Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries
All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt...
Saved in:
Published in | Nature communications Vol. 15; no. 1; pp. 2991 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.04.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-024-47352-y |
Cover
Abstract | All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li
1
Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li
1
Si, a high areal capacity of up to 10 mAh cm
–2
is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.
All-solid-state batteries with silicon anodes have high capacities but low initial coulombic efficiencies (ICEs) because of first cycle irreversible capacity loss. Here, the authors report a prelithiation strategy to improve ICEs and reversibility. |
---|---|
AbstractList | All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li
1
Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li
1
Si, a high areal capacity of up to 10 mAh cm
–2
is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.
All-solid-state batteries with silicon anodes have high capacities but low initial coulombic efficiencies (ICEs) because of first cycle irreversible capacity loss. Here, the authors report a prelithiation strategy to improve ICEs and reversibility. All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li 1 Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li 1 Si, a high areal capacity of up to 10 mAh cm –2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries. Abstract All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm–2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries. All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries. All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li Si, a high areal capacity of up to 10 mAh cm is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries. All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm–2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.All-solid-state batteries with silicon anodes have high capacities but low initial coulombic efficiencies (ICEs) because of first cycle irreversible capacity loss. Here, the authors report a prelithiation strategy to improve ICEs and reversibility. |
ArticleNumber | 2991 |
Author | Sebti, Elias Oh, Jin An Sam Chen, Yu-Ting Tan, Darren H. S. Ham, So-Yeon Clément, Raphaële J. Ridley, Phillip Lee, Jeong Beom Meng, Ying Shirley Deysher, Grayson Song, Min Sang Pennebaker, Tyler Jang, Jihyun Cronk, Ashley |
Author_xml | – sequence: 1 givenname: So-Yeon orcidid: 0000-0001-8761-5742 surname: Ham fullname: Ham, So-Yeon organization: Materials Science and Engineering Program, University of California San Diego – sequence: 2 givenname: Elias orcidid: 0000-0003-2678-3536 surname: Sebti fullname: Sebti, Elias organization: Materials Department and Materials Research Laboratory, University of California – sequence: 3 givenname: Ashley surname: Cronk fullname: Cronk, Ashley organization: Materials Science and Engineering Program, University of California San Diego – sequence: 4 givenname: Tyler orcidid: 0000-0001-5119-0076 surname: Pennebaker fullname: Pennebaker, Tyler organization: Materials Department and Materials Research Laboratory, University of California – sequence: 5 givenname: Grayson surname: Deysher fullname: Deysher, Grayson organization: Materials Science and Engineering Program, University of California San Diego – sequence: 6 givenname: Yu-Ting surname: Chen fullname: Chen, Yu-Ting organization: Materials Science and Engineering Program, University of California San Diego – sequence: 7 givenname: Jin An Sam orcidid: 0000-0001-9336-234X surname: Oh fullname: Oh, Jin An Sam organization: Insitute of Materials, Research, and Engineering, Agency of Science, Technology, and Research (ASTAR) – sequence: 8 givenname: Jeong Beom orcidid: 0000-0001-6221-4037 surname: Lee fullname: Lee, Jeong Beom organization: LG Energy Solution. Ltd., LG Science Park – sequence: 9 givenname: Min Sang surname: Song fullname: Song, Min Sang organization: LG Energy Solution. Ltd., LG Science Park – sequence: 10 givenname: Phillip surname: Ridley fullname: Ridley, Phillip organization: Department of NanoEngineering, University of California San Diego – sequence: 11 givenname: Darren H. S. surname: Tan fullname: Tan, Darren H. S. organization: Department of NanoEngineering, University of California San Diego – sequence: 12 givenname: Raphaële J. orcidid: 0000-0002-3611-1162 surname: Clément fullname: Clément, Raphaële J. organization: Materials Department and Materials Research Laboratory, University of California – sequence: 13 givenname: Jihyun orcidid: 0000-0001-8438-140X surname: Jang fullname: Jang, Jihyun email: jihyunjang@sogang.ac.kr organization: Department of NanoEngineering, University of California San Diego, Department of Chemistry, Sogang University – sequence: 14 givenname: Ying Shirley orcidid: 0000-0001-8936-8845 surname: Meng fullname: Meng, Ying Shirley email: shirleymeng@uchicago.edu organization: Department of NanoEngineering, University of California San Diego, Pritzker School of Molecular Engineering, University of Chicago |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38582753$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1DAUhiNUREvpC7BAkdiwCfiW2FkhVHGpVKkLYG059knGI8cebKfVvD3upJS2i1qyfPv-38fH53V15IOHqnqL0UeMqPiUGGYdbxBhDeO0Jc3-RXVCEMMN5oQePZgfV2cpbVFptMeCsVfVMRWtILylJ9V8dQ1Rh9n6qXbhprbeZqtcrcPiwjxYXcM4Wm3Bl57qMNY_ba18MGWRNzEs06beRXA2b6zKNvjiUCvnmhScNU3KKkM9qJwhFv2b6uWoXIKzu_G0-v3t66_zH83l1feL8y-XjW4Zzo1pORUd4BaPhONOmwETalRr1IiZYERjEJ0hvRGc0Q46pUTJSc8FdJ3hCOhpdbH6mqC2chftrOJeBmXlYSPESaqYrXYgW2Vahc3ISGeYNkgNHWUjJz0BxHs-Fq_Pq9duGWYwGnyOyj0yfXzi7UZO4Vpi1Pei5Ls4fLhziOHPAinL2SYNzikPYUmSIsoI44iIgr5_gm7DEn3J1S1F-7ZAuFDvHoZ0H8u_by0AWQEdQ0oRxnsEI3lbPnItH1nKRx7KR-6LSDwRaZsPf1qeZd3zUrpKU7nHTxD_h_2M6i9f8tsV |
CitedBy_id | crossref_primary_10_1002_aenm_202304327 crossref_primary_10_1016_j_ensm_2025_104108 crossref_primary_10_1021_acsami_4c20366 crossref_primary_10_1039_D4TA07492K crossref_primary_10_1016_j_est_2025_115334 crossref_primary_10_1002_anie_202408021 crossref_primary_10_1007_s11814_024_00364_2 crossref_primary_10_1016_j_cej_2024_156266 crossref_primary_10_1039_D5CC00685F crossref_primary_10_1021_acsami_4c07156 crossref_primary_10_1149_1945_7111_ad5efb crossref_primary_10_1021_acs_energyfuels_4c06113 crossref_primary_10_1021_acsmaterialslett_5c00068 crossref_primary_10_3390_coatings14050608 crossref_primary_10_1016_j_ensm_2024_103606 crossref_primary_10_1021_acsenergylett_4c03250 crossref_primary_10_1002_ange_202415891 crossref_primary_10_1021_acsaem_4c02684 crossref_primary_10_1002_aenm_202402048 crossref_primary_10_1002_ange_202408021 crossref_primary_10_1016_j_ensm_2025_104072 crossref_primary_10_1016_j_pmatsci_2024_101339 crossref_primary_10_1016_j_jcis_2025_01_078 crossref_primary_10_1039_D4EB00040D crossref_primary_10_1002_adfm_202314822 crossref_primary_10_1002_eem2_12786 crossref_primary_10_1002_smll_202411451 crossref_primary_10_1007_s11581_024_05973_9 crossref_primary_10_1021_acsenergylett_4c03066 crossref_primary_10_1002_anie_202415891 |
Cites_doi | 10.1021/acs.nanolett.5b03776 10.1016/j.ensm.2022.12.013 10.3389/fchem.2020.00141 10.1038/s41467-020-17686-4 10.1126/science.abg7217 10.1016/j.electacta.2021.137743 10.1016/j.ensm.2020.07.009 10.1016/j.jpowsour.2016.01.061 10.1016/j.joule.2022.05.016 10.1002/adfm.201808756 10.1002/aenm.202100925 10.1002/aenm.201903253 10.1039/D2TA02339C 10.3390/batteries8110226 10.1016/j.jpowsour.2023.233326 10.1016/j.ensm.2020.04.008 10.1021/nl401776d 10.1126/sciadv.abn4372 10.1039/D2EE03840D 10.1016/j.ensm.2022.02.005 10.1038/s41467-020-16114-x 10.1149/1.1854117 10.1002/aenm.202300172 10.1016/j.electacta.2020.137626 10.1038/srep08085 10.1016/j.ensm.2022.10.003 10.1016/j.jpowsour.2020.229109 10.1002/adfm.202001444 10.1021/jacs.1c00752 10.1016/j.jpowsour.2017.02.061 10.1021/acs.nanolett.6b03655 10.1039/C7QM00480J 10.1039/C9NR03986D 10.1016/j.jallcom.2022.166517 10.1038/s41467-021-27311-7 10.1016/j.jpowsour.2020.228369 10.1149/1945-7111/acc699 10.1038/s41560-020-0575-z 10.1002/sstr.202100009 10.1039/C6RA19482F 10.1021/jacs.0c10258 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-024-47352-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_5ad5a1df426d4cd0ab634f7292e0797f PMC10998844 38582753 10_1038_s41467_024_47352_y |
Genre | Journal Article |
GrantInformation_xml | – fundername: Funder: LG Energy Solution Grant: Frontier Research Laboratory (FRL) |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-d57386e151f2716cdb123da5daf14842c1e86d29d87436e6aa8103978e66d70e3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:21:05 EDT 2025 Thu Aug 21 18:34:42 EDT 2025 Thu Sep 04 23:19:29 EDT 2025 Wed Aug 13 03:26:34 EDT 2025 Mon Jul 21 05:52:03 EDT 2025 Tue Jul 01 02:11:04 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:40:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-d57386e151f2716cdb123da5daf14842c1e86d29d87436e6aa8103978e66d70e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9336-234X 0000-0001-8438-140X 0000-0001-6221-4037 0000-0001-8761-5742 0000-0003-2678-3536 0000-0001-5119-0076 0000-0001-8936-8845 0000-0002-3611-1162 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-47352-y |
PMID | 38582753 |
PQID | 3033950281 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5ad5a1df426d4cd0ab634f7292e0797f pubmedcentral_primary_oai_pubmedcentral_nih_gov_10998844 proquest_miscellaneous_3034247028 proquest_journals_3033950281 pubmed_primary_38582753 crossref_primary_10_1038_s41467_024_47352_y crossref_citationtrail_10_1038_s41467_024_47352_y springer_journals_10_1038_s41467_024_47352_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-04-06 |
PublicationDateYYYYMMDD | 2024-04-06 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Xu (CR3) 2021; 143 Jang, Ryu, Kim, Choi, Yoo (CR33) 2023; 580 Min (CR23) 2022; 47 Liu (CR27) 2016; 6 Tan (CR21) 2021; 373 Il’ina, Druzhinin, Lyalin, Talankin (CR12) 2022; 8 Xiong (CR4) 2020; 30 Mou, Xiao, Miao, Li, Yu (CR14) 2020; 8 CR36 Kong (CR18) 2019; 29 Ham (CR6) 2023; 55 Forney, Ganter, Staub, Ridgley, Landi (CR30) 2013; 13 Berhaut (CR22) 2020; 29 He, Wei, Zhai, Li (CR17) 2018; 2 Yao (CR42) 2023; 16 Pan (CR24) 2017; 347 Bärmann (CR31) 2021; 11 Kim (CR41) 2021; 370 Sun (CR25) 2020; 32 Wang (CR9) 2019; 11 Lewis, Cavallaro, Liu, McDowell (CR1) 2022; 6 Kim (CR39) 2016; 16 Zhang (CR19) 2021; 2 Hope (CR35) 2020; 11 Meyer, Leifer, Sakamoto, Greenbaum, Grey (CR38) 2005; 8 Iwamura (CR8) 2015; 5 Sedlmeier, Schuster, Schramm, Gasteiger (CR13) 2023; 170 Doux (CR5) 2020; 10 Jing (CR10) 2022; 924 Chen (CR16) 2021; 368 Huang, Shao, Han (CR2) 2022; 10 Yang (CR26) 2020; 480 Ai (CR29) 2016; 309 Pan (CR15) 2022; 8 Park (CR40) 2020; 468 Gunnarsdóttir, Amanchukwu, Menkin, Grey (CR37) 2020; 142 Luo (CR11) 2021; 12 Zhang (CR20) 2020; 11 Lee (CR34) 2023; 13 Cao (CR28) 2016; 16 Lee (CR7) 2020; 5 Ji (CR32) 2022; 53 L Kong (47352_CR18) 2019; 29 K-Y Park (47352_CR40) 2020; 468 S-Y Yang (47352_CR26) 2020; 480 H Kim (47352_CR41) 2021; 370 J Doux (47352_CR5) 2020; 10 MW Forney (47352_CR30) 2013; 13 W Yao (47352_CR42) 2023; 16 S-Y Ham (47352_CR6) 2023; 55 W Ji (47352_CR32) 2022; 53 CL Berhaut (47352_CR22) 2020; 29 Q Pan (47352_CR24) 2017; 347 JA Lewis (47352_CR1) 2022; 6 G Wang (47352_CR9) 2019; 11 J Lee (47352_CR34) 2023; 13 Z Cao (47352_CR28) 2016; 16 B Xu (47352_CR3) 2021; 143 G Ai (47352_CR29) 2016; 309 S Luo (47352_CR11) 2021; 12 J He (47352_CR17) 2018; 2 DHS Tan (47352_CR21) 2021; 373 C Zhang (47352_CR19) 2021; 2 MA Hope (47352_CR35) 2020; 11 AB Gunnarsdóttir (47352_CR37) 2020; 142 S Chen (47352_CR16) 2021; 368 HJ Kim (47352_CR39) 2016; 16 E Jang (47352_CR33) 2023; 580 S Xiong (47352_CR4) 2020; 30 X Zhang (47352_CR20) 2020; 11 BM Meyer (47352_CR38) 2005; 8 S Iwamura (47352_CR8) 2015; 5 E Il’ina (47352_CR12) 2022; 8 W Jing (47352_CR10) 2022; 924 C Sedlmeier (47352_CR13) 2023; 170 Q Liu (47352_CR27) 2016; 6 47352_CR36 C Sun (47352_CR25) 2020; 32 P Bärmann (47352_CR31) 2021; 11 Y Huang (47352_CR2) 2022; 10 H Pan (47352_CR15) 2022; 8 X Min (47352_CR23) 2022; 47 H Mou (47352_CR14) 2020; 8 Y-G Lee (47352_CR7) 2020; 5 |
References_xml | – volume: 16 start-page: 282 year: 2016 end-page: 288 ident: CR39 article-title: Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03776 – volume: 55 start-page: 455 year: 2023 end-page: 462 ident: CR6 article-title: Assessing the critical current density of all-solid-state Li metal symmetric and full cells publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.013 – volume: 8 start-page: 141 year: 2020 ident: CR14 article-title: Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review publication-title: Front. Chem. doi: 10.3389/fchem.2020.00141 – volume: 11 year: 2020 ident: CR20 article-title: Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation publication-title: Nat. Commun. doi: 10.1038/s41467-020-17686-4 – volume: 373 start-page: 1494 year: 2021 end-page: 1499 ident: CR21 article-title: Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes publication-title: Science doi: 10.1126/science.abg7217 – volume: 370 year: 2021 ident: CR41 article-title: Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.137743 – volume: 32 start-page: 497 year: 2020 end-page: 516 ident: CR25 article-title: Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.009 – volume: 309 start-page: 33 year: 2016 end-page: 41 ident: CR29 article-title: Scalable process for application of stabilized lithium metal powder in Li-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.061 – volume: 6 start-page: 1418 year: 2022 end-page: 1430 ident: CR1 article-title: The promise of alloy anodes for solid-state batteries publication-title: Joule doi: 10.1016/j.joule.2022.05.016 – volume: 29 start-page: 1808756 year: 2019 ident: CR18 article-title: Lithium–magnesium alloy as a stable anode for lithium–sulfur battery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808756 – volume: 11 start-page: 2100925 year: 2021 ident: CR31 article-title: Mechanistic insights into the pre‐lithiation of silicon/graphite negative electrodes in “dry state” and after electrolyte addition using passivated lithium metal powder publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100925 – volume: 10 start-page: 1903253 year: 2020 ident: CR5 article-title: Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903253 – volume: 10 start-page: 12350 year: 2022 end-page: 12358 ident: CR2 article-title: Li alloy anodes for high-rate and high-areal-capacity solid-state batteries publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02339C – volume: 8 start-page: 226 year: 2022 ident: CR12 article-title: In Situ Li-In Anode Formation on the Li7La3Zr2O12 Solid Electrolyte in All-Solid-State Battery publication-title: Batteries doi: 10.3390/batteries8110226 – volume: 580 start-page: 233326 year: 2023 ident: CR33 article-title: Silicon-stabilized lithium metal powder (SLMP) composite anodes for fast charging by in-situ prelithiation publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.233326 – volume: 29 start-page: 190 year: 2020 end-page: 197 ident: CR22 article-title: Prelithiation of silicon/graphite composite anodes: Benefits and mechanisms for long-lasting Li-Ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.008 – volume: 13 start-page: 4158 year: 2013 end-page: 4163 ident: CR30 article-title: Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP) publication-title: Nano Lett. doi: 10.1021/nl401776d – volume: 8 start-page: eabn4372 year: 2022 ident: CR15 article-title: Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability publication-title: Sci. Adv. doi: 10.1126/sciadv.abn4372 – volume: 16 start-page: 1620 year: 2023 end-page: 1630 ident: CR42 article-title: A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03840D – volume: 47 start-page: 297 year: 2022 end-page: 318 ident: CR23 article-title: Challenges of prelithiation strategies for next generation high energy lithium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.02.005 – volume: 11 year: 2020 ident: CR35 article-title: Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal publication-title: Nat. Commun. doi: 10.1038/s41467-020-16114-x – volume: 8 start-page: A145 year: 2005 ident: CR38 article-title: High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1854117 – volume: 13 year: 2023 ident: CR34 article-title: Dry pre‐lithiation for graphite‐silicon diffusion‐dependent electrode for all‐solid‐state battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300172 – volume: 368 year: 2021 ident: CR16 article-title: Aluminum−lithium alloy as a stable and reversible anode for lithium batteries publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137626 – volume: 5 year: 2015 ident: CR8 article-title: Li-Rich Li-Si Alloy As A Lithium-containing negative electrode material towards high energy Lithium-Ion batteries publication-title: Sci. Rep. doi: 10.1038/srep08085 – volume: 53 start-page: 613 year: 2022 end-page: 620 ident: CR32 article-title: High-performance all-solid-state Li–S batteries enabled by an all-electrochem-active prelithiated Si anode publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.10.003 – volume: 480 year: 2020 ident: CR26 article-title: Battery prelithiation enabled by lithium fixation on cathode publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229109 – volume: 30 start-page: 2001444 year: 2020 ident: CR4 article-title: Design of a multifunctional interlayer for NASCION‐based solid‐state Li Metal batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001444 – volume: 143 start-page: 6542 year: 2021 end-page: 6550 ident: CR3 article-title: Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00752 – volume: 347 start-page: 170 year: 2017 end-page: 177 ident: CR24 article-title: Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.061 – volume: 16 start-page: 7235 year: 2016 end-page: 7240 ident: CR28 article-title: Ambient-air stable lithiated anode for rechargeable li-ion batteries with high energy density publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03655 – volume: 2 start-page: 437 year: 2018 end-page: 455 ident: CR17 article-title: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00480J – volume: 11 start-page: 14042 year: 2019 end-page: 14049 ident: CR9 article-title: New insights into Li diffusion in Li–Si alloys for Si anode materials: role of Si microstructures publication-title: Nanoscale doi: 10.1039/C9NR03986D – volume: 924 year: 2022 ident: CR10 article-title: Li-Indium alloy anode for high-performance Li-metal batteries publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.166517 – ident: CR36 – volume: 12 year: 2021 ident: CR11 article-title: Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes publication-title: Nat. Commun. doi: 10.1038/s41467-021-27311-7 – volume: 468 year: 2020 ident: CR40 article-title: Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228369 – volume: 170 start-page: 030536 year: 2023 ident: CR13 article-title: A micro-reference electrode for electrode-resolved impedance and potential measurements in all-solid-state battery pouch cells and its application to the study of indium-lithium anodes publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acc699 – volume: 5 start-page: 299 year: 2020 end-page: 308 ident: CR7 article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes publication-title: Nat. Energy doi: 10.1038/s41560-020-0575-z – volume: 2 start-page: 2100009 year: 2021 ident: CR19 article-title: Challenges and recent progress on silicon‐based anode materials for next‐generation lithium‐ion batteries publication-title: Small Struct. doi: 10.1002/sstr.202100009 – volume: 6 start-page: 88683 year: 2016 end-page: 88700 ident: CR27 article-title: Understanding undesirable anode lithium plating issues in lithium-ion batteries publication-title: RSC Adv. doi: 10.1039/C6RA19482F – volume: 142 start-page: 20814 year: 2020 end-page: 20827 ident: CR37 article-title: Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10258 – volume: 53 start-page: 613 year: 2022 ident: 47352_CR32 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.10.003 – volume: 16 start-page: 282 year: 2016 ident: 47352_CR39 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03776 – volume: 170 start-page: 030536 year: 2023 ident: 47352_CR13 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/acc699 – volume: 2 start-page: 2100009 year: 2021 ident: 47352_CR19 publication-title: Small Struct. doi: 10.1002/sstr.202100009 – volume: 11 start-page: 2100925 year: 2021 ident: 47352_CR31 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100925 – volume: 16 start-page: 1620 year: 2023 ident: 47352_CR42 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03840D – volume: 11 start-page: 14042 year: 2019 ident: 47352_CR9 publication-title: Nanoscale doi: 10.1039/C9NR03986D – volume: 47 start-page: 297 year: 2022 ident: 47352_CR23 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.02.005 – volume: 6 start-page: 1418 year: 2022 ident: 47352_CR1 publication-title: Joule doi: 10.1016/j.joule.2022.05.016 – volume: 11 year: 2020 ident: 47352_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17686-4 – volume: 142 start-page: 20814 year: 2020 ident: 47352_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10258 – volume: 8 start-page: 226 year: 2022 ident: 47352_CR12 publication-title: Batteries doi: 10.3390/batteries8110226 – volume: 30 start-page: 2001444 year: 2020 ident: 47352_CR4 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202001444 – volume: 8 start-page: A145 year: 2005 ident: 47352_CR38 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.1854117 – volume: 10 start-page: 12350 year: 2022 ident: 47352_CR2 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA02339C – ident: 47352_CR36 – volume: 143 start-page: 6542 year: 2021 ident: 47352_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c00752 – volume: 347 start-page: 170 year: 2017 ident: 47352_CR24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.061 – volume: 368 year: 2021 ident: 47352_CR16 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2020.137626 – volume: 580 start-page: 233326 year: 2023 ident: 47352_CR33 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.233326 – volume: 6 start-page: 88683 year: 2016 ident: 47352_CR27 publication-title: RSC Adv. doi: 10.1039/C6RA19482F – volume: 309 start-page: 33 year: 2016 ident: 47352_CR29 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.01.061 – volume: 13 start-page: 4158 year: 2013 ident: 47352_CR30 publication-title: Nano Lett. doi: 10.1021/nl401776d – volume: 12 year: 2021 ident: 47352_CR11 publication-title: Nat. Commun. doi: 10.1038/s41467-021-27311-7 – volume: 468 year: 2020 ident: 47352_CR40 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228369 – volume: 11 year: 2020 ident: 47352_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16114-x – volume: 29 start-page: 1808756 year: 2019 ident: 47352_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201808756 – volume: 373 start-page: 1494 year: 2021 ident: 47352_CR21 publication-title: Science doi: 10.1126/science.abg7217 – volume: 13 year: 2023 ident: 47352_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300172 – volume: 29 start-page: 190 year: 2020 ident: 47352_CR22 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.04.008 – volume: 16 start-page: 7235 year: 2016 ident: 47352_CR28 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03655 – volume: 32 start-page: 497 year: 2020 ident: 47352_CR25 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.07.009 – volume: 924 year: 2022 ident: 47352_CR10 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2022.166517 – volume: 8 start-page: eabn4372 year: 2022 ident: 47352_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.abn4372 – volume: 2 start-page: 437 year: 2018 ident: 47352_CR17 publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00480J – volume: 370 year: 2021 ident: 47352_CR41 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.137743 – volume: 8 start-page: 141 year: 2020 ident: 47352_CR14 publication-title: Front. Chem. doi: 10.3389/fchem.2020.00141 – volume: 5 start-page: 299 year: 2020 ident: 47352_CR7 publication-title: Nat. Energy doi: 10.1038/s41560-020-0575-z – volume: 10 start-page: 1903253 year: 2020 ident: 47352_CR5 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903253 – volume: 480 year: 2020 ident: 47352_CR26 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.229109 – volume: 5 year: 2015 ident: 47352_CR8 publication-title: Sci. Rep. doi: 10.1038/srep08085 – volume: 55 start-page: 455 year: 2023 ident: 47352_CR6 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.12.013 |
SSID | ssj0000391844 |
Score | 2.6270952 |
Snippet | All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first... Abstract All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2991 |
SubjectTerms | 140/131 147/135 147/28 639/301/299/891 639/4077/4079/891 Alloys Anodes Carbon Cathodes Cobalt Cobalt oxides Electrodes Electrolytes Electrolytic cells Energy Graphite Humanities and Social Sciences Lithium Manganese Morphology multidisciplinary Nickel Polymers Scanning electron microscopy Science Science (multidisciplinary) Silicon Solid state |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyItX6srRLBm4Zm871HFUspqAct9BaySZYubHdL33vI---dJPuefX5ePO7uZAmZXzK_YSYzCL2KlLPaaU8c554IFWviFOuIkFyHFvh1ySb8-EmdnouzC3lxq9VXygkr5YHLwh1LF6SrQweWJAgfqGsVFx1QQhapbnSXTl_a0FvOVD6DeQOui5hvyVBujhcinwlgkkjqtsvIescS5YL9v2OZvyZL_hQxzYbo5AG6PzNI_LbMfB_dieNDdLf0lFwfoKvPAE6AEYzFw_QN9yk7COT9tBqmq7b3OOaqETF15V3gqcNfeuzGKcDD3LQHX99EYOeXRWvwB-yGgQBI-0DyBSTc5qqcMP4ROj_58PX9KZl7KhAvRb0kQaYunxHsfMfAVfKhBdMVnAyuA8dIMF9HowJrggFqoaJyzqRgsTZRqaBp5I_R3jiN8SnCWghGtQI-4xrhgmmU07Q1PjLdyVDLCtWb9bV-Ljie-l4MNge-ubFFJxZ0YrNO7LpCr7djrku5jb9Kv0tq20qmUtn5BQDIzgCy_wJQhY42Srfz_l1YMOy8kcC96gq93H6GnZfCKW6M0yrLCCY0CFXoScHIdiYp3MrAE6yQ2UHPzlR3v4z9Za7unUKVBrBboTcboP2Y15_X4tn_WItDdI-lHZIyk9QR2lverOJzIF3L9kXeX98BhwIodw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLoryaUpCRuIHVxPErJ9SiVhUScIBKe7Mc26GR0mTZh6r994wdb6rl0WOScWRnxp7Pnsl8CL3zeUkLIy0xZWkJE74gRtCGMF5KVwO-HrMJv3wVF5fs84zP0oHbMqVVbtfEuFC7wYYz8mNYasuKgzcsPs5_kcAaFaKriULjPnpQABIJ1A1yJqczllD9XDGW_pXJS3W8ZHFlAMdEAucuJZsdfxTL9v8La_6dMvlH3DS6o_Mn6HHCkfhkVPw-uuf7p-jhyCy5eYauv4GJwsCgLe6GG9yGHCGQt8O6G67r1mIfa0f4wM27xEODv7fY9IODi0Tdg-cLDxj9atQdvAGbriNgqq0j8TckXMfanND-Obo8P_vx6YIkZgViOStWxPHA9enB2zcUNkzW1eDAnOHONLA9YtQWXglHK6cAYAgvjFEhZCyVF8LJ3Jcv0F4_9P4AYckYzaUAVGMqZpyqhJF5raynsuGu4Bkqtt9X21R2PLBfdDqGv0ulR51o0ImOOtGbDL2f2szHoht3Sp8GtU2SoWB2vDEsfuo0_zQ3jpvCNQBIHLMuN7UoWQM7C-pzWckmQ0dbpes0i5f61uYy9HZ6DPMvBFVM74d1lGGUSRDK0MvRRqaehKArhf1ghtSO9ex0dfdJ317FGt8hYKnAdjP0YWtot_36_7c4vHsYr9AjGmw_ZB6JI7S3Wqz9awBVq_pNnDm_AXLQH2k priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDdpCzISN7BIHL9yhBVVhQQcoFJvlmM7dKU0qfYhtP-esfNACwWJWzYer7yZmZ3PmfE3AK9CXrLCKkdtWTrKZSiolayhXJTK14ivh2rCT5_l2Tn_eCEuDoBNZ2FS0X6itEx_01N12Ns1Ty6NEYXGZrmM7m7BbY1XsYxvIRfze5XIeK45H8_H5KW-YepeDEpU_Tfhyz_LJH_LlaYQdHof7o3YkbwbVvsADkL3EO4M3SR3j-DqC5ol_hycS9r-B1nGuiCUd_227a_qpSMh8UWE2I93TfqGfF0S2_UeP4ztesj1KiAuvxz0hd9AbNtSNM-lp-noEakTHyfOfwznpx--Lc7o2E2BOsGLDfUi9vcMGOEbhpsk52sMWt4KbxvcEnHmiqClZ5XXCCpkkNbqmCZWOkjpVR7KJ3DY9V14BkRxznIlEcnYiluvK2lVXmsXmGqEL0QGxfR8jRupxmPHi9aklHepzaATgzoxSSdml8Hrec71QLTxT-n3UW2zZCTJTjf61XczGo0R1gtb-AZBiOfO57aWJW9wN8FCrirVZHAyKd2Mnrs2GNLLSiDqKjJ4OQ-jz8VEiu1Cv00ynHGFQhk8HWxkXklMtDLcA2ag96xnb6n7I93yMvF6xySlRtvN4M1kaL_W9fdncfR_4sdwl0VfiNVH8gQON6tteI7AalO_SJ70E-G7HdY priority: 102 providerName: Springer Nature |
Title | Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries |
URI | https://link.springer.com/article/10.1038/s41467-024-47352-y https://www.ncbi.nlm.nih.gov/pubmed/38582753 https://www.proquest.com/docview/3033950281 https://www.proquest.com/docview/3034247028 https://pubmed.ncbi.nlm.nih.gov/PMC10998844 https://doaj.org/article/5ad5a1df426d4cd0ab634f7292e0797f |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8oPEdNioj8QaGxHFs5wGhrlqZKjEQo1LfIid2tkpZMvoh6H_P2UmLCgWJl0RJzpHlu8v9Lne-A3hpw5hFWhZUx3FBubAR1YKVlCexNDni6zab8OOFOB_z0SSZ7MG63VG3gPOdrp3rJzWeVW9-fFu9R4V_124ZV2_n3Ks7WhvqGukyutqHQx8vcql8Hdz3X-Y4RYeGd3tndg_dsk--jP8u7PlnCuVvcVRvnoZHcK_DlaTfCsJ92LP1A7jTdppcPYSbTyiyKFw4llTNdzJ1OUNIXzTLqrnJpwWxvpaEdb1656QpyeWU6LoxeNG18iG3M4uY_brlJb6B6KqiKLpTQ_22JJL7Wp04_hGMh2dfB-e067RAi4RHC2oS1_vTovUvGTpQhcnRoBmdGF2iu8RZEVklDEuNQsAhrNBauRCyVFYII0MbP4aDuqntUyCScxZKgShHp1wblQotw1wVlskyMVESQLRe36zoypC7bhhV5sPhscpanmTIk8zzJFsF8Goz5rYtwvFP6lPHtg2lK6DtbzSzq6zTxyzRJtGRKRGgGF6YUOci5iV6GsyGMpVlACdrpmdroczQ3MdpgogsCuDF5jHqowuy6No2S0_DGZdIFMCTVkY2M3FBWIb-YQBqS3q2prr9pJ5e-5rfLoCpUHYDeL0WtF_z-vtaPPs_8mO4y5wuuMwkcQIHi9nSPkfQtch7sC8nEo9q-KEHh_3-6HKE59Ozi89f8O5ADHr-d0bPa9xPvwEuNQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYidQwEhwAquJ7dieA0Jsw5QuHGil3oxjOzTSNBlmUTV_it_Is5NMNSy99ZjEjhy_Pe_5fQi98CmjmZGWGMYs4cJnxAhaEp4z6Qrwr9tqwv0DMTriX47z4w30qz8LE8oqe50YFbVrbPhHvg2qlg1ysIbZ28lPElCjQna1h9Bo2WLXL88gZJu92fkI9H1J6fDT4YcR6VAFiM15NicuDziXHixdSSFYsK4A5e1M7kwJoQGnNvNKODpwCoyr8MIYFdKlUnkhnEw9g_deQVc5YyyUEKrh59U_ndBtXXHenc1Jmdqe8aiJwBCSgPFLyXLN_kWYgH_5tn-XaP6Rp43mb3gL3ez8VvyuZbTbaMPXd9C1FslyeRedfgWRgI2EuXjcnOEq1CTBeNssxs1pUVnsY68KH7CAZ7gp8bcKm7pxcNFBBeHJ1ENMcNLyCrwBm_GYgGhUjsRjT7iIvUBh_j10dCl7fh9t1k3tHyIsOaepFOBFmQE3Tg2EkWmhrKeyzF2WJyjr91fbrs15QNsY65huZ0q3NNFAEx1popcJerWaM2mbfFw4-n0g22pkaNAdbzTTH7qTd50bl5vMleAAOW5dagrBeAmRDPWpHMgyQVs90XWnNWb6nMcT9Hz1GOQ9JHFM7ZtFHMMplzAoQQ9aHlmtJCR5KcSfCVJr3LO21PUndXUSe4qHBKkC3k3Q657Rztf1_714dPFnPEPXR4f7e3pv52D3MbpBgxyEqiexhTbn04V_Ag7dvHgapQij75cttr8BmdZbCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaxNHMfOHhACyqqlUJCg0t6MYzt0pTRZ9qFq_xq_jrGTbLU8eusxiR05nndmPB_AMxenLNHSUJ2mhnLhEqoFKynPUmkL9K_basJPh2LviH8YZ-Mt-NWfhfFllb1ODIraNsb_Ix-gqk2HGVrDZFB2ZRFfdkevpz-pR5DymdYeTqNlkQO3OsXwbf5qfxdp_Zyx0ftv7_ZohzBATcaTBbWZx7x0aPVKhoGDsQUqcqszq0sMEzgzicuFZUObo6EVTmid-9SpzJ0QVsYuxfdegssy5dzDRsixXP_f8Z3Xc867czpxmg_mPGglNIrU4_0yutqwhQEy4F9-7t_lmn_kbIMpHN2A650PS960THcTtlx9C660qJar23DyGcUDNxXnkqo5JRNfn4TjTbOsmpNiYogLfSucxwWek6YkXydE143Fiw42iExnDuOD45Zv8A1EVxVFMZlYGo5AkSL0BcX5d-DoQvb8LmzXTe3uA5Gcs1gK9Kj0kGubD4WWcZEbx2SZ2SSLIOn3V5mu5blH3qhUSL2nuWppopAmKtBErSJ4sZ4zbRt-nDv6rSfbeqRv1h1uNLMfqpN9lWmb6cSW6AxZbmysC5HyEqMa5mI5lGUEOz3RVadB5uqM3yN4un6Msu8TOrp2zTKM4YxLHBTBvZZH1ivxCV-GsWgE-Qb3bCx180k9OQ79xX2yNEfejeBlz2hn6_r_Xjw4_zOewFUUWPVx__DgIVxjXgx8AZTYge3FbOkeoW-3KB4HISLw_aKl9jfUZ189 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+low+initial+coulombic+efficiencies+of+Si+anodes+through+prelithiation+in+all-solid-state+batteries&rft.jtitle=Nature+communications&rft.au=Ham%2C+So-Yeon&rft.au=Sebti%2C+Elias&rft.au=Cronk%2C+Ashley&rft.au=Pennebaker%2C+Tyler&rft.date=2024-04-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-47352-y&rft.externalDocID=10_1038_s41467_024_47352_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |