%3D20547857290065710.1073/pnas.1002431107 – reference: HornAOstwaldDReisertMBlankenburgFThe structural–functional connectome and the default mode network of the human brainNeuroImage20141021421512409985110.1016/j.neuroimage.2013.09.069 – reference: BoesADConnectivity of sleep-and wake-promoting regions of the human hypothalamus observed during resting wakefulnessSleep201841zsy10829850898645445610.1093/sleep/zsy108 – reference: PustinaDAvantsBFaseyitanOKMedagliaJDCoslettHBImproved accuracy of lesion to symptom mapping with multivariate sparse canonical correlationsNeuropsychologia20181151541662888247910.1016/j.neuropsychologia.2017.08.027 – reference: Mori, S., Wakana, S., Van Zijl, P. C. & Nagae-Poetscher, L. MRI Atlas of Human White Matter (Elsevier, 2005). – reference: DuncanJThe structure of cognition: attentional episodes in mind and brainNeuron20138035501:CAS:528:DC%2BC3sXhsFGqsrvF24094101379140610.1016/j.neuron.2013.09.015 – reference: Isherwood, S., Keuken, M., Bazin, P.-L. & Forstmann, B. Cortical and subcortical contributions to interference resolution and inhibition—an fMRI ALE meta-analysis. Neurosci. Biobehav. Rev.129, 245–260 (2021). – reference: AssemMGlasserMFVan EssenDCDuncanJA domain-general cognitive core defined in multimodally parcellated human cortexCereb. Cortex2020304361438032244253732580110.1093/cercor/bhaa023 – reference: ReberJCognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubsProc. Natl Acad. Sci. USA2021118e20187841181:CAS:528:DC%2BB3MXhtVyhtb3O33941692812686010.1073/pnas.2018784118 – reference: Chaddock-HeymanLWhite matter microstructure is associated with cognitive control in childrenBiol. Psychol.20139410911523714226374273410.1016/j.biopsycho.2013.05.008 – reference: EgnerTMultiple conflict-driven control mechanisms in the human brainTrends Cogn. Sci.2008123743801876065710.1016/j.tics.2008.07.001 – reference: Sampaio-BaptistaCJohansen-BergHWhite matter plasticity in the adult brainNeuron201796123912511:CAS:528:DC%2BC2sXitVWlt7rF29268094576682610.1016/j.neuron.2017.11.026 – reference: FoxMDZhangDSnyderAZRaichleMEThe global signal and observed anticorrelated resting state brain networksJ. Neurophysiol.20091013270328319339462269410910.1152/jn.90777.2008 – reference: BowrenMMultivariate lesion-behavior mapping of general cognitive ability and its psychometric constituentsJ. Neurosci.202040892489371:CAS:528:DC%2BB3cXisFygsL%2FI33046547765945610.1523/JNEUROSCI.1415-20.2020 – reference: FoxMDThe human brain is intrinsically organized into dynamic, anticorrelated functional networksProc. Natl Acad. Sci. USA2005102967396782005PNAS..102.9673F1:CAS:528:DC%2BD2MXmsVaktb8%3D15976020115710510.1073/pnas.0504136102 – reference: KoechlinESummerfieldCAn information theoretical approach to prefrontal executive functionTrends Cogn. Sci.2007112292351747553610.1016/j.tics.2007.04.005 – reference: MurphyKFoxMDTowards a consensus regarding global signal regression for resting state functional connectivity MRINeuroImage20171541691732788805910.1016/j.neuroimage.2016.11.052 – reference: VanderhasseltM-ADe RaedtRBaekenCDorsolateral prefrontal cortex and Stroop performance: tackling the lateralizationPsychon. Bull. Rev.2009166096121945139210.3758/PBR.16.3.609 – reference: GriffisJCMetcalfNVCorbettaMShulmanGLStructural disconnections explain brain network dysfunction after strokeCell Rep.20192825272540.e25291:CAS:528:DC%2BC1MXhslaqsLvF31484066703204710.1016/j.celrep.2019.07.100 – reference: ZatorreRJFieldsRDJohansen-BergHPlasticity in gray and white: neuroimaging changes in brain structure during learningNat. Neurosci.2012155285361:CAS:528:DC%2BC38XktVartr8%3D22426254366065610.1038/nn.3045 – reference: BoesADNetwork localization of neurological symptoms from focal brain lesionsBrain20151383061307526264514467147810.1093/brain/awv228 – reference: HornAConnectivity predicts deep brain stimulation outcome in Parkinson diseaseAnn. Neurol.201782677828586141588067810.1002/ana.24974 – reference: WesselJRAronAROn the globality of motor suppression: unexpected events and their influence on behavior and cognitionNeuron2017932592801:CAS:528:DC%2BC2sXht12kuro%3D28103476526080310.1016/j.neuron.2016.12.013 – reference: ShenXUsing connectome-based predictive modeling to predict individual behavior from brain connectivityNat. Protoc.2017125065181:CAS:528:DC%2BC2sXitVWnt70%3D28182017552668110.1038/nprot.2016.178 – reference: SetsompopKPushing the limits of in vivo diffusion MRI for the Human Connectome ProjectNeuroImage2013802202331:STN:280:DC%2BC3snmvVWmsQ%3D%3D2370757910.1016/j.neuroimage.2013.05.078 – reference: MaydaABWestphalACarterCSDeCarliCLate life cognitive control deficits are accentuated by white matter disease burdenBrain20111341673168321482547310223810.1093/brain/awr065 – reference: Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci.25, 757–775 (2021). – reference: BoekelWForstmannBKeukenMA test‐retest reliability analysis of diffusion measures of white matter tracts relevant for cognitive controlPsychophysiology20175424331:STN:280:DC%2BC1c%2FntVejtQ%3D%3D2800026010.1111/psyp.12769 – reference: WakanaSReproducibility of quantitative tractography methods applied to cerebral white matterNeuroImage2007366306441748192510.1016/j.neuroimage.2007.02.049 – reference: Jiang, J., Bruss, J., Lee, W-T., Tranel, D. & Boes, A. D. White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control, https://github.com/JiefengJiang/CPMCognitiveControl, https://doi.org/10.5281/zenodo.7633964 (2023). – reference: HuaKTract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantificationNeuroImage2008393363471793189010.1016/j.neuroimage.2007.07.053 – reference: GlasserMFThe minimal preprocessing pipelines for the Human Connectome ProjectNeuroImage2013801051242366897010.1016/j.neuroimage.2013.04.127 – reference: Egner, T. The Wiley Handbook of Cognitive Control (Wiley Blackwell, 2017). – reference: LiQConflict detection and resolution rely on a combination of common and distinct cognitive control networksNeurosci. Biobehav. Rev.2017831231312901791610.1016/j.neubiorev.2017.09.032 – reference: SalvalaggioADe Filippo De GraziaMZorziMThiebaut de SchottenMCorbettaMPost-stroke deficit prediction from lesion and indirect structural and functional disconnectionBrain20201432173218832572442736349410.1093/brain/awaa156 – reference: HolmesAJBrain Genomics Superstruct Project initial data release with structural, functional, and behavioral measuresSci. Data2015211610.1038/sdata.2015.31 – reference: BadreDHoffmanJCooneyJWD’espositoMHierarchical cognitive control deficits following damage to the human frontal lobeNat. Neurosci.2009125155221:CAS:528:DC%2BD1MXisVOrt70%3D19252496299034210.1038/nn.2277 – reference: FoxMDBucknerRLWhiteMPGreiciusMDPascual-LeoneAEfficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulateBiol. Psychiatry20127259560322658708412027510.1016/j.biopsych.2012.04.028 – volume: 2 start-page: 820 year: 2001 ident: 37330_CR10 publication-title: Nat. Rev. Neurosci. doi: 10.1038/35097575 – volume: 2 start-page: 1 year: 2015 ident: 37330_CR47 publication-title: Sci. Data doi: 10.1038/sdata.2015.31 – ident: 37330_CR34 doi: 10.1016/j.tics.2021.06.001 – volume: 536 start-page: 171 year: 2016 ident: 37330_CR23 publication-title: Nature doi: 10.1038/nature18933 – volume: 28 start-page: 2527 year: 2019 ident: 37330_CR27 publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.100 – volume: 30 start-page: 4361 year: 2020 ident: 37330_CR8 publication-title: Cereb. Cortex doi: 10.1093/cercor/bhaa023 – volume: 12 start-page: 374 year: 2008 ident: 37330_CR19 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2008.07.001 – volume: 138 start-page: 3061 year: 2015 ident: 37330_CR46 publication-title: Brain doi: 10.1093/brain/awv228 – volume: 118 start-page: e2018784118 year: 2021 ident: 37330_CR18 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2018784118 – volume: 16 start-page: 609 year: 2009 ident: 37330_CR30 publication-title: Psychon. Bull. Rev. doi: 10.3758/PBR.16.3.609 – volume: 94 start-page: 109 year: 2013 ident: 37330_CR14 publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2013.05.008 – volume: 32 start-page: 2303 year: 2020 ident: 37330_CR39 publication-title: J. Cogn. Neurosci. doi: 10.1162/jocn_a_01628 – volume: 224 start-page: 117307 year: 2021 ident: 37330_CR44 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117307 – volume: 80 start-page: 105 year: 2013 ident: 37330_CR59 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 12 start-page: 506 year: 2017 ident: 37330_CR25 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.178 – volume: 143 start-page: 2173 year: 2020 ident: 37330_CR26 publication-title: Brain doi: 10.1093/brain/awaa156 – volume: 134 start-page: 1673 year: 2011 ident: 37330_CR15 publication-title: Brain doi: 10.1093/brain/awr065 – volume: 18 start-page: 1664 year: 2015 ident: 37330_CR37 publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 12 start-page: 515 year: 2009 ident: 37330_CR12 publication-title: Nat. Neurosci. doi: 10.1038/nn.2277 – ident: 37330_CR1 doi: 10.1002/9781118920497 – volume: 80 start-page: 35 year: 2013 ident: 37330_CR11 publication-title: Neuron doi: 10.1016/j.neuron.2013.09.015 – volume: 7 start-page: 134 year: 2003 ident: 37330_CR3 publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(03)00028-7 – volume: 101 start-page: 3270 year: 2009 ident: 37330_CR52 publication-title: J. Neurophysiol. doi: 10.1152/jn.90777.2008 – volume: 24 start-page: 167 year: 2001 ident: 37330_CR2 publication-title: Annu. Rev. Neurosci. doi: 10.1146/annurev.neuro.24.1.167 – volume: 40 start-page: 8924 year: 2020 ident: 37330_CR40 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1415-20.2020 – volume: 178 start-page: 57 year: 2018 ident: 37330_CR55 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.05.027 – volume: 83 start-page: 123 year: 2017 ident: 37330_CR20 publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2017.09.032 – ident: 37330_CR6 doi: 10.1016/j.neubiorev.2021.07.021 – volume: 154 start-page: 169 year: 2017 ident: 37330_CR53 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.052 – volume: 103 start-page: 297 year: 2010 ident: 37330_CR51 publication-title: J. Neurophysiol. doi: 10.1152/jn.00783.2009 – volume: 93 start-page: 259 year: 2017 ident: 37330_CR5 publication-title: Neuron doi: 10.1016/j.neuron.2016.12.013 – ident: 37330_CR57 – volume: 82 start-page: 283 year: 2013 ident: 37330_CR31 publication-title: Brain Cogn. doi: 10.1016/j.bandc.2013.04.013 – volume: 47 start-page: 90 year: 2022 ident: 37330_CR9 publication-title: Neuropsychopharmacology doi: 10.1038/s41386-021-01152-w – volume: 80 start-page: 220 year: 2013 ident: 37330_CR43 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.078 – volume: 108 start-page: 624 year: 2001 ident: 37330_CR35 publication-title: Psychol. Rev. doi: 10.1037/0033-295X.108.3.624 – volume: 82 start-page: 67 year: 2017 ident: 37330_CR42 publication-title: Ann. Neurol. doi: 10.1002/ana.24974 – volume: 36 start-page: 630 year: 2007 ident: 37330_CR58 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.02.049 – volume: 62 start-page: 2232 year: 2012 ident: 37330_CR49 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.035 – volume: 96 start-page: 1239 year: 2017 ident: 37330_CR29 publication-title: Neuron doi: 10.1016/j.neuron.2017.11.026 – volume: 15 start-page: 528 year: 2012 ident: 37330_CR28 publication-title: Nat. Neurosci. doi: 10.1038/nn.3045 – volume: 8 start-page: 1784 year: 2005 ident: 37330_CR36 publication-title: Nat. Neurosci. doi: 10.1038/nn1594 – volume: 54 start-page: 24 year: 2017 ident: 37330_CR16 publication-title: Psychophysiology doi: 10.1111/psyp.12769 – volume: 72 start-page: 595 year: 2012 ident: 37330_CR48 publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.04.028 – ident: 37330_CR38 doi: 10.1201/b12207 – ident: 37330_CR60 doi: 10.5281/zenodo.7633964 – volume: 19 start-page: 165 year: 2016 ident: 37330_CR24 publication-title: Nat. Neurosci. doi: 10.1038/nn.4179 – volume: 18 start-page: 177 year: 2014 ident: 37330_CR32 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2013.12.003 – volume: 11 start-page: 229 year: 2007 ident: 37330_CR4 publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.04.005 – volume: 107 start-page: 12017 year: 2010 ident: 37330_CR13 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1002431107 – volume: 15 start-page: 870 year: 2002 ident: 37330_CR54 publication-title: NeuroImage doi: 10.1006/nimg.2001.1037 – volume: 39 start-page: 336 year: 2008 ident: 37330_CR56 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.07.053 – volume: 102 start-page: 9673 year: 2005 ident: 37330_CR50 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0504136102 – volume: 102 start-page: 142 year: 2014 ident: 37330_CR41 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.09.069 – volume: 41 start-page: zsy108 year: 2018 ident: 37330_CR45 publication-title: Sleep doi: 10.1093/sleep/zsy108 – volume: 24 start-page: 1793 year: 2014 ident: 37330_CR21 publication-title: Cereb. Cortex doi: 10.1093/cercor/bht029 – volume: 339 start-page: 249 year: 2018 ident: 37330_CR17 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2017.11.005 – volume: 115 start-page: 154 year: 2018 ident: 37330_CR22 publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2017.08.027 – volume: 12 start-page: 241 year: 2012 ident: 37330_CR7 publication-title: Cogn. Affect. Behav. Neurosci. doi: 10.3758/s13415-011-0083-5 – volume: 86 start-page: 186 year: 2017 ident: 37330_CR33 publication-title: Cortex doi: 10.1016/j.cortex.2016.04.023 |
SSID | ssj0000391844 |
Score | 2.4884245 |
Snippet | Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the... The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1740 |
SubjectTerms | 59/57 631/378/2649 631/378/2649/2150 631/477/2811 Adaptive control Anatomy Behavior Brain research Cognition Cognitive ability Humanities and Social Sciences Humans Hypotheses Investigations Lesions Machine learning Magnetic Resonance Imaging multidisciplinary Neural networks Neuropsychology Neurosciences Science Science (multidisciplinary) Substantia alba Validity White Matter - diagnostic imaging White Matter - pathology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9F23aVCht9ZE1svSsQ0JodCeGshNSLJEFzbeEDuU_vvOyF432-elN2PLQsxDMyPNfEPI66QQUSXK2hiJJTkQsIYEDFHR5-TbrFLEG92Pn_TZufxwoS5utfrCnLAJHngi3JFtfeZWqsQUlwIeg8rcM9GmbHhsS5kvs-xWMFX2YGEhdJFzlQwT5miQZU8AEwU6BUF83exYogLY_zsv89dkyZ9uTIshOr1P7s0eJH03rfwBuZP6h2R_6in57RH5Wlre0cuCm0mx6BZTWUr1At1kuk55pNssQtqlS993tJ9ywelqoH5mV-ooHtHSq80w1uuEZ2owGuEmxoGuerqkHdE52f0xOT89-Xx8Vs_dFeqoZDPWufU6J8MD06CEovVSxcCD18FmIC3XQXMbvW4a7cFp4cl6bjptEdFMxuDFE7LXb_r0jFArg25FZ7TiCdyzLuhgGE6uVfZRmIo0W0q7OEOPYweMtStX4MK4iTsOuOMKd1xTkTfLP1cT8MZfR79HBi4jETS7vABRcrMouX-JUkUOtux3syYPDgEWG6taZivyavkMOogXK75Pm5tpjEUgPZji6SQty0qEBntvjaqI2ZGjnaXufulXXwrOd4NgOeC-VeTtVuR-rOvPtHj-P2jxgtzlqCsMO_0dkL3x-ia9BPdrDIdF074DJEIq_Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA_zDsEX8dvqlAi-aVmbJmnyIOJkYwheRBzsLSRp4i7ctde1Y-y_NydNO64feyttGpKcc5KT8_E7CL11DBBVLM2FoJCSEy6sxgWCMKu907VnzoJH9-uSH5_QL6fsdActp1wYCKuc9sS4UTedBRv5PgDdlZLVhfy4-ZVD1Sjwrk4lNHQqrdB8iBBjd9Bu2JJZsUC7B4fLb99nqwvgoQtKU_ZMUYn9nsa9IhxdQdbC5T4vt06oCOT_L-3z7yDKPzyp8YA6eoDuJ80SfxpZ4SHace0jdHesNXn9GF3FUnj4POJpYkjGhRCXmNWAO4_Xzg94ii7EjTvXbYPbMUYcr3qsExldg8F0izddP-RrB7a20BpgKIYer1o8hyPhFAT_BJ0cHf74fJynqgu5ZbQccl9r7p0gpuBBOKtaU2YNMZob6X1QJ7jhRFrNy5LroMwQJzURDZeAdEat0dVTtGi71j1HWFLD66oRnBEX1LbGcCMK6Jwzr20lMlROK61sgiSHyhhrFV3jlVAjdVSgjorUUWWG3s3_bEZAjltbHwAB55YAph1fdBc_VZJNJWvtiaTMFYzQKjwa5okuqtqF-do6DHNvIr9KEt6rG37M0Jv5c5BNcLjo1nWXYxsJAHuhi2cjt8wjqXjQA6RgGRJbfLQ11O0v7eos4n-XAKIT1LoMvZ9Y7mZc_1-LF7dP4yW6R0AKCqjtt4cWw8WlexUUrsG8TlL0G2uUKag priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwEA9jIvgi_rZuSgTftNjmV5PH-cUxBH1ysLeQpIl-YWvH2jH8771Lf8hXp-BbaS7hmrtrLsnd5wh5EyUiqgRRai0wJQc2rD6CQGRwKbomyRjwRvfzF3VyKj6dybM9wpZcmBy0nyEt8296iQ57P4hs0rDCgEnAHryEHc8d3XCJWr1Rm_VcBRHPtRBzfkzF9S1dd9agDNV_m3_5Z5jkb3eleQk6fkDuz74jPZq4fUj2YveI3J2qSf54TG5ysTt6kREzKabbYhBLzlugfaLnMY10iR-kbbxwXUu7KQqcbgfqZkHFluLhLL3sh7GEScHubUSgiXGg246uAUd0DnN_Qk6PP37dnJRzXYUySFGPZWqcSlEzXykwP944IYNn3ilvUgKHQXnFTHCqrpUDd4VF45hulUEsMxG840_Jftd38TmhRnjV8FYrySI4Zq1XXlc4uJLJBa4LUi8zbcMMOo61L85tvvzm2k7SsSAdm6Vj64K8XftcTpAb_6T-gAJcKREuO7_or77ZWX2saVxiRshYSSY4PHqZmKt4E-F7QwNsHi7it7MNDxahFWsjm8oU5PXaDNaHVyqui_31RGMQQg-GeDZpy8oJV7DSGy0Lonf0aIfV3ZZu-z0jfNcIkwOOW0HeLSr3i6-_z8WL_yM_IPcYWkWF1fwOyf54dR1fgos1-lfZpn4C_oggxQ priority: 102 providerName: Springer Nature |
Title | White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control |
URI | https://link.springer.com/article/10.1038/s41467-023-37330-1 https://www.ncbi.nlm.nih.gov/pubmed/36990985 https://www.proquest.com/docview/2792195709 https://www.proquest.com/docview/2792902318 https://pubmed.ncbi.nlm.nih.gov/PMC10060223 https://doaj.org/article/97af2945e05243f29b5f2a037ef82c78 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJtBeEN8ERmUk3iCQD9uxHxDqqpWpEhMCKvUtshMbKnXJaDPB_nvunA8odLykUeJEV99dfOe7-x0hLyxHRJWChVIyLMkBh9VYYAgvtLM6c9wWGNH9cCZO52y24Is90rc76iZws9O1w35S8_Xq9c_vV-9A4d-2JePyzYZ5dYfVB9QF_PMQvKEDHy_CVL7O3Pdf5lSBQ8O62pndjx6SW6mAT7TC7sp_LFUe0X-XGfpvNuVfIVW_Uk3vkNudiUnHrUzcJXu2ukdutk0nr-6TH74nHj33wJoUq3Ix18WXN9Da0ZV1De3TDGlpz3VV0qpNFqfLDdUdP21JcQ-XXtSbJlxZ3HSD0YhH0WzosqJDXhLtsuEfkPn05MvkNOzaL4QFZ3ETukwLZ2ViIgFammaa8cIkRgujnAO7QhiRqEKLOBYarJrEKp3IUiiEPGOF0elDsl_VlX1MqGJGZGkpBU8s2G-lEUZG-HLBnS5SGZC4n-m86LDJsUXGKvcx8lTmLaNyYFTuGZXHAXk5PHPRInP8d_QxMnAYiaja_kK9_pp3SpqrTLtEMW4jnrAUTg13iY7SzML_LTIg86hnf95Lao4IjLHiWaQC8ny4DUqKkRdd2fqyHaMQaQ9e8aiVloGSXtoCIrfkaIvU7TvV8psHAo8RTQfsu4C86kXuN13Xz8WTa2l4Sg4T1IUI-_sdkf1mfWmfgdHVmBG5kS0yOMrp-xE5GI9nn2fwe3xy9vETXJ2IychvZ4y8xv0CDZws5A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheEG8WChgJThA1cWzHPlSIQqstbVcItVJvxnYcutI2WZpUVf8cvw2P86iWR2-9RYljOZ7xzGQe3yD0xjFAVLE0EoJCSY7_YTXOE4RZXTidFcxZiOgeTPnkiH45Zscr6FdfCwNplb1MDII6ryz4yDcA6C6RLIvlh8XPCLpGQXS1b6Ghu9YK-WaAGOsKO_bc5YX_has3dz97er8lZGf78NMk6roMRJbRpImKTPPCCWJi7pkxzTRl1hCjuZFF4dUnN5xIq3mScO2VN3FSE5FzCche1Bqd-nlvoVUKDpQRWt3ann79Nnh5AH9dUNpV68Sp2KhpkE1eVfqznaZxlCxpxNA44F_W7t9Jm39EboNC3LmH7naWLP7Yst59tOLKB-h229vy8iG6CK338GnA78RQ_AspNaGKAlcFnruiwX02I87dqS5zXLY56XhWY92xjcsxuIrxoqqbaO7At-dHA-xFU-NZiYf0J9wl3T9CRzey_4_RqKxK9xRhSQ3P0lxwRpw3E3PDjYhhcs4KbVMxRkm_08p2EOjQiWOuQig-FaqljvLUUYE6Khmjd8M7ixYA5NrRW0DAYSSAd4cb1dkP1ckCJTNdEEmZixmhqb80rCA6TjPnv9dmfpnrPflVJ1FqdcX_Y_R6eOxlAQR4dOmq83aMBEA_P8WTlluGlaTc2x1SsDESS3y0tNTlJ-XsJOCNJwDa483IMXrfs9zVuv6_F8-u_4xX6M7k8GBf7e9O956jNQInIoa-guto1Jyduxfe2GvMy-5EYfT9pg_xb9R3Zgc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChgJThBt4ncOCAFl1VKoOFBpb8ZObFhpmyxNqqp_jV-Hx3lUy6O33qLEsRzPM56ZbxB67jggqhQsUYpBSU74YbUuEIQXxjsjPXcFRHQ_H4jdQ_Zxzucb6NdQCwNplYNOjIq6rAs4I58C0F2Wc5nmU9-nRXzZmb1Z_UyggxREWod2Gh2L7Luz0_D71rze2wm0fkHI7MPX97tJ32EgKTjL2sRLI7xTxKYiMCKVhvHCEmuEzb0PplNYQfLCiCwTJhhu4nJDVClyQPVihTU0zHsFXZWUMWgbIedyPN8B5HXFWF-nk1I1bVjUSsFIBqmmNE2yNVsYWwb8y8_9O13zj5htNIWzW-hm78Pitx3T3UYbrrqDrnVdLc_uotPYdA8fReRODGW_kEwT6ydw7fHS-RYPeYy4dEemKnHVZaPjRYNNzzCuxHBIjFd10yZLB6d6YTQAXrQNXlR4THzCfbr9PXR4Kbt_H21WdeUeIJwzKyQtleDEBQextMKqFCYX3JuCqgnKhp3WRQ9-Dj04ljoG4anSHXV0oI6O1NHZBL0c31l10B8Xjn4HBBxHAmx3vFEff9e9FtC5NJ7kjLuUE0bDpeWemJRKF763kGGZ2wP5da9LGn3O-RP0bHwctACEdkzl6pNuTA5QfmGKrY5bxpVQETyOXPEJUmt8tLbU9SfV4kdEGs8Aric4kBP0amC583X9fy8eXvwZT9H1ILr6097B_iN0g4BApNBQcBtttscn7nHw8lr7JIoTRt8uW35_AwnSY6M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+matter+disconnection+of+left+multiple+demand+network+is+associated+with+post-lesion+deficits+in+cognitive+control&rft.jtitle=Nature+communications&rft.au=Jiang%2C+Jiefeng&rft.au=Bruss%2C+Joel&rft.au=Lee%2C+Woo-Tek&rft.au=Tranel%2C+Daniel&rft.date=2023-03-29&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1740&rft_id=info:doi/10.1038%2Fs41467-023-37330-1&rft_id=info%3Apmid%2F36990985&rft.externalDocID=36990985 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |