Description of an activity-based enzyme biosensor for lung cancer detection

Background Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curabl...

Full description

Saved in:
Bibliographic Details
Published inCommunications medicine Vol. 4; no. 1; pp. 37 - 9
Main Authors Dempsey, Paul W., Sandu, Cristina-Mihaela, Gonzalezirias, Ricardo, Hantula, Spencer, Covarrubias-Zambrano, Obdulia, Bossmann, Stefan H., Nagji, Alykhan S., Veeramachaneni, Nirmal K., Ermerak, Nezih O., Kocakaya, Derya, Lacin, Tunc, Yildizeli, Bedrittin, Lilley, Patrick, Wen, Sara W. C., Nederby, Line, Hansen, Torben F., Hilberg, Ole
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.03.2024
Springer Nature B.V
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2730-664X
2730-664X
DOI10.1038/s43856-024-00461-7

Cover

Abstract Background Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity. Methods One solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease. Results A machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging. Conclusion This approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening. Plain language summary Lung cancer is responsible for more deaths worldwide than all other cancers. It is often detected with the appearance of symptoms when treatment is limited and outcomes for the patient are much worse. While imaging chest scans can detect disease, they are poorly used even in the United States where it is an approved screening method. When cancer is present, protease enzymes are responsible for making space and modifying the lung tissue for the growing tumor. This report describes a panel of 18 sensors that release a fluorescent signal when these enzymes are present in a blood sample. The signal acts like a fingerprint of activity that can be used to identify people with lung cancer. This sensor platform can detect patients with curable lung cancer and could provide a platform for screening very large populations of at-risk individuals. Dempsey et al. present a graphene-based biosensor technology to detect enzyme activity in serum samples. A model is developed based on the activity of a panel of these biosensors to classify 90% of patients with lung cancer across all stages of disease, providing a potentially useful screening technology.
AbstractList Lung cancer is responsible for more deaths worldwide than all other cancers. It is often detected with the appearance of symptoms when treatment is limited and outcomes for the patient are much worse. While imaging chest scans can detect disease, they are poorly used even in the United States where it is an approved screening method. When cancer is present, protease enzymes are responsible for making space and modifying the lung tissue for the growing tumor. This report describes a panel of 18 sensors that release a fluorescent signal when these enzymes are present in a blood sample. The signal acts like a fingerprint of activity that can be used to identify people with lung cancer. This sensor platform can detect patients with curable lung cancer and could provide a platform for screening very large populations of at-risk individuals. Dempsey et al. present a graphene-based biosensor technology to detect enzyme activity in serum samples. A model is developed based on the activity of a panel of these biosensors to classify 90% of patients with lung cancer across all stages of disease, providing a potentially useful screening technology.
BackgroundLung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity.MethodsOne solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease.ResultsA machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging.ConclusionThis approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening.Plain language summaryLung cancer is responsible for more deaths worldwide than all other cancers. It is often detected with the appearance of symptoms when treatment is limited and outcomes for the patient are much worse. While imaging chest scans can detect disease, they are poorly used even in the United States where it is an approved screening method. When cancer is present, protease enzymes are responsible for making space and modifying the lung tissue for the growing tumor. This report describes a panel of 18 sensors that release a fluorescent signal when these enzymes are present in a blood sample. The signal acts like a fingerprint of activity that can be used to identify people with lung cancer. This sensor platform can detect patients with curable lung cancer and could provide a platform for screening very large populations of at-risk individuals.
Background Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity. Methods One solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease. Results A machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging. Conclusion This approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening. Plain language summary Lung cancer is responsible for more deaths worldwide than all other cancers. It is often detected with the appearance of symptoms when treatment is limited and outcomes for the patient are much worse. While imaging chest scans can detect disease, they are poorly used even in the United States where it is an approved screening method. When cancer is present, protease enzymes are responsible for making space and modifying the lung tissue for the growing tumor. This report describes a panel of 18 sensors that release a fluorescent signal when these enzymes are present in a blood sample. The signal acts like a fingerprint of activity that can be used to identify people with lung cancer. This sensor platform can detect patients with curable lung cancer and could provide a platform for screening very large populations of at-risk individuals. Dempsey et al. present a graphene-based biosensor technology to detect enzyme activity in serum samples. A model is developed based on the activity of a panel of these biosensors to classify 90% of patients with lung cancer across all stages of disease, providing a potentially useful screening technology.
Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity. One solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease. A machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging. This approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening.
Abstract Background Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity. Methods One solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease. Results A machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging. Conclusion This approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening.
Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity.BACKGROUNDLung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk assessment for the detection of lung cancer continue to be a challenge because they are often not detectable during the asymptomatic curable stage of the disease. A solution to population-scale testing for lung cancer will require a combination of performance, scalability, cost-effectiveness, and simplicity.One solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease.METHODSOne solution is to measure the activity of serum available enzymes that contribute to the transformation process rather than counting biomarkers. Protease enzymes modify the environment during tumor growth and present an attractive target for detection. An activity based sensor platform sensitive to active protease enzymes is presented. A panel of 18 sensors was used to measure 750 sera samples from participants at increased risk for lung cancer with or without the disease.A machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging.RESULTSA machine learning approach is applied to generate algorithms that detect 90% of cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when disease intervention is most effective and detection more challenging.This approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening.CONCLUSIONThis approach is promising as a scalable, clinically useful platform to help detect patients who have lung cancer using a simple blood sample. The performance and cost profile is being pursued in studies as a platform for population wide screening.
ArticleNumber 37
Author Yildizeli, Bedrittin
Lilley, Patrick
Nagji, Alykhan S.
Lacin, Tunc
Ermerak, Nezih O.
Covarrubias-Zambrano, Obdulia
Dempsey, Paul W.
Hansen, Torben F.
Gonzalezirias, Ricardo
Hantula, Spencer
Wen, Sara W. C.
Nederby, Line
Sandu, Cristina-Mihaela
Kocakaya, Derya
Bossmann, Stefan H.
Veeramachaneni, Nirmal K.
Hilberg, Ole
Author_xml – sequence: 1
  givenname: Paul W.
  orcidid: 0009-0003-1936-121X
  surname: Dempsey
  fullname: Dempsey, Paul W.
  email: pdempsey@hawkeyebio.com
  organization: Hawkeye Bio, Inc
– sequence: 2
  givenname: Cristina-Mihaela
  surname: Sandu
  fullname: Sandu, Cristina-Mihaela
  organization: Hawkeye Bio, Inc
– sequence: 3
  givenname: Ricardo
  surname: Gonzalezirias
  fullname: Gonzalezirias, Ricardo
  organization: Hawkeye Bio, Inc
– sequence: 4
  givenname: Spencer
  surname: Hantula
  fullname: Hantula, Spencer
  organization: Hawkeye Bio, Inc
– sequence: 5
  givenname: Obdulia
  surname: Covarrubias-Zambrano
  fullname: Covarrubias-Zambrano, Obdulia
  organization: University of Kansas Medical Center (KUMC)
– sequence: 6
  givenname: Stefan H.
  orcidid: 0000-0002-0058-0127
  surname: Bossmann
  fullname: Bossmann, Stefan H.
  organization: University of Kansas Medical Center (KUMC)
– sequence: 7
  givenname: Alykhan S.
  surname: Nagji
  fullname: Nagji, Alykhan S.
  organization: University of Kansas Medical Center (KUMC)
– sequence: 8
  givenname: Nirmal K.
  surname: Veeramachaneni
  fullname: Veeramachaneni, Nirmal K.
  organization: St. Louis University, School of Medicine
– sequence: 9
  givenname: Nezih O.
  surname: Ermerak
  fullname: Ermerak, Nezih O.
  organization: Marmara University
– sequence: 10
  givenname: Derya
  orcidid: 0000-0003-2910-6813
  surname: Kocakaya
  fullname: Kocakaya, Derya
  organization: Marmara University
– sequence: 11
  givenname: Tunc
  surname: Lacin
  fullname: Lacin, Tunc
  organization: Marmara University
– sequence: 12
  givenname: Bedrittin
  surname: Yildizeli
  fullname: Yildizeli, Bedrittin
  organization: Marmara University
– sequence: 13
  givenname: Patrick
  surname: Lilley
  fullname: Lilley, Patrick
  organization: Liquid Biosciences, Inc
– sequence: 14
  givenname: Sara W. C.
  orcidid: 0000-0003-3755-0922
  surname: Wen
  fullname: Wen, Sara W. C.
  organization: Vejle Hospital, University Hospital of Southern Denmark
– sequence: 15
  givenname: Line
  surname: Nederby
  fullname: Nederby, Line
  organization: Vejle Hospital, University Hospital of Southern Denmark
– sequence: 16
  givenname: Torben F.
  surname: Hansen
  fullname: Hansen, Torben F.
  organization: Vejle Hospital, University Hospital of Southern Denmark
– sequence: 17
  givenname: Ole
  surname: Hilberg
  fullname: Hilberg, Ole
  organization: Vejle Hospital, University Hospital of Southern Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38443590$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v1DAYhC1UREvpH-CAInHhEvBXbOeEUClQUYkLSNwsx36zeJW1Fztptf31OM1S2h4qDrYT-5nRePwcHYQYAKGXBL8lmKl3mTPViBpTXmPMBanlE3REJcO1EPznwZ3vQ3SS8xpjTKVoucLP0CFTnLOmxUfo60fINvnt6GOoYl-ZUBk7-ks_7urOZHAVhOvdBqrOxwwhx1T1ZQxTWFXWBAupcjCCnfUv0NPeDBlO9usx-vHp7Pvpl_ri2-fz0w8XtW04GWvghAnHGt52wEzbOEW4sarphaId7SWmpAOrBFWsoNI5sD0GKTkjnACn7BidL74umrXeJr8xaaej8fpmI6aVNmn0dgBNGHfKAlHYYQ7SGu6wAlx-KYgyFy-2eE1ha3ZXZhhuDQnWc9N6aVqXpvVN01oW1ftFtZ26DTgLYUxmuBfl_knwv_QqXhbDlnDZtMXhzd4hxd8T5FFvfLYwDCZAnLKmLVNU8bad0dcP0HWcUigNz5TkbSOYKNSru5Fus_x96gKoBbAp5pyg19aPZn63ktAPj1-XPpD-V0f7ZnOBwwrSv9iPqP4AuADdTw
CitedBy_id crossref_primary_10_1021_acssensors_4c01524
crossref_primary_10_1126_scitranslmed_adq3110
crossref_primary_10_1016_j_cca_2025_120191
crossref_primary_10_3390_cells14050375
Cites_doi 10.1002/nano.202100305
10.1016/j.mbs.2014.09.001
10.1016/j.canlet.2005.05.012
10.1016/j.biopha.2022.112840
10.1016/j.lungcan.2021.06.010
10.3390/cancers15051595
10.7326/M14-2086
10.1007/s10555-019-09808-2
10.3322/caac.21708
10.1371/journal.pone.0178943
10.1183/13993003.02682-2020
10.1038/s41598-019-56632-3
10.1186/s12885-021-08678-8
10.1016/j.nano.2018.04.020
10.1038/sj.embor.7401041
10.1186/1559-0275-11-32
10.1001/jamaoncol.2016.6416
10.1038/s41568-021-00389-3
10.1172/JCI153643
10.1038/s41565-020-0723-4
10.3390/ijms22052514
10.1200/JCO.22.02424
10.7150/jca.24601
10.1016/j.annonc.2021.05.806
10.1056/NEJMoa1102873
10.18632/oncotarget.20156
10.1056/NEJMoa1209120
10.1001/jama.2021.1117
10.1002/prca.201300037
10.1021/acs.analchem.0c03007
10.1200/JCO.21.01460
10.1515/hsz-2018-0114
10.1126/scitranslmed.abe8939
10.1093/nar/30.1.207
10.1002/pmic.200900682
10.1371/journal.pone.0119878
10.1038/s41598-021-91947-0
10.1016/j.lungcan.2008.07.005
10.1186/s12885-017-3842-z
10.1056/NEJMoa1911793
10.1186/s13040-017-0147-3
10.1016/j.tcb.2010.12.002
10.1038/s41467-021-24994-w
10.1172/JCI26022
10.1186/s40170-021-00264-7
10.1002/pro.3352
10.1054/bjoc.1999.0999
10.1126/science.aar3247
10.1162/artl_a_00319
10.1200/JCO.2022.40.16_suppl.e20551
10.1164/rccm.202007-2791OC
10.3762/bjnano.7.33
10.1126/scitranslmed.aaw0262
10.1097/LBR.0000000000000094
10.1126/scitranslmed.3003110
10.1016/j.nano.2016.08.014
10.1371/journal.pone.0050300
10.1001/jama.2021.0377
10.1007/978-1-0716-2903-1_1
10.1016/j.crmeth.2022.100372
10.20517/2394-4722.2020.45
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
88E
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s43856-024-00461-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Public Health Database (ProQuest)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Healthcare Administration Database
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2730-664X
EndPage 9
ExternalDocumentID oai_doaj_org_article_134d8ce180d04e7ca4d08e080d2e680d
10.1038/s43856-024-00461-7
PMC10914759
38443590
10_1038_s43856_024_00461_7
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID 0R~
53G
7X7
88E
8C1
8FI
8FJ
AAJSJ
ABUWG
ACLNF
ACSMW
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
C6C
CCPQU
EBLON
FYUFA
GROUPED_DOAJ
HMCUK
M0T
M1P
M~E
NAO
OK1
PGMZT
PIMPY
PSQYO
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c541t-e4136d3549be3a95d814ac85f682b2f7021bec86283e417ddecf0e7743141e423
IEDL.DBID UNPAY
ISSN 2730-664X
IngestDate Tue Oct 14 19:06:53 EDT 2025
Sun Oct 26 04:14:28 EDT 2025
Tue Sep 30 17:10:19 EDT 2025
Thu Oct 02 11:27:20 EDT 2025
Tue Oct 07 07:28:00 EDT 2025
Mon Jul 21 06:05:20 EDT 2025
Wed Oct 01 04:44:20 EDT 2025
Thu Apr 24 22:55:34 EDT 2025
Fri Feb 21 02:37:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-e4136d3549be3a95d814ac85f682b2f7021bec86283e417ddecf0e7743141e423
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0003-1936-121X
0000-0003-3755-0922
0000-0002-0058-0127
0000-0003-2910-6813
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s43856-024-00461-7.pdf
PMID 38443590
PQID 2937495636
PQPubID 5642959
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_134d8ce180d04e7ca4d08e080d2e680d
unpaywall_primary_10_1038_s43856_024_00461_7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10914759
proquest_miscellaneous_2938284999
proquest_journals_2937495636
pubmed_primary_38443590
crossref_citationtrail_10_1038_s43856_024_00461_7
crossref_primary_10_1038_s43856_024_00461_7
springer_journals_10_1038_s43856_024_00461_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-05
PublicationDateYYYYMMDD 2024-03-05
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications medicine
PublicationTitleAbbrev Commun Med
PublicationTitleAlternate Commun Med (Lond)
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Portfolio
References Malalasekera (CR28) 2017; 13
de Koning (CR7) 2020; 382
Klein (CR65) 2021; 32
Lehman (CR15) 2020; 26
Hoikkala (CR46) 2006; 236
Cohen (CR63) 2018; 359
Giatromanolaki, Harris, Koukourakis (CR51) 2021; 9
Edgar, Domrachev, Lash (CR24) 2002; 30
Mehan (CR52) 2014; 11
Schweiger (CR49) 2000; 82
Werle (CR48) 2004; 24
Niu (CR50) 2022; 149
Dekker (CR59) 2010; 10
Irajizad (CR38) 2023; 41
Ivry (CR20) 2018; 27
Vizovisek, Ristanovic, Menghini, Christiansen, Schuerle (CR12) 2021; 22
Mason, Joyce (CR23) 2011; 21
Clermont, Zenker (CR33) 2015; 260
CR4
(CR5) 2013; 368
Wright (CR22) 2022; 3
Hori, Gambhir (CR8) 2011; 3
Yoneyama (CR55) 2018; 9
Borg (CR66) 2021; 158
Cao (CR45) 2017; 8
Lenga Ma Bonda, Iochmann, Magnen, Courty, Reverdiau (CR42) 2018; 399
CR44
Dempsey (CR27) 2022; 40
(CR3) 2021; 325
Gaga (CR67) 2021; 57
Chan (CR58) 2020; 15
El-Badrawy, Yousef, Shaalan, Elsamanoudy (CR54) 2014; 21
Mathios (CR37) 2021; 12
Gannon (CR32) 2007; 8
CR18
CR17
CR16
Ajona (CR39) 2015; 10
CR13
Kalubowilage (CR26) 2018; 14
Zhang (CR30) 2022; 132
Sipper, Olson, Moore (CR14) 2017; 10
Siegel, Miller, Fuchs, Jemal (CR1) 2022; 72
Gould, Huang, Tammemagi, Kinar, Shiff (CR60) 2021; 204
Zarinshenas (CR9) 2023; 15
Kirkpatrick (CR41) 2020; 12
Fahrmann (CR62) 2022; 40
Jonas (CR36) 2021; 325
Song (CR43) 2012; 7
Villanueva (CR40) 2006; 116
Ioannou, Sutherland, Sussman, Deshpande (CR35) 2021; 21
Sullivan (CR61) 2021; 57
Garcia-Navas, Gajate, Mollinedo (CR29) 2021; 11
Peeney, Fan, Nguyen, Meerzaman, Stetler-Stevenson (CR56) 2019; 9
Pinsky (CR6) 2015; 162
Cazanave (CR19) 2021; 13
Cordes (CR47) 2009; 64
Mitschke, Burk, Reinheckel (CR11) 2019; 38
Jambunathan, Galande (CR31) 2014; 8
Jemal, Fedewa (CR34) 2017; 3
Blanco-Prieto (CR53) 2017; 17
CR64
Böttger, Hoffmann, Knappe (CR57) 2017; 12
Kwong (CR10) 2021; 21
Udukala (CR25) 2016; 7
(CR2) 2011; 365
Zhang, Chen, Yuan, Wang, Guan (CR21) 2020; 92
R Zarinshenas (461_CR9) 2023; 15
D Mathios (461_CR37) 2021; 12
SL Ivry (461_CR20) 2018; 27
MK Gould (461_CR60) 2021; 204
M Gaga (461_CR67) 2021; 57
JP Wright (461_CR22) 2022; 3
A Jemal (461_CR34) 2017; 3
Force, U.S.P.S.T. (461_CR3) 2021; 325
Team, N.L.S.T.R. (461_CR5) 2013; 368
FM Sullivan (461_CR61) 2021; 57
F Gannon (461_CR32) 2007; 8
G Clermont (461_CR33) 2015; 260
W Lenga Ma Bonda (461_CR42) 2018; 399
PW Dempsey (461_CR27) 2022; 40
AP Malalasekera (461_CR28) 2017; 13
DE Jonas (461_CR36) 2021; 325
DN Udukala (461_CR25) 2016; 7
461_CR4
M Kalubowilage (461_CR26) 2018; 14
LW Chan (461_CR58) 2020; 15
C Cordes (461_CR47) 2009; 64
F Niu (461_CR50) 2022; 149
R Edgar (461_CR24) 2002; 30
S Blanco-Prieto (461_CR53) 2017; 17
JD Kirkpatrick (461_CR41) 2020; 12
J Song (461_CR43) 2012; 7
R Böttger (461_CR57) 2017; 12
M Vizovisek (461_CR12) 2021; 22
SD Mason (461_CR23) 2011; 21
JF Fahrmann (461_CR62) 2022; 40
Team, N.L.S.T.R. (461_CR2) 2011; 365
S Hoikkala (461_CR46) 2006; 236
S Ioannou (461_CR35) 2021; 21
461_CR44
J Lehman (461_CR15) 2020; 26
SS Hori (461_CR8) 2011; 3
T Yoneyama (461_CR55) 2018; 9
MR Mehan (461_CR52) 2014; 11
D Peeney (461_CR56) 2019; 9
PF Pinsky (461_CR6) 2015; 162
Y Zhang (461_CR21) 2020; 92
JD Cohen (461_CR63) 2018; 359
HJ de Koning (461_CR7) 2020; 382
GA Kwong (461_CR10) 2021; 21
J Villanueva (461_CR40) 2006; 116
SC Cazanave (461_CR19) 2021; 13
E Irajizad (461_CR38) 2023; 41
C Cao (461_CR45) 2017; 8
A Giatromanolaki (461_CR51) 2021; 9
B Werle (461_CR48) 2004; 24
R Garcia-Navas (461_CR29) 2021; 11
461_CR17
461_CR16
K Jambunathan (461_CR31) 2014; 8
461_CR18
M Borg (461_CR66) 2021; 158
461_CR13
A Schweiger (461_CR49) 2000; 82
J Mitschke (461_CR11) 2019; 38
H Zhang (461_CR30) 2022; 132
MK El-Badrawy (461_CR54) 2014; 21
RL Siegel (461_CR1) 2022; 72
D Ajona (461_CR39) 2015; 10
LJM Dekker (461_CR59) 2010; 10
461_CR64
EA Klein (461_CR65) 2021; 32
M Sipper (461_CR14) 2017; 10
References_xml – volume: 3
  start-page: 1054
  year: 2022
  end-page: 1068
  ident: CR22
  article-title: Synthesis of turbostratic nanoscale graphene via chamber detonation of oxygen/acetylene mixtures
  publication-title: Nano Select
  doi: 10.1002/nano.202100305
– volume: 260
  start-page: 11
  year: 2015
  end-page: 15
  ident: CR33
  article-title: The inverse problem in mathematical biology
  publication-title: Math Biosci.
  doi: 10.1016/j.mbs.2014.09.001
– volume: 236
  start-page: 125
  year: 2006
  end-page: 132
  ident: CR46
  article-title: Tissue MMP-2 and MMP-9 [corrected] are better prognostic factors than serum MMP-2/TIMP-2–complex or TIMP-1 [corrected] in stage [corrected] I-III lung carcinoma
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2005.05.012
– ident: CR4
– volume: 149
  start-page: 112840
  year: 2022
  ident: CR50
  article-title: Arginase: an emerging and promising therapeutic target for cancer treatment
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2022.112840
– volume: 158
  start-page: 85
  year: 2021
  end-page: 90
  ident: CR66
  article-title: Performance of the EarlyCDT(R) Lung test in detection of lung cancer and pulmonary metastases in a high-risk cohort
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2021.06.010
– ident: CR16
– volume: 15
  start-page: 1595
  year: 2023
  ident: CR9
  article-title: Assessment of barriers and challenges to screening, diagnosis, and biomarker testing in early-stage lung cancer
  publication-title: Cancers
  doi: 10.3390/cancers15051595
– volume: 162
  start-page: 485
  year: 2015
  end-page: 491
  ident: CR6
  article-title: Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M14-2086
– volume: 38
  start-page: 431
  year: 2019
  end-page: 444
  ident: CR11
  article-title: The role of proteases in epithelial-to-mesenchymal cell transitions in cancer
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-019-09808-2
– volume: 72
  start-page: 7
  year: 2022
  end-page: 33
  ident: CR1
  article-title: Cancer statistics, 2022
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21708
– volume: 12
  start-page: e0178943
  year: 2017
  ident: CR57
  article-title: Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178943
– volume: 57
  start-page: 2002682
  year: 2021
  ident: CR67
  article-title: Validation of lung EpiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02682-2020
– volume: 9
  year: 2019
  ident: CR56
  article-title: Matrisome-associated gene expression patterns correlating with TIMP2 in cancer
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56632-3
– volume: 21
  year: 2021
  ident: CR35
  article-title: Increasing uptake of colon cancer screening in a medically underserved population with the addition of blood-based testing
  publication-title: BMC Cancer
  doi: 10.1186/s12885-021-08678-8
– volume: 14
  start-page: 1823
  year: 2018
  end-page: 1832
  ident: CR26
  article-title: Early detection of pancreatic cancers in liquid biopsies by ultrasensitive fluorescence nanobiosensors
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2018.04.020
– volume: 8
  start-page: 705
  year: 2007
  end-page: 705
  ident: CR32
  article-title: Too complex to comprehend?
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401041
– volume: 11
  start-page: 32
  year: 2014
  ident: CR52
  article-title: Validation of a blood protein signature for non-small cell lung cancer
  publication-title: Clin. Proteomics
  doi: 10.1186/1559-0275-11-32
– volume: 3
  start-page: 1278
  year: 2017
  end-page: 1281
  ident: CR34
  article-title: Lung cancer screening with low-dose computed tomography in the United States-2010 to 2015
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2016.6416
– volume: 21
  start-page: 655
  year: 2021
  end-page: 668
  ident: CR10
  article-title: Synthetic biomarkers: a twenty-first century path to early cancer detection
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00389-3
– volume: 132
  start-page: e153643
  year: 2022
  ident: CR30
  article-title: Annexin A2/TLR2/MYD88 pathway induces arginase 1 expression in tumor-associated neutrophils
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI153643
– volume: 15
  start-page: 792
  year: 2020
  end-page: 800
  ident: CR58
  article-title: Engineering synthetic breath biomarkers for respiratory disease
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0723-4
– volume: 22
  start-page: 2514
  year: 2021
  ident: CR12
  article-title: The tumor proteolytic landscape: a challenging frontier in cancer diagnosis and therapy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22052514
– volume: 41
  start-page: 4360
  year: 2023
  end-page: 4368
  ident: CR38
  article-title: Mortality benefit of a blood-based biomarker panel for lung cancer on the basis of the prostate, lung, colorectal, and ovarian cohort
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.22.02424
– volume: 9
  start-page: 2559
  year: 2018
  end-page: 2570
  ident: CR55
  article-title: ADAM10 sheddase activity is a potential lung-cancer biomarker
  publication-title: J. Cancer
  doi: 10.7150/jca.24601
– volume: 57
  start-page: 2000670
  year: 2021
  ident: CR61
  article-title: Earlier diagnosis of lung cancer in a randomised trial of an autoantibody blood test followed by imaging
  publication-title: Eur. Respir. J.
– volume: 32
  start-page: 1167
  year: 2021
  end-page: 1177
  ident: CR65
  article-title: Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2021.05.806
– ident: CR64
– volume: 365
  start-page: 395
  year: 2011
  end-page: 409
  ident: CR2
  article-title: Reduced lung-cancer mortality with low-dose computed tomographic screening
  publication-title: N Engl. J. Med.
  doi: 10.1056/NEJMoa1102873
– volume: 8
  start-page: 80560
  year: 2017
  end-page: 80567
  ident: CR45
  article-title: Elevated expression of MMP-2 and TIMP-2 cooperatively correlates with risk of lung cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20156
– volume: 368
  start-page: 1980
  year: 2013
  end-page: 1991
  ident: CR5
  article-title: Results of initial low-dose computed tomographic screening for lung cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1209120
– ident: CR18
– volume: 325
  start-page: 962
  year: 2021
  end-page: 970
  ident: CR3
  article-title: Screening for lung cancer: US preventive services task force recommendation statement
  publication-title: JAMA
  doi: 10.1001/jama.2021.1117
– volume: 8
  start-page: 299
  year: 2014
  end-page: 307
  ident: CR31
  article-title: Sample collection in clinical proteomics–proteolytic activity profile of serum and plasma
  publication-title: Proteomics Clin. Appl.
  doi: 10.1002/prca.201300037
– volume: 92
  start-page: 15042
  year: 2020
  end-page: 15049
  ident: CR21
  article-title: Joint entropy-assisted graphene oxide-based multiplexing biosensing platform for simultaneous detection of multiple proteases
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03007
– volume: 40
  start-page: 876
  year: 2022
  end-page: 883
  ident: CR62
  article-title: Blood-based biomarker panel for personalized lung cancer risk assessment
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.21.01460
– volume: 399
  start-page: 959
  year: 2018
  end-page: 971
  ident: CR42
  article-title: Kallikrein-related peptidases in lung diseases
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2018-0114
– volume: 13
  start-page: eabe8939
  year: 2021
  ident: CR19
  article-title: Peptide-based urinary monitoring of fibrotic nonalcoholic steatohepatitis by mass-barcoded activity-based sensors
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abe8939
– volume: 30
  start-page: 207
  year: 2002
  end-page: 210
  ident: CR24
  article-title: Gene expression omnibus: NCBI gene expression and hybridization array data repository
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 10
  start-page: 2348
  year: 2010
  end-page: 2358
  ident: CR59
  article-title: Differential expression of protease activity in serum samples of prostate carcinoma patients with metastases
  publication-title: Proteomics
  doi: 10.1002/pmic.200900682
– volume: 10
  start-page: e0119878
  year: 2015
  ident: CR39
  article-title: Elevated levels of the complement activation product C4d in bronchial fluids for the diagnosis of lung cancer
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119878
– volume: 11
  year: 2021
  ident: CR29
  article-title: Neutrophils drive endoplasmic reticulum stress-mediated apoptosis in cancer cells through arginase-1 release
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91947-0
– volume: 64
  start-page: 79
  year: 2009
  end-page: 85
  ident: CR47
  article-title: Simultaneous expression of Cathepsins B and K in pulmonary adenocarcinomas and squamous cell carcinomas predicts poor recurrence-free and overall survival
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2008.07.005
– volume: 17
  year: 2017
  ident: CR53
  article-title: Relevance of matrix metalloproteases in non-small cell lung cancer diagnosis
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3842-z
– volume: 382
  start-page: 503
  year: 2020
  end-page: 513
  ident: CR7
  article-title: Reduced lung-cancer mortality with volume CT screening in a randomized trial
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911793
– volume: 10
  year: 2017
  ident: CR14
  article-title: Evolutionary computation: the next major transition of artificial intelligence?
  publication-title: BioData Min.
  doi: 10.1186/s13040-017-0147-3
– volume: 21
  start-page: 228
  year: 2011
  end-page: 237
  ident: CR23
  article-title: Proteolytic networks in cancer
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.12.002
– volume: 12
  year: 2021
  ident: CR37
  article-title: Detection and characterization of lung cancer using cell-free DNA fragmentomes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24994-w
– volume: 116
  start-page: 271
  year: 2006
  end-page: 284
  ident: CR40
  article-title: Differential exoprotease activities confer tumor-specific serum peptidome patterns
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI26022
– volume: 9
  start-page: 28
  year: 2021
  ident: CR51
  article-title: The prognostic and therapeutic implications of distinct patterns of argininosuccinate synthase 1 (ASS1) and arginase-2 (ARG2) expression by cancer cells and tumor stroma in non-small-cell lung cancer
  publication-title: Cancer Metab.
  doi: 10.1186/s40170-021-00264-7
– volume: 27
  start-page: 584
  year: 2018
  end-page: 594
  ident: CR20
  article-title: Global substrate specificity profiling of post-translational modifying enzymes
  publication-title: Protein Sci.
  doi: 10.1002/pro.3352
– volume: 82
  start-page: 782
  year: 2000
  end-page: 788
  ident: CR49
  article-title: Cysteine proteinase cathepsin H in tumours and sera of lung cancer patients: relation to prognosis and cigarette smoking
  publication-title: Br. J. Cancer
  doi: 10.1054/bjoc.1999.0999
– ident: CR44
– volume: 359
  start-page: eaar3247
  year: 2018
  ident: CR63
  article-title: Detection and localization of surgically resectable cancers with a multi-analyte blood test
  publication-title: Science
  doi: 10.1126/science.aar3247
– volume: 26
  start-page: 274
  year: 2020
  end-page: 306
  ident: CR15
  article-title: The surprising creativity of digital evolution: a collection of anecdotes from the evolutionary computation and artificial life research communities
  publication-title: Artif. Life
  doi: 10.1162/artl_a_00319
– volume: 40
  start-page: e20551
  year: 2022
  end-page: e20551
  ident: CR27
  article-title: Detection of early-stage lung cancer with an in vitro panel of activity-based biosensors to measure inflammatory protease enzymes
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2022.40.16_suppl.e20551
– volume: 24
  start-page: 4147
  year: 2004
  end-page: 4161
  ident: CR48
  article-title: Cathepsin B, plasminogenactivator-inhibitor (PAI-1) and plasminogenactivator-receptor (uPAR) are prognostic factors for patients with non-small cell lung cancer
  publication-title: Anticancer Res.
– volume: 204
  start-page: 445
  year: 2021
  end-page: 453
  ident: CR60
  article-title: Machine learning for early lung cancer identification using routine clinical and laboratory data
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.202007-2791OC
– ident: CR17
– ident: CR13
– volume: 7
  start-page: 364
  year: 2016
  end-page: 373
  ident: CR25
  article-title: Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection
  publication-title: Beilstein J. Nanotechno.
  doi: 10.3762/bjnano.7.33
– volume: 12
  start-page: eaaw0262
  year: 2020
  ident: CR41
  article-title: Urinary detection of lung cancer in mice via noninvasive pulmonary protease profiling
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaw0262
– volume: 21
  start-page: 327
  year: 2014
  end-page: 334
  ident: CR54
  article-title: Matrix Metalloproteinase-9 Expression in lung cancer patients and its relation to serum MMP-9 activity, pathologic type, and prognosis
  publication-title: J. Bronchol. Interven. Pulmonol.
  doi: 10.1097/LBR.0000000000000094
– volume: 3
  start-page: 109ra116
  year: 2011
  ident: CR8
  article-title: Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3003110
– volume: 13
  start-page: 383
  year: 2017
  end-page: 390
  ident: CR28
  article-title: A nanobiosensor for the detection of arginase activity
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.08.014
– volume: 7
  start-page: e50300
  year: 2012
  ident: CR43
  article-title: PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050300
– volume: 325
  start-page: 971
  year: 2021
  end-page: 987
  ident: CR36
  article-title: Screening for lung cancer with low-dose computed tomography
  publication-title: JAMA
  doi: 10.1001/jama.2021.0377
– volume: 3
  start-page: 1054
  year: 2022
  ident: 461_CR22
  publication-title: Nano Select
  doi: 10.1002/nano.202100305
– volume: 92
  start-page: 15042
  year: 2020
  ident: 461_CR21
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.0c03007
– volume: 8
  start-page: 705
  year: 2007
  ident: 461_CR32
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7401041
– volume: 116
  start-page: 271
  year: 2006
  ident: 461_CR40
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI26022
– ident: 461_CR17
  doi: 10.1007/978-1-0716-2903-1_1
– ident: 461_CR44
  doi: 10.1016/j.crmeth.2022.100372
– volume: 24
  start-page: 4147
  year: 2004
  ident: 461_CR48
  publication-title: Anticancer Res.
– volume: 12
  year: 2021
  ident: 461_CR37
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24994-w
– volume: 40
  start-page: 876
  year: 2022
  ident: 461_CR62
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.21.01460
– volume: 8
  start-page: 299
  year: 2014
  ident: 461_CR31
  publication-title: Proteomics Clin. Appl.
  doi: 10.1002/prca.201300037
– volume: 21
  start-page: 228
  year: 2011
  ident: 461_CR23
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2010.12.002
– volume: 14
  start-page: 1823
  year: 2018
  ident: 461_CR26
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2018.04.020
– volume: 38
  start-page: 431
  year: 2019
  ident: 461_CR11
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-019-09808-2
– ident: 461_CR18
  doi: 10.20517/2394-4722.2020.45
– volume: 11
  start-page: 32
  year: 2014
  ident: 461_CR52
  publication-title: Clin. Proteomics
  doi: 10.1186/1559-0275-11-32
– volume: 365
  start-page: 395
  year: 2011
  ident: 461_CR2
  publication-title: N Engl. J. Med.
  doi: 10.1056/NEJMoa1102873
– volume: 325
  start-page: 962
  year: 2021
  ident: 461_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2021.1117
– volume: 7
  start-page: 364
  year: 2016
  ident: 461_CR25
  publication-title: Beilstein J. Nanotechno.
  doi: 10.3762/bjnano.7.33
– volume: 21
  start-page: 655
  year: 2021
  ident: 461_CR10
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-021-00389-3
– volume: 22
  start-page: 2514
  year: 2021
  ident: 461_CR12
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22052514
– volume: 13
  start-page: eabe8939
  year: 2021
  ident: 461_CR19
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abe8939
– volume: 26
  start-page: 274
  year: 2020
  ident: 461_CR15
  publication-title: Artif. Life
  doi: 10.1162/artl_a_00319
– volume: 13
  start-page: 383
  year: 2017
  ident: 461_CR28
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.08.014
– volume: 41
  start-page: 4360
  year: 2023
  ident: 461_CR38
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.22.02424
– ident: 461_CR13
– volume: 12
  start-page: eaaw0262
  year: 2020
  ident: 461_CR41
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaw0262
– volume: 82
  start-page: 782
  year: 2000
  ident: 461_CR49
  publication-title: Br. J. Cancer
  doi: 10.1054/bjoc.1999.0999
– volume: 399
  start-page: 959
  year: 2018
  ident: 461_CR42
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2018-0114
– volume: 9
  start-page: 2559
  year: 2018
  ident: 461_CR55
  publication-title: J. Cancer
  doi: 10.7150/jca.24601
– ident: 461_CR4
– volume: 260
  start-page: 11
  year: 2015
  ident: 461_CR33
  publication-title: Math Biosci.
  doi: 10.1016/j.mbs.2014.09.001
– volume: 21
  start-page: 327
  year: 2014
  ident: 461_CR54
  publication-title: J. Bronchol. Interven. Pulmonol.
  doi: 10.1097/LBR.0000000000000094
– volume: 30
  start-page: 207
  year: 2002
  ident: 461_CR24
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.1.207
– volume: 57
  start-page: 2000670
  year: 2021
  ident: 461_CR61
  publication-title: Eur. Respir. J.
– volume: 158
  start-page: 85
  year: 2021
  ident: 461_CR66
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2021.06.010
– volume: 32
  start-page: 1167
  year: 2021
  ident: 461_CR65
  publication-title: Ann. Oncol.
  doi: 10.1016/j.annonc.2021.05.806
– volume: 325
  start-page: 971
  year: 2021
  ident: 461_CR36
  publication-title: JAMA
  doi: 10.1001/jama.2021.0377
– volume: 382
  start-page: 503
  year: 2020
  ident: 461_CR7
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911793
– volume: 10
  year: 2017
  ident: 461_CR14
  publication-title: BioData Min.
  doi: 10.1186/s13040-017-0147-3
– volume: 3
  start-page: 109ra116
  year: 2011
  ident: 461_CR8
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.3003110
– volume: 10
  start-page: 2348
  year: 2010
  ident: 461_CR59
  publication-title: Proteomics
  doi: 10.1002/pmic.200900682
– volume: 15
  start-page: 1595
  year: 2023
  ident: 461_CR9
  publication-title: Cancers
  doi: 10.3390/cancers15051595
– volume: 11
  year: 2021
  ident: 461_CR29
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91947-0
– volume: 359
  start-page: eaar3247
  year: 2018
  ident: 461_CR63
  publication-title: Science
  doi: 10.1126/science.aar3247
– volume: 21
  year: 2021
  ident: 461_CR35
  publication-title: BMC Cancer
  doi: 10.1186/s12885-021-08678-8
– volume: 132
  start-page: e153643
  year: 2022
  ident: 461_CR30
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI153643
– volume: 27
  start-page: 584
  year: 2018
  ident: 461_CR20
  publication-title: Protein Sci.
  doi: 10.1002/pro.3352
– volume: 12
  start-page: e0178943
  year: 2017
  ident: 461_CR57
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0178943
– volume: 72
  start-page: 7
  year: 2022
  ident: 461_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21708
– volume: 3
  start-page: 1278
  year: 2017
  ident: 461_CR34
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2016.6416
– volume: 40
  start-page: e20551
  year: 2022
  ident: 461_CR27
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2022.40.16_suppl.e20551
– volume: 9
  start-page: 28
  year: 2021
  ident: 461_CR51
  publication-title: Cancer Metab.
  doi: 10.1186/s40170-021-00264-7
– volume: 9
  year: 2019
  ident: 461_CR56
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-56632-3
– ident: 461_CR16
– volume: 368
  start-page: 1980
  year: 2013
  ident: 461_CR5
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1209120
– volume: 236
  start-page: 125
  year: 2006
  ident: 461_CR46
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2005.05.012
– volume: 15
  start-page: 792
  year: 2020
  ident: 461_CR58
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0723-4
– volume: 149
  start-page: 112840
  year: 2022
  ident: 461_CR50
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2022.112840
– volume: 64
  start-page: 79
  year: 2009
  ident: 461_CR47
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2008.07.005
– volume: 162
  start-page: 485
  year: 2015
  ident: 461_CR6
  publication-title: Ann. Intern. Med.
  doi: 10.7326/M14-2086
– volume: 7
  start-page: e50300
  year: 2012
  ident: 461_CR43
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0050300
– volume: 10
  start-page: e0119878
  year: 2015
  ident: 461_CR39
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0119878
– volume: 57
  start-page: 2002682
  year: 2021
  ident: 461_CR67
  publication-title: Eur. Respir. J.
  doi: 10.1183/13993003.02682-2020
– ident: 461_CR64
– volume: 17
  year: 2017
  ident: 461_CR53
  publication-title: BMC Cancer
  doi: 10.1186/s12885-017-3842-z
– volume: 8
  start-page: 80560
  year: 2017
  ident: 461_CR45
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20156
– volume: 204
  start-page: 445
  year: 2021
  ident: 461_CR60
  publication-title: Am. J. Respir. Crit. Care Med.
  doi: 10.1164/rccm.202007-2791OC
SSID ssj0002769480
Score 2.3042932
Snippet Background Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to...
Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk...
BackgroundLung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers relevant to risk...
Lung cancer is responsible for more deaths worldwide than all other cancers. It is often detected with the appearance of symptoms when treatment is limited and...
Abstract Background Lung cancer is associated with the greatest cancer mortality as it typically presents with incurable distributed disease. Biomarkers...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms 38/35
631/61/350/354
692/4028/67/1857
692/4028/67/2322
692/53/2421
692/699/67/1612
82/75
82/80
9/10
Alcohol
Algorithms
Biomarkers
Biosensors
Cancer therapies
Cost analysis
Enzymes
Ethanol
Graphene
Health risk assessment
Lung cancer
Machine learning
Medical screening
Medicine
Medicine & Public Health
Mortality
Peptides
Sensors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQDzwOFW_SFmQkbtSqE9uxcwREVYHgRKXeLMd2RNHiVPtQ1f76zjjZsCtQ4cAlh9iOnPHY832a8Qwhb0IlRZChYUrVLZNOKtZor5kXPBrZcMdDjvL9Wp-cyk9n6myj1BfGhA3pgQfBHZVCBuNjaXjgMmrvZOAmAs4JVazhiacvN80GmfqR3Wl1Iw0fb8lwYY4WUhiF8baSIScsmd6yRDlh_59Q5u_BkpPH9AG5t0oX7urSzWYbRun4Idkd0SR9N_zFI3Inpsfk7pfRX_6EfAZauT4WaN9RlyheZMB6EQztV6AxXV_9jLQ97xdAaPs5BRBLZ3ACUI_6MKchLnO0VnpKTo8_fvtwwsbyCcwrWS5ZBPtUBwEEsI3CNSqYUjpvVFebqq06DdYdFhAYjRHQVcM55zseNUIKWUaAWc_ITupTfEFo7BQwHe6w2Lp0NXzNxE62ITSVCr7SBSnXorR-zC2OJS5mNvu4hbGD-C0Mt1n8Fsa8ncZcDJk1bu39Hldo6olZsfML0BU76or9m64U5GC9vnbcqgsLeEcjSxR1QV5PzbDJ0HPiUuxXuQ8wUySHBXk-qMM0E2EkQM6GF8RsKcrWVLdb0vn3nMgbk7JivsWCHK516te8bpPF4aR3_yC6vf8hun1yv8p7B6M9D8jOcr6KLwGOLdtXeefdAOjGLOc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEB_OPfDjQfy2ekoE37xwaZO26YOIJ3cciouIB_cW0iTVg7Vd9wM5_3pnsm3PRTl86UOblHQyn53JbwBe-kxJr3zF87youbIq51XpSu6kCFpVwgofq3ynxcmpen-Wn-3AdDgLQ2WVg06Mitp3jv6RH6BZKsmZl8Wb-Q9OXaMouzq00LB9awX_OkKMXYPdjJCxJrB7eDT99Hn865KVRaW06E_PCKkPlkrqnOpwFadYMeXlloWKQP7_8j7_LqIcM6m34Ma6nduLn3Y2-8NYHd-B272Xyd5u2OIu7IT2Hlz_2OfR78MHDDcHdcG6htmW0QEH6iPBya55FtpfF98Dq8-7JQa63YKhc8tmqBmYIz5ZMB9WsYqrfQCnx0df3p3wvq0Cd7lKVzyg3Sq8xMCwDtJWudepsk7nTaGzOmtKtPq4sRjpaIlDS9R_rhGhJFdDpQHdr4cwabs2PAYWmhwjIGGpCbuyBb5Nh0bV3ldZ7l1WJpAOpDSuxxyn1hczE3PfUpsN-Q1ON5H8Bue8GufMN4gbV44-pB0aRxJadrzRLb6aXvhMKpXXLqRaeKFC6azyQgf0lX0WCrwmsDfsr-lFeGkuGS6BF-NjFD7KqNg2dOs4BiNWChoTeLRhh3ElUit0RSuRgN5ilK2lbj9pz79FgG8CayUcxgT2B566XNdVtNgf-e4_SPfk6q9-CjezKBVU37kHk9ViHZ6hA7aqn_dS9Rt04yr-
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Ni9UwEB_Wt-DHQfy2ukoEb75g2iRNenyKy_JEL7qwt5AmKS482-V9IOtf7ySvrZaVRS89tJkSJjOd368zmQC89oXgXviKSlnWVFghaaWcoo6zoEXFLPOpyvdzeXIqlmfy7ADmw16YSf4-te7eCK5lLJQVNJK5nKobcKjRMPUMDheL5Zfl-E-lUGUlNOv3xqD426vCk_iT2vT_DVteLZEc86R34NauvbCXP-xq9UcoOr4Hd3sMSRb7Rb8PB6F9ADc_9Vnyh_ARyeTwMSBdQ2xL4vaFeEoEjVHLk9D-vPweSH3ebZDGdmuC0JWs0O-Ji1awJj5sU41W-whOjz98fX9C-0MTqJMi39KAUan0HGlfHbitpNe5sE7LptRFXTQKYzouG_IYzXGowq-ba1hQEUiIPCC4egyztmvDUyChkchvmI1HrAtb4tt0aETtfVVI7wqVQT6o0ri-o3g82GJlUmaba7NXv0Fxk9RvUObNKHOx76dx7eh3cYXGkbEXdrqBJmJ61zI5F167kGvmmQjKWeGZDoiEfRFKvGZwNKyv6R10YxDlqMgNeZnBq_ExulbMl9g2dLs0BvlopIQZPNmbwzgTrgUCzYploCeGMpnq9El7_i21746tWGOXxQzmg039ntd1upiPdvcPqnv2f29_DreL5CWxmvMIZtv1LrxAuLWtX_Ze9gv4gR8P
  priority: 102
  providerName: Springer Nature
Title Description of an activity-based enzyme biosensor for lung cancer detection
URI https://link.springer.com/article/10.1038/s43856-024-00461-7
https://www.ncbi.nlm.nih.gov/pubmed/38443590
https://www.proquest.com/docview/2937495636
https://www.proquest.com/docview/2938284999
https://pubmed.ncbi.nlm.nih.gov/PMC10914759
https://www.nature.com/articles/s43856-024-00461-7.pdf
https://doaj.org/article/134d8ce180d04e7ca4d08e080d2e680d
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: RPM
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: NAO
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: BENPR
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: 7X7
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database (ProQuest)
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: 8C1
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: AAJSJ
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2730-664X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769480
  issn: 2730-664X
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9trQTjge-PwKiMxBtzlw_Hdh67atNURDUBFeUpSmwHppWk6ofQ9tdzdpNAYZrYSyLF58ixz-ffxeffAbzVIYs00wmNY55TlrGYJkIJqiLfSJb4ma9dlO-Yn07YaBpPd4A3Z2Fc0L6jtHRmuokOO1yySMY2XJZR69IFVPTnutiFLo8Rg3egOxmfDb7aTHKospRzNq1PyPiRvKby1irkyPqvQ5j_Bkq2u6X34O66nGeXP7PZ7I8F6eQBfGk-ZROHctFfr_K-uvqL5fH23_oQ7tcYlQw2ko9gx5SP4c6Hehf-CbxHZ7UxNqQqSFYSezzCZqGgdlXUxJRXlz8Myc-rJbrJ1YIgNCYztCtEWS1bEG1WLgasfAqTk-PPw1NaJ2WgKmbBihpc9biO0K3MTZQlsZYBy5SMCy7DPCwEYgZUC_STZISiAq2nKnwjLFBhgUHw9gw6ZVWaF0BMYcfOz2wKd5ZxfJs0Bcu1TsJYq1B4EDSDlKqasdwmzpilbuc8kummp1KsnrqeSrHOu7bOfMPXcaP0kR37VtJybbsH1eJbWo9HGkRMS2UC6WufGaEypn1pEGnr0HC8erDfaE5aG4BliihKWN8z4h68aYtx6tr9mKw01drJoL9rXU4Pnm8UrW1JJBkC2cT3QG6p4FZTt0vK8--OHtxSvVoWRw8OGm393a6b-uKg1ej_6LqXtxN_BXuhU2gbLboPndVibV4jnFvlPdgVU4FXOQx60B0MRp9GeD86Hp99xKdDPuy5HyU99yeuV8_0X7UPSX4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqVqL0gHgTKGAkOFGrTuwkzqFCFFpt2XaFUCv1FhzboZWWZNmHquXH8duY8SYpK9CKSy85JHbkjOf1ZcYzhLy2kRRW2ozFcVIwqWXMstSkzAjulMy45tZn-Q6S3pn8dB6fr5Ff7VkYTKtsdaJX1LY2-I98F8xSis68SN6NfjDsGoXR1baFhm5aK9g9X2KsOdjRd_MrgHCTvaOPsN9voujw4PRDjzVdBpiJZThlDtR4YgXgpMIJncVWhVIbFZeJioqoTMEIwneC468EDE1BHZiSuxQtrwydxMIHYAI2pJAZgL-N_YPB5y_dX54oTTKpeHNahwu1O5FCxZj3Kxli05ClSxbRNw74l7f7d9JmF7ndIpuzaqTnV3o4_MM4Ht4ldxqvlr5fsOE9suaq--TWSRO3f0D6AG9b9UTrkuqK4oEK7FvB0I5a6qqf8--OFpf1BIB1PabgTNMhaCJqkC_H1LqpzxqrHpKzGyHwI7Je1ZV7QqgrY0BcXGPTd6kTeJtypSyszaLYmigNSNiSMjdNjXNstTHMfaxdqHxB_hym5578Ocx5280ZLSp8rBy9jzvUjcTq3P5GPf6WN8Keh0JaZVyouOXSpUZLy5UD39xGLoFrQLbb_c0blTHJrxk8IK-6xyDsGMHRlatnfgwgZASpAXm8YIduJUJJcH0zHhC1xChLS11-Ul1e-ILiWBwW6z4GZKflqet1raLFTsd3_0G6p6u_-iXZ7J2eHOfHR4P-M3I78hKCuaXbZH06nrnn4PxNixeNhFHy9aaF-jeNCmb-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0KqKVOCAeJZAASPBiUbrxE7sHBACyqploeJApd6MYztQaUmWfahaPo2vY8abpKxAKy695JCMI3s8T894hpBnLhXcCVfEWZaXsTAiiwtpZWw580oUzDAXsnyP88MT8f40O90iv7q7MJhW2cnEIKhdY_GMfABqSaIxz_NB1aZFfDoYvpr8iLGDFEZau3YaKxIZ-eU5uG-zl0cHsNfP03T47vPbw7jtMBDbTCTz2IMIzx0HH6n03BSZU4kwVmVVrtIyrSQoQFgjGP2KA6gEUWAr5iVqXZF4gUUPQPxfkZwXmE4oT2V_vpPKvBCKtfd0GFeDmeAqw4xfEaNXmsRyTReGlgH_snP_TtfsY7bXydVFPTHLczMe_6EWhzfJjdaepa9XBHiLbPn6Ntn52Ebs75AROLadYKJNRU1N8SoFdqyIUYM66uufy--elmfNDFzqZkrBjKZjkEHUIkVOqfPzkC9W3yUnl4Lee2S7bmp_n1BfZeBrMYPt3oXJ4W_KV6J0rkgzZ1MZkaRDpbZtdXNssjHWIcrOlV6hX8NwHdCvYcyLfsxkVdtjI_Qb3KEeEutyhxfN9Ktu2VwnXDhlfaKYY8JLa4RjyoNV7lKfwzMie93-6lZYzPQFaUfkaf8Z2BxjN6b2zSLAgG-M7mlEdlfk0M-EKwFGb8EiotYIZW2q61_qs2-hlDiWhcWKjxHZ72jqYl6bcLHf091_oO7B5lU_ITvAyvrD0fHoIbmWBgbBpNI9sj2fLvwjsPrm5ePAXpR8uWx-_g2koWSY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrcTjwPsRKMhI3KgXJ3Yc51gQVQWi4sCK5RQ5tgMVS7LazQq1v56x84CFqqKXHJJx5Nhfxt_I428AXthEcCtsTtNUllRokdI8Mxk1nDklcqaZDVm-x_JoJt7N0_kOyOEsTEjaD5KWwU0P2WGv1oKr1KfLCupDuphm06WtrsCuTJGDT2B3dvzx4IuvJIeQpVKKeX9ChnF1TuOtVSiI9Z_HMP9NlBx3S2_AtU291Kc_9WLxx4J0eAs-D5_S5aF8n27acmrO_lJ5vPy33oabPUclB53lHdhx9V24-qHfhb8H7zFYHZwNaSqia-KPR_gqFNSvipa4-uz0hyPlSbPGMLlZEaTGZIF-hRiPshWxrg05YPV9mB2-_fTmiPZFGahJRdxSh6uetBzDytJxnadWxUIblVZSJWVSZcgZEBYYJymOphl6T1Mxl3miImKH5O0BTOqmdo-AuMrPHdO-hLvQEt-mXCVKa_MktSbJIoiHSSpMr1juC2csirBzzlXRjVSBzYswUgW2eTm2WXZ6HRdav_ZzP1p6re1wo1l9Lfr5KGIurDIuVswy4TKjhWXKIdO2iZN4jWBvQE7RO4B1gSwq87EnlxE8Hx_jr-v3Y3Ttmk2wwXjXh5wRPOyANvaEK4FENmcRqC0IbnV1-0l98i3Ig3upV6_iGMH-gNbf_bpoLPZHRP_H0D2-nPkTuJ4EQPts0T2YtKuNe4p0ri2f9f_uL0ipQcI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Description+of+an+activity-based+enzyme+biosensor+for+lung+cancer+detection&rft.jtitle=Communications+medicine&rft.au=Dempsey%2C+Paul+W.&rft.au=Sandu%2C+Cristina-Mihaela&rft.au=Gonzalezirias%2C+Ricardo&rft.au=Hantula%2C+Spencer&rft.date=2024-03-05&rft.issn=2730-664X&rft.eissn=2730-664X&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1038%2Fs43856-024-00461-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s43856_024_00461_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-664X&client=summon