usfAD based effective unknown attack detection focused IDS framework
The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection Sy...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 29103 - 25 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
24.11.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-80021-0 |
Cover
| Abstract | The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks. |
|---|---|
| AbstractList | The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks. The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks. Abstract The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks. |
| ArticleNumber | 29103 |
| Author | Uddin, Md. Ashraf Talukder, Md. Alamin Aryal, Sunil Al-Hawawreh, Muna Bouadjenek, Mohamed Reda |
| Author_xml | – sequence: 1 givenname: Md. Ashraf surname: Uddin fullname: Uddin, Md. Ashraf email: ashraf.uddin@deakin.edu.au organization: School of Information Technology, Deakin University – sequence: 2 givenname: Sunil surname: Aryal fullname: Aryal, Sunil organization: School of Information Technology, Deakin University – sequence: 3 givenname: Mohamed Reda surname: Bouadjenek fullname: Bouadjenek, Mohamed Reda organization: School of Information Technology, Deakin University – sequence: 4 givenname: Muna surname: Al-Hawawreh fullname: Al-Hawawreh, Muna organization: School of Information Technology, Deakin University – sequence: 5 givenname: Md. Alamin surname: Talukder fullname: Talukder, Md. Alamin organization: Department of Computer Science and Engineering, International University of Business Agriculture and Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39582026$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv1DAUhS1UREvpH2CBIrFhE_Arib1CVYfHSJVYAGvLj-shMxl7sJOO-u_xPChtFxXe2PL9ztHx8Ut0EmIAhF4T_J5gJj5kThopakx5LTCmpMbP0BnFvKkpo_Tk3vkUXeS8xGU1VHIiX6BTJhtBMW3P0GzK_nJWGZ3BVeA92LG_gWoKqxC3odLjqO2qcjDuBjFUPtpph85n3yuf9Bq2Ma1eoedeDxkujvs5-vn504-rr_X1ty_zq8vr2jacjDVwQQVuOiIF0QIaxr1vte46y7FzltpOMGc72nADQpb8QoDsQBqjW-yJY-dofvB1US_VJvVrnW5V1L3aX8S0UDqNvR1AcTBAKRXatsCJM4IbqV1HmJfMGWyKFzt4TWGjb7d6GO4MCVa7itWhYlUqVvuKFS6qjwfVZjJrcBbCmPTwIMrDSeh_qUW8UYQ0ouWsLQ7vjg4p_p4gj2rdZwvDoAPEKStGGG2xaEVX0LeP0GWcUigN7yneEkplod7cj3SX5e8fF0AcAJtizgm8sv2od79ZEvbD08-lj6T_1dGx2VzgsID0L_YTqj9_Rdpd |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2025_104244 crossref_primary_10_1016_j_comcom_2024_108006 crossref_primary_10_1038_s41598_025_93447_x |
| Cites_doi | 10.1016/j.jnca.2023.103653 10.22364/bjmc.2017.5.1.05 10.1109/ACCESS.2021.3082147 10.1007/s10489-021-02621-x 10.1109/COMST.2021.3064259 10.1186/s13634-022-00871-6 10.1109/TII.2022.3156642 10.1016/j.future.2021.09.027 10.1109/TIFS.2017.2730581 10.1109/ACCESS.2022.3187116 10.1007/s10922-022-09653-9 10.1109/JIOT.2021.3102056 10.1016/j.cose.2020.101851 10.1186/s42400-021-00103-8 10.1017/S026988891300043X 10.1016/j.apenergy.2024.122736 10.1007/s10618-016-0463-0 10.1186/s40537-024-00886-w 10.1109/ACCESS.2020.2972627 10.1007/s13042-020-01225-0 10.1016/j.comnet.2021.107840 10.3390/s19143188 10.1109/ACCESS.2022.3206367 10.1016/j.compeleceng.2022.107869 10.1186/s13635-019-0084-4 10.1016/j.jnca.2023.103811 10.1186/s42400-024-00221-z 10.1016/j.comnet.2017.03.018 10.1016/j.icte.2020.03.003 10.1109/ACCESS.2022.3186026 10.1016/j.scs.2021.102994 10.1109/ACCESS.2021.3116612 10.3390/electronics9010173 10.1109/ACCESS.2021.3100087 10.1016/j.rser.2023.113913 10.1049/rpg2.12432 10.3390/jsan12010005 10.5220/0010908200003120 10.1007/978-3-319-46298-1_30 10.1007/s10207-024-00833-z 10.1007/978-3-319-93034-3_47 10.1016/j.jnca.2024.103841 10.1109/ComNet47917.2020.9306073 10.1145/342009.335388 10.1007/978-981-13-6001-5_43 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026 10.1007/978-3-030-86486-6_42 10.1109/MILCOM.2017.8170749 10.1109/CCE.2018.8465718 10.1109/CCWC57344.2023.10099144 10.1109/CCST.2019.8888419 10.1145/3097983.3098052 10.1109/NOMS54207.2022.9789927 10.1109/COMPSAC.2016.32 10.1109/ICCKE.2018.8566601 10.1109/BADGERS.2015.014 10.1109/I2CT57861.2023.10126162 10.1109/ICDM.2008.17 10.1109/TSG.2022.3204796 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-80021-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 25 |
| ExternalDocumentID | oai_doaj_org_article_4ebe2228ac6e41db84b9ad713f93db0b 10.1038/s41598-024-80021-0 PMC11586436 39582026 10_1038_s41598_024_80021_0 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c541t-e48280571981a8e534ff6aa77c40ddc2c783dc7254be8920488e97e9bba60f1d3 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:33:19 EDT 2025 Sun Oct 26 04:15:21 EDT 2025 Tue Sep 30 17:06:59 EDT 2025 Fri Sep 05 12:15:45 EDT 2025 Tue Oct 07 07:57:11 EDT 2025 Mon Jul 21 05:55:23 EDT 2025 Wed Oct 01 02:45:26 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Fri Feb 21 02:37:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Zero day attacks Intrusion detection system Network traffic Anomaly detection One class classification IoT |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-e48280571981a8e534ff6aa77c40ddc2c783dc7254be8920488e97e9bba60f1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.proquest.com/docview/3132461229?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 39582026 |
| PQID | 3132461229 |
| PQPubID | 2041939 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4ebe2228ac6e41db84b9ad713f93db0b unpaywall_primary_10_1038_s41598_024_80021_0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11586436 proquest_miscellaneous_3132608687 proquest_journals_3132461229 pubmed_primary_39582026 crossref_citationtrail_10_1038_s41598_024_80021_0 crossref_primary_10_1038_s41598_024_80021_0 springer_journals_10_1038_s41598_024_80021_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-24 |
| PublicationDateYYYYMMDD | 2024-11-24 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Fahad, Muhammad, Bi (CR11) 2017; 5 Kilincer, Ertam, Sengur (CR7) 2021; 188 Belenguer, Pascual, Navaridas (CR5) 2023; 217 Aouedi, Piamrat, Muller, Singh (CR36) 2022; 19 Sameera, Shashi (CR64) 2020; 6 CR39 Talukder, Islam, Uddin, Hasan, Sharmin, Alyami, Moni (CR1) 2024; 11 Urmi, Uddin, Uddin, Talukder, Hasan, Paul, Chanda, Ayoade, Khraisat, Hossen (CR18) 2024; 5 Fernando, Webb (CR53) 2017; 31 CR32 Khraisat, Gondal, Vamplew, Kamruzzaman, Alazab (CR34) 2020; 9 CR30 Talukder, Hossen, Uddin, Uddin, Acharjee (CR6) 2024; 7 Qu, Dong, Li, Song, Jiang, Li, Wang, Wang, Bo, Zang (CR16) 2024; 360 Sánchez, Valero, Celdrán, Bovet, Pérez, Pérez (CR13) 2021; 23 Wu, Fan, Zhu, You, Zhou, Huang (CR22) 2022; 2022 Min, Yoo, Kim, Shin, Shin (CR38) 2021; 9 Alazzam, Sharieh, Sabri (CR43) 2022; 52 Al-Qudah, Ashi, Alnabhan, Abu Al-Haija (CR37) 2023; 12 An, Cho (CR55) 2015; 2 CR3 Liu, Gu, Wang (CR21) 2021; 9 Qu, Bo, Yu, Liu, Dong, Kan, Wang, Li (CR35) 2022; 16 CR49 CR47 CR44 CR41 CR40 Hairab, Elsayed, Jurcut, Azer (CR59) 2022; 10 Talukder, Hasan, Islam, Uddin, Akhter, Yousuf, Alharbi, Moni (CR2) 2023; 72 CR17 CR15 CR14 Li, Chen, Zhang, Wu (CR57) 2020; 95 Agate, Ferraro, Re, Das (CR4) 2024; 223 CR12 Aryal, Santosh, Dazeley (CR31) 2021; 12 CR54 CR52 Rousseeuw (CR29) 1985; 8 CR50 Al-Hawawreh, Sitnikova, Aboutorab (CR51) 2022; 9 Moustafa (CR48) 2021; 72 Li, Cao, Xu, Zhu, Dong (CR56) 2024; 189 Kilincer, Ertam, Sengur (CR9) 2022; 100 Xu, Jang-Jaccard, Singh, Wei, Sabrina (CR42) 2021; 9 Zhao, Shetty, Pan, Kamhoua, Kwiat (CR65) 2019; 2019 Roy, Li, Choi, Bai (CR8) 2022; 127 Khan, Madden (CR23) 2014; 29 Wan, Shang, Zeng (CR33) 2017; 12 CR28 Naseri, Gharehchopogh (CR10) 2022; 30 CR27 CR26 CR67 Uddin, Talukder, Uzzaman, Debnath, Chanda, Paul, Islam, Khraisat, Alazab, Aryal (CR19) 2024; 5 CR66 Disha, Waheed (CR58) 2022; 5 CR20 CR63 CR62 CR61 Su, Sun, Zhu, Wang, Li (CR45) 2020; 8 Jazi, Gonzalez, Stakhanova, Ghorbani (CR46) 2017; 121 Bezerra, da Costa, Barbon Junior, Miani, Zarpelão (CR24) 2019; 19 Dini, Begni, Ciavarella, De Paoli, Fiorelli, Silvestro, Saponara (CR25) 2022; 10 Mbona, Eloff (CR60) 2022; 10 N Moustafa (80021_CR48) 2021; 72 T Su (80021_CR45) 2020; 8 C Liu (80021_CR21) 2021; 9 SS Khan (80021_CR23) 2014; 29 MA Talukder (80021_CR6) 2024; 7 T Wu (80021_CR22) 2022; 2022 O Aouedi (80021_CR36) 2022; 19 TL Fernando (80021_CR53) 2017; 31 80021_CR17 MA Talukder (80021_CR1) 2024; 11 H Alazzam (80021_CR43) 2022; 52 BI Hairab (80021_CR59) 2022; 10 M Wan (80021_CR33) 2017; 12 80021_CR12 80021_CR15 VH Bezerra (80021_CR24) 2019; 19 I Mbona (80021_CR60) 2022; 10 80021_CR14 M Al-Qudah (80021_CR37) 2023; 12 W Xu (80021_CR42) 2021; 9 80021_CR52 80021_CR54 80021_CR50 N Sameera (80021_CR64) 2020; 6 MA Uddin (80021_CR19) 2024; 5 HH Jazi (80021_CR46) 2017; 121 TS Naseri (80021_CR10) 2022; 30 MA Talukder (80021_CR2) 2023; 72 A Belenguer (80021_CR5) 2023; 217 S Roy (80021_CR8) 2022; 127 80021_CR28 80021_CR27 J Zhao (80021_CR65) 2019; 2019 WF Urmi (80021_CR18) 2024; 5 Y Li (80021_CR56) 2024; 189 80021_CR67 80021_CR26 80021_CR20 80021_CR63 80021_CR66 80021_CR62 80021_CR61 V Agate (80021_CR4) 2024; 223 UM Fahad (80021_CR11) 2017; 5 IF Kilincer (80021_CR7) 2021; 188 80021_CR3 80021_CR39 80021_CR30 J An (80021_CR55) 2015; 2 80021_CR32 B Min (80021_CR38) 2021; 9 PJ Rousseeuw (80021_CR29) 1985; 8 X Li (80021_CR57) 2020; 95 S Aryal (80021_CR31) 2021; 12 P Dini (80021_CR25) 2022; 10 80021_CR49 Z Qu (80021_CR16) 2024; 360 RA Disha (80021_CR58) 2022; 5 PMS Sánchez (80021_CR13) 2021; 23 80021_CR47 80021_CR41 80021_CR44 IF Kilincer (80021_CR9) 2022; 100 Z Qu (80021_CR35) 2022; 16 80021_CR40 A Khraisat (80021_CR34) 2020; 9 M Al-Hawawreh (80021_CR51) 2022; 9 |
| References_xml | – volume: 217 start-page: 103653 year: 2023 ident: CR5 article-title: Göwfed: A novel federated network intrusion detection system publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2023.103653 – ident: CR49 – volume: 5 start-page: 259 year: 2024 end-page: 268 ident: CR19 article-title: Deep learning-based human activity recognition using cnn, convlstm, and lrcn publication-title: Int. J. Cognit. Comput. Eng. – ident: CR39 – volume: 5 start-page: 70 issue: 1 year: 2017 end-page: 86 ident: CR11 article-title: Applying one-class classification techniques to IP flow records for intrusion detection publication-title: Baltic J. Mod. Comput. doi: 10.22364/bjmc.2017.5.1.05 – volume: 9 start-page: 75729 year: 2021 end-page: 75740 ident: CR21 article-title: A hybrid intrusion detection system based on scalable k-means+ random forest and deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3082147 – ident: CR12 – volume: 52 start-page: 3527 issue: 4 year: 2022 end-page: 3544 ident: CR43 article-title: A lightweight intelligent network intrusion detection system using ocsvm and pigeon inspired optimizer publication-title: Appl. Intell. doi: 10.1007/s10489-021-02621-x – volume: 23 start-page: 1048 issue: 2 year: 2021 end-page: 1077 ident: CR13 article-title: A survey on device behavior fingerprinting: Data sources, techniques, application scenarios, and datasets publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2021.3064259 – volume: 2022 start-page: 1 issue: 1 year: 2022 end-page: 20 ident: CR22 article-title: Intrusion detection system combined enhanced random forest with smote algorithm publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-022-00871-6 – ident: CR54 – ident: CR61 – volume: 19 start-page: 286 issue: 1 year: 2022 end-page: 295 ident: CR36 article-title: Federated semisupervised learning for attack detection in industrial internet of things publication-title: IEEE Trans. Indus. Inform. doi: 10.1109/TII.2022.3156642 – volume: 127 start-page: 276 year: 2022 end-page: 285 ident: CR8 article-title: A lightweight supervised intrusion detection mechanism for IOT networks publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.09.027 – volume: 12 start-page: 3011 issue: 12 year: 2017 end-page: 3023 ident: CR33 article-title: Double behavior characteristics for one-class classification anomaly detection in networked control systems publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2730581 – volume: 10 start-page: 69822 year: 2022 end-page: 69838 ident: CR60 article-title: Detecting zero-day intrusion attacks using semi-supervised machine learning approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3187116 – volume: 30 start-page: 40 issue: 3 year: 2022 ident: CR10 article-title: A feature selection based on the farmland fertility algorithm for improved intrusion detection systems publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-022-09653-9 – ident: CR67 – ident: CR15 – ident: CR50 – volume: 9 start-page: 3962 issue: 5 year: 2022 end-page: 3977 ident: CR51 article-title: X-iiotid: A connectivity-agnostic and device-agnostic intrusion data set for industrial internet of things publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3102056 – volume: 95 start-page: 101851 year: 2020 ident: CR57 article-title: Building auto-encoder intrusion detection system based on random forest feature selection publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.101851 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: CR58 article-title: Performance analysis of machine learning models for intrusion detection system using gini impurity-based weighted random forest (giwrf) feature selection technique publication-title: Cybersecurity doi: 10.1186/s42400-021-00103-8 – ident: CR32 – volume: 29 start-page: 345 issue: 3 year: 2014 end-page: 374 ident: CR23 article-title: One-class classification: Taxonomy of study and review of techniques publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988891300043X – volume: 360 start-page: 122736 year: 2024 ident: CR16 article-title: Localization of dummy data injection attacks in power systems considering incomplete topological information: A spatio-temporal graph wavelet convolutional neural network approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.122736 – ident: CR26 – volume: 72 start-page: 103405 year: 2023 ident: CR2 article-title: A dependable hybrid machine learning model for network intrusion detection publication-title: J. Inf. Secur. Appl. – volume: 31 start-page: 264 year: 2017 end-page: 286 ident: CR53 article-title: Simusf: An efficient and effective similarity measure that is invariant to violations of the interval scale assumption publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-016-0463-0 – ident: CR66 – ident: CR47 – ident: CR14 – volume: 11 start-page: 1 issue: 1 year: 2024 end-page: 44 ident: CR1 article-title: Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction publication-title: J. Big Data doi: 10.1186/s40537-024-00886-w – ident: CR30 – volume: 8 start-page: 29575 year: 2020 end-page: 29585 ident: CR45 article-title: Bat: Deep learning methods on network intrusion detection using nsl-kdd dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972627 – volume: 5 start-page: 316 year: 2024 end-page: 331 ident: CR18 article-title: A stacked ensemble approach to detect cyber attacks based on feature selection techniques publication-title: Int. J. Cognit. Comput. Eng. – volume: 12 start-page: 1137 year: 2021 end-page: 1150 ident: CR31 article-title: usfad: A robust anomaly detector based on unsupervised stochastic forest publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01225-0 – volume: 188 start-page: 107840 year: 2021 ident: CR7 article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.107840 – volume: 19 start-page: 3188 issue: 14 year: 2019 ident: CR24 article-title: Iotds: A one-class classification approach to detect botnets in internet of things devices publication-title: Sensors doi: 10.3390/s19143188 – ident: CR40 – volume: 10 start-page: 98427 year: 2022 end-page: 98440 ident: CR59 article-title: Anomaly detection based on cnn and regularization techniques against zero-day attacks in iot networks publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3206367 – ident: CR63 – volume: 100 start-page: 107869 year: 2022 ident: CR9 article-title: A comprehensive intrusion detection framework using boosting algorithms publication-title: Comput. Electric. Eng. doi: 10.1016/j.compeleceng.2022.107869 – ident: CR27 – volume: 2019 start-page: 1 year: 2019 end-page: 13 ident: CR65 article-title: Transfer learning for detecting unknown network attacks publication-title: EURASIP J. Inf. Secur. doi: 10.1186/s13635-019-0084-4 – volume: 223 start-page: 103811 year: 2024 ident: CR4 article-title: Blind: A privacy preserving truth discovery system for mobile crowdsensing publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2023.103811 – volume: 7 start-page: 32 year: 2024 ident: CR6 article-title: Securing transactions: A hybrid dependable ensemble machine learning model using IHT-LR and grid search publication-title: Cybersecurity doi: 10.1186/s42400-024-00221-z – ident: CR44 – volume: 121 start-page: 25 year: 2017 end-page: 36 ident: CR46 article-title: Detecting http-based application layer dos attacks on web servers in the presence of sampling publication-title: Comput. Netw. doi: 10.1016/j.comnet.2017.03.018 – volume: 6 start-page: 361 issue: 4 year: 2020 end-page: 367 ident: CR64 article-title: Deep transductive transfer learning framework for zero-day attack detection publication-title: ICT Exp. doi: 10.1016/j.icte.2020.03.003 – ident: CR3 – volume: 10 start-page: 67910 year: 2022 end-page: 67924 ident: CR25 article-title: Design and testing novel one-class classifier based on polynomial interpolation with application to networking security publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3186026 – ident: CR52 – ident: CR17 – volume: 8 start-page: 37 issue: 283–297 year: 1985 ident: CR29 article-title: Multivariate estimation with high breakdown point publication-title: Math. Stat. Appl. – volume: 72 start-page: 102994 year: 2021 ident: CR48 article-title: A new distributed architecture for evaluating AI-based security systems at the edge: Network ton\_iot datasets publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102994 – volume: 9 start-page: 140136 year: 2021 end-page: 140146 ident: CR42 article-title: Improving performance of autoencoder-based network anomaly detection on nsl-kdd dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116612 – volume: 9 start-page: 173 issue: 1 year: 2020 ident: CR34 article-title: Hybrid intrusion detection system based on the stacking ensemble of c5 decision tree classifier and one class support vector machine publication-title: Electronics doi: 10.3390/electronics9010173 – volume: 9 start-page: 104695 year: 2021 end-page: 104706 ident: CR38 article-title: Network anomaly detection using memory-augmented deep autoencoder publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100087 – volume: 189 start-page: 113913 year: 2024 ident: CR56 article-title: Deep learning based on transformer architecture for power system short-term voltage stability assessment with class imbalance publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113913 – ident: CR28 – ident: CR41 – ident: CR62 – ident: CR20 – volume: 16 start-page: 1490 issue: 7 year: 2022 end-page: 1508 ident: CR35 article-title: Active and passive hybrid detection method for power cps false data injection attacks with improved akf and gru-cnn publication-title: IET Renew. Power Gener. doi: 10.1049/rpg2.12432 – volume: 2 start-page: 1 issue: 1 year: 2015 end-page: 18 ident: CR55 article-title: Variational autoencoder based anomaly detection using reconstruction probability publication-title: Spec. Lect. IE – volume: 12 start-page: 5 issue: 1 year: 2023 ident: CR37 article-title: Effective one-class classifier model for memory dump malware detection publication-title: J. Sens. Actuator Netw. doi: 10.3390/jsan12010005 – volume: 52 start-page: 3527 issue: 4 year: 2022 ident: 80021_CR43 publication-title: Appl. Intell. doi: 10.1007/s10489-021-02621-x – volume: 95 start-page: 101851 year: 2020 ident: 80021_CR57 publication-title: Comput. Secur. doi: 10.1016/j.cose.2020.101851 – volume: 5 start-page: 1 issue: 1 year: 2022 ident: 80021_CR58 publication-title: Cybersecurity doi: 10.1186/s42400-021-00103-8 – volume: 360 start-page: 122736 year: 2024 ident: 80021_CR16 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.122736 – ident: 80021_CR47 doi: 10.5220/0010908200003120 – ident: 80021_CR50 doi: 10.1007/978-3-319-46298-1_30 – volume: 9 start-page: 75729 year: 2021 ident: 80021_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3082147 – volume: 16 start-page: 1490 issue: 7 year: 2022 ident: 80021_CR35 publication-title: IET Renew. Power Gener. doi: 10.1049/rpg2.12432 – ident: 80021_CR17 doi: 10.1007/s10207-024-00833-z – ident: 80021_CR30 doi: 10.1007/978-3-319-93034-3_47 – volume: 189 start-page: 113913 year: 2024 ident: 80021_CR56 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113913 – ident: 80021_CR3 doi: 10.1016/j.jnca.2024.103841 – volume: 23 start-page: 1048 issue: 2 year: 2021 ident: 80021_CR13 publication-title: IEEE Commun. Surv. Tutorials doi: 10.1109/COMST.2021.3064259 – ident: 80021_CR39 doi: 10.1109/ComNet47917.2020.9306073 – ident: 80021_CR26 doi: 10.1145/342009.335388 – ident: 80021_CR20 doi: 10.1007/978-981-13-6001-5_43 – volume: 9 start-page: 3962 issue: 5 year: 2022 ident: 80021_CR51 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2021.3102056 – volume: 72 start-page: 102994 year: 2021 ident: 80021_CR48 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2021.102994 – volume: 9 start-page: 140136 year: 2021 ident: 80021_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3116612 – volume: 29 start-page: 345 issue: 3 year: 2014 ident: 80021_CR23 publication-title: Knowl. Eng. Rev. doi: 10.1017/S026988891300043X – volume: 5 start-page: 259 year: 2024 ident: 80021_CR19 publication-title: Int. J. Cognit. Comput. Eng. – volume: 100 start-page: 107869 year: 2022 ident: 80021_CR9 publication-title: Comput. Electric. Eng. doi: 10.1016/j.compeleceng.2022.107869 – volume: 223 start-page: 103811 year: 2024 ident: 80021_CR4 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2023.103811 – volume: 2019 start-page: 1 year: 2019 ident: 80021_CR65 publication-title: EURASIP J. Inf. Secur. doi: 10.1186/s13635-019-0084-4 – ident: 80021_CR63 doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026 – volume: 6 start-page: 361 issue: 4 year: 2020 ident: 80021_CR64 publication-title: ICT Exp. doi: 10.1016/j.icte.2020.03.003 – ident: 80021_CR44 doi: 10.1007/978-3-030-86486-6_42 – ident: 80021_CR67 doi: 10.1109/MILCOM.2017.8170749 – ident: 80021_CR52 – volume: 30 start-page: 40 issue: 3 year: 2022 ident: 80021_CR10 publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-022-09653-9 – volume: 8 start-page: 29575 year: 2020 ident: 80021_CR45 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972627 – volume: 5 start-page: 70 issue: 1 year: 2017 ident: 80021_CR11 publication-title: Baltic J. Mod. Comput. doi: 10.22364/bjmc.2017.5.1.05 – volume: 2022 start-page: 1 issue: 1 year: 2022 ident: 80021_CR22 publication-title: EURASIP J. Adv. Signal Process. doi: 10.1186/s13634-022-00871-6 – ident: 80021_CR40 doi: 10.1109/CCE.2018.8465718 – volume: 12 start-page: 3011 issue: 12 year: 2017 ident: 80021_CR33 publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2730581 – ident: 80021_CR49 doi: 10.1109/CCWC57344.2023.10099144 – ident: 80021_CR62 doi: 10.1109/CCST.2019.8888419 – volume: 10 start-page: 98427 year: 2022 ident: 80021_CR59 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3206367 – volume: 9 start-page: 104695 year: 2021 ident: 80021_CR38 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3100087 – volume: 19 start-page: 3188 issue: 14 year: 2019 ident: 80021_CR24 publication-title: Sensors doi: 10.3390/s19143188 – ident: 80021_CR54 doi: 10.1145/3097983.3098052 – volume: 5 start-page: 316 year: 2024 ident: 80021_CR18 publication-title: Int. J. Cognit. Comput. Eng. – volume: 19 start-page: 286 issue: 1 year: 2022 ident: 80021_CR36 publication-title: IEEE Trans. Indus. Inform. doi: 10.1109/TII.2022.3156642 – volume: 8 start-page: 37 issue: 283–297 year: 1985 ident: 80021_CR29 publication-title: Math. Stat. Appl. – ident: 80021_CR41 doi: 10.1109/NOMS54207.2022.9789927 – volume: 10 start-page: 69822 year: 2022 ident: 80021_CR60 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3187116 – volume: 7 start-page: 32 year: 2024 ident: 80021_CR6 publication-title: Cybersecurity doi: 10.1186/s42400-024-00221-z – ident: 80021_CR32 doi: 10.1109/COMPSAC.2016.32 – volume: 121 start-page: 25 year: 2017 ident: 80021_CR46 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2017.03.018 – volume: 12 start-page: 1137 year: 2021 ident: 80021_CR31 publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-020-01225-0 – volume: 9 start-page: 173 issue: 1 year: 2020 ident: 80021_CR34 publication-title: Electronics doi: 10.3390/electronics9010173 – volume: 72 start-page: 103405 year: 2023 ident: 80021_CR2 publication-title: J. Inf. Secur. Appl. – ident: 80021_CR66 doi: 10.1109/ICCKE.2018.8566601 – ident: 80021_CR12 – volume: 31 start-page: 264 year: 2017 ident: 80021_CR53 publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-016-0463-0 – ident: 80021_CR61 doi: 10.1109/BADGERS.2015.014 – volume: 188 start-page: 107840 year: 2021 ident: 80021_CR7 publication-title: Comput. Netw. doi: 10.1016/j.comnet.2021.107840 – volume: 11 start-page: 1 issue: 1 year: 2024 ident: 80021_CR1 publication-title: J. Big Data doi: 10.1186/s40537-024-00886-w – volume: 10 start-page: 67910 year: 2022 ident: 80021_CR25 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3186026 – ident: 80021_CR27 – volume: 12 start-page: 5 issue: 1 year: 2023 ident: 80021_CR37 publication-title: J. Sens. Actuator Netw. doi: 10.3390/jsan12010005 – volume: 2 start-page: 1 issue: 1 year: 2015 ident: 80021_CR55 publication-title: Spec. Lect. IE – volume: 127 start-page: 276 year: 2022 ident: 80021_CR8 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.09.027 – volume: 217 start-page: 103653 year: 2023 ident: 80021_CR5 publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2023.103653 – ident: 80021_CR14 doi: 10.1109/I2CT57861.2023.10126162 – ident: 80021_CR28 doi: 10.1109/ICDM.2008.17 – ident: 80021_CR15 doi: 10.1109/TSG.2022.3204796 |
| SSID | ssj0000529419 |
| Score | 2.4933593 |
| Snippet | The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing... Abstract The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 29103 |
| SubjectTerms | 639/705/117 639/705/258 Algorithms Anomaly detection Classification Datasets Humanities and Social Sciences Internet of Things Intrusion detection system Intrusion detection systems IoT Learning algorithms Machine learning multidisciplinary Network traffic One class classification Science Science (multidisciplinary) Zero day attacks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEG8CBQWJG7Uax05iHwtLVZDgApV6s8YvgVh5KzZR1X_fcZwNuwIVDlzjsWKPx55v7PFnQl4zZSCxnlAGjlP0UEBNCIGqCix4IRw3aWvg0-f25FR8PGvOtp76SjlhmR44K-5Q4F_SLgXY1gvmjBRGgcPQKijuTGXS6ltJtRVMZVbvWgmmplsyFZeHa_RU6TZZLagc8xKqHU80Evb_CWX-niw5n5jeIbeGeA6XF7Bcbjml43vk7oQmy6Pci_vkho8PyM38vuTlQ7IY1uFoUSZP5cqcuYGLWznEtJMWS-h7sD9K5_sxHyuWYWWHJPph8aUMm6ytR-T0-P3Xdyd0ejaB2kawnnqBURTCMKYkA-kbLkJoAbrOiso5W9tOcmc7jAyNlyoR90qvOq-MgbYKzPHHZC-uon9KsH11B8pWPAQlUAIAEV4njGgazwJXBWEbFWo7cYqnpy2Wejzb5lJntWtUux7VrquCvJnrnGdGjWul36aRmSUTG_b4AW1ETzai_2YjBdnfjKuepuhaJ85Kgfiuxl68motxcqUTE4h-NWSZFoM-2RXkSTaDuSVcNYie6rYgcsdAdpq6WxK_fxsJvBGFS0SCWPVgY0u_2nWdLg5me_sH1T37H6p7Tm7Xac4wRmuxT_b6n4N_gTCsNy_HGXcF1pssOw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGTQh4QHxTGKhIvLFoTZO2yQNCG7dpIHFCwKS9Vc4XIE7tsWuF9t-T9GucQCdeG0dKHTt2bOdngJdUKgyoJ4SiYcRbKCTKOUdkghot54apEBr4sMhPz_j78-x8BxbjW5hQVjmeid1BbWodYuQHAWKQe3OcyjernyR0jQrZ1bGFBg6tFczrDmLsGuymARlrBrtHx4uPn6aoS8hrcSqH1zMJEwdrb8HCK7OUE9HVKyQbFqoD8v-X9_l3EeWUSb0FN9pqhZe_cLn8w1id3IHbg5cZH_ZicRd2bHUPrvd9Jy_vw7xdu8N5HCyYifuKDn_oxW0VImxVjE2D-kdsbNPVaVWxq3UbSN_NP8durOZ6AGcnx1_enpKhnQLRGacNsdzfrrx7RqWgKGzGuHM5YlFonhijU10IZnThb4zKChkAfYWVhZVKYZ44athDmFV1ZR-DX19aoNQJc05yT4HoPb-CK55lljomI6AjC0s9YI2HlhfLsst5M1H2bC8928uO7WUSwatpzqpH2thKfRR2ZqIMKNndh_riazkoXcm9hIYIF-rccmqU4Eqi8ddyJ5lRiYpgb9zXclDddXklaBG8mIa90oVMCla2bnua3F8GRRHBo14MppUwmXmvKs0jEBsCsrHUzZHq-7cO2Nt758J7iH7q_ihLV-vaxov9Sd7-g3VPtv_1U7iZBm2glKR8D2bNRWufecerUc8HbfoN8tIpBA priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWyHggHgTKChI3NiIOHYS-7iwVGUluJRKvVl-ioqVt2ITof57xnlBVFTBdTOOvOOZzDee8WeAN0RoFVlPMqIszTBCqUx77zORK6McY5bquDXw-Ut1csY25-X5ASzHszCz-n1H3b3HEBOPgRUs411DASbohxwNky_gcLXanG6mPZVYtWJEDGdjcPi764Nn8aej6f8btrzeIjnVSe_C7TZcqqufarv9IxQd34d7A4ZMV_2iP4ADFx7Crf5WyatHsG73frVOY3yyad-vgZ-0tA1x_yykqmmU-Z5a13RdWCH1O9NG0U_r09SPvVqP4ez449cPJ9lwWUJmSkaazDHMnRB8EcGJ4q6kzPtKqbo2LLfWFKbm1Joa80HtuIh0vdyJ2gmtVZV7YukTWIRdcM8A51fUSpicei8YSiiFuK5mmpWlI56KBMioQmkGJvF4ocVWdhVtymWvdolql53aZZ7A22nMZc-jcaP0-7gyk2TkwO5-QNOQg0tJhvYX96-UqRwjVnOmhbKYdHtBrc51AkfjusrBMfcyMlUyRHUF_ovX02N0qVgnUcHt2l6mwlSP1wk87c1gmgkVJWKmokqAzwxkNtX5k3DxraPtRuzNEf_h0OVoS7_ndZMulpO9_YPqnv_f21_AnSJ6ByFZwY5g0fxo3UuEWY1-NXjXL_WAHTM priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh6gPfn9UT6ngm5ezadI2eVxdj1PwEHThfAqTL5RbuofbIudf76TtVqvHcb42E0gmk85vkslvCHnBlIHIekIZOE7RQwE1IQSqMrDghXDcxKOBD0fl4VK8Py6OB5qc-BZmcn_P5asNOpj4CCwXVHbpBBie75QF4u4Z2VkefZx_idXjEJdQhAb58Crm_I4Tz9MR9J-HKv9NjhxvSG-Qa219Cmc_YLX6wwkd3OqrGW067sKYe3Ky3zZm3_78i9nxcvO7TW4OWDSd98Zzh1zx9V1yta9OeXaPLNpNmC_S6Odc2ud94K8xbet4Dlen0DRgT1Lnmy6bq07D2rZR9N3iUxq2OV_3yfLg7ec3h3QoukBtIVhDvcAYDEEcU5KB9AUXIZQAVWVF5pzNbSW5sxXGlcZLFWl_pVeVV8ZAmQXm-AMyq9e1f0RwfHkFymY8BCVQAgDxYSWMKArPAlcJYdsF0XZgJI-FMVa6uxnnUvfa0agd3WlHZwl5OfY57fk4LpR-Hdd5lIxc2t0HXAI9bE0t0I7jORjY0gvmjBRGgcPgPSjuTGYSsru1Ej1s8I2OjJcC0WGOs3g-NuPWjPctUPt128uUGDLKKiEPe6MaR8JVgdgrLxMiJ-Y2Geq0pf72taP_RgwvEUdi172tZf4e10W62But9xKqe_x_4k_I9TwaMWM0F7tk1nxv_VOEa415NuzTXzNKMxw priority: 102 providerName: Unpaywall |
| Title | usfAD based effective unknown attack detection focused IDS framework |
| URI | https://link.springer.com/article/10.1038/s41598-024-80021-0 https://www.ncbi.nlm.nih.gov/pubmed/39582026 https://www.proquest.com/docview/3132461229 https://www.proquest.com/docview/3132608687 https://pubmed.ncbi.nlm.nih.gov/PMC11586436 https://doi.org/10.1038/s41598-024-80021-0 https://doaj.org/article/4ebe2228ac6e41db84b9ad713f93db0b |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (ProQuest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTcB4QHxTGFWQeGOBOHES-wGhrt00Kq2aGJXKU-RPQFTpaBNB_3vO-WIVZeIpUnyWLr673J19_h3AK8KlcKgnPhE68tFDCV9aa30eCCUMpTqSbmvgbJKcTul4Fs92oG131Czgamtq5_pJTZfzN79-rN-jwb-rr4yztyt0Qu6iWEh9VpUcYAq_h56Ku1YOZ024X2N9h5wS3tyd2T51H25FPEa_6OAWrriqCtF_Wxj6dzVld6R6B26X-aVY_xTz-RWvdXIP7jbhpjeo9eM-7Jj8AdysG1CuH8KoXNnByHOuTHt1aQf-_bwyd1ttuSeKQqjvnjZFVbCVe3ahSkf6YXTh2bas6xFMT44_DU_9pq-Cr2JKCt9QTLMwTiOcEcFMHFFrEyHSVNFAaxWqlEVapZg6SsO4Q_ZlhqeGSymSwBIdPYbdfJGbp4D8hangKois5RQphMAQMKWSxrEhNuI9IO0SZqoBHXe9L-ZZdfgdsayWQIYSyCoJZEEPXndzLmvIjWupj5xkOkoHl129WCy_ZI31ZRRV1W11CZUYSrRkVHKhMT-3PNIykD04aOWatSqYOVBLigFgiF_xshtG63NHKiI3i7KmSTArZGkPntRq0HHSqlEP2IaCbLC6OZJ_-1ohfGOYzjBUxKmHrS794eu6tTjs9O0_lu7ZP1l-DvuhswlC_JAewG6xLM0LDL4K2Ycb6Sztw95gML4Y4_PoeHL-Ed8Ok2G_2tDoVzaHI9PJ-eDzbw-RLRs |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtUOGAeBMoECQ40ahx7CT2oUIt22qXtisErdSb8RMQq-zSTVTtz_FtjPMqK9CKS6_xOLLHM56nZxB6jbmSvupJhKUhEUgoGSnnXMRjqaWl1BDlXQMn42x4Rj-cp-dr6Ff3FsanVXZ3Yn1Rm6n2PvIdX2KQgjhO-LvZz8h3jfLR1a6FhmxbK5jdusRY-7DjyC4uwYSb744GcN5vkuTw4PT9MGq7DEQ6pbiMLAWjA7QWsL6xZDYl1LlMyjzXNDZGJzpnxOgcDCllGfd1bpnlueVKySx22BD47w20QWHHYPxt7B-MP37qvTw-jkYxb1_rxITtzEFi-ldtCY1YnR8RL0nEunHAv7Tdv5M2-8jtbbRZFTO5uJSTyR_C8fAuutNqteFeQ4b30Jot7qObTZ_LxQM0qOZubxB6iWnCJoMELtmwKrxHrwhlWUr9IzS2rPPCitBNdeVBR4PPoeuyxx6is2tB7CO0XkwL-wTB-pJcch0T5zgFCClB08ypomlqsSM8QLhDodBtbXPfYmMi6hg7YaJBuwC0ixrtIg7Q237OrKnssRJ6359MD-mrctcfphdfRcvkggJHeI-a1Jml2ChGFZcmx8RxYlSsArTVnator4q5uCLsAL3qh4HJfeRGFnZaNTAZGJ8sD9Djhgz6lRCeghaXZAFiSwSytNTlkeL7t7qQOFgDDDRSmLrd0dLVulbhYrunt_9A3dPVu36JNoenJ8fieDQ-eoZuJZ4zMI4SuoXWy4vKPgelr1QvWs4K0ZfrZubfh8plkg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFvA6IN4ECQYITjTaOvbF9QKiwrLoUKiSotDfjZ4tYZZduomp_ja9jnFdZgVZcek3GkTOe94xnEHqBhVah60mClSUJaCiVaO99IlJllKPUEh1CA58O8_0j-mE6nG6hX91dmFBW2cnEWlDbuQkx8kFoMUhBHWdi4NuyiM-j8ZvFzyRMkAqZ1m6cRkMiB251Bu7b8vVkBGf9MsvG77--20_aCQOJGVJcJo6CwwEWC3jeWHE3JNT7XCnGDE2tNZlhnFjDwInSjovQ45Y7wZzQWuWpx5bAdy-hy4wQEcoJ2ZT18Z2QQaNYtPd0UsIHS9CV4T5bRhNeV0aka7qwHhnwLzv373LNPmd7A12rioVananZ7A-1OL6Fbrb2bLzXEOBttOWKO-hKM-FydReNqqXfG8VBV9q4qR0B8RpXRYjlFbEqS2V-xNaVdUVYEfu5qQLoZPQl9l3d2D10dCFovY-2i3nhHiLYX8aUMCnxXlCAUApsTEY1HQ4d9kRECHcolKbtah6Ga8xknV0nXDZol4B2WaNdphF61a9ZND09NkK_DSfTQ4Z-3PWD-emxbNlbUuCFEEtTJncUW82pFsoyTLwgVqc6QjvducpWSCzlOUlH6Hn_Gtg75GxU4eZVA5OD28lZhB40ZNDvBIgO7LcsjxBfI5C1ra6_Kb6f1C3EwQ_gYIvC0t2Ols73tQkXuz29_QfqHm3-62foKrCw_Dg5PHiMrmeBMTBOMrqDtsvTyj0Ba6_UT2u2itG3i-bj36oSYyw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh6gPfn9UT6ngm5ezadI2eVxdj1PwEHThfAqTL5RbuofbIudf76TtVqvHcb42E0gmk85vkslvCHnBlIHIekIZOE7RQwE1IQSqMrDghXDcxKOBD0fl4VK8Py6OB5qc-BZmcn_P5asNOpj4CCwXVHbpBBie75QF4u4Z2VkefZx_idXjEJdQhAb58Crm_I4Tz9MR9J-HKv9NjhxvSG-Qa219Cmc_YLX6wwkd3OqrGW067sKYe3Ky3zZm3_78i9nxcvO7TW4OWDSd98Zzh1zx9V1yta9OeXaPLNpNmC_S6Odc2ud94K8xbet4Dlen0DRgT1Lnmy6bq07D2rZR9N3iUxq2OV_3yfLg7ec3h3QoukBtIVhDvcAYDEEcU5KB9AUXIZQAVWVF5pzNbSW5sxXGlcZLFWl_pVeVV8ZAmQXm-AMyq9e1f0RwfHkFymY8BCVQAgDxYSWMKArPAlcJYdsF0XZgJI-FMVa6uxnnUvfa0agd3WlHZwl5OfY57fk4LpR-Hdd5lIxc2t0HXAI9bE0t0I7jORjY0gvmjBRGgcPgPSjuTGYSsru1Ej1s8I2OjJcC0WGOs3g-NuPWjPctUPt128uUGDLKKiEPe6MaR8JVgdgrLxMiJ-Y2Geq0pf72taP_RgwvEUdi172tZf4e10W62But9xKqe_x_4k_I9TwaMWM0F7tk1nxv_VOEa415NuzTXzNKMxw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=usfAD+based+effective+unknown+attack+detection+focused+IDS+framework&rft.jtitle=Scientific+reports&rft.au=Uddin%2C+Md+Ashraf&rft.au=Aryal%2C+Sunil&rft.au=Bouadjenek%2C+Mohamed+Reda&rft.au=Al-Hawawreh%2C+Muna&rft.date=2024-11-24&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=29103&rft_id=info:doi/10.1038%2Fs41598-024-80021-0&rft_id=info%3Apmid%2F39582026&rft.externalDocID=39582026 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |