Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries

All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 15; no. 1; pp. 2991 - 9
Main Authors Ham, So-Yeon, Sebti, Elias, Cronk, Ashley, Pennebaker, Tyler, Deysher, Grayson, Chen, Yu-Ting, Oh, Jin An Sam, Lee, Jeong Beom, Song, Min Sang, Ridley, Phillip, Tan, Darren H. S., Clément, Raphaële J., Jang, Jihyun, Meng, Ying Shirley
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.04.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-024-47352-y

Cover

Abstract All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li 1 Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li 1 Si, a high areal capacity of up to 10 mAh cm –2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries. All-solid-state batteries with silicon anodes have high capacities but low initial coulombic efficiencies (ICEs) because of first cycle irreversible capacity loss. Here, the authors report a prelithiation strategy to improve ICEs and reversibility.
AbstractList All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li 1 Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li 1 Si, a high areal capacity of up to 10 mAh cm –2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries. All-solid-state batteries with silicon anodes have high capacities but low initial coulombic efficiencies (ICEs) because of first cycle irreversible capacity loss. Here, the authors report a prelithiation strategy to improve ICEs and reversibility.
All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li 1 Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li 1 Si, a high areal capacity of up to 10 mAh cm –2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.
Abstract All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm–2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.
All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm-2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.
All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li Si, a high areal capacity of up to 10 mAh cm is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.
All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first cycle irreversible capacity loss yields low initial Coulombic efficiency (ICE) of Si, limiting the energy density. To address this, we adopt a prelithiation strategy to increase ICE and conductivity of all-solid-state Si cells. A significant increase in ICE is observed for Li1Si anode paired with a lithium cobalt oxide (LCO) cathode. Additionally, a comparison with lithium nickel manganese cobalt oxide (NCM) reveals that performance improvements with Si prelithiation is only applicable for full cells dominated by high anode irreversibility. With this prelithiation strategy, 15% improvement in capacity retention is achieved after 1000 cycles compared to a pure Si. With Li1Si, a high areal capacity of up to 10 mAh cm–2 is attained using a dry-processed LCO cathode film, suggesting that the prelithiation method may be suitable for high-loading next-generation all-solid-state batteries.All-solid-state batteries with silicon anodes have high capacities but low initial coulombic efficiencies (ICEs) because of first cycle irreversible capacity loss. Here, the authors report a prelithiation strategy to improve ICEs and reversibility.
ArticleNumber 2991
Author Sebti, Elias
Oh, Jin An Sam
Chen, Yu-Ting
Tan, Darren H. S.
Ham, So-Yeon
Clément, Raphaële J.
Ridley, Phillip
Lee, Jeong Beom
Meng, Ying Shirley
Deysher, Grayson
Song, Min Sang
Pennebaker, Tyler
Jang, Jihyun
Cronk, Ashley
Author_xml – sequence: 1
  givenname: So-Yeon
  orcidid: 0000-0001-8761-5742
  surname: Ham
  fullname: Ham, So-Yeon
  organization: Materials Science and Engineering Program, University of California San Diego
– sequence: 2
  givenname: Elias
  orcidid: 0000-0003-2678-3536
  surname: Sebti
  fullname: Sebti, Elias
  organization: Materials Department and Materials Research Laboratory, University of California
– sequence: 3
  givenname: Ashley
  surname: Cronk
  fullname: Cronk, Ashley
  organization: Materials Science and Engineering Program, University of California San Diego
– sequence: 4
  givenname: Tyler
  orcidid: 0000-0001-5119-0076
  surname: Pennebaker
  fullname: Pennebaker, Tyler
  organization: Materials Department and Materials Research Laboratory, University of California
– sequence: 5
  givenname: Grayson
  surname: Deysher
  fullname: Deysher, Grayson
  organization: Materials Science and Engineering Program, University of California San Diego
– sequence: 6
  givenname: Yu-Ting
  surname: Chen
  fullname: Chen, Yu-Ting
  organization: Materials Science and Engineering Program, University of California San Diego
– sequence: 7
  givenname: Jin An Sam
  orcidid: 0000-0001-9336-234X
  surname: Oh
  fullname: Oh, Jin An Sam
  organization: Insitute of Materials, Research, and Engineering, Agency of Science, Technology, and Research (ASTAR)
– sequence: 8
  givenname: Jeong Beom
  orcidid: 0000-0001-6221-4037
  surname: Lee
  fullname: Lee, Jeong Beom
  organization: LG Energy Solution. Ltd., LG Science Park
– sequence: 9
  givenname: Min Sang
  surname: Song
  fullname: Song, Min Sang
  organization: LG Energy Solution. Ltd., LG Science Park
– sequence: 10
  givenname: Phillip
  surname: Ridley
  fullname: Ridley, Phillip
  organization: Department of NanoEngineering, University of California San Diego
– sequence: 11
  givenname: Darren H. S.
  surname: Tan
  fullname: Tan, Darren H. S.
  organization: Department of NanoEngineering, University of California San Diego
– sequence: 12
  givenname: Raphaële J.
  orcidid: 0000-0002-3611-1162
  surname: Clément
  fullname: Clément, Raphaële J.
  organization: Materials Department and Materials Research Laboratory, University of California
– sequence: 13
  givenname: Jihyun
  orcidid: 0000-0001-8438-140X
  surname: Jang
  fullname: Jang, Jihyun
  email: jihyunjang@sogang.ac.kr
  organization: Department of NanoEngineering, University of California San Diego, Department of Chemistry, Sogang University
– sequence: 14
  givenname: Ying Shirley
  orcidid: 0000-0001-8936-8845
  surname: Meng
  fullname: Meng, Ying Shirley
  email: shirleymeng@uchicago.edu
  organization: Department of NanoEngineering, University of California San Diego, Pritzker School of Molecular Engineering, University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38582753$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1DAUhiNUREvpC7BAkdiwCfiW2FkhVHGpVKkLYG059knGI8cebKfVvD3upJS2i1qyfPv-38fH53V15IOHqnqL0UeMqPiUGGYdbxBhDeO0Jc3-RXVCEMMN5oQePZgfV2cpbVFptMeCsVfVMRWtILylJ9V8dQ1Rh9n6qXbhprbeZqtcrcPiwjxYXcM4Wm3Bl57qMNY_ba18MGWRNzEs06beRXA2b6zKNvjiUCvnmhScNU3KKkM9qJwhFv2b6uWoXIKzu_G0-v3t66_zH83l1feL8y-XjW4Zzo1pORUd4BaPhONOmwETalRr1IiZYERjEJ0hvRGc0Q46pUTJSc8FdJ3hCOhpdbH6mqC2chftrOJeBmXlYSPESaqYrXYgW2Vahc3ISGeYNkgNHWUjJz0BxHs-Fq_Pq9duGWYwGnyOyj0yfXzi7UZO4Vpi1Pei5Ls4fLhziOHPAinL2SYNzikPYUmSIsoI44iIgr5_gm7DEn3J1S1F-7ZAuFDvHoZ0H8u_by0AWQEdQ0oRxnsEI3lbPnItH1nKRx7KR-6LSDwRaZsPf1qeZd3zUrpKU7nHTxD_h_2M6i9f8tsV
CitedBy_id crossref_primary_10_1002_aenm_202304327
crossref_primary_10_1016_j_ensm_2025_104108
crossref_primary_10_1021_acsami_4c20366
crossref_primary_10_1039_D4TA07492K
crossref_primary_10_1016_j_est_2025_115334
crossref_primary_10_1002_anie_202408021
crossref_primary_10_1007_s11814_024_00364_2
crossref_primary_10_1016_j_cej_2024_156266
crossref_primary_10_1039_D5CC00685F
crossref_primary_10_1021_acsami_4c07156
crossref_primary_10_1149_1945_7111_ad5efb
crossref_primary_10_1021_acs_energyfuels_4c06113
crossref_primary_10_1021_acsmaterialslett_5c00068
crossref_primary_10_3390_coatings14050608
crossref_primary_10_1016_j_ensm_2024_103606
crossref_primary_10_1021_acsenergylett_4c03250
crossref_primary_10_1002_ange_202415891
crossref_primary_10_1021_acsaem_4c02684
crossref_primary_10_1002_aenm_202402048
crossref_primary_10_1002_ange_202408021
crossref_primary_10_1016_j_ensm_2025_104072
crossref_primary_10_1016_j_pmatsci_2024_101339
crossref_primary_10_1016_j_jcis_2025_01_078
crossref_primary_10_1039_D4EB00040D
crossref_primary_10_1002_adfm_202314822
crossref_primary_10_1002_eem2_12786
crossref_primary_10_1002_smll_202411451
crossref_primary_10_1007_s11581_024_05973_9
crossref_primary_10_1021_acsenergylett_4c03066
crossref_primary_10_1002_anie_202415891
Cites_doi 10.1021/acs.nanolett.5b03776
10.1016/j.ensm.2022.12.013
10.3389/fchem.2020.00141
10.1038/s41467-020-17686-4
10.1126/science.abg7217
10.1016/j.electacta.2021.137743
10.1016/j.ensm.2020.07.009
10.1016/j.jpowsour.2016.01.061
10.1016/j.joule.2022.05.016
10.1002/adfm.201808756
10.1002/aenm.202100925
10.1002/aenm.201903253
10.1039/D2TA02339C
10.3390/batteries8110226
10.1016/j.jpowsour.2023.233326
10.1016/j.ensm.2020.04.008
10.1021/nl401776d
10.1126/sciadv.abn4372
10.1039/D2EE03840D
10.1016/j.ensm.2022.02.005
10.1038/s41467-020-16114-x
10.1149/1.1854117
10.1002/aenm.202300172
10.1016/j.electacta.2020.137626
10.1038/srep08085
10.1016/j.ensm.2022.10.003
10.1016/j.jpowsour.2020.229109
10.1002/adfm.202001444
10.1021/jacs.1c00752
10.1016/j.jpowsour.2017.02.061
10.1021/acs.nanolett.6b03655
10.1039/C7QM00480J
10.1039/C9NR03986D
10.1016/j.jallcom.2022.166517
10.1038/s41467-021-27311-7
10.1016/j.jpowsour.2020.228369
10.1149/1945-7111/acc699
10.1038/s41560-020-0575-z
10.1002/sstr.202100009
10.1039/C6RA19482F
10.1021/jacs.0c10258
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-024-47352-y
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE - Academic
PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_5ad5a1df426d4cd0ab634f7292e0797f
PMC10998844
38582753
10_1038_s41467_024_47352_y
Genre Journal Article
GrantInformation_xml – fundername: Funder: LG Energy Solution Grant: Frontier Research Laboratory (FRL)
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-d57386e151f2716cdb123da5daf14842c1e86d29d87436e6aa8103978e66d70e3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:21:05 EDT 2025
Thu Aug 21 18:34:42 EDT 2025
Thu Sep 04 23:19:29 EDT 2025
Wed Aug 13 03:26:34 EDT 2025
Mon Jul 21 05:52:03 EDT 2025
Tue Jul 01 02:11:04 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:40:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-d57386e151f2716cdb123da5daf14842c1e86d29d87436e6aa8103978e66d70e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9336-234X
0000-0001-8438-140X
0000-0001-6221-4037
0000-0001-8761-5742
0000-0003-2678-3536
0000-0001-5119-0076
0000-0001-8936-8845
0000-0002-3611-1162
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-024-47352-y
PMID 38582753
PQID 3033950281
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_5ad5a1df426d4cd0ab634f7292e0797f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10998844
proquest_miscellaneous_3034247028
proquest_journals_3033950281
pubmed_primary_38582753
crossref_primary_10_1038_s41467_024_47352_y
crossref_citationtrail_10_1038_s41467_024_47352_y
springer_journals_10_1038_s41467_024_47352_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-06
PublicationDateYYYYMMDD 2024-04-06
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Xu (CR3) 2021; 143
Jang, Ryu, Kim, Choi, Yoo (CR33) 2023; 580
Min (CR23) 2022; 47
Liu (CR27) 2016; 6
Tan (CR21) 2021; 373
Il’ina, Druzhinin, Lyalin, Talankin (CR12) 2022; 8
Xiong (CR4) 2020; 30
Mou, Xiao, Miao, Li, Yu (CR14) 2020; 8
CR36
Kong (CR18) 2019; 29
Ham (CR6) 2023; 55
Forney, Ganter, Staub, Ridgley, Landi (CR30) 2013; 13
Berhaut (CR22) 2020; 29
He, Wei, Zhai, Li (CR17) 2018; 2
Yao (CR42) 2023; 16
Pan (CR24) 2017; 347
Bärmann (CR31) 2021; 11
Kim (CR41) 2021; 370
Sun (CR25) 2020; 32
Wang (CR9) 2019; 11
Lewis, Cavallaro, Liu, McDowell (CR1) 2022; 6
Kim (CR39) 2016; 16
Zhang (CR19) 2021; 2
Hope (CR35) 2020; 11
Meyer, Leifer, Sakamoto, Greenbaum, Grey (CR38) 2005; 8
Iwamura (CR8) 2015; 5
Sedlmeier, Schuster, Schramm, Gasteiger (CR13) 2023; 170
Doux (CR5) 2020; 10
Jing (CR10) 2022; 924
Chen (CR16) 2021; 368
Huang, Shao, Han (CR2) 2022; 10
Yang (CR26) 2020; 480
Ai (CR29) 2016; 309
Pan (CR15) 2022; 8
Park (CR40) 2020; 468
Gunnarsdóttir, Amanchukwu, Menkin, Grey (CR37) 2020; 142
Luo (CR11) 2021; 12
Zhang (CR20) 2020; 11
Lee (CR34) 2023; 13
Cao (CR28) 2016; 16
Lee (CR7) 2020; 5
Ji (CR32) 2022; 53
L Kong (47352_CR18) 2019; 29
K-Y Park (47352_CR40) 2020; 468
S-Y Yang (47352_CR26) 2020; 480
H Kim (47352_CR41) 2021; 370
J Doux (47352_CR5) 2020; 10
MW Forney (47352_CR30) 2013; 13
W Yao (47352_CR42) 2023; 16
S-Y Ham (47352_CR6) 2023; 55
W Ji (47352_CR32) 2022; 53
CL Berhaut (47352_CR22) 2020; 29
Q Pan (47352_CR24) 2017; 347
JA Lewis (47352_CR1) 2022; 6
G Wang (47352_CR9) 2019; 11
J Lee (47352_CR34) 2023; 13
Z Cao (47352_CR28) 2016; 16
B Xu (47352_CR3) 2021; 143
G Ai (47352_CR29) 2016; 309
S Luo (47352_CR11) 2021; 12
J He (47352_CR17) 2018; 2
DHS Tan (47352_CR21) 2021; 373
C Zhang (47352_CR19) 2021; 2
MA Hope (47352_CR35) 2020; 11
AB Gunnarsdóttir (47352_CR37) 2020; 142
S Chen (47352_CR16) 2021; 368
HJ Kim (47352_CR39) 2016; 16
E Jang (47352_CR33) 2023; 580
S Xiong (47352_CR4) 2020; 30
X Zhang (47352_CR20) 2020; 11
BM Meyer (47352_CR38) 2005; 8
S Iwamura (47352_CR8) 2015; 5
E Il’ina (47352_CR12) 2022; 8
W Jing (47352_CR10) 2022; 924
C Sedlmeier (47352_CR13) 2023; 170
Q Liu (47352_CR27) 2016; 6
47352_CR36
C Sun (47352_CR25) 2020; 32
P Bärmann (47352_CR31) 2021; 11
Y Huang (47352_CR2) 2022; 10
H Pan (47352_CR15) 2022; 8
X Min (47352_CR23) 2022; 47
H Mou (47352_CR14) 2020; 8
Y-G Lee (47352_CR7) 2020; 5
References_xml – volume: 16
  start-page: 282
  year: 2016
  end-page: 288
  ident: CR39
  article-title: Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03776
– volume: 55
  start-page: 455
  year: 2023
  end-page: 462
  ident: CR6
  article-title: Assessing the critical current density of all-solid-state Li metal symmetric and full cells
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.12.013
– volume: 8
  start-page: 141
  year: 2020
  ident: CR14
  article-title: Tin and Tin Compound Materials as Anodes in Lithium-Ion and Sodium-Ion Batteries: A Review
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00141
– volume: 11
  year: 2020
  ident: CR20
  article-title: Stable high-capacity and high-rate silicon-based lithium battery anodes upon two-dimensional covalent encapsulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17686-4
– volume: 373
  start-page: 1494
  year: 2021
  end-page: 1499
  ident: CR21
  article-title: Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes
  publication-title: Science
  doi: 10.1126/science.abg7217
– volume: 370
  year: 2021
  ident: CR41
  article-title: Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.137743
– volume: 32
  start-page: 497
  year: 2020
  end-page: 516
  ident: CR25
  article-title: Recent advances in prelithiation materials and approaches for lithium-ion batteries and capacitors
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.07.009
– volume: 309
  start-page: 33
  year: 2016
  end-page: 41
  ident: CR29
  article-title: Scalable process for application of stabilized lithium metal powder in Li-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.061
– volume: 6
  start-page: 1418
  year: 2022
  end-page: 1430
  ident: CR1
  article-title: The promise of alloy anodes for solid-state batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2022.05.016
– volume: 29
  start-page: 1808756
  year: 2019
  ident: CR18
  article-title: Lithium–magnesium alloy as a stable anode for lithium–sulfur battery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808756
– volume: 11
  start-page: 2100925
  year: 2021
  ident: CR31
  article-title: Mechanistic insights into the pre‐lithiation of silicon/graphite negative electrodes in “dry state” and after electrolyte addition using passivated lithium metal powder
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100925
– volume: 10
  start-page: 1903253
  year: 2020
  ident: CR5
  article-title: Stack pressure considerations for room‐temperature all‐solid‐state lithium metal batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903253
– volume: 10
  start-page: 12350
  year: 2022
  end-page: 12358
  ident: CR2
  article-title: Li alloy anodes for high-rate and high-areal-capacity solid-state batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02339C
– volume: 8
  start-page: 226
  year: 2022
  ident: CR12
  article-title: In Situ Li-In Anode Formation on the Li7La3Zr2O12 Solid Electrolyte in All-Solid-State Battery
  publication-title: Batteries
  doi: 10.3390/batteries8110226
– volume: 580
  start-page: 233326
  year: 2023
  ident: CR33
  article-title: Silicon-stabilized lithium metal powder (SLMP) composite anodes for fast charging by in-situ prelithiation
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.233326
– volume: 29
  start-page: 190
  year: 2020
  end-page: 197
  ident: CR22
  article-title: Prelithiation of silicon/graphite composite anodes: Benefits and mechanisms for long-lasting Li-Ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.008
– volume: 13
  start-page: 4158
  year: 2013
  end-page: 4163
  ident: CR30
  article-title: Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP)
  publication-title: Nano Lett.
  doi: 10.1021/nl401776d
– volume: 8
  start-page: eabn4372
  year: 2022
  ident: CR15
  article-title: Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn4372
– volume: 16
  start-page: 1620
  year: 2023
  end-page: 1630
  ident: CR42
  article-title: A 5 V-class cobalt-free battery cathode with high loading enabled by dry coating
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03840D
– volume: 47
  start-page: 297
  year: 2022
  end-page: 318
  ident: CR23
  article-title: Challenges of prelithiation strategies for next generation high energy lithium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.02.005
– volume: 11
  year: 2020
  ident: CR35
  article-title: Selective NMR observation of the SEI–metal interface by dynamic nuclear polarisation from lithium metal
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16114-x
– volume: 8
  start-page: A145
  year: 2005
  ident: CR38
  article-title: High field multinuclear NMR investigation of the SEI layer in lithium rechargeable batteries
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1854117
– volume: 13
  year: 2023
  ident: CR34
  article-title: Dry pre‐lithiation for graphite‐silicon diffusion‐dependent electrode for all‐solid‐state battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300172
– volume: 368
  year: 2021
  ident: CR16
  article-title: Aluminum−lithium alloy as a stable and reversible anode for lithium batteries
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137626
– volume: 5
  year: 2015
  ident: CR8
  article-title: Li-Rich Li-Si Alloy As A Lithium-containing negative electrode material towards high energy Lithium-Ion batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep08085
– volume: 53
  start-page: 613
  year: 2022
  end-page: 620
  ident: CR32
  article-title: High-performance all-solid-state Li–S batteries enabled by an all-electrochem-active prelithiated Si anode
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.10.003
– volume: 480
  year: 2020
  ident: CR26
  article-title: Battery prelithiation enabled by lithium fixation on cathode
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229109
– volume: 30
  start-page: 2001444
  year: 2020
  ident: CR4
  article-title: Design of a multifunctional interlayer for NASCION‐based solid‐state Li Metal batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001444
– volume: 143
  start-page: 6542
  year: 2021
  end-page: 6550
  ident: CR3
  article-title: Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00752
– volume: 347
  start-page: 170
  year: 2017
  end-page: 177
  ident: CR24
  article-title: Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.061
– volume: 16
  start-page: 7235
  year: 2016
  end-page: 7240
  ident: CR28
  article-title: Ambient-air stable lithiated anode for rechargeable li-ion batteries with high energy density
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03655
– volume: 2
  start-page: 437
  year: 2018
  end-page: 455
  ident: CR17
  article-title: Antimony-based materials as promising anodes for rechargeable lithium-ion and sodium-ion batteries
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00480J
– volume: 11
  start-page: 14042
  year: 2019
  end-page: 14049
  ident: CR9
  article-title: New insights into Li diffusion in Li–Si alloys for Si anode materials: role of Si microstructures
  publication-title: Nanoscale
  doi: 10.1039/C9NR03986D
– volume: 924
  year: 2022
  ident: CR10
  article-title: Li-Indium alloy anode for high-performance Li-metal batteries
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.166517
– ident: CR36
– volume: 12
  year: 2021
  ident: CR11
  article-title: Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27311-7
– volume: 468
  year: 2020
  ident: CR40
  article-title: Understanding capacity fading mechanism of thick electrodes for lithium-ion rechargeable batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228369
– volume: 170
  start-page: 030536
  year: 2023
  ident: CR13
  article-title: A micro-reference electrode for electrode-resolved impedance and potential measurements in all-solid-state battery pouch cells and its application to the study of indium-lithium anodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acc699
– volume: 5
  start-page: 299
  year: 2020
  end-page: 308
  ident: CR7
  article-title: High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 2
  start-page: 2100009
  year: 2021
  ident: CR19
  article-title: Challenges and recent progress on silicon‐based anode materials for next‐generation lithium‐ion batteries
  publication-title: Small Struct.
  doi: 10.1002/sstr.202100009
– volume: 6
  start-page: 88683
  year: 2016
  end-page: 88700
  ident: CR27
  article-title: Understanding undesirable anode lithium plating issues in lithium-ion batteries
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19482F
– volume: 142
  start-page: 20814
  year: 2020
  end-page: 20827
  ident: CR37
  article-title: Noninvasive In Situ NMR Study of “Dead Lithium” Formation and Lithium Corrosion in Full-Cell Lithium Metal batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10258
– volume: 53
  start-page: 613
  year: 2022
  ident: 47352_CR32
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.10.003
– volume: 16
  start-page: 282
  year: 2016
  ident: 47352_CR39
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03776
– volume: 170
  start-page: 030536
  year: 2023
  ident: 47352_CR13
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/acc699
– volume: 2
  start-page: 2100009
  year: 2021
  ident: 47352_CR19
  publication-title: Small Struct.
  doi: 10.1002/sstr.202100009
– volume: 11
  start-page: 2100925
  year: 2021
  ident: 47352_CR31
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100925
– volume: 16
  start-page: 1620
  year: 2023
  ident: 47352_CR42
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03840D
– volume: 11
  start-page: 14042
  year: 2019
  ident: 47352_CR9
  publication-title: Nanoscale
  doi: 10.1039/C9NR03986D
– volume: 47
  start-page: 297
  year: 2022
  ident: 47352_CR23
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.02.005
– volume: 6
  start-page: 1418
  year: 2022
  ident: 47352_CR1
  publication-title: Joule
  doi: 10.1016/j.joule.2022.05.016
– volume: 11
  year: 2020
  ident: 47352_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17686-4
– volume: 142
  start-page: 20814
  year: 2020
  ident: 47352_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10258
– volume: 8
  start-page: 226
  year: 2022
  ident: 47352_CR12
  publication-title: Batteries
  doi: 10.3390/batteries8110226
– volume: 30
  start-page: 2001444
  year: 2020
  ident: 47352_CR4
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202001444
– volume: 8
  start-page: A145
  year: 2005
  ident: 47352_CR38
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.1854117
– volume: 10
  start-page: 12350
  year: 2022
  ident: 47352_CR2
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA02339C
– ident: 47352_CR36
– volume: 143
  start-page: 6542
  year: 2021
  ident: 47352_CR3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c00752
– volume: 347
  start-page: 170
  year: 2017
  ident: 47352_CR24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.02.061
– volume: 368
  year: 2021
  ident: 47352_CR16
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2020.137626
– volume: 580
  start-page: 233326
  year: 2023
  ident: 47352_CR33
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.233326
– volume: 6
  start-page: 88683
  year: 2016
  ident: 47352_CR27
  publication-title: RSC Adv.
  doi: 10.1039/C6RA19482F
– volume: 309
  start-page: 33
  year: 2016
  ident: 47352_CR29
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.01.061
– volume: 13
  start-page: 4158
  year: 2013
  ident: 47352_CR30
  publication-title: Nano Lett.
  doi: 10.1021/nl401776d
– volume: 12
  year: 2021
  ident: 47352_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27311-7
– volume: 468
  year: 2020
  ident: 47352_CR40
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.228369
– volume: 11
  year: 2020
  ident: 47352_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16114-x
– volume: 29
  start-page: 1808756
  year: 2019
  ident: 47352_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201808756
– volume: 373
  start-page: 1494
  year: 2021
  ident: 47352_CR21
  publication-title: Science
  doi: 10.1126/science.abg7217
– volume: 13
  year: 2023
  ident: 47352_CR34
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202300172
– volume: 29
  start-page: 190
  year: 2020
  ident: 47352_CR22
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.04.008
– volume: 16
  start-page: 7235
  year: 2016
  ident: 47352_CR28
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03655
– volume: 32
  start-page: 497
  year: 2020
  ident: 47352_CR25
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.07.009
– volume: 924
  year: 2022
  ident: 47352_CR10
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2022.166517
– volume: 8
  start-page: eabn4372
  year: 2022
  ident: 47352_CR15
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abn4372
– volume: 2
  start-page: 437
  year: 2018
  ident: 47352_CR17
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00480J
– volume: 370
  year: 2021
  ident: 47352_CR41
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.137743
– volume: 8
  start-page: 141
  year: 2020
  ident: 47352_CR14
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00141
– volume: 5
  start-page: 299
  year: 2020
  ident: 47352_CR7
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0575-z
– volume: 10
  start-page: 1903253
  year: 2020
  ident: 47352_CR5
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903253
– volume: 480
  year: 2020
  ident: 47352_CR26
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2020.229109
– volume: 5
  year: 2015
  ident: 47352_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/srep08085
– volume: 55
  start-page: 455
  year: 2023
  ident: 47352_CR6
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.12.013
SSID ssj0000391844
Score 2.6270952
Snippet All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However, the first...
Abstract All-solid-state batteries using Si as the anode have shown promising performance without continual solid-electrolyte interface (SEI) growth. However,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2991
SubjectTerms 140/131
147/135
147/28
639/301/299/891
639/4077/4079/891
Alloys
Anodes
Carbon
Cathodes
Cobalt
Cobalt oxides
Electrodes
Electrolytes
Electrolytic cells
Energy
Graphite
Humanities and Social Sciences
Lithium
Manganese
Morphology
multidisciplinary
Nickel
Polymers
Scanning electron microscopy
Science
Science (multidisciplinary)
Silicon
Solid state
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyItX6srRLBm4Zm871HFUspqAct9BaySZYubHdL33vI---dJPuefX5ePO7uZAmZXzK_YSYzCL2KlLPaaU8c554IFWviFOuIkFyHFvh1ySb8-EmdnouzC3lxq9VXygkr5YHLwh1LF6SrQweWJAgfqGsVFx1QQhapbnSXTl_a0FvOVD6DeQOui5hvyVBujhcinwlgkkjqtsvIescS5YL9v2OZvyZL_hQxzYbo5AG6PzNI_LbMfB_dieNDdLf0lFwfoKvPAE6AEYzFw_QN9yk7COT9tBqmq7b3OOaqETF15V3gqcNfeuzGKcDD3LQHX99EYOeXRWvwB-yGgQBI-0DyBSTc5qqcMP4ROj_58PX9KZl7KhAvRb0kQaYunxHsfMfAVfKhBdMVnAyuA8dIMF9HowJrggFqoaJyzqRgsTZRqaBp5I_R3jiN8SnCWghGtQI-4xrhgmmU07Q1PjLdyVDLCtWb9bV-Ljie-l4MNge-ubFFJxZ0YrNO7LpCr7djrku5jb9Kv0tq20qmUtn5BQDIzgCy_wJQhY42Srfz_l1YMOy8kcC96gq93H6GnZfCKW6M0yrLCCY0CFXoScHIdiYp3MrAE6yQ2UHPzlR3v4z9Za7unUKVBrBboTcboP2Y15_X4tn_WItDdI-lHZIyk9QR2lverOJzIF3L9kXeX98BhwIodw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLoryaUpCRuIHVxPErJ9SiVhUScIBKe7Mc26GR0mTZh6r994wdb6rl0WOScWRnxp7Pnsl8CL3zeUkLIy0xZWkJE74gRtCGMF5KVwO-HrMJv3wVF5fs84zP0oHbMqVVbtfEuFC7wYYz8mNYasuKgzcsPs5_kcAaFaKriULjPnpQABIJ1A1yJqczllD9XDGW_pXJS3W8ZHFlAMdEAucuJZsdfxTL9v8La_6dMvlH3DS6o_Mn6HHCkfhkVPw-uuf7p-jhyCy5eYauv4GJwsCgLe6GG9yGHCGQt8O6G67r1mIfa0f4wM27xEODv7fY9IODi0Tdg-cLDxj9atQdvAGbriNgqq0j8TckXMfanND-Obo8P_vx6YIkZgViOStWxPHA9enB2zcUNkzW1eDAnOHONLA9YtQWXglHK6cAYAgvjFEhZCyVF8LJ3Jcv0F4_9P4AYckYzaUAVGMqZpyqhJF5raynsuGu4Bkqtt9X21R2PLBfdDqGv0ulR51o0ImOOtGbDL2f2szHoht3Sp8GtU2SoWB2vDEsfuo0_zQ3jpvCNQBIHLMuN7UoWQM7C-pzWckmQ0dbpes0i5f61uYy9HZ6DPMvBFVM74d1lGGUSRDK0MvRRqaehKArhf1ghtSO9ex0dfdJ317FGt8hYKnAdjP0YWtot_36_7c4vHsYr9AjGmw_ZB6JI7S3Wqz9awBVq_pNnDm_AXLQH2k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuiDdpCzISN7BIHL9yhBVVhQQcoFJvlmM7dKU0qfYhtP-esfNACwWJWzYer7yZmZ3PmfE3AK9CXrLCKkdtWTrKZSiolayhXJTK14ivh2rCT5_l2Tn_eCEuDoBNZ2FS0X6itEx_01N12Ns1Ty6NEYXGZrmM7m7BbY1XsYxvIRfze5XIeK45H8_H5KW-YepeDEpU_Tfhyz_LJH_LlaYQdHof7o3YkbwbVvsADkL3EO4M3SR3j-DqC5ol_hycS9r-B1nGuiCUd_227a_qpSMh8UWE2I93TfqGfF0S2_UeP4ztesj1KiAuvxz0hd9AbNtSNM-lp-noEakTHyfOfwznpx--Lc7o2E2BOsGLDfUi9vcMGOEbhpsk52sMWt4KbxvcEnHmiqClZ5XXCCpkkNbqmCZWOkjpVR7KJ3DY9V14BkRxznIlEcnYiluvK2lVXmsXmGqEL0QGxfR8jRupxmPHi9aklHepzaATgzoxSSdml8Hrec71QLTxT-n3UW2zZCTJTjf61XczGo0R1gtb-AZBiOfO57aWJW9wN8FCrirVZHAyKd2Mnrs2GNLLSiDqKjJ4OQ-jz8VEiu1Cv00ynHGFQhk8HWxkXklMtDLcA2ag96xnb6n7I93yMvF6xySlRtvN4M1kaL_W9fdncfR_4sdwl0VfiNVH8gQON6tteI7AalO_SJ70E-G7HdY
  priority: 102
  providerName: Springer Nature
Title Overcoming low initial coulombic efficiencies of Si anodes through prelithiation in all-solid-state batteries
URI https://link.springer.com/article/10.1038/s41467-024-47352-y
https://www.ncbi.nlm.nih.gov/pubmed/38582753
https://www.proquest.com/docview/3033950281
https://www.proquest.com/docview/3034247028
https://pubmed.ncbi.nlm.nih.gov/PMC10998844
https://doaj.org/article/5ad5a1df426d4cd0ab634f7292e0797f
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8oPEdNioj8QaGxHFs5wGhrlqZKjEQo1LfIid2tkpZMvoh6H_P2UmLCgWJl0RJzpHlu8v9Lne-A3hpw5hFWhZUx3FBubAR1YKVlCexNDni6zab8OOFOB_z0SSZ7MG63VG3gPOdrp3rJzWeVW9-fFu9R4V_124ZV2_n3Ks7WhvqGukyutqHQx8vcql8Hdz3X-Y4RYeGd3tndg_dsk--jP8u7PlnCuVvcVRvnoZHcK_DlaTfCsJ92LP1A7jTdppcPYSbTyiyKFw4llTNdzJ1OUNIXzTLqrnJpwWxvpaEdb1656QpyeWU6LoxeNG18iG3M4uY_brlJb6B6KqiKLpTQ_22JJL7Wp04_hGMh2dfB-e067RAi4RHC2oS1_vTovUvGTpQhcnRoBmdGF2iu8RZEVklDEuNQsAhrNBauRCyVFYII0MbP4aDuqntUyCScxZKgShHp1wblQotw1wVlskyMVESQLRe36zoypC7bhhV5sPhscpanmTIk8zzJFsF8Goz5rYtwvFP6lPHtg2lK6DtbzSzq6zTxyzRJtGRKRGgGF6YUOci5iV6GsyGMpVlACdrpmdroczQ3MdpgogsCuDF5jHqowuy6No2S0_DGZdIFMCTVkY2M3FBWIb-YQBqS3q2prr9pJ5e-5rfLoCpUHYDeL0WtF_z-vtaPPs_8mO4y5wuuMwkcQIHi9nSPkfQtch7sC8nEo9q-KEHh_3-6HKE59Ozi89f8O5ADHr-d0bPa9xPvwEuNQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYidQwEhwAquJ7dieA0Jsw5QuHGil3oxjOzTSNBlmUTV_it_Is5NMNSy99ZjEjhy_Pe_5fQi98CmjmZGWGMYs4cJnxAhaEp4z6Qrwr9tqwv0DMTriX47z4w30qz8LE8oqe50YFbVrbPhHvg2qlg1ysIbZ28lPElCjQna1h9Bo2WLXL88gZJu92fkI9H1J6fDT4YcR6VAFiM15NicuDziXHixdSSFYsK4A5e1M7kwJoQGnNvNKODpwCoyr8MIYFdKlUnkhnEw9g_deQVc5YyyUEKrh59U_ndBtXXHenc1Jmdqe8aiJwBCSgPFLyXLN_kWYgH_5tn-XaP6Rp43mb3gL3ez8VvyuZbTbaMPXd9C1FslyeRedfgWRgI2EuXjcnOEq1CTBeNssxs1pUVnsY68KH7CAZ7gp8bcKm7pxcNFBBeHJ1ENMcNLyCrwBm_GYgGhUjsRjT7iIvUBh_j10dCl7fh9t1k3tHyIsOaepFOBFmQE3Tg2EkWmhrKeyzF2WJyjr91fbrs15QNsY65huZ0q3NNFAEx1popcJerWaM2mbfFw4-n0g22pkaNAdbzTTH7qTd50bl5vMleAAOW5dagrBeAmRDPWpHMgyQVs90XWnNWb6nMcT9Hz1GOQ9JHFM7ZtFHMMplzAoQQ9aHlmtJCR5KcSfCVJr3LO21PUndXUSe4qHBKkC3k3Q657Rztf1_714dPFnPEPXR4f7e3pv52D3MbpBgxyEqiexhTbn04V_Ag7dvHgapQij75cttr8BmdZbCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaxNHMfOHhACyqqlUJCg0t6MYzt0pTRZ9qFq_xq_jrGTbLU8eusxiR05nndmPB_AMxenLNHSUJ2mhnLhEqoFKynPUmkL9K_basJPh2LviH8YZ-Mt-NWfhfFllb1ODIraNsb_Ix-gqk2HGVrDZFB2ZRFfdkevpz-pR5DymdYeTqNlkQO3OsXwbf5qfxdp_Zyx0ftv7_ZohzBATcaTBbWZx7x0aPVKhoGDsQUqcqszq0sMEzgzicuFZUObo6EVTmid-9SpzJ0QVsYuxfdegssy5dzDRsixXP_f8Z3Xc867czpxmg_mPGglNIrU4_0yutqwhQEy4F9-7t_lmn_kbIMpHN2A650PS960THcTtlx9C660qJar23DyGcUDNxXnkqo5JRNfn4TjTbOsmpNiYogLfSucxwWek6YkXydE143Fiw42iExnDuOD45Zv8A1EVxVFMZlYGo5AkSL0BcX5d-DoQvb8LmzXTe3uA5Gcs1gK9Kj0kGubD4WWcZEbx2SZ2SSLIOn3V5mu5blH3qhUSL2nuWppopAmKtBErSJ4sZ4zbRt-nDv6rSfbeqRv1h1uNLMfqpN9lWmb6cSW6AxZbmysC5HyEqMa5mI5lGUEOz3RVadB5uqM3yN4un6Msu8TOrp2zTKM4YxLHBTBvZZH1ivxCV-GsWgE-Qb3bCx180k9OQ79xX2yNEfejeBlz2hn6_r_Xjw4_zOewFUUWPVx__DgIVxjXgx8AZTYge3FbOkeoW-3KB4HISLw_aKl9jfUZ189
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overcoming+low+initial+coulombic+efficiencies+of+Si+anodes+through+prelithiation+in+all-solid-state+batteries&rft.jtitle=Nature+communications&rft.au=Ham%2C+So-Yeon&rft.au=Sebti%2C+Elias&rft.au=Cronk%2C+Ashley&rft.au=Pennebaker%2C+Tyler&rft.date=2024-04-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-47352-y&rft.externalDocID=10_1038_s41467_024_47352_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon