Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination
Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis . In B. subtilis , the initiation of germinant receptor-mediated spore germination is divided into two genetically...
        Saved in:
      
    
          | Published in | Journal of bacteriology Vol. 197; no. 14; pp. 2276 - 2283 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          American Society for Microbiology
    
        01.07.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0021-9193 1067-8832 1098-5530 1098-5530  | 
| DOI | 10.1128/JB.02575-14 | 
Cover
| Abstract | Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism
Bacillus subtilis
. In
B. subtilis
, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during
B. subtilis
spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during
Clostridium difficile
spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor,
cspC
, or the cortex hydrolase,
sleC
, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during
C. difficile
spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated
C. difficile
spore germination proceeds through a novel germination pathway.
IMPORTANCE
Clostridium difficile
infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease.
C. difficile
spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the
Bacillus subtilis
germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and
C. difficile
. We found that
C. difficile
spore germination proceeds through a novel pathway. | 
    
|---|---|
| AbstractList | Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway.
Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway. Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway. Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis . In B. subtilis , the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC , or the cortex hydrolase, sleC , prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile . We found that C. difficile spore germination proceeds through a novel pathway. UNLABELLEDBacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway.IMPORTANCEClostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway. Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway.  | 
    
| Author | Francis, Michael B. Allen, Charlotte A. Sorg, Joseph A.  | 
    
| Author_xml | – sequence: 1 givenname: Michael B. surname: Francis fullname: Francis, Michael B. organization: Department of Biology, Texas A&M University, College Station, Texas, USA – sequence: 2 givenname: Charlotte A. surname: Allen fullname: Allen, Charlotte A. organization: Department of Biology, Texas A&M University, College Station, Texas, USA – sequence: 3 givenname: Joseph A. orcidid: 0000-0001-7822-2656 surname: Sorg fullname: Sorg, Joseph A. organization: Department of Biology, Texas A&M University, College Station, Texas, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25917906$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1v1DAQhi1URLeFE3dkiQsSpHgS27EvSO0CLVUlEB9ny7Gd1iuvHewE2H9P2i1QCoee5jDPvNI8M3toJ6boEHoM5ACgFi9Pjw5IzVpWAb2HFkCkqBhryA5aEFJDJUE2u2ivlBUhQCmrH6DdmkloJeELdPFpSNnhZcqj-4FPNjansCm-4A_ZGWddwa_94E0KPnqDD423-KMLTheH7ZR9PMfLkMqYvfXTGlvf99744PA29tjltY969Ck-RPd7HYp7dF330Ze3bz4vT6qz98fvlodnlWEUxsq4jghLmk7LpulaKsBqYQyVnabUclGbhlthLamdEdx2pINGM-hkB7YlPWv20Ytt7hQHvfmuQ1BD9mudNwqIuhSmVp26EqaAzvirLT5M3dpZ4-KY9Z-RpL36uxP9hTpP39QskoLgc8Cz64Ccvk6ujGrti3Eh6OjSVBS0hFHetFTeBQUqOa_vgHI535ZxDjP69Ba6SlOOs-NLCkQtGkZm6snNPX8v-OsTZuD5FjA5lZJd_4-206Ob2uAWbfx4dedZkg__nfkJLIzUQQ | 
    
| CODEN | JOBAAY | 
    
| CitedBy_id | crossref_primary_10_1128_mSphere_00383_16 crossref_primary_10_1099_mic_0_001463 crossref_primary_10_1146_annurev_micro_090816_093558 crossref_primary_10_1038_s41598_017_08387_y crossref_primary_10_1042_BCJ20190875 crossref_primary_10_1016_j_mib_2021_11_001 crossref_primary_10_1371_journal_ppat_1009516 crossref_primary_10_1128_JB_00394_21 crossref_primary_10_1128_mSphere_00335_18 crossref_primary_10_1111_mmi_15316 crossref_primary_10_1128_microbiolspec_VMBF_0029_2015 crossref_primary_10_1038_s41426_018_0211_1 crossref_primary_10_1371_journal_ppat_1006443 crossref_primary_10_1016_j_chom_2023_04_003 crossref_primary_10_1038_nrmicro_2016_108 crossref_primary_10_1128_mSphere_00306_16 crossref_primary_10_3389_fmicb_2017_02635 crossref_primary_10_1128_JB_00266_17 crossref_primary_10_1371_journal_ppat_1007681 crossref_primary_10_1111_1462_2920_15343 crossref_primary_10_2478_inmed_2019_0074 crossref_primary_10_3390_microorganisms9081651 crossref_primary_10_1128_JB_00218_18 crossref_primary_10_1371_journal_ppat_1011741 crossref_primary_10_1016_j_mib_2021_11_010 crossref_primary_10_1128_microbiolspec_TBS_0014_2012 crossref_primary_10_1093_femsre_fuaf005 crossref_primary_10_3389_fcimb_2018_00029 crossref_primary_10_1016_j_jafr_2024_101382 crossref_primary_10_1016_j_anaerobe_2017_02_018 crossref_primary_10_1128_AEM_01363_16 crossref_primary_10_1128_JB_00986_15 crossref_primary_10_3389_fmicb_2016_01702 crossref_primary_10_1111_1462_2920_13648 crossref_primary_10_1371_journal_ppat_1012507 crossref_primary_10_1146_annurev_micro_011320_011321 crossref_primary_10_1128_jb_00142_23 crossref_primary_10_1128_JB_00405_16 crossref_primary_10_1128_mSphere_00205_18 crossref_primary_10_1038_s41598_017_15236_5 crossref_primary_10_1371_journal_ppat_1007199 crossref_primary_10_1128_jb_00210_22 crossref_primary_10_1111_jam_13600 crossref_primary_10_1080_19490976_2020_1795388 crossref_primary_10_1128_msphere_00005_23 crossref_primary_10_1128_spectrum_03933_22 crossref_primary_10_1128_microbiolspec_GPP3_0017_2018 crossref_primary_10_1128_JB_00008_21 crossref_primary_10_3389_fmicb_2018_02487 crossref_primary_10_1016_j_biochi_2015_07_023 crossref_primary_10_1111_1462_2920_14505 crossref_primary_10_1016_j_anaerobe_2017_12_001 crossref_primary_10_1099_mgen_0_000767 crossref_primary_10_1093_ofid_ofw196 crossref_primary_10_3390_microorganisms9061122 crossref_primary_10_1371_journal_pbio_3000379 crossref_primary_10_1016_j_lwt_2021_112824 crossref_primary_10_1016_j_tim_2020_03_004 crossref_primary_10_1021_acs_jproteome_9b00413 crossref_primary_10_3390_antibiotics10080948 crossref_primary_10_1080_10408398_2022_2143475 crossref_primary_10_1007_s10295_015_1714_6 crossref_primary_10_1074_jbc_M117_791749 crossref_primary_10_1111_1462_2920_15529 crossref_primary_10_1128_mBio_02085_16 crossref_primary_10_1128_JB_00908_15  | 
    
| Cites_doi | 10.1128/JB.00736-09 10.1111/mmi.12591 10.1128/JB.01260-08 10.1111/j.1469-0691.2006.01634.x 10.1128/JB.01209-09 10.1128/JB.01748-07 10.1371/journal.ppat.1003165 10.1128/JB.01455-13 10.1038/nmeth.1318 10.1016/j.anaerobe.2015.02.003 10.1128/AEM.71.7.3556-3564.2005 10.1128/IAI.00558-09 10.1016/0076-6879(66)08124-2 10.1128/JB.00610-10 10.1128/JB.00062-12 10.1128/JB.00093-13 10.1128/AEM.00822-09 10.1371/journal.pone.0073653 10.1371/journal.pone.0032381 10.1128/AAC.01443-06 10.1128/JB.00488-10 10.1016/j.mimet.2009.05.004 10.1128/JB.00597-09 10.1038/ng1830 10.1099/mic.0.072454-0 10.1128/jcm.15.3.443-446.1982 10.1128/JB.01832-08 10.1128/JB.01613-06 10.1194/jlr.R500013-JLR200 10.1128/JB.183.16.4886-4893.2001 10.1128/AAC.01611-12 10.1117/1.3494567 10.1128/IAI.00147-12 10.1371/journal.ppat.1003356 10.1128/JB.183.12.3742-3751.2001 10.1007/s00203-007-0292-z 10.1007/s00203-009-0465-z 10.1016/j.tim.2014.04.003 10.1039/a906846e 10.1128/JB.01765-07 10.1266/ggs.81.227 10.1099/mic.0.030965-0 10.1007/s00203-006-0152-2 10.1038/ncomms4114 10.1038/nature13828 10.1146/annurev.micro.61.080706.093224  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Copyright American Society for Microbiology Jul 2015 Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology  | 
    
| Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Copyright American Society for Microbiology Jul 2015 – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1128/JB.02575-14 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | MEDLINE Genetics Abstracts Bacteriology Abstracts (Microbiology B) CrossRef AGRICOLA MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| DocumentTitleAlternate | Novel Pathway for Spore Germination | 
    
| EISSN | 1098-5530 | 
    
| EndPage | 2283 | 
    
| ExternalDocumentID | 10.1128/jb.02575-14 PMC4524186 3729020181 25917906 10_1128_JB_02575_14  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature  | 
    
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R56AI108987 – fundername: NIAID NIH HHS grantid: R56 AI108987  | 
    
| GroupedDBID | --- -DZ -~X .55 0R~ 18M 29J 2WC 39C 4.4 53G 5GY 5RE 5VS 79B 85S AAGFI AAYXX ABPPZ ACGFO ACGOD ACNCT ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BKOMP BTFSW CITATION CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 L7B O9- OK1 P-S P2P PQQKQ RHI RNS RPM RSF RXW TAE TR2 UHB UKR UPT W8F WH7 WOQ X7M YQT YR2 YZZ ZCA ~02 ~KM .GJ 186 1VV 3O- 8WZ 9M8 A6W ABTAH AFFDN AFFNX AGCDD AGVNZ AI. AIDAL AJUXI C1A CGR CUY CVF ECM EIF MVM NHB NPM OHT P-O QZG VH1 WHG Y6R ZCG ZGI ZXP ZY4 7QL 7TM 7U9 8FD ABUFD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM ADTOC ADXHL GROUPED_DOAJ UNPAY  | 
    
| ID | FETCH-LOGICAL-c541t-ceb08d03ba933b7481da8cc49ba44d682c36d8dd02ec86db0b13a51b9b1d70f53 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0021-9193 1067-8832 1098-5530  | 
    
| IngestDate | Wed Oct 29 12:07:21 EDT 2025 Tue Sep 30 16:07:17 EDT 2025 Sun Aug 24 02:50:35 EDT 2025 Tue Oct 07 09:26:05 EDT 2025 Thu Oct 02 12:09:07 EDT 2025 Tue Oct 21 03:33:39 EDT 2025 Thu Apr 03 06:58:26 EDT 2025 Wed Oct 01 04:06:39 EDT 2025 Thu Apr 24 23:05:18 EDT 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 14 | 
    
| Language | English | 
    
| License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c541t-ceb08d03ba933b7481da8cc49ba44d682c36d8dd02ec86db0b13a51b9b1d70f53 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Citation Francis MB, Allen CA, Sorg JA. 2015. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. J Bacteriol 197:2276–2283. doi:10.1128/JB.02575-14.  | 
    
| ORCID | 0000-0001-7822-2656 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://jb.asm.org/content/jb/197/14/2276.full.pdf | 
    
| PMID | 25917906 | 
    
| PQID | 1691828350 | 
    
| PQPubID | 40724 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | unpaywall_primary_10_1128_jb_02575_14 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524186 proquest_miscellaneous_1705463749 proquest_miscellaneous_1701496629 proquest_miscellaneous_1690215661 proquest_journals_1691828350 pubmed_primary_25917906 crossref_primary_10_1128_JB_02575_14 crossref_citationtrail_10_1128_JB_02575_14  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-07-01 | 
    
| PublicationDateYYYYMMDD | 2015-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington – name: 1752 N St., N.W., Washington, DC  | 
    
| PublicationTitle | Journal of bacteriology | 
    
| PublicationTitleAlternate | J Bacteriol | 
    
| PublicationYear | 2015 | 
    
| Publisher | American Society for Microbiology | 
    
| Publisher_xml | – name: American Society for Microbiology | 
    
| References | Railbaud P (e_1_3_3_41_2) 1974; 125 Wahome PG (e_1_3_3_46_2) 2008; 189 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 Nicholson WL (e_1_3_3_31_2) 1990 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_49_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 16299351 - J Lipid Res. 2006 Feb;47(2):241-59 16804543 - Nat Genet. 2006 Jul;38(7):779-86 24814671 - Trends Microbiol. 2014 Jul;22(7):406-16 19666724 - Appl Environ Microbiol. 2009 Oct;75(19):6299-305 20562307 - J Bacteriol. 2010 Aug;192(16):4215-22 21054104 - J Biomed Opt. 2010 Sep-Oct;15(5):056010 18083820 - J Bacteriol. 2008 Feb;190(4):1190-201 17158659 - J Bacteriol. 2007 Mar;189(5):1565-72 19592590 - J Bacteriol. 2009 Sep;191(18):5584-91 11371539 - J Bacteriol. 2001 Jun;183(12):3742-51 19218389 - J Bacteriol. 2009 Apr;191(8):2711-20 19564382 - Infect Immun. 2009 Sep;77(9):3661-9 24445449 - Nat Commun. 2014;5:3114 18035610 - Annu Rev Microbiol. 2007;61:555-88 25681667 - Anaerobe. 2015 Jun;33:64-70 10746319 - Analyst. 1999 Nov;124(11):1599-604 22328679 - J Bacteriol. 2012 Apr;194(8):1875-84 16897034 - Arch Microbiol. 2006 Nov;186(5):377-83 23408892 - PLoS Pathog. 2013 Feb;9(2):e1003165 19252899 - Arch Microbiol. 2009 May;191(5):403-14 4282561 - Ann Microbiol (Paris). 1974 Oct-Nov;125B(3):381-91 24140647 - Microbiology. 2014 Jan;160(Pt 1):209-16 11466292 - J Bacteriol. 2001 Aug;183(16):4886-93 17665170 - Arch Microbiol. 2008 Jan;189(1):49-58 19363495 - Nat Methods. 2009 May;6(5):343-5 22384234 - PLoS One. 2012;7(2):e32381 24488313 - J Bacteriol. 2014 Apr;196(7):1297-305 25337874 - Nature. 2015 Jan 8;517(7533):205-8 23675301 - PLoS Pathog. 2013 May;9(5):e1003356 7076817 - J Clin Microbiol. 1982 Mar;15(3):443-6 22615253 - Infect Immun. 2012 Aug;80(8):2704-11 17562803 - Antimicrob Agents Chemother. 2007 Aug;51(8):2883-7 24666282 - Mol Microbiol. 2014 May;92(4):813-23 19933358 - J Bacteriol. 2010 Feb;192(3):657-64 23417486 - J Bacteriol. 2013 May;195(9):1875-82 17391385 - Clin Microbiol Infect. 2007 Mar;13(3):298-304 23147724 - Antimicrob Agents Chemother. 2013 Jan;57(1):664-7 20675492 - J Bacteriol. 2010 Oct;192(19):4983-90 24040011 - PLoS One. 2013;8(9):e73653 19542279 - J Bacteriol. 2009 Sep;191(17):5377-86 19060152 - J Bacteriol. 2009 Feb;191(3):1115-7 17038794 - Genes Genet Syst. 2006 Aug;81(4):227-34 18245298 - J Bacteriol. 2008 Apr;190(7):2505-12 19628563 - Microbiology. 2009 Oct;155(Pt 10):3464-72 16000762 - Appl Environ Microbiol. 2005 Jul;71(7):3556-64 19445976 - J Microbiol Methods. 2009 Jul;78(1):79-85  | 
    
| References_xml | – ident: e_1_3_3_37_2 doi: 10.1128/JB.00736-09 – volume: 125 start-page: 381 year: 1974 ident: e_1_3_3_41_2 article-title: (Sodium taurocholate, a germination factor for anaerobic bacterial spores “in vitro” and “in vivo.” publication-title: Ann Microbiol – ident: e_1_3_3_49_2 doi: 10.1111/mmi.12591 – ident: e_1_3_3_14_2 doi: 10.1128/JB.01260-08 – ident: e_1_3_3_26_2 doi: 10.1111/j.1469-0691.2006.01634.x – ident: e_1_3_3_19_2 doi: 10.1128/JB.01209-09 – ident: e_1_3_3_42_2 doi: 10.1128/JB.01748-07 – ident: e_1_3_3_21_2 doi: 10.1371/journal.ppat.1003165 – ident: e_1_3_3_9_2 doi: 10.1128/JB.01455-13 – ident: e_1_3_3_29_2 doi: 10.1038/nmeth.1318 – ident: e_1_3_3_39_2 doi: 10.1016/j.anaerobe.2015.02.003 – ident: e_1_3_3_36_2 doi: 10.1128/AEM.71.7.3556-3564.2005 – ident: e_1_3_3_25_2 doi: 10.1128/IAI.00558-09 – ident: e_1_3_3_34_2 doi: 10.1016/0076-6879(66)08124-2 – ident: e_1_3_3_13_2 doi: 10.1128/JB.00610-10 – ident: e_1_3_3_48_2 doi: 10.1128/JB.00062-12 – ident: e_1_3_3_10_2 doi: 10.1128/JB.00093-13 – ident: e_1_3_3_43_2 doi: 10.1128/AEM.00822-09 – ident: e_1_3_3_16_2 doi: 10.1371/journal.pone.0073653 – ident: e_1_3_3_38_2 doi: 10.1371/journal.pone.0032381 – ident: e_1_3_3_5_2 doi: 10.1128/AAC.01443-06 – ident: e_1_3_3_15_2 doi: 10.1128/JB.00488-10 – ident: e_1_3_3_28_2 doi: 10.1016/j.mimet.2009.05.004 – ident: e_1_3_3_6_2 doi: 10.1128/JB.00597-09 – ident: e_1_3_3_18_2 doi: 10.1038/ng1830 – ident: e_1_3_3_20_2 doi: 10.1099/mic.0.072454-0 – ident: e_1_3_3_40_2 doi: 10.1128/jcm.15.3.443-446.1982 – start-page: 391 volume-title: Molecular biological methods for Bacillus year: 1990 ident: e_1_3_3_31_2 – ident: e_1_3_3_24_2 doi: 10.1128/JB.01832-08 – ident: e_1_3_3_47_2 doi: 10.1128/JB.01613-06 – ident: e_1_3_3_12_2 doi: 10.1194/jlr.R500013-JLR200 – ident: e_1_3_3_27_2 doi: 10.1128/JB.183.16.4886-4893.2001 – ident: e_1_3_3_30_2 doi: 10.1128/AAC.01611-12 – ident: e_1_3_3_35_2 doi: 10.1117/1.3494567 – ident: e_1_3_3_4_2 doi: 10.1128/IAI.00147-12 – ident: e_1_3_3_7_2 doi: 10.1371/journal.ppat.1003356 – ident: e_1_3_3_23_2 doi: 10.1128/JB.183.12.3742-3751.2001 – volume: 189 start-page: 49 year: 2008 ident: e_1_3_3_46_2 article-title: Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels publication-title: Arch Microbiol doi: 10.1007/s00203-007-0292-z – ident: e_1_3_3_44_2 doi: 10.1007/s00203-009-0465-z – ident: e_1_3_3_8_2 doi: 10.1016/j.tim.2014.04.003 – ident: e_1_3_3_32_2 doi: 10.1039/a906846e – ident: e_1_3_3_11_2 doi: 10.1128/JB.01765-07 – ident: e_1_3_3_22_2 doi: 10.1266/ggs.81.227 – ident: e_1_3_3_33_2 doi: 10.1099/mic.0.030965-0 – ident: e_1_3_3_45_2 doi: 10.1007/s00203-006-0152-2 – ident: e_1_3_3_2_2 doi: 10.1038/ncomms4114 – ident: e_1_3_3_3_2 doi: 10.1038/nature13828 – ident: e_1_3_3_17_2 doi: 10.1146/annurev.micro.61.080706.093224 – reference: 22328679 - J Bacteriol. 2012 Apr;194(8):1875-84 – reference: 16804543 - Nat Genet. 2006 Jul;38(7):779-86 – reference: 17665170 - Arch Microbiol. 2008 Jan;189(1):49-58 – reference: 19218389 - J Bacteriol. 2009 Apr;191(8):2711-20 – reference: 19628563 - Microbiology. 2009 Oct;155(Pt 10):3464-72 – reference: 16000762 - Appl Environ Microbiol. 2005 Jul;71(7):3556-64 – reference: 18083820 - J Bacteriol. 2008 Feb;190(4):1190-201 – reference: 19542279 - J Bacteriol. 2009 Sep;191(17):5377-86 – reference: 18035610 - Annu Rev Microbiol. 2007;61:555-88 – reference: 11466292 - J Bacteriol. 2001 Aug;183(16):4886-93 – reference: 19592590 - J Bacteriol. 2009 Sep;191(18):5584-91 – reference: 19445976 - J Microbiol Methods. 2009 Jul;78(1):79-85 – reference: 18245298 - J Bacteriol. 2008 Apr;190(7):2505-12 – reference: 17158659 - J Bacteriol. 2007 Mar;189(5):1565-72 – reference: 23417486 - J Bacteriol. 2013 May;195(9):1875-82 – reference: 24040011 - PLoS One. 2013;8(9):e73653 – reference: 23147724 - Antimicrob Agents Chemother. 2013 Jan;57(1):664-7 – reference: 16897034 - Arch Microbiol. 2006 Nov;186(5):377-83 – reference: 17562803 - Antimicrob Agents Chemother. 2007 Aug;51(8):2883-7 – reference: 11371539 - J Bacteriol. 2001 Jun;183(12):3742-51 – reference: 19060152 - J Bacteriol. 2009 Feb;191(3):1115-7 – reference: 22384234 - PLoS One. 2012;7(2):e32381 – reference: 25337874 - Nature. 2015 Jan 8;517(7533):205-8 – reference: 19564382 - Infect Immun. 2009 Sep;77(9):3661-9 – reference: 10746319 - Analyst. 1999 Nov;124(11):1599-604 – reference: 24140647 - Microbiology. 2014 Jan;160(Pt 1):209-16 – reference: 19666724 - Appl Environ Microbiol. 2009 Oct;75(19):6299-305 – reference: 4282561 - Ann Microbiol (Paris). 1974 Oct-Nov;125B(3):381-91 – reference: 22615253 - Infect Immun. 2012 Aug;80(8):2704-11 – reference: 23675301 - PLoS Pathog. 2013 May;9(5):e1003356 – reference: 25681667 - Anaerobe. 2015 Jun;33:64-70 – reference: 24488313 - J Bacteriol. 2014 Apr;196(7):1297-305 – reference: 17038794 - Genes Genet Syst. 2006 Aug;81(4):227-34 – reference: 23408892 - PLoS Pathog. 2013 Feb;9(2):e1003165 – reference: 19933358 - J Bacteriol. 2010 Feb;192(3):657-64 – reference: 20675492 - J Bacteriol. 2010 Oct;192(19):4983-90 – reference: 21054104 - J Biomed Opt. 2010 Sep-Oct;15(5):056010 – reference: 24814671 - Trends Microbiol. 2014 Jul;22(7):406-16 – reference: 7076817 - J Clin Microbiol. 1982 Mar;15(3):443-6 – reference: 16299351 - J Lipid Res. 2006 Feb;47(2):241-59 – reference: 24445449 - Nat Commun. 2014;5:3114 – reference: 24666282 - Mol Microbiol. 2014 May;92(4):813-23 – reference: 19363495 - Nat Methods. 2009 May;6(5):343-5 – reference: 19252899 - Arch Microbiol. 2009 May;191(5):403-14 – reference: 17391385 - Clin Microbiol Infect. 2007 Mar;13(3):298-304 – reference: 20562307 - J Bacteriol. 2010 Aug;192(16):4215-22  | 
    
| SSID | ssj0014452 | 
    
| Score | 2.4539328 | 
    
| Snippet | Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model... UNLABELLEDBacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in...  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 2276 | 
    
| SubjectTerms | Bacillus subtilis Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism bacterial spores Bacteriology Bile bile acids Carrier Proteins - genetics Carrier Proteins - metabolism Clostridium difficile Clostridium difficile - physiology Gene Expression Regulation, Bacterial - physiology Genetics Germination hosts Hydrolysis Inactivation Mutation Picolinic Acids - metabolism receptors spore germination Spores, Bacterial - physiology toxins vegetative growth  | 
    
| Title | Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25917906 https://www.proquest.com/docview/1691828350 https://www.proquest.com/docview/1690215661 https://www.proquest.com/docview/1701496629 https://www.proquest.com/docview/1705463749 https://pubmed.ncbi.nlm.nih.gov/PMC4524186 https://jb.asm.org/content/jb/197/14/2276.full.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 197 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1098-5530 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0014452 issn: 0021-9193 databaseCode: KQ8 dateStart: 19160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1098-5530 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0014452 issn: 0021-9193 databaseCode: DIK dateStart: 19160101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1098-5530 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0014452 issn: 0021-9193 databaseCode: GX1 dateStart: 19160101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1098-5530 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0014452 issn: 0021-9193 databaseCode: RPM dateStart: 19160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQvfH8ExmSk8YKUNk5sx3kshVFNYpoQlcZT5I9Ey-jSam0F5a_nLk4jStEEr8nl0-e739l3vyPkKI3A4jnGQ1smUchNXIaaMx0KZZzicWl5s13w6VSOJ_zkXJzvkXhTC3OJSTlXzRY-5mqD4YVDA5alA8YHcZzKPi5L9-euvEX2pQD83SP7k9Oz4Vefy8Fg9mY-qx4sgFKJ3-7MVIj9cdoCPbDJ-CBw96kIGd92STs4czdd8s6qnuv1dz2d_uaLju_7-sBFQ2GIKSjf-qul6duffxA8_t9nPiD3WmhKh16XHpK9on5EbvtmlevH5AIbohd0hNm5P-h47a5nDZ0JPQOjWbhiQd9Xc9QrLLWkQ1s5-hl8GnhJ6msh6Wg6wy4hrlpdUWzMUlkwSdTf9qNPykE1eUImxx--jMZh26chtIKzZWgLEykXJUZnSWJSDhBYKwujbDTnTqrYJtIp56K4sEo6ExmWaMFMZphLo1IkT0mvntXFc0KZMKJgkZGlUdxqqSDcAQhqIp1ym8k0IG83Q5XblsQce2lM8yaYiVV-8i5vxhVimoAcdcJzz93xd7GDzZjn7QRe5MghpJCLLgrI6-40TD3cT9F1MVs1MoiYAOHcIJNiDCplnN0og00J4EsD8syrWve-EJ0ih5oMSLqlhJ0A0oNvn6mri4YmnAtAZwqufNOp685vuDTdb3jxj3IvyV0AjcKnLB-Q3vJ6VbwCYLY0h81a2WE7H38B-og1dw | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VVAguvAuBghapXJCceO3d9foYAiWqRFUhIpWTtQ9bdUmdqIkF4dcz43UsQlAF13jysHd25pvsN98QcpSEEPEc44Et4jDgJioCzZkOhDJO8aiwvDku-HQqJ1N-ci7O90i06YW5RFLOVXOEj1xtCLzw0pClyZDxYRQlcoB_Sw8WrrhF9qUA_N0j-9PTs9FXz-VgsHtTz6qHCKBU7I87UxXgfJy2QQ9iMn4RpPtEBIxvp6QdnLlLl7xTVwu9_q5ns99y0fF93x-4bCQMkYLybVCvzMD-_EPg8f9u8wG510JTOvK-9JDs5dUjctsPq1w_Jhc4ED2nY2Tn_qCTtbueN3Im9AyCZu7yJX1fLtCvsNWSjmzp6GfIaZAlqe-FpOPZHKeEuLK-ojiYpbQQkqj_2I-elINu8oRMjz98GU-Cdk5DYAVnq8DmJlQujI1O49gkHCCwVhZW2WjOnVSRjaVTzoVRbpV0JjQs1oKZ1DCXhIWID0ivmlf5M0KZMCJnoZGFUdxqqaDcAQhqQp1wm8qkT95uliqzrYg5ztKYZU0xE6ns5F3WrCvUNH1y1BkvvHbH380ON2uetRt4maGGkEIturBPXneXYevheYqu8nnd2CBiAoRzg02CNaiUUXqjDQ4lgDvtk6fe1brfC9UpaqjJPkm2nLAzQHnw7StVedHIhHMB6EzBO9907rrzGC5N9xie_6PdC3IXQKPwlOVD0ltd1_lLAGYr86rdib8Avww0Zw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spore+Cortex+Hydrolysis+Precedes+Dipicolinic+Acid+Release+during+Clostridium+difficile+Spore+Germination&rft.jtitle=Journal+of+bacteriology&rft.au=Francis%2C+Michael+B.&rft.au=Allen%2C+Charlotte+A.&rft.au=Sorg%2C+Joseph+A.&rft.date=2015-07-01&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=197&rft.issue=14&rft.spage=2276&rft.epage=2283&rft_id=info:doi/10.1128%2FJB.02575-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JB_02575_14 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon |