usfAD based effective unknown attack detection focused IDS framework

The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection Sy...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 29103 - 25
Main Authors Uddin, Md. Ashraf, Aryal, Sunil, Bouadjenek, Mohamed Reda, Al-Hawawreh, Muna, Talukder, Md. Alamin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.11.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-80021-0

Cover

Abstract The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.
AbstractList The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.
The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.
Abstract The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing range of cyber threats. Ensuring robust protection against these threats necessitates the implementation of an effective Intrusion Detection System (IDS). For more than a decade, researchers have delved into supervised machine learning techniques to develop IDS to classify normal and attack traffic. However, building effective IDS models using supervised learning requires a substantial number of benign and attack samples. To collect a sufficient number of attack samples from real-life scenarios is not possible since cyber attacks occur occasionally. Further, IDS trained and tested on known datasets fails in detecting zero-day or unknown attacks due to the swift evolution of attack patterns. To address this challenge, we put forth two strategies for semi-supervised learning-based IDS where training samples of attacks are not required: (1) training a supervised machine learning model using randomly and uniformly dispersed synthetic attack samples; (2) building a One Class Classification (OCC) model that is trained exclusively on benign network traffic. We have implemented both approaches and compared their performances using 10 recent benchmark IDS datasets. Our findings demonstrate that the OCC model based on the state-of-art anomaly detection technique called usfAD significantly outperforms conventional supervised classification and other OCC-based techniques when trained and tested considering real-life scenarios, particularly to detect previously unseen attacks.
ArticleNumber 29103
Author Uddin, Md. Ashraf
Talukder, Md. Alamin
Aryal, Sunil
Al-Hawawreh, Muna
Bouadjenek, Mohamed Reda
Author_xml – sequence: 1
  givenname: Md. Ashraf
  surname: Uddin
  fullname: Uddin, Md. Ashraf
  email: ashraf.uddin@deakin.edu.au
  organization: School of Information Technology, Deakin University
– sequence: 2
  givenname: Sunil
  surname: Aryal
  fullname: Aryal, Sunil
  organization: School of Information Technology, Deakin University
– sequence: 3
  givenname: Mohamed Reda
  surname: Bouadjenek
  fullname: Bouadjenek, Mohamed Reda
  organization: School of Information Technology, Deakin University
– sequence: 4
  givenname: Muna
  surname: Al-Hawawreh
  fullname: Al-Hawawreh, Muna
  organization: School of Information Technology, Deakin University
– sequence: 5
  givenname: Md. Alamin
  surname: Talukder
  fullname: Talukder, Md. Alamin
  organization: Department of Computer Science and Engineering, International University of Business Agriculture and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39582026$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1UREvpH2CBIrFhE_Arib1CVYfHSJVYAGvLj-shMxl7sJOO-u_xPChtFxXe2PL9ztHx8Ut0EmIAhF4T_J5gJj5kThopakx5LTCmpMbP0BnFvKkpo_Tk3vkUXeS8xGU1VHIiX6BTJhtBMW3P0GzK_nJWGZ3BVeA92LG_gWoKqxC3odLjqO2qcjDuBjFUPtpph85n3yuf9Bq2Ma1eoedeDxkujvs5-vn504-rr_X1ty_zq8vr2jacjDVwQQVuOiIF0QIaxr1vte46y7FzltpOMGc72nADQpb8QoDsQBqjW-yJY-dofvB1US_VJvVrnW5V1L3aX8S0UDqNvR1AcTBAKRXatsCJM4IbqV1HmJfMGWyKFzt4TWGjb7d6GO4MCVa7itWhYlUqVvuKFS6qjwfVZjJrcBbCmPTwIMrDSeh_qUW8UYQ0ouWsLQ7vjg4p_p4gj2rdZwvDoAPEKStGGG2xaEVX0LeP0GWcUigN7yneEkplod7cj3SX5e8fF0AcAJtizgm8sv2od79ZEvbD08-lj6T_1dGx2VzgsID0L_YTqj9_Rdpd
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104244
crossref_primary_10_1016_j_comcom_2024_108006
crossref_primary_10_1038_s41598_025_93447_x
Cites_doi 10.1016/j.jnca.2023.103653
10.22364/bjmc.2017.5.1.05
10.1109/ACCESS.2021.3082147
10.1007/s10489-021-02621-x
10.1109/COMST.2021.3064259
10.1186/s13634-022-00871-6
10.1109/TII.2022.3156642
10.1016/j.future.2021.09.027
10.1109/TIFS.2017.2730581
10.1109/ACCESS.2022.3187116
10.1007/s10922-022-09653-9
10.1109/JIOT.2021.3102056
10.1016/j.cose.2020.101851
10.1186/s42400-021-00103-8
10.1017/S026988891300043X
10.1016/j.apenergy.2024.122736
10.1007/s10618-016-0463-0
10.1186/s40537-024-00886-w
10.1109/ACCESS.2020.2972627
10.1007/s13042-020-01225-0
10.1016/j.comnet.2021.107840
10.3390/s19143188
10.1109/ACCESS.2022.3206367
10.1016/j.compeleceng.2022.107869
10.1186/s13635-019-0084-4
10.1016/j.jnca.2023.103811
10.1186/s42400-024-00221-z
10.1016/j.comnet.2017.03.018
10.1016/j.icte.2020.03.003
10.1109/ACCESS.2022.3186026
10.1016/j.scs.2021.102994
10.1109/ACCESS.2021.3116612
10.3390/electronics9010173
10.1109/ACCESS.2021.3100087
10.1016/j.rser.2023.113913
10.1049/rpg2.12432
10.3390/jsan12010005
10.5220/0010908200003120
10.1007/978-3-319-46298-1_30
10.1007/s10207-024-00833-z
10.1007/978-3-319-93034-3_47
10.1016/j.jnca.2024.103841
10.1109/ComNet47917.2020.9306073
10.1145/342009.335388
10.1007/978-981-13-6001-5_43
10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
10.1007/978-3-030-86486-6_42
10.1109/MILCOM.2017.8170749
10.1109/CCE.2018.8465718
10.1109/CCWC57344.2023.10099144
10.1109/CCST.2019.8888419
10.1145/3097983.3098052
10.1109/NOMS54207.2022.9789927
10.1109/COMPSAC.2016.32
10.1109/ICCKE.2018.8566601
10.1109/BADGERS.2015.014
10.1109/I2CT57861.2023.10126162
10.1109/ICDM.2008.17
10.1109/TSG.2022.3204796
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-80021-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 25
ExternalDocumentID oai_doaj_org_article_4ebe2228ac6e41db84b9ad713f93db0b
10.1038/s41598-024-80021-0
PMC11586436
39582026
10_1038_s41598_024_80021_0
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c541t-e48280571981a8e534ff6aa77c40ddc2c783dc7254be8920488e97e9bba60f1d3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Fri Oct 03 12:33:19 EDT 2025
Sun Oct 26 04:15:21 EDT 2025
Tue Sep 30 17:06:59 EDT 2025
Fri Sep 05 12:15:45 EDT 2025
Tue Oct 07 07:57:11 EDT 2025
Mon Jul 21 05:55:23 EDT 2025
Wed Oct 01 02:45:26 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Fri Feb 21 02:37:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Zero day attacks
Intrusion detection system
Network traffic
Anomaly detection
One class classification
IoT
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e48280571981a8e534ff6aa77c40ddc2c783dc7254be8920488e97e9bba60f1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3132461229?pq-origsite=%requestingapplication%&accountid=15518
PMID 39582026
PQID 3132461229
PQPubID 2041939
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_4ebe2228ac6e41db84b9ad713f93db0b
unpaywall_primary_10_1038_s41598_024_80021_0
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11586436
proquest_miscellaneous_3132608687
proquest_journals_3132461229
pubmed_primary_39582026
crossref_citationtrail_10_1038_s41598_024_80021_0
crossref_primary_10_1038_s41598_024_80021_0
springer_journals_10_1038_s41598_024_80021_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-24
PublicationDateYYYYMMDD 2024-11-24
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-24
  day: 24
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Fahad, Muhammad, Bi (CR11) 2017; 5
Kilincer, Ertam, Sengur (CR7) 2021; 188
Belenguer, Pascual, Navaridas (CR5) 2023; 217
Aouedi, Piamrat, Muller, Singh (CR36) 2022; 19
Sameera, Shashi (CR64) 2020; 6
CR39
Talukder, Islam, Uddin, Hasan, Sharmin, Alyami, Moni (CR1) 2024; 11
Urmi, Uddin, Uddin, Talukder, Hasan, Paul, Chanda, Ayoade, Khraisat, Hossen (CR18) 2024; 5
Fernando, Webb (CR53) 2017; 31
CR32
Khraisat, Gondal, Vamplew, Kamruzzaman, Alazab (CR34) 2020; 9
CR30
Talukder, Hossen, Uddin, Uddin, Acharjee (CR6) 2024; 7
Qu, Dong, Li, Song, Jiang, Li, Wang, Wang, Bo, Zang (CR16) 2024; 360
Sánchez, Valero, Celdrán, Bovet, Pérez, Pérez (CR13) 2021; 23
Wu, Fan, Zhu, You, Zhou, Huang (CR22) 2022; 2022
Min, Yoo, Kim, Shin, Shin (CR38) 2021; 9
Alazzam, Sharieh, Sabri (CR43) 2022; 52
Al-Qudah, Ashi, Alnabhan, Abu Al-Haija (CR37) 2023; 12
An, Cho (CR55) 2015; 2
CR3
Liu, Gu, Wang (CR21) 2021; 9
Qu, Bo, Yu, Liu, Dong, Kan, Wang, Li (CR35) 2022; 16
CR49
CR47
CR44
CR41
CR40
Hairab, Elsayed, Jurcut, Azer (CR59) 2022; 10
Talukder, Hasan, Islam, Uddin, Akhter, Yousuf, Alharbi, Moni (CR2) 2023; 72
CR17
CR15
CR14
Li, Chen, Zhang, Wu (CR57) 2020; 95
Agate, Ferraro, Re, Das (CR4) 2024; 223
CR12
Aryal, Santosh, Dazeley (CR31) 2021; 12
CR54
CR52
Rousseeuw (CR29) 1985; 8
CR50
Al-Hawawreh, Sitnikova, Aboutorab (CR51) 2022; 9
Moustafa (CR48) 2021; 72
Li, Cao, Xu, Zhu, Dong (CR56) 2024; 189
Kilincer, Ertam, Sengur (CR9) 2022; 100
Xu, Jang-Jaccard, Singh, Wei, Sabrina (CR42) 2021; 9
Zhao, Shetty, Pan, Kamhoua, Kwiat (CR65) 2019; 2019
Roy, Li, Choi, Bai (CR8) 2022; 127
Khan, Madden (CR23) 2014; 29
Wan, Shang, Zeng (CR33) 2017; 12
CR28
Naseri, Gharehchopogh (CR10) 2022; 30
CR27
CR26
CR67
Uddin, Talukder, Uzzaman, Debnath, Chanda, Paul, Islam, Khraisat, Alazab, Aryal (CR19) 2024; 5
CR66
Disha, Waheed (CR58) 2022; 5
CR20
CR63
CR62
CR61
Su, Sun, Zhu, Wang, Li (CR45) 2020; 8
Jazi, Gonzalez, Stakhanova, Ghorbani (CR46) 2017; 121
Bezerra, da Costa, Barbon Junior, Miani, Zarpelão (CR24) 2019; 19
Dini, Begni, Ciavarella, De Paoli, Fiorelli, Silvestro, Saponara (CR25) 2022; 10
Mbona, Eloff (CR60) 2022; 10
N Moustafa (80021_CR48) 2021; 72
T Su (80021_CR45) 2020; 8
C Liu (80021_CR21) 2021; 9
SS Khan (80021_CR23) 2014; 29
MA Talukder (80021_CR6) 2024; 7
T Wu (80021_CR22) 2022; 2022
O Aouedi (80021_CR36) 2022; 19
TL Fernando (80021_CR53) 2017; 31
80021_CR17
MA Talukder (80021_CR1) 2024; 11
H Alazzam (80021_CR43) 2022; 52
BI Hairab (80021_CR59) 2022; 10
M Wan (80021_CR33) 2017; 12
80021_CR12
80021_CR15
VH Bezerra (80021_CR24) 2019; 19
I Mbona (80021_CR60) 2022; 10
80021_CR14
M Al-Qudah (80021_CR37) 2023; 12
W Xu (80021_CR42) 2021; 9
80021_CR52
80021_CR54
80021_CR50
N Sameera (80021_CR64) 2020; 6
MA Uddin (80021_CR19) 2024; 5
HH Jazi (80021_CR46) 2017; 121
TS Naseri (80021_CR10) 2022; 30
MA Talukder (80021_CR2) 2023; 72
A Belenguer (80021_CR5) 2023; 217
S Roy (80021_CR8) 2022; 127
80021_CR28
80021_CR27
J Zhao (80021_CR65) 2019; 2019
WF Urmi (80021_CR18) 2024; 5
Y Li (80021_CR56) 2024; 189
80021_CR67
80021_CR26
80021_CR20
80021_CR63
80021_CR66
80021_CR62
80021_CR61
V Agate (80021_CR4) 2024; 223
UM Fahad (80021_CR11) 2017; 5
IF Kilincer (80021_CR7) 2021; 188
80021_CR3
80021_CR39
80021_CR30
J An (80021_CR55) 2015; 2
80021_CR32
B Min (80021_CR38) 2021; 9
PJ Rousseeuw (80021_CR29) 1985; 8
X Li (80021_CR57) 2020; 95
S Aryal (80021_CR31) 2021; 12
P Dini (80021_CR25) 2022; 10
80021_CR49
Z Qu (80021_CR16) 2024; 360
RA Disha (80021_CR58) 2022; 5
PMS Sánchez (80021_CR13) 2021; 23
80021_CR47
80021_CR41
80021_CR44
IF Kilincer (80021_CR9) 2022; 100
Z Qu (80021_CR35) 2022; 16
80021_CR40
A Khraisat (80021_CR34) 2020; 9
M Al-Hawawreh (80021_CR51) 2022; 9
References_xml – volume: 217
  start-page: 103653
  year: 2023
  ident: CR5
  article-title: Göwfed: A novel federated network intrusion detection system
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103653
– ident: CR49
– volume: 5
  start-page: 259
  year: 2024
  end-page: 268
  ident: CR19
  article-title: Deep learning-based human activity recognition using cnn, convlstm, and lrcn
  publication-title: Int. J. Cognit. Comput. Eng.
– ident: CR39
– volume: 5
  start-page: 70
  issue: 1
  year: 2017
  end-page: 86
  ident: CR11
  article-title: Applying one-class classification techniques to IP flow records for intrusion detection
  publication-title: Baltic J. Mod. Comput.
  doi: 10.22364/bjmc.2017.5.1.05
– volume: 9
  start-page: 75729
  year: 2021
  end-page: 75740
  ident: CR21
  article-title: A hybrid intrusion detection system based on scalable k-means+ random forest and deep learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3082147
– ident: CR12
– volume: 52
  start-page: 3527
  issue: 4
  year: 2022
  end-page: 3544
  ident: CR43
  article-title: A lightweight intelligent network intrusion detection system using ocsvm and pigeon inspired optimizer
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02621-x
– volume: 23
  start-page: 1048
  issue: 2
  year: 2021
  end-page: 1077
  ident: CR13
  article-title: A survey on device behavior fingerprinting: Data sources, techniques, application scenarios, and datasets
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2021.3064259
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  end-page: 20
  ident: CR22
  article-title: Intrusion detection system combined enhanced random forest with smote algorithm
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-022-00871-6
– ident: CR54
– ident: CR61
– volume: 19
  start-page: 286
  issue: 1
  year: 2022
  end-page: 295
  ident: CR36
  article-title: Federated semisupervised learning for attack detection in industrial internet of things
  publication-title: IEEE Trans. Indus. Inform.
  doi: 10.1109/TII.2022.3156642
– volume: 127
  start-page: 276
  year: 2022
  end-page: 285
  ident: CR8
  article-title: A lightweight supervised intrusion detection mechanism for IOT networks
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.09.027
– volume: 12
  start-page: 3011
  issue: 12
  year: 2017
  end-page: 3023
  ident: CR33
  article-title: Double behavior characteristics for one-class classification anomaly detection in networked control systems
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2730581
– volume: 10
  start-page: 69822
  year: 2022
  end-page: 69838
  ident: CR60
  article-title: Detecting zero-day intrusion attacks using semi-supervised machine learning approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187116
– volume: 30
  start-page: 40
  issue: 3
  year: 2022
  ident: CR10
  article-title: A feature selection based on the farmland fertility algorithm for improved intrusion detection systems
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-022-09653-9
– ident: CR67
– ident: CR15
– ident: CR50
– volume: 9
  start-page: 3962
  issue: 5
  year: 2022
  end-page: 3977
  ident: CR51
  article-title: X-iiotid: A connectivity-agnostic and device-agnostic intrusion data set for industrial internet of things
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3102056
– volume: 95
  start-page: 101851
  year: 2020
  ident: CR57
  article-title: Building auto-encoder intrusion detection system based on random forest feature selection
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101851
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: CR58
  article-title: Performance analysis of machine learning models for intrusion detection system using gini impurity-based weighted random forest (giwrf) feature selection technique
  publication-title: Cybersecurity
  doi: 10.1186/s42400-021-00103-8
– ident: CR32
– volume: 29
  start-page: 345
  issue: 3
  year: 2014
  end-page: 374
  ident: CR23
  article-title: One-class classification: Taxonomy of study and review of techniques
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891300043X
– volume: 360
  start-page: 122736
  year: 2024
  ident: CR16
  article-title: Localization of dummy data injection attacks in power systems considering incomplete topological information: A spatio-temporal graph wavelet convolutional neural network approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.122736
– ident: CR26
– volume: 72
  start-page: 103405
  year: 2023
  ident: CR2
  article-title: A dependable hybrid machine learning model for network intrusion detection
  publication-title: J. Inf. Secur. Appl.
– volume: 31
  start-page: 264
  year: 2017
  end-page: 286
  ident: CR53
  article-title: Simusf: An efficient and effective similarity measure that is invariant to violations of the interval scale assumption
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0463-0
– ident: CR66
– ident: CR47
– ident: CR14
– volume: 11
  start-page: 1
  issue: 1
  year: 2024
  end-page: 44
  ident: CR1
  article-title: Machine learning-based network intrusion detection for big and imbalanced data using oversampling, stacking feature embedding and feature extraction
  publication-title: J. Big Data
  doi: 10.1186/s40537-024-00886-w
– ident: CR30
– volume: 8
  start-page: 29575
  year: 2020
  end-page: 29585
  ident: CR45
  article-title: Bat: Deep learning methods on network intrusion detection using nsl-kdd dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– volume: 5
  start-page: 316
  year: 2024
  end-page: 331
  ident: CR18
  article-title: A stacked ensemble approach to detect cyber attacks based on feature selection techniques
  publication-title: Int. J. Cognit. Comput. Eng.
– volume: 12
  start-page: 1137
  year: 2021
  end-page: 1150
  ident: CR31
  article-title: usfad: A robust anomaly detector based on unsupervised stochastic forest
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01225-0
– volume: 188
  start-page: 107840
  year: 2021
  ident: CR7
  article-title: Machine learning methods for cyber security intrusion detection: Datasets and comparative study
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107840
– volume: 19
  start-page: 3188
  issue: 14
  year: 2019
  ident: CR24
  article-title: Iotds: A one-class classification approach to detect botnets in internet of things devices
  publication-title: Sensors
  doi: 10.3390/s19143188
– ident: CR40
– volume: 10
  start-page: 98427
  year: 2022
  end-page: 98440
  ident: CR59
  article-title: Anomaly detection based on cnn and regularization techniques against zero-day attacks in iot networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3206367
– ident: CR63
– volume: 100
  start-page: 107869
  year: 2022
  ident: CR9
  article-title: A comprehensive intrusion detection framework using boosting algorithms
  publication-title: Comput. Electric. Eng.
  doi: 10.1016/j.compeleceng.2022.107869
– ident: CR27
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 13
  ident: CR65
  article-title: Transfer learning for detecting unknown network attacks
  publication-title: EURASIP J. Inf. Secur.
  doi: 10.1186/s13635-019-0084-4
– volume: 223
  start-page: 103811
  year: 2024
  ident: CR4
  article-title: Blind: A privacy preserving truth discovery system for mobile crowdsensing
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103811
– volume: 7
  start-page: 32
  year: 2024
  ident: CR6
  article-title: Securing transactions: A hybrid dependable ensemble machine learning model using IHT-LR and grid search
  publication-title: Cybersecurity
  doi: 10.1186/s42400-024-00221-z
– ident: CR44
– volume: 121
  start-page: 25
  year: 2017
  end-page: 36
  ident: CR46
  article-title: Detecting http-based application layer dos attacks on web servers in the presence of sampling
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.03.018
– volume: 6
  start-page: 361
  issue: 4
  year: 2020
  end-page: 367
  ident: CR64
  article-title: Deep transductive transfer learning framework for zero-day attack detection
  publication-title: ICT Exp.
  doi: 10.1016/j.icte.2020.03.003
– ident: CR3
– volume: 10
  start-page: 67910
  year: 2022
  end-page: 67924
  ident: CR25
  article-title: Design and testing novel one-class classifier based on polynomial interpolation with application to networking security
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3186026
– ident: CR52
– ident: CR17
– volume: 8
  start-page: 37
  issue: 283–297
  year: 1985
  ident: CR29
  article-title: Multivariate estimation with high breakdown point
  publication-title: Math. Stat. Appl.
– volume: 72
  start-page: 102994
  year: 2021
  ident: CR48
  article-title: A new distributed architecture for evaluating AI-based security systems at the edge: Network ton\_iot datasets
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102994
– volume: 9
  start-page: 140136
  year: 2021
  end-page: 140146
  ident: CR42
  article-title: Improving performance of autoencoder-based network anomaly detection on nsl-kdd dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116612
– volume: 9
  start-page: 173
  issue: 1
  year: 2020
  ident: CR34
  article-title: Hybrid intrusion detection system based on the stacking ensemble of c5 decision tree classifier and one class support vector machine
  publication-title: Electronics
  doi: 10.3390/electronics9010173
– volume: 9
  start-page: 104695
  year: 2021
  end-page: 104706
  ident: CR38
  article-title: Network anomaly detection using memory-augmented deep autoencoder
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100087
– volume: 189
  start-page: 113913
  year: 2024
  ident: CR56
  article-title: Deep learning based on transformer architecture for power system short-term voltage stability assessment with class imbalance
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113913
– ident: CR28
– ident: CR41
– ident: CR62
– ident: CR20
– volume: 16
  start-page: 1490
  issue: 7
  year: 2022
  end-page: 1508
  ident: CR35
  article-title: Active and passive hybrid detection method for power cps false data injection attacks with improved akf and gru-cnn
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/rpg2.12432
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  end-page: 18
  ident: CR55
  article-title: Variational autoencoder based anomaly detection using reconstruction probability
  publication-title: Spec. Lect. IE
– volume: 12
  start-page: 5
  issue: 1
  year: 2023
  ident: CR37
  article-title: Effective one-class classifier model for memory dump malware detection
  publication-title: J. Sens. Actuator Netw.
  doi: 10.3390/jsan12010005
– volume: 52
  start-page: 3527
  issue: 4
  year: 2022
  ident: 80021_CR43
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02621-x
– volume: 95
  start-page: 101851
  year: 2020
  ident: 80021_CR57
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101851
– volume: 5
  start-page: 1
  issue: 1
  year: 2022
  ident: 80021_CR58
  publication-title: Cybersecurity
  doi: 10.1186/s42400-021-00103-8
– volume: 360
  start-page: 122736
  year: 2024
  ident: 80021_CR16
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.122736
– ident: 80021_CR47
  doi: 10.5220/0010908200003120
– ident: 80021_CR50
  doi: 10.1007/978-3-319-46298-1_30
– volume: 9
  start-page: 75729
  year: 2021
  ident: 80021_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3082147
– volume: 16
  start-page: 1490
  issue: 7
  year: 2022
  ident: 80021_CR35
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/rpg2.12432
– ident: 80021_CR17
  doi: 10.1007/s10207-024-00833-z
– ident: 80021_CR30
  doi: 10.1007/978-3-319-93034-3_47
– volume: 189
  start-page: 113913
  year: 2024
  ident: 80021_CR56
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113913
– ident: 80021_CR3
  doi: 10.1016/j.jnca.2024.103841
– volume: 23
  start-page: 1048
  issue: 2
  year: 2021
  ident: 80021_CR13
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2021.3064259
– ident: 80021_CR39
  doi: 10.1109/ComNet47917.2020.9306073
– ident: 80021_CR26
  doi: 10.1145/342009.335388
– ident: 80021_CR20
  doi: 10.1007/978-981-13-6001-5_43
– volume: 9
  start-page: 3962
  issue: 5
  year: 2022
  ident: 80021_CR51
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2021.3102056
– volume: 72
  start-page: 102994
  year: 2021
  ident: 80021_CR48
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2021.102994
– volume: 9
  start-page: 140136
  year: 2021
  ident: 80021_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3116612
– volume: 29
  start-page: 345
  issue: 3
  year: 2014
  ident: 80021_CR23
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S026988891300043X
– volume: 5
  start-page: 259
  year: 2024
  ident: 80021_CR19
  publication-title: Int. J. Cognit. Comput. Eng.
– volume: 100
  start-page: 107869
  year: 2022
  ident: 80021_CR9
  publication-title: Comput. Electric. Eng.
  doi: 10.1016/j.compeleceng.2022.107869
– volume: 223
  start-page: 103811
  year: 2024
  ident: 80021_CR4
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103811
– volume: 2019
  start-page: 1
  year: 2019
  ident: 80021_CR65
  publication-title: EURASIP J. Inf. Secur.
  doi: 10.1186/s13635-019-0084-4
– ident: 80021_CR63
  doi: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00026
– volume: 6
  start-page: 361
  issue: 4
  year: 2020
  ident: 80021_CR64
  publication-title: ICT Exp.
  doi: 10.1016/j.icte.2020.03.003
– ident: 80021_CR44
  doi: 10.1007/978-3-030-86486-6_42
– ident: 80021_CR67
  doi: 10.1109/MILCOM.2017.8170749
– ident: 80021_CR52
– volume: 30
  start-page: 40
  issue: 3
  year: 2022
  ident: 80021_CR10
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-022-09653-9
– volume: 8
  start-page: 29575
  year: 2020
  ident: 80021_CR45
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2972627
– volume: 5
  start-page: 70
  issue: 1
  year: 2017
  ident: 80021_CR11
  publication-title: Baltic J. Mod. Comput.
  doi: 10.22364/bjmc.2017.5.1.05
– volume: 2022
  start-page: 1
  issue: 1
  year: 2022
  ident: 80021_CR22
  publication-title: EURASIP J. Adv. Signal Process.
  doi: 10.1186/s13634-022-00871-6
– ident: 80021_CR40
  doi: 10.1109/CCE.2018.8465718
– volume: 12
  start-page: 3011
  issue: 12
  year: 2017
  ident: 80021_CR33
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2730581
– ident: 80021_CR49
  doi: 10.1109/CCWC57344.2023.10099144
– ident: 80021_CR62
  doi: 10.1109/CCST.2019.8888419
– volume: 10
  start-page: 98427
  year: 2022
  ident: 80021_CR59
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3206367
– volume: 9
  start-page: 104695
  year: 2021
  ident: 80021_CR38
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3100087
– volume: 19
  start-page: 3188
  issue: 14
  year: 2019
  ident: 80021_CR24
  publication-title: Sensors
  doi: 10.3390/s19143188
– ident: 80021_CR54
  doi: 10.1145/3097983.3098052
– volume: 5
  start-page: 316
  year: 2024
  ident: 80021_CR18
  publication-title: Int. J. Cognit. Comput. Eng.
– volume: 19
  start-page: 286
  issue: 1
  year: 2022
  ident: 80021_CR36
  publication-title: IEEE Trans. Indus. Inform.
  doi: 10.1109/TII.2022.3156642
– volume: 8
  start-page: 37
  issue: 283–297
  year: 1985
  ident: 80021_CR29
  publication-title: Math. Stat. Appl.
– ident: 80021_CR41
  doi: 10.1109/NOMS54207.2022.9789927
– volume: 10
  start-page: 69822
  year: 2022
  ident: 80021_CR60
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3187116
– volume: 7
  start-page: 32
  year: 2024
  ident: 80021_CR6
  publication-title: Cybersecurity
  doi: 10.1186/s42400-024-00221-z
– ident: 80021_CR32
  doi: 10.1109/COMPSAC.2016.32
– volume: 121
  start-page: 25
  year: 2017
  ident: 80021_CR46
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2017.03.018
– volume: 12
  start-page: 1137
  year: 2021
  ident: 80021_CR31
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-020-01225-0
– volume: 9
  start-page: 173
  issue: 1
  year: 2020
  ident: 80021_CR34
  publication-title: Electronics
  doi: 10.3390/electronics9010173
– volume: 72
  start-page: 103405
  year: 2023
  ident: 80021_CR2
  publication-title: J. Inf. Secur. Appl.
– ident: 80021_CR66
  doi: 10.1109/ICCKE.2018.8566601
– ident: 80021_CR12
– volume: 31
  start-page: 264
  year: 2017
  ident: 80021_CR53
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0463-0
– ident: 80021_CR61
  doi: 10.1109/BADGERS.2015.014
– volume: 188
  start-page: 107840
  year: 2021
  ident: 80021_CR7
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107840
– volume: 11
  start-page: 1
  issue: 1
  year: 2024
  ident: 80021_CR1
  publication-title: J. Big Data
  doi: 10.1186/s40537-024-00886-w
– volume: 10
  start-page: 67910
  year: 2022
  ident: 80021_CR25
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3186026
– ident: 80021_CR27
– volume: 12
  start-page: 5
  issue: 1
  year: 2023
  ident: 80021_CR37
  publication-title: J. Sens. Actuator Netw.
  doi: 10.3390/jsan12010005
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 80021_CR55
  publication-title: Spec. Lect. IE
– volume: 127
  start-page: 276
  year: 2022
  ident: 80021_CR8
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.09.027
– volume: 217
  start-page: 103653
  year: 2023
  ident: 80021_CR5
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2023.103653
– ident: 80021_CR14
  doi: 10.1109/I2CT57861.2023.10126162
– ident: 80021_CR28
  doi: 10.1109/ICDM.2008.17
– ident: 80021_CR15
  doi: 10.1109/TSG.2022.3204796
SSID ssj0000529419
Score 2.4933593
Snippet The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an increasing...
Abstract The rapid expansion of varied network systems, including the Internet of Things (IoT) and the Industrial Internet of Things (IIoT), has led to an...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 29103
SubjectTerms 639/705/117
639/705/258
Algorithms
Anomaly detection
Classification
Datasets
Humanities and Social Sciences
Internet of Things
Intrusion detection system
Intrusion detection systems
IoT
Learning algorithms
Machine learning
multidisciplinary
Network traffic
One class classification
Science
Science (multidisciplinary)
Zero day attacks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEG8CBQWJG7Uax05iHwtLVZDgApV6s8YvgVh5KzZR1X_fcZwNuwIVDlzjsWKPx55v7PFnQl4zZSCxnlAGjlP0UEBNCIGqCix4IRw3aWvg0-f25FR8PGvOtp76SjlhmR44K-5Q4F_SLgXY1gvmjBRGgcPQKijuTGXS6ltJtRVMZVbvWgmmplsyFZeHa_RU6TZZLagc8xKqHU80Evb_CWX-niw5n5jeIbeGeA6XF7Bcbjml43vk7oQmy6Pci_vkho8PyM38vuTlQ7IY1uFoUSZP5cqcuYGLWznEtJMWS-h7sD9K5_sxHyuWYWWHJPph8aUMm6ytR-T0-P3Xdyd0ejaB2kawnnqBURTCMKYkA-kbLkJoAbrOiso5W9tOcmc7jAyNlyoR90qvOq-MgbYKzPHHZC-uon9KsH11B8pWPAQlUAIAEV4njGgazwJXBWEbFWo7cYqnpy2Wejzb5lJntWtUux7VrquCvJnrnGdGjWul36aRmSUTG_b4AW1ETzai_2YjBdnfjKuepuhaJ85Kgfiuxl68motxcqUTE4h-NWSZFoM-2RXkSTaDuSVcNYie6rYgcsdAdpq6WxK_fxsJvBGFS0SCWPVgY0u_2nWdLg5me_sH1T37H6p7Tm7Xac4wRmuxT_b6n4N_gTCsNy_HGXcF1pssOw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9QwDLfGTQh4QHxTGKhIvLFoTZO2yQNCG7dpIHFCwKS9Vc4XIE7tsWuF9t-T9GucQCdeG0dKHTt2bOdngJdUKgyoJ4SiYcRbKCTKOUdkghot54apEBr4sMhPz_j78-x8BxbjW5hQVjmeid1BbWodYuQHAWKQe3OcyjernyR0jQrZ1bGFBg6tFczrDmLsGuymARlrBrtHx4uPn6aoS8hrcSqH1zMJEwdrb8HCK7OUE9HVKyQbFqoD8v-X9_l3EeWUSb0FN9pqhZe_cLn8w1id3IHbg5cZH_ZicRd2bHUPrvd9Jy_vw7xdu8N5HCyYifuKDn_oxW0VImxVjE2D-kdsbNPVaVWxq3UbSN_NP8durOZ6AGcnx1_enpKhnQLRGacNsdzfrrx7RqWgKGzGuHM5YlFonhijU10IZnThb4zKChkAfYWVhZVKYZ44athDmFV1ZR-DX19aoNQJc05yT4HoPb-CK55lljomI6AjC0s9YI2HlhfLsst5M1H2bC8928uO7WUSwatpzqpH2thKfRR2ZqIMKNndh_riazkoXcm9hIYIF-rccmqU4Eqi8ddyJ5lRiYpgb9zXclDddXklaBG8mIa90oVMCla2bnua3F8GRRHBo14MppUwmXmvKs0jEBsCsrHUzZHq-7cO2Nt758J7iH7q_ihLV-vaxov9Sd7-g3VPtv_1U7iZBm2glKR8D2bNRWufecerUc8HbfoN8tIpBA
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VWyHggHgTKChI3NiIOHYS-7iwVGUluJRKvVl-ioqVt2ITof57xnlBVFTBdTOOvOOZzDee8WeAN0RoFVlPMqIszTBCqUx77zORK6McY5bquDXw-Ut1csY25-X5ASzHszCz-n1H3b3HEBOPgRUs411DASbohxwNky_gcLXanG6mPZVYtWJEDGdjcPi764Nn8aej6f8btrzeIjnVSe_C7TZcqqufarv9IxQd34d7A4ZMV_2iP4ADFx7Crf5WyatHsG73frVOY3yyad-vgZ-0tA1x_yykqmmU-Z5a13RdWCH1O9NG0U_r09SPvVqP4ez449cPJ9lwWUJmSkaazDHMnRB8EcGJ4q6kzPtKqbo2LLfWFKbm1Joa80HtuIh0vdyJ2gmtVZV7YukTWIRdcM8A51fUSpicei8YSiiFuK5mmpWlI56KBMioQmkGJvF4ocVWdhVtymWvdolql53aZZ7A22nMZc-jcaP0-7gyk2TkwO5-QNOQg0tJhvYX96-UqRwjVnOmhbKYdHtBrc51AkfjusrBMfcyMlUyRHUF_ovX02N0qVgnUcHt2l6mwlSP1wk87c1gmgkVJWKmokqAzwxkNtX5k3DxraPtRuzNEf_h0OVoS7_ndZMulpO9_YPqnv_f21_AnSJ6ByFZwY5g0fxo3UuEWY1-NXjXL_WAHTM
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh6gPfn9UT6ngm5ezadI2eVxdj1PwEHThfAqTL5RbuofbIudf76TtVqvHcb42E0gmk85vkslvCHnBlIHIekIZOE7RQwE1IQSqMrDghXDcxKOBD0fl4VK8Py6OB5qc-BZmcn_P5asNOpj4CCwXVHbpBBie75QF4u4Z2VkefZx_idXjEJdQhAb58Crm_I4Tz9MR9J-HKv9NjhxvSG-Qa219Cmc_YLX6wwkd3OqrGW067sKYe3Ky3zZm3_78i9nxcvO7TW4OWDSd98Zzh1zx9V1yta9OeXaPLNpNmC_S6Odc2ud94K8xbet4Dlen0DRgT1Lnmy6bq07D2rZR9N3iUxq2OV_3yfLg7ec3h3QoukBtIVhDvcAYDEEcU5KB9AUXIZQAVWVF5pzNbSW5sxXGlcZLFWl_pVeVV8ZAmQXm-AMyq9e1f0RwfHkFymY8BCVQAgDxYSWMKArPAlcJYdsF0XZgJI-FMVa6uxnnUvfa0agd3WlHZwl5OfY57fk4LpR-Hdd5lIxc2t0HXAI9bE0t0I7jORjY0gvmjBRGgcPgPSjuTGYSsru1Ej1s8I2OjJcC0WGOs3g-NuPWjPctUPt128uUGDLKKiEPe6MaR8JVgdgrLxMiJ-Y2Geq0pf72taP_RgwvEUdi172tZf4e10W62But9xKqe_x_4k_I9TwaMWM0F7tk1nxv_VOEa415NuzTXzNKMxw
  priority: 102
  providerName: Unpaywall
Title usfAD based effective unknown attack detection focused IDS framework
URI https://link.springer.com/article/10.1038/s41598-024-80021-0
https://www.ncbi.nlm.nih.gov/pubmed/39582026
https://www.proquest.com/docview/3132461229
https://www.proquest.com/docview/3132608687
https://pubmed.ncbi.nlm.nih.gov/PMC11586436
https://doi.org/10.1038/s41598-024-80021-0
https://doaj.org/article/4ebe2228ac6e41db84b9ad713f93db0b
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: Open access medical journals (GFMER)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NTcB4QHxTGFWQeGOBOHES-wGhrt00Kq2aGJXKU-RPQFTpaBNB_3vO-WIVZeIpUnyWLr673J19_h3AK8KlcKgnPhE68tFDCV9aa30eCCUMpTqSbmvgbJKcTul4Fs92oG131Czgamtq5_pJTZfzN79-rN-jwb-rr4yztyt0Qu6iWEh9VpUcYAq_h56Ku1YOZ024X2N9h5wS3tyd2T51H25FPEa_6OAWrriqCtF_Wxj6dzVld6R6B26X-aVY_xTz-RWvdXIP7jbhpjeo9eM-7Jj8AdysG1CuH8KoXNnByHOuTHt1aQf-_bwyd1ttuSeKQqjvnjZFVbCVe3ahSkf6YXTh2bas6xFMT44_DU_9pq-Cr2JKCt9QTLMwTiOcEcFMHFFrEyHSVNFAaxWqlEVapZg6SsO4Q_ZlhqeGSymSwBIdPYbdfJGbp4D8hangKois5RQphMAQMKWSxrEhNuI9IO0SZqoBHXe9L-ZZdfgdsayWQIYSyCoJZEEPXndzLmvIjWupj5xkOkoHl129WCy_ZI31ZRRV1W11CZUYSrRkVHKhMT-3PNIykD04aOWatSqYOVBLigFgiF_xshtG63NHKiI3i7KmSTArZGkPntRq0HHSqlEP2IaCbLC6OZJ_-1ohfGOYzjBUxKmHrS794eu6tTjs9O0_lu7ZP1l-DvuhswlC_JAewG6xLM0LDL4K2Ycb6Sztw95gML4Y4_PoeHL-Ed8Ok2G_2tDoVzaHI9PJ-eDzbw-RLRs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CqtUOGAeBMoECQ40ahx7CT2oUIt22qXtisErdSb8RMQq-zSTVTtz_FtjPMqK9CKS6_xOLLHM56nZxB6jbmSvupJhKUhEUgoGSnnXMRjqaWl1BDlXQMn42x4Rj-cp-dr6Ff3FsanVXZ3Yn1Rm6n2PvIdX2KQgjhO-LvZz8h3jfLR1a6FhmxbK5jdusRY-7DjyC4uwYSb744GcN5vkuTw4PT9MGq7DEQ6pbiMLAWjA7QWsL6xZDYl1LlMyjzXNDZGJzpnxOgcDCllGfd1bpnlueVKySx22BD47w20QWHHYPxt7B-MP37qvTw-jkYxb1_rxITtzEFi-ldtCY1YnR8RL0nEunHAv7Tdv5M2-8jtbbRZFTO5uJSTyR_C8fAuutNqteFeQ4b30Jot7qObTZ_LxQM0qOZubxB6iWnCJoMELtmwKrxHrwhlWUr9IzS2rPPCitBNdeVBR4PPoeuyxx6is2tB7CO0XkwL-wTB-pJcch0T5zgFCClB08ypomlqsSM8QLhDodBtbXPfYmMi6hg7YaJBuwC0ixrtIg7Q237OrKnssRJ6359MD-mrctcfphdfRcvkggJHeI-a1Jml2ChGFZcmx8RxYlSsArTVnator4q5uCLsAL3qh4HJfeRGFnZaNTAZGJ8sD9Djhgz6lRCeghaXZAFiSwSytNTlkeL7t7qQOFgDDDRSmLrd0dLVulbhYrunt_9A3dPVu36JNoenJ8fieDQ-eoZuJZ4zMI4SuoXWy4vKPgelr1QvWs4K0ZfrZubfh8plkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFvA6IN4ECQYITjTaOvbF9QKiwrLoUKiSotDfjZ4tYZZduomp_ja9jnFdZgVZcek3GkTOe94xnEHqBhVah60mClSUJaCiVaO99IlJllKPUEh1CA58O8_0j-mE6nG6hX91dmFBW2cnEWlDbuQkx8kFoMUhBHWdi4NuyiM-j8ZvFzyRMkAqZ1m6cRkMiB251Bu7b8vVkBGf9MsvG77--20_aCQOJGVJcJo6CwwEWC3jeWHE3JNT7XCnGDE2tNZlhnFjDwInSjovQ45Y7wZzQWuWpx5bAdy-hy4wQEcoJ2ZT18Z2QQaNYtPd0UsIHS9CV4T5bRhNeV0aka7qwHhnwLzv373LNPmd7A12rioVananZ7A-1OL6Fbrb2bLzXEOBttOWKO-hKM-FydReNqqXfG8VBV9q4qR0B8RpXRYjlFbEqS2V-xNaVdUVYEfu5qQLoZPQl9l3d2D10dCFovY-2i3nhHiLYX8aUMCnxXlCAUApsTEY1HQ4d9kRECHcolKbtah6Ga8xknV0nXDZol4B2WaNdphF61a9ZND09NkK_DSfTQ4Z-3PWD-emxbNlbUuCFEEtTJncUW82pFsoyTLwgVqc6QjvducpWSCzlOUlH6Hn_Gtg75GxU4eZVA5OD28lZhB40ZNDvBIgO7LcsjxBfI5C1ra6_Kb6f1C3EwQ_gYIvC0t2Ols73tQkXuz29_QfqHm3-62foKrCw_Dg5PHiMrmeBMTBOMrqDtsvTyj0Ba6_UT2u2itG3i-bj36oSYyw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA-yh6gPfn9UT6ngm5ezadI2eVxdj1PwEHThfAqTL5RbuofbIudf76TtVqvHcb42E0gmk85vkslvCHnBlIHIekIZOE7RQwE1IQSqMrDghXDcxKOBD0fl4VK8Py6OB5qc-BZmcn_P5asNOpj4CCwXVHbpBBie75QF4u4Z2VkefZx_idXjEJdQhAb58Crm_I4Tz9MR9J-HKv9NjhxvSG-Qa219Cmc_YLX6wwkd3OqrGW067sKYe3Ky3zZm3_78i9nxcvO7TW4OWDSd98Zzh1zx9V1yta9OeXaPLNpNmC_S6Odc2ud94K8xbet4Dlen0DRgT1Lnmy6bq07D2rZR9N3iUxq2OV_3yfLg7ec3h3QoukBtIVhDvcAYDEEcU5KB9AUXIZQAVWVF5pzNbSW5sxXGlcZLFWl_pVeVV8ZAmQXm-AMyq9e1f0RwfHkFymY8BCVQAgDxYSWMKArPAlcJYdsF0XZgJI-FMVa6uxnnUvfa0agd3WlHZwl5OfY57fk4LpR-Hdd5lIxc2t0HXAI9bE0t0I7jORjY0gvmjBRGgcPgPSjuTGYSsru1Ej1s8I2OjJcC0WGOs3g-NuPWjPctUPt128uUGDLKKiEPe6MaR8JVgdgrLxMiJ-Y2Geq0pf72taP_RgwvEUdi172tZf4e10W62But9xKqe_x_4k_I9TwaMWM0F7tk1nxv_VOEa415NuzTXzNKMxw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=usfAD+based+effective+unknown+attack+detection+focused+IDS+framework&rft.jtitle=Scientific+reports&rft.au=Uddin%2C+Md+Ashraf&rft.au=Aryal%2C+Sunil&rft.au=Bouadjenek%2C+Mohamed+Reda&rft.au=Al-Hawawreh%2C+Muna&rft.date=2024-11-24&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=29103&rft_id=info:doi/10.1038%2Fs41598-024-80021-0&rft_id=info%3Apmid%2F39582026&rft.externalDocID=39582026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon