Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm
Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the colum...
        Saved in:
      
    
          | Published in | Atmospheric measurement techniques Vol. 11; no. 12; pp. 6539 - 6576 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Katlenburg-Lindau
          Copernicus GmbH
    
        11.12.2018
     European Geosciences Union Copernicus Publications  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1867-8548 1867-1381 1867-8548  | 
| DOI | 10.5194/amt-11-6539-2018 | 
Cover
| Abstract | Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2)
satellite has been taking measurements of reflected solar spectra and using
them to infer atmospheric carbon dioxide levels. This work provides details
of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the
column-averaged dry air mole fraction of atmospheric CO2
(XCO2) for the roughly 100 000 cloud-free measurements recorded
by OCO-2 each day. The algorithm is based on the Atmospheric Carbon
Observations from Space (ACOS) algorithm which has been applied to
observations from the Greenhouse Gases Observing SATellite (GOSAT) since
2009, with modifications necessary for OCO-2. Because high accuracy,
better than 0.25 %, is required in order to accurately infer carbon
sources and sinks from XCO2, significant errors and regional-scale
biases in the measurements must be minimized. We discuss efforts to filter
out poor-quality measurements, and correct the remaining good-quality
measurements to minimize regional-scale biases. Updates to the radiance
calibration and retrieval forward model in version 8 have improved many
aspects of the retrieved data products. The version 8 data appear to have
reduced regional-scale biases overall, and demonstrate a clear improvement
over the version 7 data. In particular, error variance with respect to TCCON
was reduced by 20 % over land and 40 % over ocean between versions 7
and 8, and nadir and glint observations over land are now more consistent.
While this paper documents the significant improvements in the ACOS
algorithm, it will continue to evolve and improve as the CO2 data
record continues to expand. | 
    
|---|---|
| AbstractList | Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (XCO2) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from XCO2, significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand. Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO.sub.2 (X.sub.CO.sub.2) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from X.sub.CO.sub.2, significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO.sub.2 data record continues to expand. Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 ( X CO 2 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="6e4fdf6ad1356db063a80da089ef9ad6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6539-2018-ie00001.svg" width="25pt" height="14pt" src="amt-11-6539-2018-ie00001.png"/></svg:svg> ) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy,better than 0.25 %, is required in order to accurately infer carbon sources and sinks from X CO 2 <svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="25pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="ec5ad5045c8500ab1b906bd47d887068"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-11-6539-2018-ie00002.svg" width="25pt" height="14pt" src="amt-11-6539-2018-ie00002.png"/></svg:svg> , significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand. Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO 2 (X CO 2) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from X CO 2 , significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO 2 data record continues to expand. Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (XCO2) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2. Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from XCO2, significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand. Since September 2014, NASA's Orbiting Carbon Observatory-2 ( OCO-2 ) satellite has been taking measurements of reflected solar spectra and using them to infer atmospheric carbon dioxide levels. This work provides details of the OCO-2 retrieval algorithm, versions 7 and 8, used to derive the column-averaged dry air mole fraction of atmospheric CO2 (XCO2) for the roughly 100 000 cloud-free measurements recorded by OCO-2 each day. The algorithm is based on the Atmospheric Carbon Observations from Space (ACOS) algorithm which has been applied to observations from the Greenhouse Gases Observing SATellite (GOSAT) since 2009, with modifications necessary for OCO-2 . Because high accuracy, better than 0.25 %, is required in order to accurately infer carbon sources and sinks from XCO2, significant errors and regional-scale biases in the measurements must be minimized. We discuss efforts to filter out poor-quality measurements, and correct the remaining good-quality measurements to minimize regional-scale biases. Updates to the radiance calibration and retrieval forward model in version 8 have improved many aspects of the retrieved data products. The version 8 data appear to have reduced regional-scale biases overall, and demonstrate a clear improvement over the version 7 data. In particular, error variance with respect to TCCON was reduced by 20 % over land and 40 % over ocean between versions 7 and 8, and nadir and glint observations over land are now more consistent. While this paper documents the significant improvements in the ACOS algorithm, it will continue to evolve and improve as the CO2 data record continues to expand.  | 
    
| Audience | Academic | 
    
| Author | Feng, Liang Griffith, David W. T. Chang, Albert Chevallier, Frédéric Te, Yao Gunson, Michael R. Hase, Frank Payne, Vivienne H. Sussmann, Ralf Morino, Isamu Eldering, Annmarie Taylor, Thomas E. Kiel, Matthäus Lindqvist, Hannakaisa Drouin, Brian J. Baker, David F. Natraj, Vijay Wunch, Debra Smyth, Michael Crowell, Sean M. R. Wennberg, Paul O. Palmer, Paul I. Petri, Christof Roehl, Coleen M. Nelson, Robert R. Sha, Mahesh K. Ohyama, Hirofumi Frankenberg, Christian Uchino, Osamu Fisher, Brendan Mandrake, Lukas Velazco, Voltaire A. Iraci, Laura T. O'Dell, Christopher W. García, Omaira E. Basu, Sourish Strong, Kimberly McDuffie, James Crisp, David Kivi, Rigel Merrelli, Aronne Osterman, Gregory B. Oyafuso, Fabiano Dubey, Mavendra Notholt, Justus  | 
    
| Author_xml | – sequence: 1 givenname: Christopher W. surname: O'Dell fullname: O'Dell, Christopher W. – sequence: 2 givenname: Annmarie orcidid: 0000-0003-1080-9922 surname: Eldering fullname: Eldering, Annmarie – sequence: 3 givenname: Paul O. orcidid: 0000-0002-6126-3854 surname: Wennberg fullname: Wennberg, Paul O. – sequence: 4 givenname: David orcidid: 0000-0002-4573-9998 surname: Crisp fullname: Crisp, David – sequence: 5 givenname: Michael R. surname: Gunson fullname: Gunson, Michael R. – sequence: 6 givenname: Brendan surname: Fisher fullname: Fisher, Brendan – sequence: 7 givenname: Christian orcidid: 0000-0002-0546-5857 surname: Frankenberg fullname: Frankenberg, Christian – sequence: 8 givenname: Matthäus orcidid: 0000-0002-9784-962X surname: Kiel fullname: Kiel, Matthäus – sequence: 9 givenname: Hannakaisa surname: Lindqvist fullname: Lindqvist, Hannakaisa – sequence: 10 givenname: Lukas surname: Mandrake fullname: Mandrake, Lukas – sequence: 11 givenname: Aronne orcidid: 0000-0002-5138-8098 surname: Merrelli fullname: Merrelli, Aronne – sequence: 12 givenname: Vijay orcidid: 0000-0003-3154-9429 surname: Natraj fullname: Natraj, Vijay – sequence: 13 givenname: Robert R. orcidid: 0000-0002-3471-5683 surname: Nelson fullname: Nelson, Robert R. – sequence: 14 givenname: Gregory B. surname: Osterman fullname: Osterman, Gregory B. – sequence: 15 givenname: Vivienne H. surname: Payne fullname: Payne, Vivienne H. – sequence: 16 givenname: Thomas E. orcidid: 0000-0002-1650-4882 surname: Taylor fullname: Taylor, Thomas E. – sequence: 17 givenname: Debra orcidid: 0000-0002-4924-0377 surname: Wunch fullname: Wunch, Debra – sequence: 18 givenname: Brian J. surname: Drouin fullname: Drouin, Brian J. – sequence: 19 givenname: Fabiano surname: Oyafuso fullname: Oyafuso, Fabiano – sequence: 20 givenname: Albert surname: Chang fullname: Chang, Albert – sequence: 21 givenname: James orcidid: 0000-0002-9408-5695 surname: McDuffie fullname: McDuffie, James – sequence: 22 givenname: Michael surname: Smyth fullname: Smyth, Michael – sequence: 23 givenname: David F. orcidid: 0000-0003-4144-4946 surname: Baker fullname: Baker, David F. – sequence: 24 givenname: Sourish orcidid: 0000-0001-8605-5894 surname: Basu fullname: Basu, Sourish – sequence: 25 givenname: Frédéric orcidid: 0000-0002-4327-3813 surname: Chevallier fullname: Chevallier, Frédéric – sequence: 26 givenname: Sean M. R. orcidid: 0000-0001-8353-3707 surname: Crowell fullname: Crowell, Sean M. R. – sequence: 27 givenname: Liang surname: Feng fullname: Feng, Liang – sequence: 28 givenname: Paul I. orcidid: 0000-0002-1487-0969 surname: Palmer fullname: Palmer, Paul I. – sequence: 29 givenname: Mavendra orcidid: 0000-0002-3492-790X surname: Dubey fullname: Dubey, Mavendra – sequence: 30 givenname: Omaira E. orcidid: 0000-0002-8395-6440 surname: García fullname: García, Omaira E. – sequence: 31 givenname: David W. T. orcidid: 0000-0002-7986-1924 surname: Griffith fullname: Griffith, David W. T. – sequence: 32 givenname: Frank surname: Hase fullname: Hase, Frank – sequence: 33 givenname: Laura T. orcidid: 0000-0002-2859-5259 surname: Iraci fullname: Iraci, Laura T. – sequence: 34 givenname: Rigel orcidid: 0000-0001-8828-2759 surname: Kivi fullname: Kivi, Rigel – sequence: 35 givenname: Isamu orcidid: 0000-0003-2720-1569 surname: Morino fullname: Morino, Isamu – sequence: 36 givenname: Justus surname: Notholt fullname: Notholt, Justus – sequence: 37 givenname: Hirofumi surname: Ohyama fullname: Ohyama, Hirofumi – sequence: 38 givenname: Christof orcidid: 0000-0002-7010-5532 surname: Petri fullname: Petri, Christof – sequence: 39 givenname: Coleen M. orcidid: 0000-0001-5383-8462 surname: Roehl fullname: Roehl, Coleen M. – sequence: 40 givenname: Mahesh K. orcidid: 0000-0003-1440-1529 surname: Sha fullname: Sha, Mahesh K. – sequence: 41 givenname: Kimberly orcidid: 0000-0001-9947-1053 surname: Strong fullname: Strong, Kimberly – sequence: 42 givenname: Ralf orcidid: 0000-0002-1970-7538 surname: Sussmann fullname: Sussmann, Ralf – sequence: 43 givenname: Yao orcidid: 0000-0001-6405-8074 surname: Te fullname: Te, Yao – sequence: 44 givenname: Osamu surname: Uchino fullname: Uchino, Osamu – sequence: 45 givenname: Voltaire A. orcidid: 0000-0002-1376-438X surname: Velazco fullname: Velazco, Voltaire A.  | 
    
| BackLink | https://hal.science/hal-02950533$$DView record in HAL https://www.osti.gov/servlets/purl/1557767$$D View this record in Osti.gov  | 
    
| BookMark | eNqFks9v0zAUxyM0JLbBnaMFpx0y7MQ_j1UFrFKlSgzOluvYraskHrbbrf89rwShFSFQDone-3y_ee9rX1UXYxxdVb0l-JYRRT-YodSE1Jy1qm4wkS-qSyK5qCWj8uLZ96vqKucdxpwS0VxWu8XwkOLBdSi5koI7mD6j6JE1aR1H1IX4FDqHfIoDWqV1KGHcoPnUXK2zSwdTYjrWDXoMZYvK1qGDSzlAW6LZfHWPTL-JCXrD6-qlB3f35tf7uvr26ePX-V29XH1ezGfL2jJKSt11qhVN23bCe-JVQxW1VDAnraTCY9xQJjBfM0Ybzom1jDm-dlzhplu3GLP2ulpMvl00O_2QwmDSUUcT9M9CTBttUgm2d9o4772gEswxVapRVglhpWypaSWXCrzI5LUfH8zx0fT9b0OC9Sl4DcFrQvQpeH0KHjTvJk3MJehsQ3F2a-M4OgskY0JwAdDNBG1Nfzbj3WypTzXcKAbLtAcC7PuJhZP6vne56F3cpxEy1A2BGIhg_Bm1MbBZGH0sydghZKtnDKYjTHIO1O1fKHg6NwQY0vkA9TPBzZkAmOKeysbsc9aL-y_nLJ9Ym2LOyXkNy5sClwF-Evp_RYb_EP435R92ROfC | 
    
| CitedBy_id | crossref_primary_10_1029_2021JD035664 crossref_primary_10_5194_amt_12_6049_2019 crossref_primary_10_1088_1748_9326_ad7870 crossref_primary_10_5194_amt_13_2335_2020 crossref_primary_10_5194_essd_14_325_2022 crossref_primary_10_5194_acp_23_14577_2023 crossref_primary_10_1016_j_jqsrt_2020_107360 crossref_primary_10_5194_acp_19_14233_2019 crossref_primary_10_5194_acp_22_15817_2022 crossref_primary_10_5194_amt_16_2145_2023 crossref_primary_10_5194_amt_17_1091_2024 crossref_primary_10_5194_amt_16_3173_2023 crossref_primary_10_5194_amt_15_4835_2022 crossref_primary_10_3390_rs11232770 crossref_primary_10_1007_s13351_024_3160_8 crossref_primary_10_1029_2021RG000736 crossref_primary_10_3390_rs13173524 crossref_primary_10_3390_rs16132497 crossref_primary_10_1016_j_rse_2019_111494 crossref_primary_10_3390_rs17061087 crossref_primary_10_3390_rs13040571 crossref_primary_10_3390_rs11091061 crossref_primary_10_1109_TGRS_2024_3432993 crossref_primary_10_5194_amt_14_6249_2021 crossref_primary_10_2166_wcc_2024_702 crossref_primary_10_1137_20M1356403 crossref_primary_10_1016_j_rse_2020_112032 crossref_primary_10_5194_amt_14_4689_2021 crossref_primary_10_5194_gmd_15_5547_2022 crossref_primary_10_1029_2022GL101102 crossref_primary_10_3390_rs12193155 crossref_primary_10_5194_amt_14_7277_2021 crossref_primary_10_3390_rs17010048 crossref_primary_10_5194_amt_16_195_2023 crossref_primary_10_1080_20964471_2022_2033149 crossref_primary_10_1186_s40645_025_00684_9 crossref_primary_10_5194_acp_22_8897_2022 crossref_primary_10_5194_amt_17_5429_2024 crossref_primary_10_1029_2020JD034362 crossref_primary_10_5194_essd_13_299_2021 crossref_primary_10_1016_j_isprsjprs_2025_03_009 crossref_primary_10_1029_2023GL102815 crossref_primary_10_1080_15481603_2023_2209968 crossref_primary_10_1109_TGRS_2021_3066623 crossref_primary_10_5194_amt_12_2241_2019 crossref_primary_10_3389_frsen_2022_932548 crossref_primary_10_5194_amt_15_5219_2022 crossref_primary_10_3390_rs13142700 crossref_primary_10_5194_amt_13_3329_2020 crossref_primary_10_5194_amt_12_5547_2019 crossref_primary_10_5194_amt_13_6755_2020 crossref_primary_10_3390_rs17050814 crossref_primary_10_34133_remotesensing_0469 crossref_primary_10_5194_gmd_14_4683_2021 crossref_primary_10_1016_j_atmosres_2024_107477 crossref_primary_10_1016_j_rse_2021_112579 crossref_primary_10_5194_acp_23_6719_2023 crossref_primary_10_34133_2022_9816536 crossref_primary_10_5194_amt_14_2141_2021 crossref_primary_10_1007_s11430_022_1036_7 crossref_primary_10_5194_acp_21_17453_2021 crossref_primary_10_1016_j_asr_2024_07_007 crossref_primary_10_1029_2020JD033538 crossref_primary_10_1186_s40645_021_00420_z crossref_primary_10_3390_rs12152387 crossref_primary_10_3390_rs14225635 crossref_primary_10_1155_2021_4728814 crossref_primary_10_1016_j_rse_2021_112565 crossref_primary_10_5194_amt_12_1495_2019 crossref_primary_10_3390_rs12193239 crossref_primary_10_1080_10095020_2024_2336599 crossref_primary_10_1029_2019JG005599 crossref_primary_10_1038_s43247_024_01910_w crossref_primary_10_5194_bg_18_2843_2021 crossref_primary_10_5194_amt_17_5679_2024 crossref_primary_10_5194_amt_14_5887_2021 crossref_primary_10_5194_amt_12_2341_2019 crossref_primary_10_1088_1748_9326_ac3f62 crossref_primary_10_3390_rs14225882 crossref_primary_10_1038_s41597_022_01228_2 crossref_primary_10_3390_rs14030488 crossref_primary_10_5194_amt_15_6585_2022 crossref_primary_10_1029_2020JD032794 crossref_primary_10_1016_j_rse_2021_112314 crossref_primary_10_5194_amt_13_6889_2020 crossref_primary_10_1016_j_aeaoa_2021_100110 crossref_primary_10_3390_atmos12121586 crossref_primary_10_3390_rs11070850 crossref_primary_10_3390_rs15215172 crossref_primary_10_3390_atmos11111219 crossref_primary_10_5194_amt_13_4393_2020 crossref_primary_10_5194_amt_14_665_2021 crossref_primary_10_5194_gmd_15_45_2022 crossref_primary_10_1109_TGRS_2025_3532216 crossref_primary_10_1016_j_rse_2021_112674 crossref_primary_10_1016_j_jenvman_2020_111308 crossref_primary_10_1016_j_rse_2020_112246 crossref_primary_10_5194_amt_15_6837_2022 crossref_primary_10_5194_acp_23_6599_2023 crossref_primary_10_1088_1748_9326_ac998c crossref_primary_10_3390_rs11242901 crossref_primary_10_3390_rs17050734 crossref_primary_10_5194_acp_19_9371_2019 crossref_primary_10_5194_amt_14_117_2021 crossref_primary_10_2139_ssrn_4161842 crossref_primary_10_5194_acp_25_1725_2025 crossref_primary_10_5194_amt_13_5033_2020 crossref_primary_10_1007_s00703_021_00781_6 crossref_primary_10_5194_acp_22_1097_2022 crossref_primary_10_5194_amt_17_1145_2024 crossref_primary_10_1109_TGRS_2022_3157774 crossref_primary_10_1029_2021GL095227 crossref_primary_10_1029_2023GB007804 crossref_primary_10_3103_S1068373922040069 crossref_primary_10_1016_j_rse_2024_114272 crossref_primary_10_1029_2019JD032029 crossref_primary_10_1088_1748_9326_ab9cfe crossref_primary_10_3390_atmos13060866 crossref_primary_10_5194_amt_15_1251_2022 crossref_primary_10_5194_gmd_17_1543_2024 crossref_primary_10_1360_N072022_0123 crossref_primary_10_5194_amt_13_789_2020 crossref_primary_10_5194_amt_14_3087_2021 crossref_primary_10_5194_amt_16_1461_2023 crossref_primary_10_5194_acp_19_9797_2019 crossref_primary_10_1080_05704928_2024_2326527 crossref_primary_10_1029_2021JD036256 crossref_primary_10_1088_1748_9326_ab25ae crossref_primary_10_3390_rs12183063 crossref_primary_10_1007_s00376_024_3293_9 crossref_primary_10_5194_essd_16_2857_2024 crossref_primary_10_5194_acp_22_10769_2022 crossref_primary_10_1080_01431161_2022_2038395 crossref_primary_10_1016_j_rse_2024_114053 crossref_primary_10_3389_fenvs_2023_1289142 crossref_primary_10_5194_amt_14_3837_2021 crossref_primary_10_5194_acp_21_16661_2021 crossref_primary_10_5194_essd_14_3013_2022 crossref_primary_10_1029_2020JD034406 crossref_primary_10_1029_2022JD037773 crossref_primary_10_5194_amt_14_5555_2021 crossref_primary_10_5194_acp_21_14385_2021 crossref_primary_10_1029_2021JD035035 crossref_primary_10_3390_rs14195024 crossref_primary_10_5194_acp_20_323_2020 crossref_primary_10_1029_2019JD031400 crossref_primary_10_5194_amt_12_5317_2019 crossref_primary_10_5194_amt_17_5373_2024 crossref_primary_10_1126_sciadv_abf9415 crossref_primary_10_5194_amt_18_929_2025 crossref_primary_10_1137_19M1304283 crossref_primary_10_1029_2022JD036696 crossref_primary_10_3389_feart_2021_688542 crossref_primary_10_1016_j_rse_2020_112179 crossref_primary_10_3788_AOS241153 crossref_primary_10_1016_j_atmosres_2022_106385 crossref_primary_10_3390_rs14051106 crossref_primary_10_1016_j_scitotenv_2024_176896 crossref_primary_10_5194_amt_15_6605_2022 crossref_primary_10_3389_fmars_2024_1272415 crossref_primary_10_1002_asl_942 crossref_primary_10_3390_rs11172061 crossref_primary_10_3390_rs15204904 crossref_primary_10_5194_amt_16_109_2023 crossref_primary_10_1016_j_jqsrt_2020_107217 crossref_primary_10_5194_amt_14_1475_2021 crossref_primary_10_3390_rs14153769 crossref_primary_10_1109_JSTARS_2024_3355549 crossref_primary_10_5194_gmd_17_1133_2024 crossref_primary_10_1098_rsta_2021_0106 crossref_primary_10_5194_gmd_15_649_2022 crossref_primary_10_3390_rs13193868 crossref_primary_10_5194_amt_16_5725_2023 crossref_primary_10_5194_amt_14_6483_2021 crossref_primary_10_5194_amt_14_403_2021 crossref_primary_10_3390_rs16132456 crossref_primary_10_5194_essd_15_963_2023 crossref_primary_10_1109_LGRS_2021_3099172 crossref_primary_10_5194_acp_23_5355_2023 crossref_primary_10_1016_j_atmosenv_2023_119913 crossref_primary_10_1038_s41467_019_11097_w crossref_primary_10_5194_acp_18_16271_2018 crossref_primary_10_1016_j_jqsrt_2021_108049 crossref_primary_10_1038_s41597_024_04135_w crossref_primary_10_1016_j_asr_2024_01_016 crossref_primary_10_36023_ujrs_2021_8_4_204 crossref_primary_10_1038_s41598_020_75763_6 crossref_primary_10_3390_atmos13091384 crossref_primary_10_1088_1748_9326_ac6084 crossref_primary_10_5194_amt_13_5149_2020 crossref_primary_10_1016_j_jqsrt_2019_106736 crossref_primary_10_5194_amt_18_241_2025 crossref_primary_10_5194_amt_16_581_2023 crossref_primary_10_5194_acp_21_6663_2021 crossref_primary_10_5194_amt_17_1375_2024 crossref_primary_10_5194_amt_18_673_2025 crossref_primary_10_5194_amt_14_7511_2021 crossref_primary_10_1016_j_jqsrt_2023_108892 crossref_primary_10_5194_acp_21_8255_2021  | 
    
| Cites_doi | 10.1016/j.jqsrt.2015.12.020 10.1016/0022-4073(95)00015-D 10.1126/science.aam5782 10.14291/tccon.ggg2014.bialystok01.R1/1183984 10.1098/rsta.2011.0295 10.14291/tccon.ggg2014.lauder02.R0/1149298 10.14291/tccon.ggg2014.parkfalls01.R0/1149161 10.1016/j.jqsrt.2017.06.012 10.5194/amt-4-975-2011 10.1016/j.jqsrt.2013.07.002 10.14291/tccon.ggg2014.garmisch01.R0/1149299 10.1016/j.jms.2016.02.012 10.5194/acp-5-3313-2005 10.5194/amt-5-687-2012 10.2151/sola.2009-041 10.5194/gi-5-271-2016 10.5194/amt-5-99-2012 10.1016/j.jqsrt.2012.05.021 10.1117/12.974954 10.5194/amt-5-2081-2012 10.1029/2011JD015603 10.14291/tccon.ggg2014.edwards01.R1/1255068 10.5194/amt-11-3111-2018 10.5194/amt-8-1641-2015 10.1126/science.aam5690 10.1029/2006JD007659 10.1002/2016GL070885 10.1016/j.jqsrt.2013.08.001 10.1016/j.jqsrt.2016.03.037 10.3389/fenvs.2018.00109 10.5194/amt-10-1481-2017 10.5194/acp-19-9797-2019 10.5194/acp-13-9771-2013 10.14291/tccon.ggg2014.manaus01.R0/1149274 10.14291/tccon.ggg2014.reunion01.R0/1149288 10.5194/amt-7-2631-2014 10.14291/tccon.ggg2014.ascension01.R0/1149285 10.1002/2017JD027836 10.1029/2006JD008336 10.1364/JOSA.44.000838 10.1029/2010JD013887 10.14291/tccon.ggg2014.saga01.R0/1149283 10.1016/j.jms.2007.02.018 10.5194/amt-9-973-2016 10.1002/2016JD026111 10.1016/j.jqsrt.2014.02.029 10.1016/j.rse.2018.02.016 10.5194/acp-10-4145-2010 10.1016/j.jqsrt.2013.07.006 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 10.14291/tccon.ggg2014.lamont01.R1/1255070 10.1029/2006JD007375 10.1016/j.rse.2006.03.002 10.1117/1.2898457 10.5194/acp-18-7189-2018 10.1117/12.2304219 10.5194/amt-10-2759-2017 10.5194/acp-13-8695-2013 10.1126/science.aam5776 10.5194/acp-11-3581-2011 10.5194/acp-16-7867-2016 10.1109/TGRS.2016.2645614 10.1117/12.2187291 10.5194/amt-2018-353 10.5194/acp-11-543-2011 10.1139/P08-130 10.5194/amt-9-683-2016 10.5194/amt-10-2209-2017 10.5194/acp-9-2619-2009 10.3390/rs9111102 10.1126/science.aam5745 10.1029/2012JD018087 10.14291/tccon.ggg2014.tsukuba02.R1/1241486 10.5194/amt-3-1351-2010 10.1119/1.1632486 10.1029/2000JD900497 10.1175/JAS-D-12-039.1 10.1029/2000GL011912 10.1073/pnas.0708986104 10.14291/tccon.ggg2014.paris01.R0/1149279 10.1002/jgrd.50332 10.14291/tccon.ggg2014.bremen01.R0/1149275 10.1364/AO.48.003322 10.1002/2017JD026453 10.14291/tccon.ggg2014.orleans01.R0/1149276 10.5194/amt-6-2509-2013 10.1029/93JD02072 10.1029/2010JD015047 10.1029/2018GB006086 10.14291/tccon.ggg2014.izana01.R0/1149295 10.1103/PhysRevLett.114.243001 10.5194/amt-6-2851-2013 10.14291/tccon.ggg2014.darwin01.R0/1149290 10.5194/acp-11-12317-2011 10.1002/jgrd.50146 10.3390/rs9121228 10.5194/amt-10-549-2017 10.1029/2007JD009531 10.1029/2009JD012820 10.1175/JAM2309.1 10.1142/9789812813718 10.1007/s00376-018-7312-6 10.5194/amt-2018-357 10.5194/acp-15-13023-2015 10.1098/rsta.2010.0240 10.1002/2017GL074702 10.5194/acp-17-15019-2017 10.1175/JCLI-D-11-00015.1 10.1002/2013GL058772 10.5194/amt-10-59-2017  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2018 Copernicus GmbH 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| Copyright_xml | – notice: COPYRIGHT 2018 Copernicus GmbH – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License  | 
    
| CorporateAuthor | Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) | 
    
| CorporateAuthor_xml | – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) | 
    
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI 1XC VOOES OIOZB OTOTI ADTOC UNPAY DOA  | 
    
| DOI | 10.5194/amt-11-6539-2018 | 
    
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology Environmental Sciences  | 
    
| EISSN | 1867-8548 | 
    
| EndPage | 6576 | 
    
| ExternalDocumentID | oai_doaj_org_article_aefff748e8c049929c977c8834a38689 10.5194/amt-11-6539-2018 1557767 oai:HAL:hal-02950533v1 A565315866 10_5194_amt_11_6539_2018  | 
    
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA IPNFZ ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO Q2X RIG RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI 1XC C1A VOOES 3V. BBORY M~E OIOZB OTOTI ADTOC AFFHD UNPAY  | 
    
| ID | FETCH-LOGICAL-c541t-dd937233d7ff1f92494c475e8c847f00245706b5542661cc55e6be6902db30053 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1867-8548 1867-1381  | 
    
| IngestDate | Fri Oct 03 12:41:47 EDT 2025 Wed Oct 29 11:46:33 EDT 2025 Mon Nov 25 02:44:03 EST 2024 Tue Oct 14 20:32:40 EDT 2025 Fri Jul 25 22:53:39 EDT 2025 Mon Oct 20 22:26:40 EDT 2025 Mon Oct 20 16:29:08 EDT 2025 Thu Oct 16 15:25:43 EDT 2025 Wed Oct 01 05:01:59 EDT 2025 Thu Apr 24 23:02:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c541t-dd937233d7ff1f92494c475e8c847f00245706b5542661cc55e6be6902db30053 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC). Biological and Environmental Research (BER) (SC-23) 89233218CNA000001 LA-UR-19-22771  | 
    
| ORCID | 0000-0002-7986-1924 0000-0002-5138-8098 0000-0002-4327-3813 0000-0001-8353-3707 0000-0001-5383-8462 0000-0003-3154-9429 0000-0002-1970-7538 0000-0002-1376-438X 0000-0003-4144-4946 0000-0002-3471-5683 0000-0002-9408-5695 0000-0002-1487-0969 0000-0001-9947-1053 0000-0002-7010-5532 0000-0002-4924-0377 0000-0002-4573-9998 0000-0002-8395-6440 0000-0002-2859-5259 0000-0001-8605-5894 0000-0001-6405-8074 0000-0002-3492-790X 0000-0002-6126-3854 0000-0002-0546-5857 0000-0003-2720-1569 0000-0003-1080-9922 0000-0001-8828-2759 0000-0003-1440-1529 0000-0002-9784-962X 0000-0002-1650-4882 0000-0002-7184-6594 0000-0002-3324-885X 0000-0001-7307-6266 0000-0002-8862-8737 0000-0003-2109-9874 0000000153838462 0000000216504882 000000021376438X 0000000261263854 0000000214870969 0000000188282759 000000029784962X 0000000205465857 0000000245739998 0000000249240377 0000000327201569 0000000199471053 0000000243273813 0000000228595259 0000000294085695 0000000186055894 0000000279861924 000000023492790X  | 
    
| OpenAccessLink | https://doaj.org/article/aefff748e8c049929c977c8834a38689 | 
    
| PQID | 2154217561 | 
    
| PQPubID | 105742 | 
    
| PageCount | 38 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aefff748e8c049929c977c8834a38689 unpaywall_primary_10_5194_amt_11_6539_2018 osti_scitechconnect_1557767 hal_primary_oai_HAL_hal_02950533v1 proquest_journals_2154217561 gale_infotracmisc_A565315866 gale_infotracacademiconefile_A565315866 gale_incontextgauss_ISR_A565315866 crossref_citationtrail_10_5194_amt_11_6539_2018 crossref_primary_10_5194_amt_11_6539_2018  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-12-11 | 
    
| PublicationDateYYYYMMDD | 2018-12-11 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-11 day: 11  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Katlenburg-Lindau | 
    
| PublicationPlace_xml | – name: Katlenburg-Lindau – name: United States  | 
    
| PublicationTitle | Atmospheric measurement techniques | 
    
| PublicationYear | 2018 | 
    
| Publisher | Copernicus GmbH European Geosciences Union Copernicus Publications  | 
    
| Publisher_xml | – name: Copernicus GmbH – name: European Geosciences Union – name: Copernicus Publications  | 
    
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref128 ref14 ref129 ref97 ref126 ref96 ref127 ref11 ref99 ref124 ref10 ref98 ref125 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref122 ref123 ref62 ref120 ref61 ref121  | 
    
| References_xml | – ident: ref62 – ident: ref33 doi: 10.1016/j.jqsrt.2015.12.020 – ident: ref116 – ident: ref7 doi: 10.1016/0022-4073(95)00015-D – ident: ref101 doi: 10.1126/science.aam5782 – ident: ref31 doi: 10.14291/tccon.ggg2014.bialystok01.R1/1183984 – ident: ref72 doi: 10.1098/rsta.2011.0295 – ident: ref102 doi: 10.14291/tccon.ggg2014.lauder02.R0/1149298 – ident: ref115 doi: 10.14291/tccon.ggg2014.parkfalls01.R0/1149161 – ident: ref85 doi: 10.1016/j.jqsrt.2017.06.012 – ident: ref76 – ident: ref37 doi: 10.5194/amt-4-975-2011 – ident: ref97 doi: 10.1016/j.jqsrt.2013.07.002 – ident: ref107 doi: 10.14291/tccon.ggg2014.garmisch01.R0/1149299 – ident: ref8 doi: 10.1016/j.jms.2016.02.012 – ident: ref10 doi: 10.5194/acp-5-3313-2005 – ident: ref26 doi: 10.5194/amt-5-687-2012 – ident: ref128 doi: 10.2151/sola.2009-041 – ident: ref60 doi: 10.5194/gi-5-271-2016 – ident: ref83 doi: 10.5194/amt-5-99-2012 – ident: ref110 doi: 10.1016/j.jqsrt.2012.05.021 – ident: ref77 doi: 10.1117/12.974954 – ident: ref43 doi: 10.5194/amt-5-2081-2012 – ident: ref89 doi: 10.1029/2011JD015603 – ident: ref54 doi: 10.14291/tccon.ggg2014.edwards01.R1/1255068 – ident: ref119 doi: 10.5194/amt-11-3111-2018 – ident: ref70 doi: 10.5194/amt-8-1641-2015 – ident: ref47 – ident: ref65 doi: 10.1126/science.aam5690 – ident: ref71 doi: 10.1029/2006JD007659 – ident: ref50 doi: 10.1002/2016GL070885 – ident: ref34 doi: 10.1016/j.jqsrt.2013.08.001 – ident: ref35 doi: 10.1016/j.jqsrt.2016.03.037 – ident: ref74 doi: 10.3389/fenvs.2018.00109 – ident: ref52 doi: 10.5194/amt-10-1481-2017 – ident: ref68 – ident: ref28 doi: 10.5194/acp-19-9797-2019 – ident: ref53 doi: 10.5194/acp-13-9771-2013 – ident: ref36 doi: 10.14291/tccon.ggg2014.manaus01.R0/1149274 – ident: ref30 doi: 10.14291/tccon.ggg2014.reunion01.R0/1149288 – ident: ref79 doi: 10.5194/amt-7-2631-2014 – ident: ref41 doi: 10.14291/tccon.ggg2014.ascension01.R0/1149285 – ident: ref29 doi: 10.1002/2017JD027836 – ident: ref55 – ident: ref21 doi: 10.1029/2006JD008336 – ident: ref22 doi: 10.1364/JOSA.44.000838 – ident: ref15 doi: 10.1029/2010JD013887 – ident: ref57 doi: 10.14291/tccon.ggg2014.saga01.R0/1149283 – ident: ref111 – ident: ref32 doi: 10.1016/j.jms.2007.02.018 – ident: ref108 doi: 10.5194/amt-9-973-2016 – ident: ref69 doi: 10.1002/2016JD026111 – ident: ref5 doi: 10.1016/j.jqsrt.2014.02.029 – ident: ref105 doi: 10.1016/j.rse.2018.02.016 – ident: ref1 doi: 10.5194/acp-10-4145-2010 – ident: ref49 – ident: ref73 doi: 10.1016/j.jqsrt.2013.07.006 – ident: ref18 doi: 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2 – ident: ref117 doi: 10.14291/tccon.ggg2014.lamont01.R1/1255070 – ident: ref14 doi: 10.1029/2006JD007375 – ident: ref99 doi: 10.1016/j.rse.2006.03.002 – ident: ref24 doi: 10.1117/1.2898457 – ident: ref3 doi: 10.5194/acp-18-7189-2018 – ident: ref86 doi: 10.1117/12.2304219 – ident: ref66 – ident: ref112 – ident: ref118 doi: 10.5194/amt-10-2759-2017 – ident: ref2 doi: 10.5194/acp-13-8695-2013 – ident: ref13 doi: 10.1126/science.aam5776 – ident: ref81 – ident: ref58 doi: 10.5194/acp-11-3581-2011 – ident: ref103 – ident: ref95 – ident: ref44 doi: 10.5194/acp-16-7867-2016 – ident: ref63 doi: 10.1109/TGRS.2016.2645614 – ident: ref23 doi: 10.1117/12.2187291 – ident: ref59 doi: 10.5194/amt-2018-353 – ident: ref82 doi: 10.5194/acp-11-543-2011 – ident: ref106 doi: 10.1139/P08-130 – ident: ref61 doi: 10.5194/amt-9-683-2016 – ident: ref125 doi: 10.5194/amt-10-2209-2017 – ident: ref42 doi: 10.5194/acp-9-2619-2009 – ident: ref93 doi: 10.3390/rs9111102 – ident: ref39 doi: 10.1126/science.aam5745 – ident: ref19 doi: 10.1029/2012JD018087 – ident: ref75 doi: 10.14291/tccon.ggg2014.tsukuba02.R1/1241486 – ident: ref120 doi: 10.5194/amt-3-1351-2010 – ident: ref123 – ident: ref129 doi: 10.1119/1.1632486 – ident: ref56 doi: 10.1029/2000JD900497 – ident: ref127 doi: 10.1175/JAS-D-12-039.1 – ident: ref91 doi: 10.1029/2000GL011912 – ident: ref87 doi: 10.1073/pnas.0708986104 – ident: ref109 doi: 10.14291/tccon.ggg2014.paris01.R0/1149279 – ident: ref48 doi: 10.1002/jgrd.50332 – ident: ref80 doi: 10.14291/tccon.ggg2014.bremen01.R0/1149275 – ident: ref11 doi: 10.1364/AO.48.003322 – ident: ref17 doi: 10.1002/2017JD026453 – ident: ref114 doi: 10.14291/tccon.ggg2014.orleans01.R0/1149276 – ident: ref45 – ident: ref12 doi: 10.5194/amt-6-2509-2013 – ident: ref90 doi: 10.1029/93JD02072 – ident: ref92 doi: 10.1029/2010JD015047 – ident: ref25 – ident: ref51 – ident: ref100 doi: 10.1029/2018GB006086 – ident: ref9 doi: 10.14291/tccon.ggg2014.izana01.R0/1149295 – ident: ref88 doi: 10.1103/PhysRevLett.114.243001 – ident: ref67 doi: 10.5194/amt-6-2851-2013 – ident: ref124 – ident: ref46 doi: 10.14291/tccon.ggg2014.darwin01.R0/1149290 – ident: ref122 doi: 10.5194/acp-11-12317-2011 – ident: ref84 doi: 10.1002/jgrd.50146 – ident: ref113 doi: 10.3390/rs9121228 – ident: ref38 doi: 10.5194/amt-10-549-2017 – ident: ref98 doi: 10.1029/2007JD009531 – ident: ref20 doi: 10.1029/2009JD012820 – ident: ref4 doi: 10.1175/JAM2309.1 – ident: ref96 doi: 10.1142/9789812813718 – ident: ref126 doi: 10.1007/s00376-018-7312-6 – ident: ref40 doi: 10.5194/amt-2018-357 – ident: ref64 doi: 10.5194/acp-15-13023-2015 – ident: ref121 doi: 10.1098/rsta.2010.0240 – ident: ref78 doi: 10.1002/2017GL074702 – ident: ref6 doi: 10.5194/acp-17-15019-2017 – ident: ref104 – ident: ref94 doi: 10.1175/JCLI-D-11-00015.1 – ident: ref16 doi: 10.1002/2013GL058772 – ident: ref27 doi: 10.5194/amt-10-59-2017  | 
    
| SSID | ssj0064172 | 
    
| Score | 2.6108754 | 
    
| Snippet | Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2)
satellite has been taking measurements of reflected solar spectra and using
them to infer... Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer... Since September 2014, NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite has been taking measurements of reflected solar spectra and using them to infer... Since September 2014, NASA's Orbiting Carbon Observatory-2 ( OCO-2 ) satellite has been taking measurements of reflected solar spectra and using them to infer...  | 
    
| SourceID | doaj unpaywall osti hal proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 6539 | 
    
| SubjectTerms | Air pollution Algorithms Amazon Analysis Atmospheric carbon dioxide Carbon Carbon Cycle Carbon dioxide Carbon dioxide atmospheric concentrations Carbon sources Climate CO2 validation Continental interfaces, environment Data Dry air Earth Sciences Energy Sciences ENVIRONMENTAL SCIENCES Gases GEOSCIENCES Glint Greenhouse effect Greenhouse gases Measurement Observatories Ocean, Atmosphere Oceans OCO-2 open climate campaign Radiance Remote Sensing Retrieval Satellite Satellite observation Satellites Sciences of the Universe Solar spectra TCCON  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF616QEuiKcwLWhVIRBIVmJ7_ToglEatAqIJaqnU22qfaZBrB8cp9N8z40eoL-USKfYmXu_Oznw7O_MNIW9HofKliGFvIhR8yJjhIaFxlQHwkSZCKR8TnE9n0fSCfb0ML3fIrMuFwbDKTifWiloXCn3kQzBNDOAzmPvPq18uVo3C09WuhIZoSyvoTzXF2C7Z85EZa0D2jo5n38863Rwxry7nhCxuyL7nNQeXgGLYUFxXmGOGVK0gOlgE5I6hqvn8t1p79wqDJgcFLMIeMH2wyVfi9rfIsjs26uQxedSCSzpupOEJ2TH5U-KcAi4uytp9Tt_RSbYEkFp_e0Z-Nj4Fo2lZV9YCsVvTwlIlSlnkVC-LP0ttKOag0HkplxgjTSfNzblsHLpFeev6FP25FMAkvWkccDSh48n8nIpsAaNYXV0_Jxcnxz8mU7etvuCqkHmVqzUgFz8IdGytZ3GbxhSLQ5MoMGi2PrKNR5EEOII2XqkwNJE0sNn2tUQO_OAFGeRFbl4SqrXPrIy1xdVvmEmlAc0iPOWPkjgdpQ4ZdkPNVUtNjhUyMg5bFJwcDpMDexWOk8NxchzyYfuLVUPLcU_bI5y9bTsk1K4vFOWCt-uTC2OtjVkCr4ebQD9VAIxVkgRMBEmUQBcPce45UmbkGJOzEJv1mn85P-NjwMSBFyZR5JD3bSNbQP-VaFMcYBSQZavX8qDXEta06t0-BBHr9Xg6_sbx2shPQ8yfvvEcso8SyAEqId-vwsAoBa8ehsjQBE_oBJO3amnN_y0ih3zcCut_R_DV_f-1Tx5iKwzy8bwDMqjKjXkNUK2Sb9r19xcc3zd0 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe27gFe-EYLG8iaEAikrHXiJM5jqTYVxFbEqDSeLNuxR6FLqqQdjL-euyStCEggxEs_7Evrz_Pv7LufCXk6iEygVQK2iTLwohOOh4TWNxbARyqUMQEGOJ-cxuMpf3MenW-Ro3UsjLoEg7NY2DKfmVXVEAW3HmJ9xvpIpAr2OhMoiCFhmOBjwuEic9tkJ44AkvfIzvT03fAjGlsCFAEL68tK688CIHpzXAnYhf_2M53lqWbx3-jq7U_oKtkrYOp14OiNVb5Q11_VfP7TynR8u_EgqWpCQ3RI-XK4WupD8_0Xusf_rvQdcqvFrnTYPHSXbNn8HvFOAHYXZb07T5_R0XwGGLj-dp98brYsbEbL-uIuGNUVLRw1qtRFTrNZ8W2WWYohLnRS6hm6YNNRkznRzX5xUV77AcXtYgpYlV41-3tU0OFockbV_KIoIe_yAZkeH30Yjf32cgffRJwt_SwDYBSEYZY4xxxagdzwJLLCwHrp6hPhZBBrQDsIIYyJIhtrC7Z8kGmk2A8fkl5e5HaX0CwLuNNJ5lC5WG5TbUFxKWaCgUjSQeqR_rpPpWmZz_ECjrkECwhHgYR2BVNIYrtKbFePvNg8sWhYP_4g-wqHyUYO-brrBOhG2XajVNY5l3AB1UMbM0gN4G4jRMhVKGIBRTzAQSaRkSNHl58Ltaoq-frsvRwC5A5ZJOLYI89bIVdA-Y1qIyigFZDEqyO535EElWE62QcwljslHg_fSkwbBGmE4dlXzCN7ONQlIDGkEzbod2Wg6lGEBFDwD-sZIFutV0mAjxxMXIDkHnm5mRV_bcFH_yK8R27iG3oUMbZPestyZR8DLlzqJ-2s_wGE3lda priority: 102 providerName: Unpaywall  | 
    
| Title | Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm | 
    
| URI | https://www.proquest.com/docview/2154217561 https://hal.science/hal-02950533 https://www.osti.gov/servlets/purl/1557767 https://amt.copernicus.org/articles/11/6539/2018/amt-11-6539-2018.pdf https://doaj.org/article/aefff748e8c049929c977c8834a38689  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELZY9wAvCAaIsFFZEwKBFLVJnMR5zKqVglg7bVQaT5bt2KMoS6a0Hezfc5ekVfPCXniplNht3Luz_Z1z9x0h74ah9pWMwTeRGj5UzPAloXG1AfCRcKm1jwnOZ9NoMmdfr8KrnVJfGBPW0AM3ghtIY62NGTdcIzr3Ew2IRXMeMBnwiNepe0OebJypZg2OmFeXbUK2NmTZ85oXlIBW2EDerDCXDClZwUSw2MfOhlTz9m9X572fGBzZK2GydQDo43VxK-9_yzzf2YvGz8jTFkTStBn8c_LIFAfEOQP8W1b1MTl9T0f5AsBoffWC_GrODkxGq7qCFpjXkpaWalmpsqDZovyzyAzFXBM6q9QCY6HpqGmcqebgtqzuXZ_iuS0F0EjvmoM2ymk6ml1SmV-XFbTdvCTz8en30cRtqyy4OmTeys0yQCh-EGSxtZ5Fd4xpFocgb9i4bP1qNh5GCmAH7uVah6GJlAGn2s8Uct0Hr0ivKAvzmtAs85lVcWZxlhtmEmVgBZGeBg3FyTBxyGAjaqFbCnKshJELcEVQOQKUAz6JQOUIVI5DPm6_cdvQb_yj7wlqb9sPibPrG2BOojUn8ZA5OeQYdS-QGqPA2JtruV4uxZfLC5EC9g28kEeRQz60nWwJ49eyTWUAKSCbVqfnUacnzF3daT4GE-uMeJJ-E3hv6Cch5knfeQ45RAsUAImQ11djAJSGvx6GyMQET9gYpmiXn6UAHMfA1wRs7JBPW2N9UIJv_ocED8kT_C0M-fG8I9JbVWvzFoDbSvXJHh9_7pP9k9Pp-UW_nrFwNZ-epz_-AoMoPW0 | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECUS55Beiq6omrQlgi5oAcFaqO0QFI6bwG68FFmA3BiKpBwXjuTKdlL_XL-tM1rc-JKecjFgiZIozXDmzXAWQt5bnnRiEYBtIiT8xAHDTUJtSg3gIwqFlA4mOPcHfuecfb_wLjbInzoXBsMqa5lYCGqVSfSRN0E1MYDPoO6_Tn-Z2DUKd1frFhqiaq2g9osSY1Vix7Fe3oIJN9vvfgN6f3Cco8OzdsesugyY0mP23FQKNLTjuipIEjtBc4RJFng6lCC4k2JrMrD8GNQu6jIpPU_7sQaj0lEx1np34b6bZIu5LALjb-vgcPDjpNYFPrOL9lFYNQ6r_dnlRimgJtYU13PMacPSsMCq2HTkjmIs-gestMTmFQZpNjJY9GtAeHuRTsXyVkwmd3Ti0RPyuAKztFVy31OyodNnxOgDDs_ywl1PP9L2ZAyguPj3nPwsfRha0bzo5AVsPqNZQqXI4yylapz9HitNMeeFDvN4jDHZtF2eHMalAznLl6ZD0X9MAbzSm9LhR0Paag9PqZiMgGrzq-sX5PxB6PCSNNIs1a8IVcphSRyoBKWNZjqKNUgyYUvHCoPIigzSrD81l1UpdOzIMeFgEiFxOBAHbCOOxOFIHIN8Xl0xLcuA3DP2AKm3GocFvIsDWT7ilTzgQidJErAQXg-NTieSAMRlGLpMuKEfwhT3kPYcS3SkGAM0EovZjHdPT3gLMLhre6HvG-RTNSjJYP5SVCkV8BWwqtfayN21kSBD5NrpPWCxtRl3Wj2Oxywn8jBf-8Y2yA5yIAdohvWFJQZiSXh1z8OKUPCEmjF5JQZn_N-iNciXFbP-9wu-vv9e78h256zf473u4HiHPMIrMMDItndJY54v9BuAifP4bbUWKbl86OX_F_o2cgY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF61QQJeEKcwLbCqOASSFXu9vh4QCikhoUcQbaW-Lev1bhqU2sFJWvLX-HXM-AjNS3nqS6TYa3vtmZ35ZnYOQl45vmKJDME2kQp-kpDjJqG2lQbwEUdSKYYJzgeHQf-Efz31TzfInyYXBsMqG5lYCuo0V-gjb4Nq4gCfQd23TR0W8W2393H6y8YOUrjT2rTTqFhkTy8vwXybfRjsAq1fM9b7fNzt23WHAVv53J3baQramXleGhrjGjRFuOKhryMFQtuU25KhEySgclGPKeX7Okg0GJQsTbDOuwf33SS3QqzijlnqvS-NFgi4WzaOwnpxWOfPrbZIAS_xtjyfYzYbFoUFJsV2I1dUYtk5YKUfNs8wPLOVw3Jfg8B3FtlULi_lZHJFG_buk3s1jKWdiu8ekA2dPSTWASDwvCgd9fQN7U7GAIfLf4_Iz8p7oVNalD28gMFnNDdUySLJM5qO89_jVFPMdqHDIhljNDbtVieHSeU6zoulzSh6jinAVnpRufpoRDvd4RGVkxHQaH52_pic3AgVnpBWlmf6KaFpyrhJwtSgnNFcx4kGGSZdxZwojJ3YIu3mUwtVF0HHXhwTAcYQEkcAccAqEkgcgcSxyLvVFdOqAMg1Yz8h9VbjsHR3eSAvRqKWBEJqY0zII3g9NDdZrACCqyjyuPSiIIIp7iDtBRbnyJDNR3Ixm4nB0XfRAfTtuX4UBBZ5Ww8yOcxfyTqZAr4C1vNaG7m9NhKkh1o7vQMstjbjfmdf4DGHxT5mal-4FtlCDhQAyrCysMIQLAWv7vtYCwqe0DCmqAXgTPxbrhZ5v2LW_37BZ9ff6yW5DYte7A8O97bIXbwAI4tcd5u05sVCPwd8OE9elAuRkh83vfL_AriYb6A | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELe27gFe-EYLG8iaEAikrHXiJM5jqTYVxFbEqDSeLNuxR6FLqqQdjL-euyStCEggxEs_7Evrz_Pv7LufCXk6iEygVQK2iTLwohOOh4TWNxbARyqUMQEGOJ-cxuMpf3MenW-Ro3UsjLoEg7NY2DKfmVXVEAW3HmJ9xvpIpAr2OhMoiCFhmOBjwuEic9tkJ44AkvfIzvT03fAjGlsCFAEL68tK688CIHpzXAnYhf_2M53lqWbx3-jq7U_oKtkrYOp14OiNVb5Q11_VfP7TynR8u_EgqWpCQ3RI-XK4WupD8_0Xusf_rvQdcqvFrnTYPHSXbNn8HvFOAHYXZb07T5_R0XwGGLj-dp98brYsbEbL-uIuGNUVLRw1qtRFTrNZ8W2WWYohLnRS6hm6YNNRkznRzX5xUV77AcXtYgpYlV41-3tU0OFockbV_KIoIe_yAZkeH30Yjf32cgffRJwt_SwDYBSEYZY4xxxagdzwJLLCwHrp6hPhZBBrQDsIIYyJIhtrC7Z8kGmk2A8fkl5e5HaX0CwLuNNJ5lC5WG5TbUFxKWaCgUjSQeqR_rpPpWmZz_ECjrkECwhHgYR2BVNIYrtKbFePvNg8sWhYP_4g-wqHyUYO-brrBOhG2XajVNY5l3AB1UMbM0gN4G4jRMhVKGIBRTzAQSaRkSNHl58Ltaoq-frsvRwC5A5ZJOLYI89bIVdA-Y1qIyigFZDEqyO535EElWE62QcwljslHg_fSkwbBGmE4dlXzCN7ONQlIDGkEzbod2Wg6lGEBFDwD-sZIFutV0mAjxxMXIDkHnm5mRV_bcFH_yK8R27iG3oUMbZPestyZR8DLlzqJ-2s_wGE3lda | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+retrievals+of+carbon+dioxide+from+Orbiting+Carbon+Observatory-2+with+the+version+8+ACOS+algorithm&rft.jtitle=Atmospheric+measurement+techniques&rft.au=O%27Dell%2C+Christopher+W&rft.au=Eldering%2C+Annmarie&rft.au=Wennberg%2C+Paul+O&rft.au=Crisp%2C+David&rft.date=2018-12-11&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=11&rft.issue=12&rft.spage=6539&rft_id=info:doi/10.5194%2Famt-11-6539-2018&rft.externalDocID=A565315866 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |