White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control

Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 1740 - 12
Main Authors Jiang, Jiefeng, Bruss, Joel, Lee, Woo-Tek, Tranel, Daniel, Boes, Aaron D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.03.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-023-37330-1

Cover

Abstract Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions. The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance.
AbstractList Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.
Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions. The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance.
Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.
Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the neural computations distributed over cortical and subcortical areas. However, due to technical challenges in recording neural activity from the white matter, little is known about the anatomy of white matter tracts that coordinate the distributed neural computations that support cognitive control. Here, we leverage a large sample of human patients with focal brain lesions (n = 643) and investigate how lesion location and connectivity profiles account for variance in cognitive control performance. We find that lesions in white matter connecting left frontoparietal regions of the multiple demand network reliably predict deficits in cognitive control performance. These findings advance our understanding of the white matter correlates of cognitive control and provide an approach for incorporating network disconnection to predict deficits following lesions.The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance.
The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white matter connecting left frontoparietal regions are associated with deficits in cognitive control performance.
ArticleNumber 1740
Author Jiang, Jiefeng
Bruss, Joel
Boes, Aaron D.
Tranel, Daniel
Lee, Woo-Tek
Author_xml – sequence: 1
  givenname: Jiefeng
  orcidid: 0000-0002-4264-6382
  surname: Jiang
  fullname: Jiang, Jiefeng
  email: jiefeng-jiang@uiowa.edu
  organization: Department of Psychological and Brain Sciences, University of Iowa, Cognitive Control Collaborative, University of Iowa, Iowa Neuroscience Institute, University of Iowa
– sequence: 2
  givenname: Joel
  surname: Bruss
  fullname: Bruss, Joel
  organization: Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Department of Psychiatry, Carver College of Medicine
– sequence: 3
  givenname: Woo-Tek
  surname: Lee
  fullname: Lee, Woo-Tek
  organization: Department of Psychological and Brain Sciences, University of Iowa, Cognitive Control Collaborative, University of Iowa, Behavioral-biomedical Interface Training Program, University of Iowa
– sequence: 4
  givenname: Daniel
  surname: Tranel
  fullname: Tranel, Daniel
  organization: Department of Psychological and Brain Sciences, University of Iowa, Iowa Neuroscience Institute, University of Iowa, Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine
– sequence: 5
  givenname: Aaron D.
  orcidid: 0000-0002-7865-9257
  surname: Boes
  fullname: Boes, Aaron D.
  email: aaron-boes@uiowa.edu
  organization: Iowa Neuroscience Institute, University of Iowa, Department of Neurology (Division of Neuropsychology and Cognitive Neuroscience), Carver College of Medicine, Department of Psychiatry, Carver College of Medicine, Department of Pediatrics, Carver College of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36990985$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFCEYnpgaW2v_gAdD4sXLKF8Dw8mYxmqTJl40HgnDvLPLysAKbDf992V3a217KBfewPPxfr1ujkIM0DRvCf5IMOs_ZU64kC2mrGWSMdySF80JxZy0RFJ29CA-bs5yXuF6mCI956-aYyaUwqrvTprt76UrgGZTCiQ0umxjCGCLiwHFCXmYCpo3vri1BzTCbMKIApRtTH-Qy8jkHK0zBUa0dWWJ1jGX1kPe0UeYnHUlIxeQjYvgiruGGoWSon_TvJyMz3B2d582vy6-_jz_3l79-HZ5_uWqtR0npZ2kERP0dMBCCcak4Z0d6GDEoKapp1QMgiprBCHCMCUpKEP7USjOO8LtYNhpc3nQHaNZ6XVys0k3Ohqn9w8xLbRJxVkPWkkzUcU7wB3lrIZDN1GDmYTqZGVftT4ftNabYYbRQq3E-Eeij3-CW-pFvNYEY4EpZVXhw51Cin83kIuea8fBexMgbrKmUlFVR0p2Zu-fQFdxk0Lt1R5FVCexqqh3D1O6z-XfgCuAHgA2xZwTTPcQgvVukfRhkXR11ftF0qSS-iekOkez24lalvPPU9mBmqtPWED6n_YzrFv76N3N
CitedBy_id crossref_primary_10_1093_brain_awaf055
crossref_primary_10_1016_j_neuroimage_2024_120863
crossref_primary_10_1093_brain_awad308
crossref_primary_10_3233_JCM_247189
crossref_primary_10_1016_j_cortex_2024_11_010
crossref_primary_10_1093_cercor_bhae008
crossref_primary_10_1093_brain_awae315
crossref_primary_10_1016_j_ynirp_2025_100236
Cites_doi 10.1038/35097575
10.1038/sdata.2015.31
10.1016/j.tics.2021.06.001
10.1038/nature18933
10.1016/j.celrep.2019.07.100
10.1093/cercor/bhaa023
10.1016/j.tics.2008.07.001
10.1093/brain/awv228
10.1073/pnas.2018784118
10.3758/PBR.16.3.609
10.1016/j.biopsycho.2013.05.008
10.1162/jocn_a_01628
10.1016/j.neuroimage.2020.117307
10.1016/j.neuroimage.2013.04.127
10.1038/nprot.2016.178
10.1093/brain/awaa156
10.1093/brain/awr065
10.1038/nn.4135
10.1038/nn.2277
10.1002/9781118920497
10.1016/j.neuron.2013.09.015
10.1016/S1364-6613(03)00028-7
10.1152/jn.90777.2008
10.1146/annurev.neuro.24.1.167
10.1523/JNEUROSCI.1415-20.2020
10.1016/j.neuroimage.2018.05.027
10.1016/j.neubiorev.2017.09.032
10.1016/j.neubiorev.2021.07.021
10.1016/j.neuroimage.2016.11.052
10.1152/jn.00783.2009
10.1016/j.neuron.2016.12.013
10.1016/j.bandc.2013.04.013
10.1038/s41386-021-01152-w
10.1016/j.neuroimage.2013.05.078
10.1037/0033-295X.108.3.624
10.1002/ana.24974
10.1016/j.neuroimage.2007.02.049
10.1016/j.neuroimage.2012.03.035
10.1016/j.neuron.2017.11.026
10.1038/nn.3045
10.1038/nn1594
10.1111/psyp.12769
10.1016/j.biopsych.2012.04.028
10.1201/b12207
10.5281/zenodo.7633964
10.1038/nn.4179
10.1016/j.tics.2013.12.003
10.1016/j.tics.2007.04.005
10.1073/pnas.1002431107
10.1006/nimg.2001.1037
10.1016/j.neuroimage.2007.07.053
10.1073/pnas.0504136102
10.1016/j.neuroimage.2013.09.069
10.1093/sleep/zsy108
10.1093/cercor/bht029
10.1016/j.bbr.2017.11.005
10.1016/j.neuropsychologia.2017.08.027
10.3758/s13415-011-0083-5
10.1016/j.cortex.2016.04.023
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-37330-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_97af2945e05243f29b5f2a037ef82c78
PMC10060223
36990985
10_1038_s41467_023_37330_1
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
  grantid: R01NS114405
  funderid: https://doi.org/10.13039/100000065
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
  grantid: R01MH131559
  funderid: https://doi.org/10.13039/100000025
– fundername: NIMH NIH HHS
  grantid: R01 MH131559
– fundername: ;
  grantid: R01MH131559
– fundername: ;
  grantid: R01NS114405
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-f7a6fe82b0696337a45cb2ba6b9ff8226b629ca6116a3972e9a28d6944514cba3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:18:01 EDT 2025
Thu Aug 21 18:39:02 EDT 2025
Fri Sep 05 08:32:37 EDT 2025
Wed Aug 13 11:00:05 EDT 2025
Mon Jul 21 06:05:11 EDT 2025
Tue Jul 01 00:58:46 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Fri Feb 21 02:40:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-f7a6fe82b0696337a45cb2ba6b9ff8226b629ca6116a3972e9a28d6944514cba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7865-9257
0000-0002-4264-6382
OpenAccessLink https://www.proquest.com/docview/2792195709?pq-origsite=%requestingapplication%&accountid=15518
PMID 36990985
PQID 2792195709
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_97af2945e05243f29b5f2a037ef82c78
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10060223
proquest_miscellaneous_2792902318
proquest_journals_2792195709
pubmed_primary_36990985
crossref_primary_10_1038_s41467_023_37330_1
crossref_citationtrail_10_1038_s41467_023_37330_1
springer_journals_10_1038_s41467_023_37330_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-29
PublicationDateYYYYMMDD 2023-03-29
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-29
  day: 29
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References MurphyKFoxMDTowards a consensus regarding global signal regression for resting state functional connectivity MRINeuroImage20171541691732788805910.1016/j.neuroimage.2016.11.052
LiQConflict detection and resolution rely on a combination of common and distinct cognitive control networksNeurosci. Biobehav. Rev.2017831231312901791610.1016/j.neubiorev.2017.09.032
HwangKBrussJTranelDBoesADNetwork localization of executive function deficits in patients with focal thalamic lesionsJ. Cogn. Neurosci.2020322303231932902335760656910.1162/jocn_a_01628
AronARRobbinsTWPoldrackRAInhibition and the right inferior frontal cortex: one decade onTrends Cogn. Sci.2014181771852444011610.1016/j.tics.2013.12.003
WakanaSReproducibility of quantitative tractography methods applied to cerebral white matterNeuroImage2007366306441748192510.1016/j.neuroimage.2007.02.049
NomuraEMDouble dissociation of two cognitive control networks in patients with focal brain lesionsProc. Natl Acad. Sci. USA201010712017120222010PNAS..10712017N1:CAS:528:DC%2BC3cXovVartbw%3D20547857290065710.1073/pnas.1002431107
HolmesAJBrain Genomics Superstruct Project initial data release with structural, functional, and behavioral measuresSci. Data2015211610.1038/sdata.2015.31
BoekelWForstmannBKeukenMA test‐retest reliability analysis of diffusion measures of white matter tracts relevant for cognitive controlPsychophysiology20175424331:STN:280:DC%2BC1c%2FntVejtQ%3D%3D2800026010.1111/psyp.12769
JiangJEgnerTUsing neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brainCereb. Cortex201424179318052340276210.1093/cercor/bht029
DuncanJThe structure of cognition: attentional episodes in mind and brainNeuron20138035501:CAS:528:DC%2BC3sXhsFGqsrvF24094101379140610.1016/j.neuron.2013.09.015
YehF-CPopulation-averaged atlas of the macroscale human structural connectome and its network topologyNeuroImage201817857682975833910.1016/j.neuroimage.2018.05.027
SalvalaggioADe Filippo De GraziaMZorziMThiebaut de SchottenMCorbettaMPost-stroke deficit prediction from lesion and indirect structural and functional disconnectionBrain20201432173218832572442736349410.1093/brain/awaa156
NiendamTAMeta-analytic evidence for a superordinate cognitive control network subserving diverse executive functionsCogn. Affect. Behav. Neurosci.20121224126822282036366073110.3758/s13415-011-0083-5
Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci.25, 757–775 (2021).
GlasserMFThe minimal preprocessing pipelines for the Human Connectome ProjectNeuroImage2013801051242366897010.1016/j.neuroimage.2013.04.127
ReberJCognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubsProc. Natl Acad. Sci. USA2021118e20187841181:CAS:528:DC%2BB3MXhtVyhtb3O33941692812686010.1073/pnas.2018784118
Mori, S., Wakana, S., Van Zijl, P. C. & Nagae-Poetscher, L. MRI Atlas of Human White Matter (Elsevier, 2005).
MaydaABWestphalACarterCSDeCarliCLate life cognitive control deficits are accentuated by white matter disease burdenBrain20111341673168321482547310223810.1093/brain/awr065
GenoveseCRLazarNANicholsTThresholding of statistical maps in functional neuroimaging using the false discovery rateNeuroImage2002158708781190622710.1006/nimg.2001.1037
DuncanJAn adaptive coding model of neural function in prefrontal cortexNat. Rev. Neurosci.200128208291:CAS:528:DC%2BD38Xmt1WitLk%3D1171505810.1038/35097575
VanderhasseltM-ADe RaedtRBaekenCDorsolateral prefrontal cortex and Stroop performance: tackling the lateralizationPsychon. Bull. Rev.2009166096121945139210.3758/PBR.16.3.609
MenonVD’EspositoMThe role of PFC networks in cognitive control and executive functionNeuropsychopharmacology202247901033440827610.1038/s41386-021-01152-w
Jiang, J., Bruss, J., Lee, W-T., Tranel, D. & Boes, A. D. White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control, https://github.com/JiefengJiang/CPMCognitiveControl, https://doi.org/10.5281/zenodo.7633964 (2023).
RosenbergMDA neuromarker of sustained attention from whole-brain functional connectivityNat. Neurosci.2016191651711:CAS:528:DC%2BC2MXhvVOgtLfO2659565310.1038/nn.4179
MillerEKCohenJDAn integrative theory of prefrontal cortex functionAnnu. Rev. Neurosci.2001241672021:CAS:528:DC%2BD3MXls1Shsro%3D1128330910.1146/annurev.neuro.24.1.167
BoesADNetwork localization of neurological symptoms from focal brain lesionsBrain20151383061307526264514467147810.1093/brain/awv228
BadreDHoffmanJCooneyJWD’espositoMHierarchical cognitive control deficits following damage to the human frontal lobeNat. Neurosci.2009125155221:CAS:528:DC%2BD1MXisVOrt70%3D19252496299034210.1038/nn.2277
SerrienDJSovijärvi-SpapéMMCognitive control of response inhibition and switching: hemispheric lateralization and hand preferenceBrain Cogn.2013822832902374281310.1016/j.bandc.2013.04.013
FoxMDBucknerRLWhiteMPGreiciusMDPascual-LeoneAEfficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulateBiol. Psychiatry20127259560322658708412027510.1016/j.biopsych.2012.04.028
GlasserMFA multi-modal parcellation of human cerebral cortexNature20165361711782016Natur.536..171G1:CAS:528:DC%2BC28Xht1GrurnK27437579499012710.1038/nature18933
HornAConnectivity predicts deep brain stimulation outcome in Parkinson diseaseAnn. Neurol.201782677828586141588067810.1002/ana.24974
GriffisJCMetcalfNVCorbettaMShulmanGLStructural disconnections explain brain network dysfunction after strokeCell Rep.20192825272540.e25291:CAS:528:DC%2BC1MXhslaqsLvF31484066703204710.1016/j.celrep.2019.07.100
ShenXUsing connectome-based predictive modeling to predict individual behavior from brain connectivityNat. Protoc.2017125065181:CAS:528:DC%2BC2sXitVWnt70%3D28182017552668110.1038/nprot.2016.178
BotvinickMBraverTSBarchDMCarterCSCohenJDConflict monitoring and cognitive controlPsychol. Rev.20011086246521:STN:280:DC%2BD3Mvkt1WltQ%3D%3D1148838010.1037/0033-295X.108.3.624
KoechlinESummerfieldCAn information theoretical approach to prefrontal executive functionTrends Cogn. Sci.2007112292351747553610.1016/j.tics.2007.04.005
Egner, T. The Wiley Handbook of Cognitive Control (Wiley Blackwell, 2017).
WesselJRAronAROn the globality of motor suppression: unexpected events and their influence on behavior and cognitionNeuron2017932592801:CAS:528:DC%2BC2sXht12kuro%3D28103476526080310.1016/j.neuron.2016.12.013
FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI26457551500868610.1038/nn.4135
AssemMGlasserMFVan EssenDCDuncanJA domain-general cognitive core defined in multimodally parcellated human cortexCereb. Cortex2020304361438032244253732580110.1093/cercor/bhaa023
FoxMDZhangDSnyderAZRaichleMEThe global signal and observed anticorrelated resting state brain networksJ. Neurophysiol.20091013270328319339462269410910.1152/jn.90777.2008
BowrenMMultivariate lesion-behavior mapping of general cognitive ability and its psychometric constituentsJ. Neurosci.202040892489371:CAS:528:DC%2BB3cXisFygsL%2FI33046547765945610.1523/JNEUROSCI.1415-20.2020
BoesADConnectivity of sleep-and wake-promoting regions of the human hypothalamus observed during resting wakefulnessSleep201841zsy10829850898645445610.1093/sleep/zsy108
FoxMDHalkoMAEldaiefMCPascual-LeoneAMeasuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)NeuroImage201262223222432246529710.1016/j.neuroimage.2012.03.035
WangQNormative vs. patient-specific brain connectivity in deep brain stimulationNeuroImage20212241173073286178710.1016/j.neuroimage.2020.117307
MonsellSTask switchingTrends Cogn. Sci.200371341401263969510.1016/S1364-6613(03)00028-7
ZatorreRJFieldsRDJohansen-BergHPlasticity in gray and white: neuroimaging changes in brain structure during learningNat. Neurosci.2012155285361:CAS:528:DC%2BC38XktVartr8%3D22426254366065610.1038/nn.3045
SetsompopKPushing the limits of in vivo diffusion MRI for the Human Connectome ProjectNeuroImage2013802202331:STN:280:DC%2BC3snmvVWmsQ%3D%3D2370757910.1016/j.neuroimage.2013.05.078
HuaKTract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantificationNeuroImage2008393363471793189010.1016/j.neuroimage.2007.07.053
EgnerTHirschJCognitive control mechanisms resolve conflict through cortical amplification of task-relevant informationNat. Neurosci.20058178417901:CAS:528:DC%2BD2MXht1Gis77F1628692810.1038/nn1594
Chaddock-HeymanLWhite matter microstructure is associated with cognitive control in childrenBiol. Psychol.20139410911523714226374273410.1016/j.biopsycho.2013.05.008
FoxMDThe human brain is intrinsically organized into dynamic, anticorrelated functional networksProc. Natl Acad. Sci. USA2005102967396782005PNAS..102.9673F1:CAS:528:DC%2BD2MXmsVaktb8%3D15976020115710510.1073/pnas.0504136102
HornAOstwaldDReisertMBlankenburgFThe structural–functional connectome and the default mode network of the human brainNeuroImage20141021421512409985110.1016/j.neuroimage.2013.09.069
Sampaio-BaptistaCJohansen-BergHWhite matter plasticity in the adult brainNeuron201796123912511:CAS:528:DC%2BC2sXitVWlt7rF29268094576682610.1016/j.neuron.2017.11.026
FriedmanNPMiyakeAUnity and diversity of executive functions: Individual differences as a window on cognitive structureCortex2017861862042725112310.1016/j.cortex.2016.04.023
Van DijkKRIntrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimizationJ. Neurophysiol.20101032973211988984910.1152/jn.00783.2009
Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms. (CRC Press, 2012).
PustinaDAvantsBFaseyitanOKMedagliaJDCoslettHBImproved accuracy of lesion to symptom mapping with multivariate sparse canonical correlationsNeuropsychologia20181151541662888247910.1016/j.neuropsychologia.
AB Mayda (37330_CR15) 2011; 134
MD Rosenberg (37330_CR24) 2016; 19
MD Fox (37330_CR49) 2012; 62
K Setsompop (37330_CR43) 2013; 80
J Jiang (37330_CR21) 2014; 24
AD Boes (37330_CR45) 2018; 41
M Bowren (37330_CR40) 2020; 40
37330_CR60
F-C Yeh (37330_CR55) 2018; 178
M-A Vanderhasselt (37330_CR30) 2009; 16
37330_CR57
S Monsell (37330_CR3) 2003; 7
X Shen (37330_CR25) 2017; 12
AD Boes (37330_CR46) 2015; 138
AJ Holmes (37330_CR47) 2015; 2
L Chaddock-Heyman (37330_CR14) 2013; 94
D Badre (37330_CR12) 2009; 12
A Horn (37330_CR42) 2017; 82
Q Li (37330_CR20) 2017; 83
J Reber (37330_CR18) 2021; 118
A Horn (37330_CR41) 2014; 102
C Sampaio-Baptista (37330_CR29) 2017; 96
KR Van Dijk (37330_CR51) 2010; 103
J Duncan (37330_CR10) 2001; 2
M Assem (37330_CR8) 2020; 30
K Hua (37330_CR56) 2008; 39
D Pustina (37330_CR22) 2018; 115
DJ Serrien (37330_CR31) 2013; 82
J Duncan (37330_CR11) 2013; 80
NP Friedman (37330_CR33) 2017; 86
MD Fox (37330_CR48) 2012; 72
Q Wang (37330_CR44) 2021; 224
P Li (37330_CR17) 2018; 339
37330_CR34
37330_CR38
EM Nomura (37330_CR13) 2010; 107
W Boekel (37330_CR16) 2017; 54
T Egner (37330_CR19) 2008; 12
MF Glasser (37330_CR23) 2016; 536
T Egner (37330_CR36) 2005; 8
CR Genovese (37330_CR54) 2002; 15
JR Wessel (37330_CR5) 2017; 93
A Salvalaggio (37330_CR26) 2020; 143
RJ Zatorre (37330_CR28) 2012; 15
AR Aron (37330_CR32) 2014; 18
MF Glasser (37330_CR59) 2013; 80
MD Fox (37330_CR52) 2009; 101
37330_CR6
E Koechlin (37330_CR4) 2007; 11
M Botvinick (37330_CR35) 2001; 108
EK Miller (37330_CR2) 2001; 24
K Murphy (37330_CR53) 2017; 154
V Menon (37330_CR9) 2022; 47
K Hwang (37330_CR39) 2020; 32
37330_CR1
ES Finn (37330_CR37) 2015; 18
MD Fox (37330_CR50) 2005; 102
TA Niendam (37330_CR7) 2012; 12
JC Griffis (37330_CR27) 2019; 28
S Wakana (37330_CR58) 2007; 36
References_xml – reference: Van DijkKRIntrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimizationJ. Neurophysiol.20101032973211988984910.1152/jn.00783.2009
– reference: MenonVD’EspositoMThe role of PFC networks in cognitive control and executive functionNeuropsychopharmacology202247901033440827610.1038/s41386-021-01152-w
– reference: GlasserMFA multi-modal parcellation of human cerebral cortexNature20165361711782016Natur.536..171G1:CAS:528:DC%2BC28Xht1GrurnK27437579499012710.1038/nature18933
– reference: HwangKBrussJTranelDBoesADNetwork localization of executive function deficits in patients with focal thalamic lesionsJ. Cogn. Neurosci.2020322303231932902335760656910.1162/jocn_a_01628
– reference: MillerEKCohenJDAn integrative theory of prefrontal cortex functionAnnu. Rev. Neurosci.2001241672021:CAS:528:DC%2BD3MXls1Shsro%3D1128330910.1146/annurev.neuro.24.1.167
– reference: FoxMDHalkoMAEldaiefMCPascual-LeoneAMeasuring and manipulating brain connectivity with resting state functional connectivity magnetic resonance imaging (fcMRI) and transcranial magnetic stimulation (TMS)NeuroImage201262223222432246529710.1016/j.neuroimage.2012.03.035
– reference: GenoveseCRLazarNANicholsTThresholding of statistical maps in functional neuroimaging using the false discovery rateNeuroImage2002158708781190622710.1006/nimg.2001.1037
– reference: MonsellSTask switchingTrends Cogn. Sci.200371341401263969510.1016/S1364-6613(03)00028-7
– reference: DuncanJAn adaptive coding model of neural function in prefrontal cortexNat. Rev. Neurosci.200128208291:CAS:528:DC%2BD38Xmt1WitLk%3D1171505810.1038/35097575
– reference: AronARRobbinsTWPoldrackRAInhibition and the right inferior frontal cortex: one decade onTrends Cogn. Sci.2014181771852444011610.1016/j.tics.2013.12.003
– reference: FriedmanNPMiyakeAUnity and diversity of executive functions: Individual differences as a window on cognitive structureCortex2017861862042725112310.1016/j.cortex.2016.04.023
– reference: WangQNormative vs. patient-specific brain connectivity in deep brain stimulationNeuroImage20212241173073286178710.1016/j.neuroimage.2020.117307
– reference: NiendamTAMeta-analytic evidence for a superordinate cognitive control network subserving diverse executive functionsCogn. Affect. Behav. Neurosci.20121224126822282036366073110.3758/s13415-011-0083-5
– reference: YehF-CPopulation-averaged atlas of the macroscale human structural connectome and its network topologyNeuroImage201817857682975833910.1016/j.neuroimage.2018.05.027
– reference: FinnESFunctional connectome fingerprinting: identifying individuals using patterns of brain connectivityNat. Neurosci.201518166416711:CAS:528:DC%2BC2MXhs1ChurfI26457551500868610.1038/nn.4135
– reference: JiangJEgnerTUsing neural pattern classifiers to quantify the modularity of conflict-control mechanisms in the human brainCereb. Cortex201424179318052340276210.1093/cercor/bht029
– reference: RosenbergMDA neuromarker of sustained attention from whole-brain functional connectivityNat. Neurosci.2016191651711:CAS:528:DC%2BC2MXhvVOgtLfO2659565310.1038/nn.4179
– reference: LiPTsapanouAQolamrezaRRGazesYWhite matter integrity mediates decline in age-related inhibitory controlBehav. Brain Res.20183392492542912693010.1016/j.bbr.2017.11.005
– reference: BotvinickMBraverTSBarchDMCarterCSCohenJDConflict monitoring and cognitive controlPsychol. Rev.20011086246521:STN:280:DC%2BD3Mvkt1WltQ%3D%3D1148838010.1037/0033-295X.108.3.624
– reference: Zhou, Z.-H. Ensemble Methods: Foundations and Algorithms. (CRC Press, 2012).
– reference: SerrienDJSovijärvi-SpapéMMCognitive control of response inhibition and switching: hemispheric lateralization and hand preferenceBrain Cogn.2013822832902374281310.1016/j.bandc.2013.04.013
– reference: EgnerTHirschJCognitive control mechanisms resolve conflict through cortical amplification of task-relevant informationNat. Neurosci.20058178417901:CAS:528:DC%2BD2MXht1Gis77F1628692810.1038/nn1594
– reference: NomuraEMDouble dissociation of two cognitive control networks in patients with focal brain lesionsProc. Natl Acad. Sci. USA201010712017120222010PNAS..10712017N1:CAS:528:DC%2BC3cXovVartbw%3D20547857290065710.1073/pnas.1002431107
– reference: HornAOstwaldDReisertMBlankenburgFThe structural–functional connectome and the default mode network of the human brainNeuroImage20141021421512409985110.1016/j.neuroimage.2013.09.069
– reference: BoesADConnectivity of sleep-and wake-promoting regions of the human hypothalamus observed during resting wakefulnessSleep201841zsy10829850898645445610.1093/sleep/zsy108
– reference: PustinaDAvantsBFaseyitanOKMedagliaJDCoslettHBImproved accuracy of lesion to symptom mapping with multivariate sparse canonical correlationsNeuropsychologia20181151541662888247910.1016/j.neuropsychologia.2017.08.027
– reference: Mori, S., Wakana, S., Van Zijl, P. C. & Nagae-Poetscher, L. MRI Atlas of Human White Matter (Elsevier, 2005).
– reference: DuncanJThe structure of cognition: attentional episodes in mind and brainNeuron20138035501:CAS:528:DC%2BC3sXhsFGqsrvF24094101379140610.1016/j.neuron.2013.09.015
– reference: Isherwood, S., Keuken, M., Bazin, P.-L. & Forstmann, B. Cortical and subcortical contributions to interference resolution and inhibition—an fMRI ALE meta-analysis. Neurosci. Biobehav. Rev.129, 245–260 (2021).
– reference: AssemMGlasserMFVan EssenDCDuncanJA domain-general cognitive core defined in multimodally parcellated human cortexCereb. Cortex2020304361438032244253732580110.1093/cercor/bhaa023
– reference: ReberJCognitive impairment after focal brain lesions is better predicted by damage to structural than functional network hubsProc. Natl Acad. Sci. USA2021118e20187841181:CAS:528:DC%2BB3MXhtVyhtb3O33941692812686010.1073/pnas.2018784118
– reference: Chaddock-HeymanLWhite matter microstructure is associated with cognitive control in childrenBiol. Psychol.20139410911523714226374273410.1016/j.biopsycho.2013.05.008
– reference: EgnerTMultiple conflict-driven control mechanisms in the human brainTrends Cogn. Sci.2008123743801876065710.1016/j.tics.2008.07.001
– reference: Sampaio-BaptistaCJohansen-BergHWhite matter plasticity in the adult brainNeuron201796123912511:CAS:528:DC%2BC2sXitVWlt7rF29268094576682610.1016/j.neuron.2017.11.026
– reference: FoxMDZhangDSnyderAZRaichleMEThe global signal and observed anticorrelated resting state brain networksJ. Neurophysiol.20091013270328319339462269410910.1152/jn.90777.2008
– reference: BowrenMMultivariate lesion-behavior mapping of general cognitive ability and its psychometric constituentsJ. Neurosci.202040892489371:CAS:528:DC%2BB3cXisFygsL%2FI33046547765945610.1523/JNEUROSCI.1415-20.2020
– reference: FoxMDThe human brain is intrinsically organized into dynamic, anticorrelated functional networksProc. Natl Acad. Sci. USA2005102967396782005PNAS..102.9673F1:CAS:528:DC%2BD2MXmsVaktb8%3D15976020115710510.1073/pnas.0504136102
– reference: KoechlinESummerfieldCAn information theoretical approach to prefrontal executive functionTrends Cogn. Sci.2007112292351747553610.1016/j.tics.2007.04.005
– reference: MurphyKFoxMDTowards a consensus regarding global signal regression for resting state functional connectivity MRINeuroImage20171541691732788805910.1016/j.neuroimage.2016.11.052
– reference: VanderhasseltM-ADe RaedtRBaekenCDorsolateral prefrontal cortex and Stroop performance: tackling the lateralizationPsychon. Bull. Rev.2009166096121945139210.3758/PBR.16.3.609
– reference: GriffisJCMetcalfNVCorbettaMShulmanGLStructural disconnections explain brain network dysfunction after strokeCell Rep.20192825272540.e25291:CAS:528:DC%2BC1MXhslaqsLvF31484066703204710.1016/j.celrep.2019.07.100
– reference: ZatorreRJFieldsRDJohansen-BergHPlasticity in gray and white: neuroimaging changes in brain structure during learningNat. Neurosci.2012155285361:CAS:528:DC%2BC38XktVartr8%3D22426254366065610.1038/nn.3045
– reference: BoesADNetwork localization of neurological symptoms from focal brain lesionsBrain20151383061307526264514467147810.1093/brain/awv228
– reference: HornAConnectivity predicts deep brain stimulation outcome in Parkinson diseaseAnn. Neurol.201782677828586141588067810.1002/ana.24974
– reference: WesselJRAronAROn the globality of motor suppression: unexpected events and their influence on behavior and cognitionNeuron2017932592801:CAS:528:DC%2BC2sXht12kuro%3D28103476526080310.1016/j.neuron.2016.12.013
– reference: ShenXUsing connectome-based predictive modeling to predict individual behavior from brain connectivityNat. Protoc.2017125065181:CAS:528:DC%2BC2sXitVWnt70%3D28182017552668110.1038/nprot.2016.178
– reference: SetsompopKPushing the limits of in vivo diffusion MRI for the Human Connectome ProjectNeuroImage2013802202331:STN:280:DC%2BC3snmvVWmsQ%3D%3D2370757910.1016/j.neuroimage.2013.05.078
– reference: MaydaABWestphalACarterCSDeCarliCLate life cognitive control deficits are accentuated by white matter disease burdenBrain20111341673168321482547310223810.1093/brain/awr065
– reference: Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci.25, 757–775 (2021).
– reference: BoekelWForstmannBKeukenMA test‐retest reliability analysis of diffusion measures of white matter tracts relevant for cognitive controlPsychophysiology20175424331:STN:280:DC%2BC1c%2FntVejtQ%3D%3D2800026010.1111/psyp.12769
– reference: WakanaSReproducibility of quantitative tractography methods applied to cerebral white matterNeuroImage2007366306441748192510.1016/j.neuroimage.2007.02.049
– reference: Jiang, J., Bruss, J., Lee, W-T., Tranel, D. & Boes, A. D. White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control, https://github.com/JiefengJiang/CPMCognitiveControl, https://doi.org/10.5281/zenodo.7633964 (2023).
– reference: HuaKTract probability maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific quantificationNeuroImage2008393363471793189010.1016/j.neuroimage.2007.07.053
– reference: GlasserMFThe minimal preprocessing pipelines for the Human Connectome ProjectNeuroImage2013801051242366897010.1016/j.neuroimage.2013.04.127
– reference: Egner, T. The Wiley Handbook of Cognitive Control (Wiley Blackwell, 2017).
– reference: LiQConflict detection and resolution rely on a combination of common and distinct cognitive control networksNeurosci. Biobehav. Rev.2017831231312901791610.1016/j.neubiorev.2017.09.032
– reference: SalvalaggioADe Filippo De GraziaMZorziMThiebaut de SchottenMCorbettaMPost-stroke deficit prediction from lesion and indirect structural and functional disconnectionBrain20201432173218832572442736349410.1093/brain/awaa156
– reference: HolmesAJBrain Genomics Superstruct Project initial data release with structural, functional, and behavioral measuresSci. Data2015211610.1038/sdata.2015.31
– reference: BadreDHoffmanJCooneyJWD’espositoMHierarchical cognitive control deficits following damage to the human frontal lobeNat. Neurosci.2009125155221:CAS:528:DC%2BD1MXisVOrt70%3D19252496299034210.1038/nn.2277
– reference: FoxMDBucknerRLWhiteMPGreiciusMDPascual-LeoneAEfficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulateBiol. Psychiatry20127259560322658708412027510.1016/j.biopsych.2012.04.028
– volume: 2
  start-page: 820
  year: 2001
  ident: 37330_CR10
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/35097575
– volume: 2
  start-page: 1
  year: 2015
  ident: 37330_CR47
  publication-title: Sci. Data
  doi: 10.1038/sdata.2015.31
– ident: 37330_CR34
  doi: 10.1016/j.tics.2021.06.001
– volume: 536
  start-page: 171
  year: 2016
  ident: 37330_CR23
  publication-title: Nature
  doi: 10.1038/nature18933
– volume: 28
  start-page: 2527
  year: 2019
  ident: 37330_CR27
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.07.100
– volume: 30
  start-page: 4361
  year: 2020
  ident: 37330_CR8
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa023
– volume: 12
  start-page: 374
  year: 2008
  ident: 37330_CR19
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2008.07.001
– volume: 138
  start-page: 3061
  year: 2015
  ident: 37330_CR46
  publication-title: Brain
  doi: 10.1093/brain/awv228
– volume: 118
  start-page: e2018784118
  year: 2021
  ident: 37330_CR18
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2018784118
– volume: 16
  start-page: 609
  year: 2009
  ident: 37330_CR30
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/PBR.16.3.609
– volume: 94
  start-page: 109
  year: 2013
  ident: 37330_CR14
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2013.05.008
– volume: 32
  start-page: 2303
  year: 2020
  ident: 37330_CR39
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn_a_01628
– volume: 224
  start-page: 117307
  year: 2021
  ident: 37330_CR44
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117307
– volume: 80
  start-page: 105
  year: 2013
  ident: 37330_CR59
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 12
  start-page: 506
  year: 2017
  ident: 37330_CR25
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.178
– volume: 143
  start-page: 2173
  year: 2020
  ident: 37330_CR26
  publication-title: Brain
  doi: 10.1093/brain/awaa156
– volume: 134
  start-page: 1673
  year: 2011
  ident: 37330_CR15
  publication-title: Brain
  doi: 10.1093/brain/awr065
– volume: 18
  start-page: 1664
  year: 2015
  ident: 37330_CR37
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 12
  start-page: 515
  year: 2009
  ident: 37330_CR12
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2277
– ident: 37330_CR1
  doi: 10.1002/9781118920497
– volume: 80
  start-page: 35
  year: 2013
  ident: 37330_CR11
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.09.015
– volume: 7
  start-page: 134
  year: 2003
  ident: 37330_CR3
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(03)00028-7
– volume: 101
  start-page: 3270
  year: 2009
  ident: 37330_CR52
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90777.2008
– volume: 24
  start-page: 167
  year: 2001
  ident: 37330_CR2
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.24.1.167
– volume: 40
  start-page: 8924
  year: 2020
  ident: 37330_CR40
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1415-20.2020
– volume: 178
  start-page: 57
  year: 2018
  ident: 37330_CR55
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.027
– volume: 83
  start-page: 123
  year: 2017
  ident: 37330_CR20
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2017.09.032
– ident: 37330_CR6
  doi: 10.1016/j.neubiorev.2021.07.021
– volume: 154
  start-page: 169
  year: 2017
  ident: 37330_CR53
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.052
– volume: 103
  start-page: 297
  year: 2010
  ident: 37330_CR51
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00783.2009
– volume: 93
  start-page: 259
  year: 2017
  ident: 37330_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.12.013
– ident: 37330_CR57
– volume: 82
  start-page: 283
  year: 2013
  ident: 37330_CR31
  publication-title: Brain Cogn.
  doi: 10.1016/j.bandc.2013.04.013
– volume: 47
  start-page: 90
  year: 2022
  ident: 37330_CR9
  publication-title: Neuropsychopharmacology
  doi: 10.1038/s41386-021-01152-w
– volume: 80
  start-page: 220
  year: 2013
  ident: 37330_CR43
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.078
– volume: 108
  start-page: 624
  year: 2001
  ident: 37330_CR35
  publication-title: Psychol. Rev.
  doi: 10.1037/0033-295X.108.3.624
– volume: 82
  start-page: 67
  year: 2017
  ident: 37330_CR42
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24974
– volume: 36
  start-page: 630
  year: 2007
  ident: 37330_CR58
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.02.049
– volume: 62
  start-page: 2232
  year: 2012
  ident: 37330_CR49
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.035
– volume: 96
  start-page: 1239
  year: 2017
  ident: 37330_CR29
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.11.026
– volume: 15
  start-page: 528
  year: 2012
  ident: 37330_CR28
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3045
– volume: 8
  start-page: 1784
  year: 2005
  ident: 37330_CR36
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1594
– volume: 54
  start-page: 24
  year: 2017
  ident: 37330_CR16
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12769
– volume: 72
  start-page: 595
  year: 2012
  ident: 37330_CR48
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.04.028
– ident: 37330_CR38
  doi: 10.1201/b12207
– ident: 37330_CR60
  doi: 10.5281/zenodo.7633964
– volume: 19
  start-page: 165
  year: 2016
  ident: 37330_CR24
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4179
– volume: 18
  start-page: 177
  year: 2014
  ident: 37330_CR32
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2013.12.003
– volume: 11
  start-page: 229
  year: 2007
  ident: 37330_CR4
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.04.005
– volume: 107
  start-page: 12017
  year: 2010
  ident: 37330_CR13
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1002431107
– volume: 15
  start-page: 870
  year: 2002
  ident: 37330_CR54
  publication-title: NeuroImage
  doi: 10.1006/nimg.2001.1037
– volume: 39
  start-page: 336
  year: 2008
  ident: 37330_CR56
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.07.053
– volume: 102
  start-page: 9673
  year: 2005
  ident: 37330_CR50
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0504136102
– volume: 102
  start-page: 142
  year: 2014
  ident: 37330_CR41
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.09.069
– volume: 41
  start-page: zsy108
  year: 2018
  ident: 37330_CR45
  publication-title: Sleep
  doi: 10.1093/sleep/zsy108
– volume: 24
  start-page: 1793
  year: 2014
  ident: 37330_CR21
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bht029
– volume: 339
  start-page: 249
  year: 2018
  ident: 37330_CR17
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2017.11.005
– volume: 115
  start-page: 154
  year: 2018
  ident: 37330_CR22
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2017.08.027
– volume: 12
  start-page: 241
  year: 2012
  ident: 37330_CR7
  publication-title: Cogn. Affect. Behav. Neurosci.
  doi: 10.3758/s13415-011-0083-5
– volume: 86
  start-page: 186
  year: 2017
  ident: 37330_CR33
  publication-title: Cortex
  doi: 10.1016/j.cortex.2016.04.023
SSID ssj0000391844
Score 2.4884245
Snippet Cognitive control modulates other cognitive functions to achieve internal goals and is important for adaptive behavior. Cognitive control is enabled by the...
The anatomy of white matter tracts which coordinate the computations of cognitive control are not well understood. Here, the authors show that lesions in white...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1740
SubjectTerms 59/57
631/378/2649
631/378/2649/2150
631/477/2811
Adaptive control
Anatomy
Behavior
Brain research
Cognition
Cognitive ability
Humanities and Social Sciences
Humans
Hypotheses
Investigations
Lesions
Machine learning
Magnetic Resonance Imaging
multidisciplinary
Neural networks
Neuropsychology
Neurosciences
Science
Science (multidisciplinary)
Substantia alba
Validity
White Matter - diagnostic imaging
White Matter - pathology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOil9F23aVCht9ZE1svSsQ0JodCeGshNSLJEFzbeEDuU_vvOyF432-elN2PLQsxDMyPNfEPI66QQUSXK2hiJJTkQsIYEDFHR5-TbrFLEG92Pn_TZufxwoS5utfrCnLAJHngi3JFtfeZWqsQUlwIeg8rcM9GmbHhsS5kvs-xWMFX2YGEhdJFzlQwT5miQZU8AEwU6BUF83exYogLY_zsv89dkyZ9uTIshOr1P7s0eJH03rfwBuZP6h2R_6in57RH5Wlre0cuCm0mx6BZTWUr1At1kuk55pNssQtqlS993tJ9ywelqoH5mV-ooHtHSq80w1uuEZ2owGuEmxoGuerqkHdE52f0xOT89-Xx8Vs_dFeqoZDPWufU6J8MD06CEovVSxcCD18FmIC3XQXMbvW4a7cFp4cl6bjptEdFMxuDFE7LXb_r0jFArg25FZ7TiCdyzLuhgGE6uVfZRmIo0W0q7OEOPYweMtStX4MK4iTsOuOMKd1xTkTfLP1cT8MZfR79HBi4jETS7vABRcrMouX-JUkUOtux3syYPDgEWG6taZivyavkMOogXK75Pm5tpjEUgPZji6SQty0qEBntvjaqI2ZGjnaXufulXXwrOd4NgOeC-VeTtVuR-rOvPtHj-P2jxgtzlqCsMO_0dkL3x-ia9BPdrDIdF074DJEIq_Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA_zDsEX8dvqlAi-aVmbJmnyIOJkYwheRBzsLSRp4i7ctde1Y-y_NydNO64feyttGpKcc5KT8_E7CL11DBBVLM2FoJCSEy6sxgWCMKu907VnzoJH9-uSH5_QL6fsdActp1wYCKuc9sS4UTedBRv5PgDdlZLVhfy4-ZVD1Sjwrk4lNHQqrdB8iBBjd9Bu2JJZsUC7B4fLb99nqwvgoQtKU_ZMUYn9nsa9IhxdQdbC5T4vt06oCOT_L-3z7yDKPzyp8YA6eoDuJ80SfxpZ4SHace0jdHesNXn9GF3FUnj4POJpYkjGhRCXmNWAO4_Xzg94ii7EjTvXbYPbMUYcr3qsExldg8F0izddP-RrB7a20BpgKIYer1o8hyPhFAT_BJ0cHf74fJynqgu5ZbQccl9r7p0gpuBBOKtaU2YNMZob6X1QJ7jhRFrNy5LroMwQJzURDZeAdEat0dVTtGi71j1HWFLD66oRnBEX1LbGcCMK6Jwzr20lMlROK61sgiSHyhhrFV3jlVAjdVSgjorUUWWG3s3_bEZAjltbHwAB55YAph1fdBc_VZJNJWvtiaTMFYzQKjwa5okuqtqF-do6DHNvIr9KEt6rG37M0Jv5c5BNcLjo1nWXYxsJAHuhi2cjt8wjqXjQA6RgGRJbfLQ11O0v7eos4n-XAKIT1LoMvZ9Y7mZc_1-LF7dP4yW6R0AKCqjtt4cWw8WlexUUrsG8TlL0G2uUKag
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9cwEA9jIvgi_rZuSgTftNjmV5PH-cUxBH1ysLeQpIl-YWvH2jH8771Lf8hXp-BbaS7hmrtrLsnd5wh5EyUiqgRRai0wJQc2rD6CQGRwKbomyRjwRvfzF3VyKj6dybM9wpZcmBy0nyEt8296iQ57P4hs0rDCgEnAHryEHc8d3XCJWr1Rm_VcBRHPtRBzfkzF9S1dd9agDNV_m3_5Z5jkb3eleQk6fkDuz74jPZq4fUj2YveI3J2qSf54TG5ysTt6kREzKabbYhBLzlugfaLnMY10iR-kbbxwXUu7KQqcbgfqZkHFluLhLL3sh7GEScHubUSgiXGg246uAUd0DnN_Qk6PP37dnJRzXYUySFGPZWqcSlEzXykwP944IYNn3ilvUgKHQXnFTHCqrpUDd4VF45hulUEsMxG840_Jftd38TmhRnjV8FYrySI4Zq1XXlc4uJLJBa4LUi8zbcMMOo61L85tvvzm2k7SsSAdm6Vj64K8XftcTpAb_6T-gAJcKREuO7_or77ZWX2saVxiRshYSSY4PHqZmKt4E-F7QwNsHi7it7MNDxahFWsjm8oU5PXaDNaHVyqui_31RGMQQg-GeDZpy8oJV7DSGy0Lonf0aIfV3ZZu-z0jfNcIkwOOW0HeLSr3i6-_z8WL_yM_IPcYWkWF1fwOyf54dR1fgos1-lfZpn4C_oggxQ
  priority: 102
  providerName: Springer Nature
Title White matter disconnection of left multiple demand network is associated with post-lesion deficits in cognitive control
URI https://link.springer.com/article/10.1038/s41467-023-37330-1
https://www.ncbi.nlm.nih.gov/pubmed/36990985
https://www.proquest.com/docview/2792195709
https://www.proquest.com/docview/2792902318
https://pubmed.ncbi.nlm.nih.gov/PMC10060223
https://doaj.org/article/97af2945e05243f29b5f2a037ef82c78
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGJtBeEN8ERmUk3iCQD9uxHxDqqpWpEhMCKvUtshMbKnXJaDPB_nvunA8odLykUeJEV99dfOe7-x0hLyxHRJWChVIyLMkBh9VYYAgvtLM6c9wWGNH9cCZO52y24Is90rc76iZws9O1w35S8_Xq9c_vV-9A4d-2JePyzYZ5dYfVB9QF_PMQvKEDHy_CVL7O3Pdf5lSBQ8O62pndjx6SW6mAT7TC7sp_LFUe0X-XGfpvNuVfIVW_Uk3vkNudiUnHrUzcJXu2ukdutk0nr-6TH74nHj33wJoUq3Ix18WXN9Da0ZV1De3TDGlpz3VV0qpNFqfLDdUdP21JcQ-XXtSbJlxZ3HSD0YhH0WzosqJDXhLtsuEfkPn05MvkNOzaL4QFZ3ETukwLZ2ViIgFammaa8cIkRgujnAO7QhiRqEKLOBYarJrEKp3IUiiEPGOF0elDsl_VlX1MqGJGZGkpBU8s2G-lEUZG-HLBnS5SGZC4n-m86LDJsUXGKvcx8lTmLaNyYFTuGZXHAXk5PHPRInP8d_QxMnAYiaja_kK9_pp3SpqrTLtEMW4jnrAUTg13iY7SzML_LTIg86hnf95Lao4IjLHiWaQC8ny4DUqKkRdd2fqyHaMQaQ9e8aiVloGSXtoCIrfkaIvU7TvV8psHAo8RTQfsu4C86kXuN13Xz8WTa2l4Sg4T1IUI-_sdkf1mfWmfgdHVmBG5kS0yOMrp-xE5GI9nn2fwe3xy9vETXJ2IychvZ4y8xv0CDZws5A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVoheEG8WChgJThA1cWzHPlSIQqstbVcItVJvxnYcutI2WZpUVf8cvw2P86iWR2-9RYljOZ7xzGQe3yD0xjFAVLE0EoJCSY7_YTXOE4RZXTidFcxZiOgeTPnkiH45Zscr6FdfCwNplb1MDII6ryz4yDcA6C6RLIvlh8XPCLpGQXS1b6Ghu9YK-WaAGOsKO_bc5YX_has3dz97er8lZGf78NMk6roMRJbRpImKTPPCCWJi7pkxzTRl1hCjuZFF4dUnN5xIq3mScO2VN3FSE5FzCche1Bqd-nlvoVUKDpQRWt3ann79Nnh5AH9dUNpV68Sp2KhpkE1eVfqznaZxlCxpxNA44F_W7t9Jm39EboNC3LmH7naWLP7Yst59tOLKB-h229vy8iG6CK338GnA78RQ_AspNaGKAlcFnruiwX02I87dqS5zXLY56XhWY92xjcsxuIrxoqqbaO7At-dHA-xFU-NZiYf0J9wl3T9CRzey_4_RqKxK9xRhSQ3P0lxwRpw3E3PDjYhhcs4KbVMxRkm_08p2EOjQiWOuQig-FaqljvLUUYE6Khmjd8M7ixYA5NrRW0DAYSSAd4cb1dkP1ckCJTNdEEmZixmhqb80rCA6TjPnv9dmfpnrPflVJ1FqdcX_Y_R6eOxlAQR4dOmq83aMBEA_P8WTlluGlaTc2x1SsDESS3y0tNTlJ-XsJOCNJwDa483IMXrfs9zVuv6_F8-u_4xX6M7k8GBf7e9O956jNQInIoa-guto1Jyduxfe2GvMy-5EYfT9pg_xb9R3Zgc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChgJThBt4ncOCAFl1VKoOFBpb8ZObFhpmyxNqqp_jV-Hx3lUy6O33qLEsRzPM56ZbxB67jggqhQsUYpBSU74YbUuEIQXxjsjPXcFRHQ_H4jdQ_Zxzucb6NdQCwNplYNOjIq6rAs4I58C0F2Wc5nmU9-nRXzZmb1Z_UyggxREWod2Gh2L7Luz0_D71rze2wm0fkHI7MPX97tJ32EgKTjL2sRLI7xTxKYiMCKVhvHCEmuEzb0PplNYQfLCiCwTJhhu4nJDVClyQPVihTU0zHsFXZWUMWgbIedyPN8B5HXFWF-nk1I1bVjUSsFIBqmmNE2yNVsYWwb8y8_9O13zj5htNIWzW-hm78Pitx3T3UYbrrqDrnVdLc_uotPYdA8fReRODGW_kEwT6ydw7fHS-RYPeYy4dEemKnHVZaPjRYNNzzCuxHBIjFd10yZLB6d6YTQAXrQNXlR4THzCfbr9PXR4Kbt_H21WdeUeIJwzKyQtleDEBQextMKqFCYX3JuCqgnKhp3WRQ9-Dj04ljoG4anSHXV0oI6O1NHZBL0c31l10B8Xjn4HBBxHAmx3vFEff9e9FtC5NJ7kjLuUE0bDpeWemJRKF763kGGZ2wP5da9LGn3O-RP0bHwctACEdkzl6pNuTA5QfmGKrY5bxpVQETyOXPEJUmt8tLbU9SfV4kdEGs8Aric4kBP0amC583X9fy8eXvwZT9H1ILr6097B_iN0g4BApNBQcBtttscn7nHw8lr7JIoTRt8uW35_AwnSY6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=White+matter+disconnection+of+left+multiple+demand+network+is+associated+with+post-lesion+deficits+in+cognitive+control&rft.jtitle=Nature+communications&rft.au=Jiang%2C+Jiefeng&rft.au=Bruss%2C+Joel&rft.au=Lee%2C+Woo-Tek&rft.au=Tranel%2C+Daniel&rft.date=2023-03-29&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=1740&rft_id=info:doi/10.1038%2Fs41467-023-37330-1&rft_id=info%3Apmid%2F36990985&rft.externalDocID=36990985
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon