Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells
Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 19837 - 17 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
27.08.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-70791-y |
Cover
Abstract | Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between − 5.0 and − 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC
50
values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis. |
---|---|
AbstractList | Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between − 5.0 and − 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC
50
values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis. Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between − 5.0 and − 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis. Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis.Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis. Abstract Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between − 5.0 and − 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC50 values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis. Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of chemotherapeutic agents. This study focuses on evaluating aprepitant-loaded PLGA and Eudragit RS 100 nanoparticles for their potential antiangiogenic effects. Characterization studies revealed that aprepitant-loaded nanoparticles exhibited particle sizes ranging from 208.50 to 238.67 nm, with monodisperse distributions (PDI < 0.7) and stable zeta potentials (between - 5.0 and - 15.0 mV). Encapsulation efficiencies exceeding 99% were achieved, highlighting the efficacy of PLGA and Eudragit RS 100 as carriers for aprepitant. Cellular uptake studies demonstrated enhanced internalization of aprepitant-loaded nanoparticles by HUVEC cells compared to free aprepitant, as confirmed by fluorescence microscopy. Furthermore, cytotoxicity assays revealed significant dose-dependent effects of aprepitant-loaded nanoparticles on HUVEC cell viability, with IC values at 24 h of 11.9 µg/mL for Eudragit RS 100 and 94.3 µg/mL for PLGA formulations. Importantly, these nanoparticles effectively inhibited HUVEC cell migration and invasion induced by M2c supernatant, as evidenced by real-time cell analysis and gene expression studies. Moreover, aprepitant-loaded nanoparticles downregulated VEGFA and VEGFB gene expressions and reduced VEGFR-2 protein levels in HUVEC cells, highlighting their potential as antiangiogenic agents. Overall, this research underscores the promise of nanoparticle-based aprepitant formulations in targeted cancer therapy, offering enhanced therapeutic outcomes through improved drug delivery and efficacy against angiogenesis. |
ArticleNumber | 19837 |
Author | Engür-Öztürk, Selin Dikmen, Miriş Öztürk, Ahmet Alper Kaya-Tilki, Elif |
Author_xml | – sequence: 1 givenname: Elif surname: Kaya-Tilki fullname: Kaya-Tilki, Elif email: elif_kaya@anadolu.edu.tr organization: Department of Pharmacology, Faculty of Pharmacy, Anadolu University – sequence: 2 givenname: Ahmet Alper surname: Öztürk fullname: Öztürk, Ahmet Alper organization: Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University – sequence: 3 givenname: Selin surname: Engür-Öztürk fullname: Engür-Öztürk, Selin organization: Department of Pharmacy Services, Tavas Vocational School of Health Services, Pamukkale University – sequence: 4 givenname: Miriş surname: Dikmen fullname: Dikmen, Miriş organization: Department of Pharmacology, Faculty of Pharmacy, Anadolu University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39191829$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhSNUREvpH2CBIrFhE_AjTuwVQlWBSpVYwN6a2ON7XSX2xU4q3X9f30eh7aLe2Bp_5-hoZt5WJyEGrKr3lHymhMsvuaVCyYawtulJr2izfVWdMdKKhnHGTh69T6uLnG9JOYKplqo31SlXVFHJ1Fk1XYU1BIO2hjD7BsLKxxUGb2p0Ds2c6-hq2CTc-LkQzRjBFjhAiBtIszcj5tqHer1MEOplGvzoDYz1HZYiBhvnNY6-FAyOY35XvXYwZrw43ufV7-9Xfy5_Nje_flxffrtpjGjp3CB2PbQIA-3IILoOjXVIcBAt4aaXYJ0jjGDvpLBGcqYGaTigdbyzDvh5dX1wtRFu9Sb5CdJWR_B6X4hppY_RNW-B9Z1SUqq-FRZByc6gUMoI5oDtvL4evDbLMKE1GOYE4xPTpz_Br_Uq3mlKeauk4sXh09Ehxb8L5llPPu-6AQHjkjUnqpeCtpwU9OMz9DYuKZRO7amOKUL6Qn14HOlfloehFkAeAJNizgmdNmV4s4-7hH7UlOjdCunDCumyQnq_QnpbpOyZ9MH9RRE_iHKBwwrT_9gvqO4BAyrcWQ |
CitedBy_id | crossref_primary_10_1016_j_jddst_2025_106721 |
Cites_doi | 10.3109/08923973.2015.1122616 10.3390/polym11101632 10.1073/pnas.2023829118 10.3322/caac.20075 10.1007/s10616-021-00498-9 10.1371/journal.pcbi.1007493 10.3389/fonc.2016.00152 10.1038/nature04483 10.3109/03639045.2012.737331 10.1016/j.phrs.2012.10.022 10.1038/s41598-018-36394-0 10.1016/j.jddst.2021.102580 10.1016/j.cellsig.2007.05.013 10.2147/IJN.S132780 10.1016/j.jsps.2011.04.001 10.3390/cancers12092682 10.1039/c2jm31794j 10.4314/tjpr.v18i1.1 10.1177/1087057113499405 10.1038/labinvest.3780013 10.1080/03639045.2020.1755304 10.1042/BJ20110301 10.1007/s10616-014-9692-5 10.1088/1361-6528/ac1098 10.1158/1078-0432.CCR-07-2141 10.1007/s12038-015-9530-8 10.1016/j.jddst.2019.101240 10.1007/s00018-005-5426-3 10.1007/s11033-022-07329-w 10.3389/fimmu.2019.00792 10.1080/03639045.2019.1665061 10.1016/j.phrs.2019.01.013 10.4172/pharmaceutical-sciences.1000200 10.1634/theoncologist.6-suppl_5-32 10.1007/s11051-015-2875-y 10.1016/j.neuroscience.2013.12.027 10.1080/17843286.2017.1302623 10.1016/j.colsurfb.2014.09.002 10.4274/tjps.galenos.2018.34392 10.1208/s12249-013-0044-0 10.1038/srep14273 10.1177/0885328213486705 10.3390/nu9030249 10.1039/c000022a 10.1016/j.jddst.2022.103139 10.3390/ijms19061801 10.1016/j.mimet.2008.03.002 10.1016/S0939-6411(00)00087-4 10.21769/BioProtoc.2646 10.1016/j.jconrel.2008.12.018 10.1007/s10456-017-9552-y 10.2174/1386207323666200325155020 10.18632/oncotarget.5325 10.1002/mnfr.201500407 10.2174/1574892816666211013113841 10.2174/138945011795528796 10.1038/s41565-021-00858-8 10.1089/adt.2020.1014 10.1016/j.joen.2013.11.021 10.1016/j.ijpharm.2023.123136 10.1074/jbc.274.43.31047 10.1016/j.jconrel.2015.11.003 10.12991/jrp.2019.150 10.23893/1307-2080.APS.05627 10.3390/sci1020048 10.1007/s11033-021-06928-3 10.1371/journal.pone.0260633 10.1155/2022/8082608 10.1038/nmeth.f.263 10.35333/jrp.2020.115 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-70791-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_34a27699889745dea986ce599c52fa2a PMC11349893 39191829 10_1038_s41598_024_70791_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Anadolu Üniversitesi grantid: 2103S115 funderid: http://dx.doi.org/10.13039/501100008770 – fundername: Anadolu Üniversitesi grantid: 2103S115 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-ee67a4eab160b566ecdfe0eb5403c78adff020e7f85dc8329b8c3aedf36dfa3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:25:10 EDT 2025 Thu Aug 21 18:32:05 EDT 2025 Fri Sep 05 10:45:17 EDT 2025 Wed Aug 13 09:50:22 EDT 2025 Wed Feb 19 02:09:46 EST 2025 Tue Jul 01 03:22:50 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:40:04 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Aprepitant THP-1 HUVEC Anti-angiogenesis M2c |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-ee67a4eab160b566ecdfe0eb5403c78adff020e7f85dc8329b8c3aedf36dfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-70791-y |
PMID | 39191829 |
PQID | 3097629007 |
PQPubID | 2041939 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_34a27699889745dea986ce599c52fa2a pubmedcentral_primary_oai_pubmedcentral_nih_gov_11349893 proquest_miscellaneous_3097851430 proquest_journals_3097629007 pubmed_primary_39191829 crossref_citationtrail_10_1038_s41598_024_70791_y crossref_primary_10_1038_s41598_024_70791_y springer_journals_10_1038_s41598_024_70791_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-27 |
PublicationDateYYYYMMDD | 2024-08-27 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Muñoz, Coveñas, Esteban, Redondo (CR7) 2015; 40 Öztürk, Namlı, Güleç, Görgülü (CR28) 2020; 23 Bardelli (CR51) 2013; 68 Ridhurkar (CR57) 2013; 39 Figueiredo (CR65) 2021; 118 Dikmen, Canturk, Tilki, Engur (CR32) 2017; 79 Yao, Xu, Jin (CR10) 2019; 10 Engür, Dikmen, Öztürk (CR37) 2016; 38 Jiménez-López (CR29) 2019; 141 CR36 Holmes, Roberts, Thomas, Cross (CR76) 2007; 19 Rixe, Fojo (CR3) 2007; 13 Rizwanullah (CR6) 2023; 642 CR30 Müller, Mäder, Gohla (CR41) 2000; 50 Liu, Lin, Qin (CR64) 2010; 10 Giles (CR69) 2001; 6 Öztürk, Yenilmez, Şenel, Kıyan, Güven (CR19) 2020; 46 Schneider (CR50) 2014; 40 Nagarwal, Kant, Singh, Maiti, Pandit (CR15) 2009; 136 Öztürk, Kirimlioğlu (CR43) 2019; 23 Cines (CR72) 1998; 91 Mudshinge, Deore, Patil, Bhalgat (CR14) 2011; 19 Ramjiawan, Griffioen, Duda (CR9) 2017; 20 Akkouch, Zhang, Rouabhia (CR48) 2014; 28 Cerezo, Winterbone, Moyle, Needs, Kroon (CR77) 2015; 59 Rennick, Johnston, Parton (CR46) 2021; 16 Cebe-Suarez, Zehnder-Fjällman, Ballmer-Hofer (CR66) 2006; 63 Rizwanullah, Perwez, Mir, Rizvi, Amin (CR5) 2021; 32 Alper Öztürk, Namlı, Aygül (CR21) 2021; 19 Kriplani, Guarve (CR59) 2022; 17 Muñoz, Coveñas (CR4) 2020; 12 Saraf, Dubey, Dubey, Sharma (CR60) 2021; 64 Harford-Wright, Lewis, Vink, Ghabriel (CR52) 2014; 261 Cerezo, Hornedo-Ortega, Álvarez-Fernández, Troncoso, García-Parrilla (CR61) 2017; 9 Roshan Moniri (CR35) 2015; 67 Engür, Dikmen (CR34) 2017; 72 Ren, Zhou, Wei, Li, Chen (CR13) 2014; 15 Kaya Tilki, Engür Öztürk, Özarda, Cantürk, Dikmen (CR31) 2021; 73 Farzaneh Behelgardi, Zahri, Mashayekhi, Mansouri, Asghari (CR74) 2018; 8 Pettersson (CR73) 2000; 80 Ngamwongsatit, Banada, Panbangred, Bhunia (CR49) 2008; 73 Bernatchez, Soker, Sirois (CR71) 1999; 274 Atri, Guerfali, Laouini (CR11) 2018; 19 Lin (CR47) 2016; 221 Martín-Banderas (CR20) 2014; 123 Öztürk, Martin-Banderas, Cayero-Otero, Yenilmez, Yazan (CR17) 2018; 37 CR56 Ferrara, Kerbel (CR75) 2005; 438 CR55 CR54 Horman, To, Orth (CR63) 2013; 18 Dulak (CR68) 2005; 56 Munoz, Rosso, Covenas (CR8) 2011; 12 Shen, Wu, Liu, Wu (CR44) 2017; 12 Lin (CR12) 2015; 6 Öztürk, Yenilmez, Özarda (CR16) 2019; 11 Şenel, Öztürk (CR18) 2019; 45 Ekinci, Öztürk, Santos-Oliveira, İlem-Özdemir (CR22) 2022; 69 CR27 CR25 CR24 Serkova, Eckhardt (CR2) 2016; 6 Öztürk, Aygül, Şenel (CR23) 2019; 54 Engür-Öztürk, Dikmen (CR39) 2022; 49 Emami, Mohiti, Hamishehkar, Varshosaz (CR40) 2015; 10 Yuan (CR38) 2015; 5 Durán-Lobato, Martín-Banderas, Gonçalves, Fernández-Arévalo, Almeida (CR45) 2015; 17 Cook, Figg (CR67) 2010; 60 Anttila (CR1) 2019; 15 Öztürk (CR26) 2019; 18 Yurtdaş Kırımlıoğlu, Öztürk (CR42) 2020; 17 CR62 Hamidi, Lilja, Ivaska (CR53) 2017; 7 Anirudhan, Sandeep (CR58) 2012; 22 Canturk, Artagan, Dıkmen (CR33) 2016; 25 Koch, Tugues, Li, Gualandi, Claesson-Welsh (CR70) 2011; 437 H Hamidi (70791_CR53) 2017; 7 RR Ramjiawan (70791_CR9) 2017; 20 C Atri (70791_CR11) 2018; 19 AA Öztürk (70791_CR16) 2019; 11 Z Canturk (70791_CR33) 2016; 25 P Ngamwongsatit (70791_CR49) 2008; 73 Y Yao (70791_CR10) 2019; 10 M Roshan Moniri (70791_CR35) 2015; 67 AM Figueiredo (70791_CR65) 2021; 118 M Rizwanullah (70791_CR6) 2023; 642 E Harford-Wright (70791_CR52) 2014; 261 O Rixe (70791_CR3) 2007; 13 SR Mudshinge (70791_CR14) 2011; 19 M Durán-Lobato (70791_CR45) 2015; 17 AA Öztürk (70791_CR28) 2020; 23 S Engür (70791_CR34) 2017; 72 AB Cerezo (70791_CR61) 2017; 9 70791_CR30 M Muñoz (70791_CR7) 2015; 40 A Saraf (70791_CR60) 2021; 64 AB Cerezo (70791_CR77) 2015; 59 S Shen (70791_CR44) 2017; 12 70791_CR36 RC Nagarwal (70791_CR15) 2009; 136 AA Öztürk (70791_CR17) 2018; 37 FJ Giles (70791_CR69) 2001; 6 A Yuan (70791_CR38) 2015; 5 S Engür (70791_CR37) 2016; 38 AA Öztürk (70791_CR43) 2019; 23 J Dulak (70791_CR68) 2005; 56 L Lin (70791_CR12) 2015; 6 KM Cook (70791_CR67) 2010; 60 DN Ridhurkar (70791_CR57) 2013; 39 S Cebe-Suarez (70791_CR66) 2006; 63 PN Bernatchez (70791_CR71) 1999; 274 L Martín-Banderas (70791_CR20) 2014; 123 J Jiménez-López (70791_CR29) 2019; 141 M Dikmen (70791_CR32) 2017; 79 70791_CR62 C Bardelli (70791_CR51) 2013; 68 M Farzaneh Behelgardi (70791_CR74) 2018; 8 SR Horman (70791_CR63) 2013; 18 T Liu (70791_CR64) 2010; 10 G Yurtdaş Kırımlıoğlu (70791_CR42) 2020; 17 70791_CR27 M Munoz (70791_CR8) 2011; 12 70791_CR25 70791_CR24 AA Öztürk (70791_CR26) 2019; 18 A Alper Öztürk (70791_CR21) 2021; 19 A Pettersson (70791_CR73) 2000; 80 E Kaya Tilki (70791_CR31) 2021; 73 A Akkouch (70791_CR48) 2014; 28 R Schneider (70791_CR50) 2014; 40 NJ Serkova (70791_CR2) 2016; 6 T-T Lin (70791_CR47) 2016; 221 K Holmes (70791_CR76) 2007; 19 70791_CR54 DB Cines (70791_CR72) 1998; 91 S Koch (70791_CR70) 2011; 437 AA Öztürk (70791_CR19) 2020; 46 S Engür-Öztürk (70791_CR39) 2022; 49 AA Öztürk (70791_CR23) 2019; 54 JV Anttila (70791_CR1) 2019; 15 J Emami (70791_CR40) 2015; 10 70791_CR56 P Kriplani (70791_CR59) 2022; 17 M Rizwanullah (70791_CR5) 2021; 32 70791_CR55 TS Anirudhan (70791_CR58) 2012; 22 L Ren (70791_CR13) 2014; 15 M Muñoz (70791_CR4) 2020; 12 B Şenel (70791_CR18) 2019; 45 M Ekinci (70791_CR22) 2022; 69 RH Müller (70791_CR41) 2000; 50 N Ferrara (70791_CR75) 2005; 438 JJ Rennick (70791_CR46) 2021; 16 |
References_xml | – volume: 38 start-page: 87 year: 2016 end-page: 97 ident: CR37 article-title: Comparison of antiproliferative and apoptotic effects of a novel proteasome inhibitor MLN2238 with bortezomib on K562 chronic myeloid leukemia cells publication-title: Immunopharmacol. Immunotoxicol. doi: 10.3109/08923973.2015.1122616 – volume: 11 start-page: 1632 year: 2019 ident: CR16 article-title: Clarithromycin-loaded poly (lactic-co-glycolic acid)(PLGA) nanoparticles for oral administration: effect of polymer molecular weight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial effects publication-title: Polymers (Basel) doi: 10.3390/polym11101632 – volume: 118 year: 2021 ident: CR65 article-title: Endothelial cell invasion is controlled by dactylopodia publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2023829118 – volume: 60 start-page: 222 year: 2010 end-page: 243 ident: CR67 article-title: Angiogenesis inhibitors: Current strategies and future prospects publication-title: CA Cancer J. Clin. doi: 10.3322/caac.20075 – volume: 73 start-page: 801 year: 2021 end-page: 813 ident: CR31 article-title: Investigation of the neuroprotective and neuritogenic effects of halotolerant Penicillium flavigenum-derived sorbicillin-like compounds on PC-12 Adh cells publication-title: Cytotechnology doi: 10.1007/s10616-021-00498-9 – volume: 56 start-page: 51 year: 2005 end-page: 69 ident: CR68 article-title: Nutraceuticals as anti-angiogenic agents: Hopes and reality publication-title: J. Physiol. Pharmacol. Suppl. – volume: 15 year: 2019 ident: CR1 article-title: Contrasting the impact of cytotoxic and cytostatic drug therapies on tumour progression publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007493 – volume: 6 start-page: 152 year: 2016 ident: CR2 article-title: Metabolic imaging to assess treatment response to cytotoxic and cytostatic agents publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00152 – ident: CR54 – volume: 438 start-page: 967 year: 2005 end-page: 974 ident: CR75 article-title: Angiogenesis as a therapeutic target publication-title: Nature doi: 10.1038/nature04483 – volume: 39 start-page: 1783 year: 2013 end-page: 1792 ident: CR57 article-title: Inclusion complex of aprepitant with cyclodextrin: Evaluation of physico-chemical and pharmacokinetic properties publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2012.737331 – volume: 91 start-page: 3527 year: 1998 end-page: 3561 ident: CR72 article-title: Endothelial cells in physiology and in the pathophysiology of vascular disorders publication-title: Blood J. Am. Soc. Hematol. – volume: 68 start-page: 24 year: 2013 end-page: 30 ident: CR51 article-title: Recurrent major depressive disorder: imbalance of neurokinin (NK)-1 and NK-2 receptor expression in monocytes publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2012.10.022 – ident: CR25 – volume: 8 start-page: 17924 year: 2018 ident: CR74 article-title: A peptide mimicking the binding sites of VEGF-A and VEGF-B inhibits VEGFR-1/-2 driven angiogenesis, tumor growth and metastasis publication-title: Sci. Rep. doi: 10.1038/s41598-018-36394-0 – volume: 37 start-page: 1730 year: 2018 end-page: 1741 ident: CR17 article-title: New approach to hypertension treatment: Carvediol-loaded PLGA nanoparticles, preparation, in vitro characterization and gastrointestinal stability publication-title: Lat. Am. J. Pharm. – volume: 64 year: 2021 ident: CR60 article-title: Enhancement of cytotoxicty of diallyl disulfide toward colon cancer by Eudragit S100/PLGA nanoparticles publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102580 – volume: 19 start-page: 2003 year: 2007 end-page: 2012 ident: CR76 article-title: Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.05.013 – volume: 12 start-page: 4085 year: 2017 ident: CR44 article-title: High drug-loading nanomedicines: Progress, current status, and prospects publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S132780 – volume: 19 start-page: 129 year: 2011 end-page: 141 ident: CR14 article-title: Nanoparticles: Emerging carriers for drug delivery publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2011.04.001 – volume: 12 start-page: 2682 year: 2020 ident: CR4 article-title: The neurokinin-1 receptor antagonist aprepitant: An intelligent bullet against cancer? publication-title: Cancers (Basel) doi: 10.3390/cancers12092682 – volume: 22 start-page: 12888 year: 2012 end-page: 12899 ident: CR58 article-title: Synthesis, characterization, cellular uptake and cytotoxicity of a multi-functional magnetic nanocomposite for the targeted delivery and controlled release of doxorubicin to cancer cells publication-title: J. Mater. Chem. doi: 10.1039/c2jm31794j – volume: 18 start-page: 1 year: 2019 end-page: 11 ident: CR26 article-title: Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: Preparation, in vitro characterization and cyctotoxity publication-title: Trop. J. Pharm. Res. doi: 10.4314/tjpr.v18i1.1 – volume: 18 start-page: 1298 year: 2013 end-page: 1308 ident: CR63 article-title: An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics publication-title: J. Biomol. Screen doi: 10.1177/1087057113499405 – volume: 80 start-page: 99 year: 2000 end-page: 115 ident: CR73 article-title: Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor publication-title: Lab. Investig. doi: 10.1038/labinvest.3780013 – volume: 46 start-page: 682 year: 2020 end-page: 695 ident: CR19 article-title: Effect of different molecular weight PLGA on flurbiprofen nanoparticles: Formulation, characterization, cytotoxicity, and in vivo anti-inflammatory effect by using HET-CAM assay publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2020.1755304 – volume: 437 start-page: 169 year: 2011 end-page: 183 ident: CR70 article-title: Signal transduction by vascular endothelial growth factor receptors publication-title: Biochem. J. doi: 10.1042/BJ20110301 – ident: CR36 – volume: 67 start-page: 379 year: 2015 end-page: 386 ident: CR35 article-title: Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA) publication-title: Cytotechnology doi: 10.1007/s10616-014-9692-5 – volume: 32 year: 2021 ident: CR5 article-title: Exemestane encapsulated polymer-lipid hybrid nanoparticles for improved efficacy against breast cancer: Optimization, in vitro characterization and cell culture studies publication-title: Nanotechnology doi: 10.1088/1361-6528/ac1098 – volume: 13 start-page: 7280 year: 2007 end-page: 7287 ident: CR3 article-title: Is cell death a critical end point for anticancer therapies or is cytostasis sufficient? publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-2141 – volume: 40 start-page: 441 year: 2015 end-page: 463 ident: CR7 article-title: The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs publication-title: J. Biosci. doi: 10.1007/s12038-015-9530-8 – volume: 54 year: 2019 ident: CR23 article-title: Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2019.101240 – volume: 10 start-page: 17 year: 2015 ident: CR40 article-title: Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design publication-title: Res. Pharm. Sci. – volume: 63 start-page: 601 year: 2006 end-page: 615 ident: CR66 article-title: The role of VEGF receptors in angiogenesis; complex partnerships publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-005-5426-3 – volume: 49 start-page: 4777 year: 2022 end-page: 4793 ident: CR39 article-title: Proteasome inhibitor immunotherapy for the epithelial to mesenchymal transition: assessing the A549 lung cancer cell microenvironment and the role of M1, M2a and M2c ‘hydrocortisone-polarised’macrophages publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-022-07329-w – volume: 10 start-page: 792 year: 2019 ident: CR10 article-title: Macrophage polarization in physiological and pathological pregnancy publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00792 – volume: 45 start-page: 1835 year: 2019 end-page: 1848 ident: CR18 article-title: New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1665061 – volume: 141 start-page: 451 year: 2019 end-page: 465 ident: CR29 article-title: A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.01.013 – volume: 79 start-page: 49 year: 2017 end-page: 57 ident: CR32 article-title: Evaluation of antiangiogenic and antimetastatic Effects of Penicillium chrysogenum Secondary Metabolites publication-title: Indian J. Pharm. Sci. doi: 10.4172/pharmaceutical-sciences.1000200 – volume: 6 start-page: 32 year: 2001 end-page: 39 ident: CR69 article-title: The vascular endothelial growth factor (VEGF) signaling pathway: A therapeutic target in patients with hematologic malignancies publication-title: Oncologist doi: 10.1634/theoncologist.6-suppl_5-32 – volume: 17 start-page: 1 year: 2015 end-page: 17 ident: CR45 article-title: Comparative study of chitosan-and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-015-2875-y – volume: 261 start-page: 85 year: 2014 end-page: 94 ident: CR52 article-title: Evaluating the role of substance P in the growth of brain tumors publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.12.027 – ident: CR30 – volume: 72 start-page: 391 year: 2017 end-page: 398 ident: CR34 article-title: The evaluation of the anti-cancer activity of ixazomib on Caco2 colon solid tumor cells, comparison with bortezomib publication-title: Acta Clin. Belg. doi: 10.1080/17843286.2017.1302623 – volume: 123 start-page: 114 year: 2014 end-page: 122 ident: CR20 article-title: Engineering of Δ9-tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2014.09.002 – volume: 17 start-page: 27 year: 2020 end-page: 35 ident: CR42 article-title: Levocetirizine dihydrochloride-loaded chitosan nanoparticles: Formulation and ın vitro evaluation publication-title: Turk. J. Pharm. Sci. doi: 10.4274/tjps.galenos.2018.34392 – volume: 15 start-page: 121 year: 2014 end-page: 130 ident: CR13 article-title: Preparation and pharmacokinetic study of aprepitant–sulfobutyl ether-β-cyclodextrin complex publication-title: AAPS PharmSciTech doi: 10.1208/s12249-013-0044-0 – volume: 5 start-page: 14273 year: 2015 ident: CR38 article-title: Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression publication-title: Sci. Rep. doi: 10.1038/srep14273 – volume: 23 start-page: 897 year: 2019 end-page: 913 ident: CR43 article-title: Preparation and in vitro characterization of lamivudine loaded nanoparticles prepared by acid and/or ester terminated PLGA for effective oral anti-retroviral therapy publication-title: J. Res. Pharm. – volume: 28 start-page: 922 year: 2014 end-page: 936 ident: CR48 article-title: Engineering bone tissue using human dental pulp stem cells and an osteogenic collagen-hydroxyapatite-poly (l-lactide-co-ɛ-caprolactone) scaffold publication-title: J. Biomater. Appl. doi: 10.1177/0885328213486705 – volume: 9 start-page: 249 year: 2017 ident: CR61 article-title: Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive indolic compounds publication-title: Nutrients doi: 10.3390/nu9030249 – volume: 10 start-page: 1671 year: 2010 end-page: 1677 ident: CR64 article-title: Carcinoma-associated fibroblasts promoted tumor spheroid invasion on a microfluidic 3D co-culture device publication-title: Lab. Chip doi: 10.1039/c000022a – ident: CR56 – volume: 69 year: 2022 ident: CR22 article-title: The use of Lamivudine-loaded PLGA nanoparticles in the diagnosis of lung cancer: Preparation, characterization, radiolabeling with 99mTc and cell binding publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2022.103139 – ident: CR27 – volume: 19 start-page: 1801 year: 2018 ident: CR11 article-title: Role of human macrophage polarization in inflammation during infectious diseases publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19061801 – volume: 73 start-page: 211 year: 2008 end-page: 215 ident: CR49 article-title: WST-1-based cell cytotoxicity assay as a substitute for MTT-based assay for rapid detection of toxigenic Bacillus species using CHO cell line publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2008.03.002 – volume: 50 start-page: 161 year: 2000 end-page: 177 ident: CR41 article-title: Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(00)00087-4 – volume: 7 start-page: e2646 year: 2017 ident: CR53 article-title: Using xCELLigence RTCA instrument to measure cell adhesion publication-title: Bio. Protoc. doi: 10.21769/BioProtoc.2646 – volume: 136 start-page: 2 year: 2009 end-page: 13 ident: CR15 article-title: Polymeric nanoparticulate system: A potential approach for ocular drug delivery publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2008.12.018 – volume: 20 start-page: 185 year: 2017 end-page: 204 ident: CR9 article-title: Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? publication-title: Angiogenesis doi: 10.1007/s10456-017-9552-y – volume: 23 start-page: 1064 year: 2020 end-page: 1079 ident: CR28 article-title: Design of lamivudine loaded nanoparticles for oral application by nano spray drying method: A new approach to use an antiretroviral drug for lung cancer treatment publication-title: Comb. Chem. High Throughput Screen doi: 10.2174/1386207323666200325155020 – volume: 6 start-page: 34758 year: 2015 ident: CR12 article-title: CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.5325 – volume: 59 start-page: 2119 year: 2015 end-page: 2131 ident: CR77 article-title: Molecular structure-function relationship of dietary polyphenols for inhibiting VEGF-induced VEGFR-2 activity publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201500407 – volume: 17 start-page: 92 year: 2022 end-page: 101 ident: CR59 article-title: Eudragit, a nifty polymer for anticancer preparations: A patent review publication-title: Recent Pat. Anticancer Drug Discov. doi: 10.2174/1574892816666211013113841 – volume: 12 start-page: 909 year: 2011 end-page: 921 ident: CR8 article-title: The NK-1 receptor: A new target in cancer therapy publication-title: Curr. Drug Targets doi: 10.2174/138945011795528796 – volume: 25 start-page: 6190 year: 2016 end-page: 6197 ident: CR33 article-title: Anticancer effects of secondary metabolites of Penicillium chrysogenum var. chrysogenum on colon adenocarcinoma cells publication-title: Fresenius Environ. Bull. – ident: CR55 – volume: 16 start-page: 266 year: 2021 end-page: 276 ident: CR46 article-title: Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00858-8 – volume: 19 start-page: 156 year: 2021 end-page: 175 ident: CR21 article-title: Cefaclor monohydrate-loaded colon-targeted nanoparticles for use in COVID-19 dependent coinfections and intestinal symptoms: Formulation, characterization, release kinetics, and antimicrobial activity publication-title: Assay Drug Dev. Technol. doi: 10.1089/adt.2020.1014 – volume: 40 start-page: 931 year: 2014 end-page: 936 ident: CR50 article-title: White mineral trioxide aggregate induces migration and proliferation of stem cells from the apical papilla publication-title: J. Endod. doi: 10.1016/j.joen.2013.11.021 – ident: CR62 – volume: 642 year: 2023 ident: CR6 article-title: Polymer-lipid hybrid nanoparticles of exemestane for improved oral bioavailability and anti-tumor efficacy: An extensive preclinical investigation publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2023.123136 – ident: CR24 – volume: 274 start-page: 31047 year: 1999 end-page: 31054 ident: CR71 article-title: Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.43.31047 – volume: 221 start-page: 62 year: 2016 end-page: 70 ident: CR47 article-title: Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2015.11.003 – volume: 72 start-page: 391 year: 2017 ident: 70791_CR34 publication-title: Acta Clin. Belg. doi: 10.1080/17843286.2017.1302623 – volume: 19 start-page: 156 year: 2021 ident: 70791_CR21 publication-title: Assay Drug Dev. Technol. doi: 10.1089/adt.2020.1014 – volume: 10 start-page: 792 year: 2019 ident: 70791_CR10 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00792 – volume: 5 start-page: 14273 year: 2015 ident: 70791_CR38 publication-title: Sci. Rep. doi: 10.1038/srep14273 – volume: 56 start-page: 51 year: 2005 ident: 70791_CR68 publication-title: J. Physiol. Pharmacol. Suppl. – volume: 438 start-page: 967 year: 2005 ident: 70791_CR75 publication-title: Nature doi: 10.1038/nature04483 – volume: 17 start-page: 92 year: 2022 ident: 70791_CR59 publication-title: Recent Pat. Anticancer Drug Discov. doi: 10.2174/1574892816666211013113841 – volume: 60 start-page: 222 year: 2010 ident: 70791_CR67 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.20075 – volume: 37 start-page: 1730 year: 2018 ident: 70791_CR17 publication-title: Lat. Am. J. Pharm. – volume: 68 start-page: 24 year: 2013 ident: 70791_CR51 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2012.10.022 – volume: 642 year: 2023 ident: 70791_CR6 publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2023.123136 – volume: 18 start-page: 1 year: 2019 ident: 70791_CR26 publication-title: Trop. J. Pharm. Res. doi: 10.4314/tjpr.v18i1.1 – volume: 123 start-page: 114 year: 2014 ident: 70791_CR20 publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2014.09.002 – volume: 437 start-page: 169 year: 2011 ident: 70791_CR70 publication-title: Biochem. J. doi: 10.1042/BJ20110301 – ident: 70791_CR25 doi: 10.12991/jrp.2019.150 – volume: 6 start-page: 34758 year: 2015 ident: 70791_CR12 publication-title: Oncotarget doi: 10.18632/oncotarget.5325 – volume: 19 start-page: 2003 year: 2007 ident: 70791_CR76 publication-title: Cell Signal doi: 10.1016/j.cellsig.2007.05.013 – volume: 6 start-page: 152 year: 2016 ident: 70791_CR2 publication-title: Front. Oncol. doi: 10.3389/fonc.2016.00152 – volume: 15 start-page: 121 year: 2014 ident: 70791_CR13 publication-title: AAPS PharmSciTech doi: 10.1208/s12249-013-0044-0 – volume: 69 year: 2022 ident: 70791_CR22 publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2022.103139 – volume: 12 start-page: 909 year: 2011 ident: 70791_CR8 publication-title: Curr. Drug Targets doi: 10.2174/138945011795528796 – volume: 7 start-page: e2646 year: 2017 ident: 70791_CR53 publication-title: Bio. Protoc. doi: 10.21769/BioProtoc.2646 – volume: 59 start-page: 2119 year: 2015 ident: 70791_CR77 publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201500407 – volume: 19 start-page: 129 year: 2011 ident: 70791_CR14 publication-title: Saudi Pharm. J. doi: 10.1016/j.jsps.2011.04.001 – volume: 12 start-page: 4085 year: 2017 ident: 70791_CR44 publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S132780 – volume: 221 start-page: 62 year: 2016 ident: 70791_CR47 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2015.11.003 – volume: 73 start-page: 801 year: 2021 ident: 70791_CR31 publication-title: Cytotechnology doi: 10.1007/s10616-021-00498-9 – volume: 54 year: 2019 ident: 70791_CR23 publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2019.101240 – volume: 15 year: 2019 ident: 70791_CR1 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1007493 – volume: 22 start-page: 12888 year: 2012 ident: 70791_CR58 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31794j – volume: 9 start-page: 249 year: 2017 ident: 70791_CR61 publication-title: Nutrients doi: 10.3390/nu9030249 – volume: 45 start-page: 1835 year: 2019 ident: 70791_CR18 publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2019.1665061 – volume: 11 start-page: 1632 year: 2019 ident: 70791_CR16 publication-title: Polymers (Basel) doi: 10.3390/polym11101632 – volume: 17 start-page: 1 year: 2015 ident: 70791_CR45 publication-title: J. Nanoparticle Res. doi: 10.1007/s11051-015-2875-y – volume: 40 start-page: 441 year: 2015 ident: 70791_CR7 publication-title: J. Biosci. doi: 10.1007/s12038-015-9530-8 – volume: 40 start-page: 931 year: 2014 ident: 70791_CR50 publication-title: J. Endod. doi: 10.1016/j.joen.2013.11.021 – volume: 73 start-page: 211 year: 2008 ident: 70791_CR49 publication-title: J. Microbiol. Methods doi: 10.1016/j.mimet.2008.03.002 – volume: 63 start-page: 601 year: 2006 ident: 70791_CR66 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-005-5426-3 – volume: 20 start-page: 185 year: 2017 ident: 70791_CR9 publication-title: Angiogenesis doi: 10.1007/s10456-017-9552-y – ident: 70791_CR24 doi: 10.23893/1307-2080.APS.05627 – volume: 17 start-page: 27 year: 2020 ident: 70791_CR42 publication-title: Turk. J. Pharm. Sci. doi: 10.4274/tjps.galenos.2018.34392 – volume: 8 start-page: 17924 year: 2018 ident: 70791_CR74 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36394-0 – volume: 25 start-page: 6190 year: 2016 ident: 70791_CR33 publication-title: Fresenius Environ. Bull. – volume: 50 start-page: 161 year: 2000 ident: 70791_CR41 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/S0939-6411(00)00087-4 – volume: 80 start-page: 99 year: 2000 ident: 70791_CR73 publication-title: Lab. Investig. doi: 10.1038/labinvest.3780013 – volume: 6 start-page: 32 year: 2001 ident: 70791_CR69 publication-title: Oncologist doi: 10.1634/theoncologist.6-suppl_5-32 – volume: 39 start-page: 1783 year: 2013 ident: 70791_CR57 publication-title: Drug Dev. Ind. Pharm. doi: 10.3109/03639045.2012.737331 – volume: 46 start-page: 682 year: 2020 ident: 70791_CR19 publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2020.1755304 – volume: 136 start-page: 2 year: 2009 ident: 70791_CR15 publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2008.12.018 – volume: 12 start-page: 2682 year: 2020 ident: 70791_CR4 publication-title: Cancers (Basel) doi: 10.3390/cancers12092682 – volume: 91 start-page: 3527 year: 1998 ident: 70791_CR72 publication-title: Blood J. Am. Soc. Hematol. – volume: 261 start-page: 85 year: 2014 ident: 70791_CR52 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2013.12.027 – volume: 64 year: 2021 ident: 70791_CR60 publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2021.102580 – volume: 13 start-page: 7280 year: 2007 ident: 70791_CR3 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-07-2141 – volume: 23 start-page: 1064 year: 2020 ident: 70791_CR28 publication-title: Comb. Chem. High Throughput Screen doi: 10.2174/1386207323666200325155020 – volume: 10 start-page: 17 year: 2015 ident: 70791_CR40 publication-title: Res. Pharm. Sci. – volume: 274 start-page: 31047 year: 1999 ident: 70791_CR71 publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.43.31047 – volume: 79 start-page: 49 year: 2017 ident: 70791_CR32 publication-title: Indian J. Pharm. Sci. doi: 10.4172/pharmaceutical-sciences.1000200 – ident: 70791_CR56 doi: 10.3390/sci1020048 – volume: 49 start-page: 4777 year: 2022 ident: 70791_CR39 publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-022-07329-w – volume: 28 start-page: 922 year: 2014 ident: 70791_CR48 publication-title: J. Biomater. Appl. doi: 10.1177/0885328213486705 – volume: 18 start-page: 1298 year: 2013 ident: 70791_CR63 publication-title: J. Biomol. Screen doi: 10.1177/1087057113499405 – ident: 70791_CR54 doi: 10.1007/s11033-021-06928-3 – volume: 10 start-page: 1671 year: 2010 ident: 70791_CR64 publication-title: Lab. Chip doi: 10.1039/c000022a – ident: 70791_CR30 doi: 10.1371/journal.pone.0260633 – volume: 19 start-page: 1801 year: 2018 ident: 70791_CR11 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19061801 – ident: 70791_CR55 doi: 10.1155/2022/8082608 – volume: 32 year: 2021 ident: 70791_CR5 publication-title: Nanotechnology doi: 10.1088/1361-6528/ac1098 – ident: 70791_CR62 doi: 10.1038/nmeth.f.263 – volume: 67 start-page: 379 year: 2015 ident: 70791_CR35 publication-title: Cytotechnology doi: 10.1007/s10616-014-9692-5 – ident: 70791_CR27 doi: 10.35333/jrp.2020.115 – volume: 38 start-page: 87 year: 2016 ident: 70791_CR37 publication-title: Immunopharmacol. Immunotoxicol. doi: 10.3109/08923973.2015.1122616 – volume: 118 year: 2021 ident: 70791_CR65 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2023829118 – volume: 23 start-page: 897 year: 2019 ident: 70791_CR43 publication-title: J. Res. Pharm. – volume: 141 start-page: 451 year: 2019 ident: 70791_CR29 publication-title: Pharmacol. Res. doi: 10.1016/j.phrs.2019.01.013 – volume: 16 start-page: 266 year: 2021 ident: 70791_CR46 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-021-00858-8 – ident: 70791_CR36 |
SSID | ssj0000529419 |
Score | 2.4735992 |
Snippet | Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of... Abstract Recent advancements in cancer therapy have led to the development of novel nanoparticle-based drug delivery systems aimed at enhancing the efficacy of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19837 |
SubjectTerms | 631/67/1059/153 692/4028/67/2328 Angiogenesis Angiogenesis Inhibitors - chemistry Angiogenesis Inhibitors - pharmacology Anti-angiogenesis Antiangiogenic agents Antineoplastic drugs Aprepitant Aprepitant - pharmacology Cancer therapies Cell migration Cell Movement - drug effects Cell Survival - drug effects Cell viability Chemotherapy Cytotoxicity Drug Carriers - chemistry Drug delivery Drug delivery systems Endothelial cells Fluorescence microscopy Gene expression Human Umbilical Vein Endothelial Cells - drug effects Humanities and Social Sciences Humans HUVEC Internalization M2c multidisciplinary Nanoparticles Nanoparticles - chemistry Particle Size Polylactic Acid-Polyglycolic Acid Copolymer - chemistry Polylactide-co-glycolide Science Science (multidisciplinary) THP-1 Umbilical vein Vascular Endothelial Growth Factor A - metabolism Vascular endothelial growth factor receptors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_rZ6SgTfNFzatGnyqHLHIeiLCvcW0mTiFfbS43ZX2P_eSdJdb_354mublvDNTPOlmfmGkJcgvZYYZUx1CnCDwnWKOc76brChhjAEn2qHP3yUp1_a92fd2bVWXyknrMgDF-CORGubXuKmQCHz7TxYrWQqHdKua4JtMjXiml_bTBVV70a3tZ6rZLhQR0tcqVI1WdOyJApXs83eSpQF-3_HMn9NlvzpxDQvRCd3yO2ZQdI3ZeZ3yQ2I98jN0lNyc59cHMfzfKpPEbOR2fh1nNBJRkfn1A06BWovryC1C4krtpisx8HRRtw-z1lydIw0N--j64uUPIt2pN8AL0L0qWJrgU5L0y__5QPy6eT487tTNvdUYK5r6xUDkL1twQ615ANSOXA-AIcBiZtwvbI-BCSQ0AfVeYfRrgflhAUfhPTBiofkIE4RHhOaBI6Dxu8dvqgVwetGcQeIuQR8DFxF6i26xs1y46nrxcLkY2-hTLGIQYuYbBGzqcir3TOXRWzjr6PfJqPtRiah7HwB3cfMgJl_uU9FDrcmN3P0Lo3gSNIajfSpIi92tzHuErI2wrQuY1Rim7wij4qH7GYiNMKiGl0Rtec7e1PdvxPH86ztXSe5SOSQFXm9dbMf8_ozFk_-BxZPya0mxQfHb2d_SA5WV2t4hpRrNTzP0fUdMx4pOg priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9QwFLagCIkLYm9KQUbiBlazxz4hQK0qJLgA0twix35uI02dYZZK8-95z_GkGpZeEzty3uL32W9j7C3UVtWoZUJWEvCAkirSuVQ0VaddBq5zlnKHv36rz3-WX2bVLF64rWJY5W5PDBu1HQzdkZ8UKRrOXKFJ-7D4JahrFHlXYwuNu-xehkiEWjc0s2a6YyEvVpmpmCuTFvJkhfaKcsryUlBpuExs9-xRKNv_L6z5d8jkH37TYI7OHrGHEUfyjyPjH7M74J-w-2Nnye1TdnXqL4NvnyPleqH9RT-gqPSGxwAOPjiuF0ugpiF-LeaDtjjYa4-H6Bgrx3vPQws_vrmiEFrkJr8GfAjeUt7WHEWX08X_6hn7fnb64_O5iJ0VhKnKbC0A6kaXoLusTjsEdGCsgxQ6hG-FaaS2ziGMhMbJyhrUedVJU2iwrqit08VzduAHD4eMU5ljp3DXww-VhbMql6kBpHkNOA1MwrIddVsTi45T74t5G5zfhWxHjrTIkTZwpN0m7N00ZzGW3Lh19Cdi2jSSymWHB8Pyoo0Ea4tS502NJ0uJx6fKglaypvwzZarc6Vwn7HjH8jbq8Kq9kbiEvZleo_YRZbWHYTOOkYQ504S9GCVkWkmhkCwyVwmTe7Kzt9T9N76_DBW-MyoaiUgyYe93Ynazrv_T4uj233jJHuQk-Snujc0xO1gvN_AKIdW6ex305jekFiEW priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDYVeSt9xmhYVemtNbcsP6bgtCWGhvaSF3IwsjRLDRg77KOy_z0h-lG3TQq_2yIh5SJ-smW8A3mNpZElRFotCIB1QEuljLomrolE2RdtY42uHv34rz3_ki8vi8gCysRYmJO0HSsuwTI_ZYZ_WtNH4YrAsjz2nWxrvHsChqGj5ncHhfL64WEx_VvzdVZ7KoUIm4eKewXu7UCDrvw9h_pko-dttadiEzp7A4wE9snk_36dwgO4ZPOz7Se6ew82puw43-oz01cbKXbUdOUir2ZC2wTrL1O0KfasQt4mXnTIk7JSjo_OgA9Y6Fhr3se2NT5wlG7KfSA_RGV-ttSSHZf53__oFXJydfv9yHg_9FGJd5OkmRiwrlaNq0jJpCMahNhYTbAi0cV0JZawl8IiVFYXRFOmyEZorNJaXxir-Emauc3gEzJMbW0lrHX0o59bITCQaSecl0jDUEaSjdms9UI37jhfLOlx5c1H3FqnJInWwSL2L4MM05rYn2vin9GdvtEnSk2SHB93qqh4UVvNcZVVJ50lBh6bCoJKi9FVnUheZVZmK4GQ0eT1E7rrmCQG0TBJ0iuDd9JpizmtWOey2vYzwSDOJ4FXvIdNMuCS1iExGIPZ8Z2-q-29cex14vVNPFUn4MYKPo5v9mtffdXH8f-Kv4VHmIyGhFbI6gdlmtcU3BKw2zdshku4A5sog3Q priority: 102 providerName: Springer Nature |
Title | Enhanced anti-angiogenic effects of aprepitant-loaded nanoparticles in human umbilical vein endothelial cells |
URI | https://link.springer.com/article/10.1038/s41598-024-70791-y https://www.ncbi.nlm.nih.gov/pubmed/39191829 https://www.proquest.com/docview/3097629007 https://www.proquest.com/docview/3097851430 https://pubmed.ncbi.nlm.nih.gov/PMC11349893 https://doaj.org/article/34a27699889745dea986ce599c52fa2a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD70wmAvY_d564IGe9u8-W7pYYw0pJTAylhXyJuRraPWkMpdLqX59zuS7Yxs2WBPAVk24lykTznnfAfgLWZKZORlPk850gUlENbnAj9PS6lD1KVWtnb4y1l2epFMpul0D_p2R50AFzuvdraf1MV89uHux_ozOfyntmScf1zQIWQLxaLEt3xvob_eh0MXL7KpfB3cb7m-I5G4Xh-WhN0nMBF1dTS7P7N1VjlK_1049M90yt9iqu6oOnkIDzqMyYatUTyCPTSP4V7bdXL9BK7H5srF_RlJtfaluawbMqO6Yl1yB2s0kzdztA1FzNKfNVLRZCMNXbC7PDpWG-ba-7HVtU2vJU2zW6RBNMrWdM3IrJkNCiyewvnJ-Pvo1O-6LvhVmoRLHzHLZYKyDLOgJLCHldIYYEnQLq5yLpXWBDEx1zxVFe0HouRVLFHpOFNaxs_gwDQGXwCzFMha0I5IH0pirUTEgwpJ_hnSa1h5EPbSLaqOkNz2xZgVLjAe86LVSEEaKZxGirUH7zbv3LR0HP-cfWyVtplpqbTdQDO_LDqBFXEiozyjWyenq1WqUAqe2do0UaWRlpH04KhXedGbZxEHBOMiQQDLgzebx-SZVrLSYLNq53CLRwMPnrcWsllJLEgsPBIe8C3b2Vrq9hNTXzn279ASShLK9OB9b2a_1vV3Wbz8L8m9gvuRdYSAttH8CA6W8xW-JvS1LAewn0_zARwOh5PzCf0ej8--fqPRUTYauH80Bs7pfgIWnTBc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSIXhB3BgKLBI8gVXfXj9UiEKqlLYRgiL1CWvtnW0jpeuQA5R_4-OY8ZEqHH3rq71rreeenQvgJSY6S4jLXBlLJAfFy5jnPDeNC2V8NIXRXDt8NEwGX6OPJ_HJBvzqamE4rbKTibWg1lXJd-TboUeKM8hIpb2dfHd5ahRHV7sRGqodraB36hZjbWHHAS5_kgs329n_QPh-FQR7_eP3A7edMuCWceTPXcQkVRGqwk-8gowbLLVBDwsyZcIylUobQyYVpkbGuiT6zwpZhgq1CRNtVEhfvQabEV-f9GBztz_89Hl1x8NRtMjP2lodL5TbM9KXXNMWRC63pvPd5Zo-rMcG_MvW_Ttl84-4ba0O927DrdaOFe8awrsDG2jvwvVmsuXyHpz37VmdWyAIcyNX2dNRRaQ6KkWbQCIqI9Rkijy0xM7dcaU0LbbKkhPf5uqJkRX1CEGxOOcUXqIm8QPpIVrNdWNjYh3BgYfZffhyBTB_AD1bWXwEgtssm4ykLn0oCo3OAumVSDBPkLZh6YDfQTcv26bnPHtjnNfB91DmDUZywkheYyRfOvB6tWfStPy4dPUuI221ktt11w-q6WneAiwPIxWkCXm2kty3WKPKZML1b1kZB0YFyoGtDuV5K0Nm-QXFO_Bi9Zq4nyGrLFaLZo1km9dz4GFDIauThBmBRQaZA3KNdtaOuv7Gjs7qDuM-N60kS9aBNx2ZXZzr_7B4fPlvPIcbg-Ojw_xwf3jwBG4GzAUeyel0C3rz6QKfknk3L561XCTg29Wy7W-R_2aA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CqtQFwqdgIFjAQniJo9zqFClM6opTCqWKSeajnxczvS1JnOApo_5LN4L3GmGpbeeo0dy3n7y9sYewWZLjLkMl-kAtBBCQriucDP01KZEExpNNUOfx5k-9-Tj8fp8Rr71dXCUFplJxMbQa3riv6Rb8cBKs6ooLI349Iijvb678YXPk2QokhrN05DuTELeqdpN-aKPA5h8RPduenOwR7i_nUU9XvfPuz7buKAX6VJOPMBslwloMowC0o0dKDSBgIo0ayJq1wobQyaV5AbkeoKeaEoRRUr0CbOtFExnnqDbeSo89EN3NjtDY6-LP_3UEQtCQtXtxPEYnuKupPq26LEpzZ1ob9Y0Y3NCIF_2b1_p2_-EcNtVGP_Dtt0Ni1_3xLhXbYG9h672U65XNxn5z171uQZcMTi0Ff2dFgj2Q4r7pJJeG24Gk-ABpjYmT-qlcbNVll06F3eHh9a3owT5PNzSudFyuI_AB-C1VRDNkI24hSEmD5gX68B5g_Zuq0tPGacWi6bAiUwHpTERheRCCpAmGeAr0HlsbCDrqxcA3SawzGSTSA-FrLFiESMyAYjcuGxN8t3xm37jyt37xLSljupdXfzoJ6cSgcwGScqyjP0cgW6cqkGVYiMauGKKo2MipTHtjqUSydPpvKS-j32crmMkoAgqyzU83aPIPs38NijlkKWN4kLBIuICo-JFdpZuerqih2eNd3GQ2pgiVatx952ZHZ5r__D4snVn_GC3UL2lZ8OBodP2e2ImCBAkZ1vsfXZZA7P0NKblc8dE3F2cr1c-xtMaWrE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+anti-angiogenic+effects+of+aprepitant-loaded+nanoparticles+in+human+umbilical+vein+endothelial+cells&rft.jtitle=Scientific+reports&rft.au=Kaya-Tilki%2C+Elif&rft.au=%C3%96zt%C3%BCrk%2C+Ahmet+Alper&rft.au=Eng%C3%BCr-%C3%96zt%C3%BCrk%2C+Selin&rft.au=Dikmen%2C+Miri%C5%9F&rft.date=2024-08-27&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-70791-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_024_70791_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |