Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination

Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis . In B. subtilis , the initiation of germinant receptor-mediated spore germination is divided into two genetically...

Full description

Saved in:
Bibliographic Details
Published inJournal of bacteriology Vol. 197; no. 14; pp. 2276 - 2283
Main Authors Francis, Michael B., Allen, Charlotte A., Sorg, Joseph A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.07.2015
Subjects
Online AccessGet full text
ISSN0021-9193
1067-8832
1098-5530
1098-5530
DOI10.1128/JB.02575-14

Cover

Abstract Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis . In B. subtilis , the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC , or the cortex hydrolase, sleC , prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile . We found that C. difficile spore germination proceeds through a novel pathway.
AbstractList Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway.
Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway.
Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway.
Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis . In B. subtilis , the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC , or the cortex hydrolase, sleC , prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile . We found that C. difficile spore germination proceeds through a novel pathway.
UNLABELLEDBacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway.IMPORTANCEClostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway.
Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model organism Bacillus subtilis. In B. subtilis, the initiation of germinant receptor-mediated spore germination is divided into two genetically separable stages. Stage I is characterized by the release of dipicolinic acid (DPA) from the spore core. Stage II is characterized by cortex degradation, and stage II is activated by the DPA released during stage I. Thus, DPA release precedes cortex hydrolysis during B. subtilis spore germination. Here, we investigated the timing of DPA release and cortex hydrolysis during Clostridium difficile spore germination and found that cortex hydrolysis precedes DPA release. Inactivation of either the bile acid germinant receptor, cspC, or the cortex hydrolase, sleC, prevented both cortex hydrolysis and DPA release. Because both cortex hydrolysis and DPA release during C. difficile spore germination are dependent on the presence of the germinant receptor and the cortex hydrolase, the release of DPA from the core may rely on the osmotic swelling of the core upon cortex hydrolysis. These results have implications for the hypothesized glycine receptor and suggest that the initiation of germinant receptor-mediated C. difficile spore germination proceeds through a novel germination pathway. IMPORTANCE Clostridium difficile infects antibiotic-treated hosts and spreads between hosts as a dormant spore. In a host, spores germinate to the vegetative form that produces the toxins necessary for disease. C. difficile spore germination is stimulated by certain bile acids and glycine. We recently identified the bile acid germinant receptor as the germination-specific, protease-like CspC. CspC is likely cortex localized, where it can transmit the bile acid signal to the cortex hydrolase, SleC. Due to the differences in location of CspC compared to the Bacillus subtilis germinant receptors, we hypothesized that there are fundamental differences in the germination processes between the model organism and C. difficile. We found that C. difficile spore germination proceeds through a novel pathway.
Author Francis, Michael B.
Allen, Charlotte A.
Sorg, Joseph A.
Author_xml – sequence: 1
  givenname: Michael B.
  surname: Francis
  fullname: Francis, Michael B.
  organization: Department of Biology, Texas A&M University, College Station, Texas, USA
– sequence: 2
  givenname: Charlotte A.
  surname: Allen
  fullname: Allen, Charlotte A.
  organization: Department of Biology, Texas A&M University, College Station, Texas, USA
– sequence: 3
  givenname: Joseph A.
  orcidid: 0000-0001-7822-2656
  surname: Sorg
  fullname: Sorg, Joseph A.
  organization: Department of Biology, Texas A&M University, College Station, Texas, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25917906$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1v1DAQhi1URLeFE3dkiQsSpHgS27EvSO0CLVUlEB9ny7Gd1iuvHewE2H9P2i1QCoee5jDPvNI8M3toJ6boEHoM5ACgFi9Pjw5IzVpWAb2HFkCkqBhryA5aEFJDJUE2u2ivlBUhQCmrH6DdmkloJeELdPFpSNnhZcqj-4FPNjansCm-4A_ZGWddwa_94E0KPnqDD423-KMLTheH7ZR9PMfLkMqYvfXTGlvf99744PA29tjltY969Ck-RPd7HYp7dF330Ze3bz4vT6qz98fvlodnlWEUxsq4jghLmk7LpulaKsBqYQyVnabUclGbhlthLamdEdx2pINGM-hkB7YlPWv20Ytt7hQHvfmuQ1BD9mudNwqIuhSmVp26EqaAzvirLT5M3dpZ4-KY9Z-RpL36uxP9hTpP39QskoLgc8Cz64Ccvk6ujGrti3Eh6OjSVBS0hFHetFTeBQUqOa_vgHI535ZxDjP69Ba6SlOOs-NLCkQtGkZm6snNPX8v-OsTZuD5FjA5lZJd_4-206Ob2uAWbfx4dedZkg__nfkJLIzUQQ
CODEN JOBAAY
CitedBy_id crossref_primary_10_1128_mSphere_00383_16
crossref_primary_10_1099_mic_0_001463
crossref_primary_10_1146_annurev_micro_090816_093558
crossref_primary_10_1038_s41598_017_08387_y
crossref_primary_10_1042_BCJ20190875
crossref_primary_10_1016_j_mib_2021_11_001
crossref_primary_10_1371_journal_ppat_1009516
crossref_primary_10_1128_JB_00394_21
crossref_primary_10_1128_mSphere_00335_18
crossref_primary_10_1111_mmi_15316
crossref_primary_10_1128_microbiolspec_VMBF_0029_2015
crossref_primary_10_1038_s41426_018_0211_1
crossref_primary_10_1371_journal_ppat_1006443
crossref_primary_10_1016_j_chom_2023_04_003
crossref_primary_10_1038_nrmicro_2016_108
crossref_primary_10_1128_mSphere_00306_16
crossref_primary_10_3389_fmicb_2017_02635
crossref_primary_10_1128_JB_00266_17
crossref_primary_10_1371_journal_ppat_1007681
crossref_primary_10_1111_1462_2920_15343
crossref_primary_10_2478_inmed_2019_0074
crossref_primary_10_3390_microorganisms9081651
crossref_primary_10_1128_JB_00218_18
crossref_primary_10_1371_journal_ppat_1011741
crossref_primary_10_1016_j_mib_2021_11_010
crossref_primary_10_1128_microbiolspec_TBS_0014_2012
crossref_primary_10_1093_femsre_fuaf005
crossref_primary_10_3389_fcimb_2018_00029
crossref_primary_10_1016_j_jafr_2024_101382
crossref_primary_10_1016_j_anaerobe_2017_02_018
crossref_primary_10_1128_AEM_01363_16
crossref_primary_10_1128_JB_00986_15
crossref_primary_10_3389_fmicb_2016_01702
crossref_primary_10_1111_1462_2920_13648
crossref_primary_10_1371_journal_ppat_1012507
crossref_primary_10_1146_annurev_micro_011320_011321
crossref_primary_10_1128_jb_00142_23
crossref_primary_10_1128_JB_00405_16
crossref_primary_10_1128_mSphere_00205_18
crossref_primary_10_1038_s41598_017_15236_5
crossref_primary_10_1371_journal_ppat_1007199
crossref_primary_10_1128_jb_00210_22
crossref_primary_10_1111_jam_13600
crossref_primary_10_1080_19490976_2020_1795388
crossref_primary_10_1128_msphere_00005_23
crossref_primary_10_1128_spectrum_03933_22
crossref_primary_10_1128_microbiolspec_GPP3_0017_2018
crossref_primary_10_1128_JB_00008_21
crossref_primary_10_3389_fmicb_2018_02487
crossref_primary_10_1016_j_biochi_2015_07_023
crossref_primary_10_1111_1462_2920_14505
crossref_primary_10_1016_j_anaerobe_2017_12_001
crossref_primary_10_1099_mgen_0_000767
crossref_primary_10_1093_ofid_ofw196
crossref_primary_10_3390_microorganisms9061122
crossref_primary_10_1371_journal_pbio_3000379
crossref_primary_10_1016_j_lwt_2021_112824
crossref_primary_10_1016_j_tim_2020_03_004
crossref_primary_10_1021_acs_jproteome_9b00413
crossref_primary_10_3390_antibiotics10080948
crossref_primary_10_1080_10408398_2022_2143475
crossref_primary_10_1007_s10295_015_1714_6
crossref_primary_10_1074_jbc_M117_791749
crossref_primary_10_1111_1462_2920_15529
crossref_primary_10_1128_mBio_02085_16
crossref_primary_10_1128_JB_00908_15
Cites_doi 10.1128/JB.00736-09
10.1111/mmi.12591
10.1128/JB.01260-08
10.1111/j.1469-0691.2006.01634.x
10.1128/JB.01209-09
10.1128/JB.01748-07
10.1371/journal.ppat.1003165
10.1128/JB.01455-13
10.1038/nmeth.1318
10.1016/j.anaerobe.2015.02.003
10.1128/AEM.71.7.3556-3564.2005
10.1128/IAI.00558-09
10.1016/0076-6879(66)08124-2
10.1128/JB.00610-10
10.1128/JB.00062-12
10.1128/JB.00093-13
10.1128/AEM.00822-09
10.1371/journal.pone.0073653
10.1371/journal.pone.0032381
10.1128/AAC.01443-06
10.1128/JB.00488-10
10.1016/j.mimet.2009.05.004
10.1128/JB.00597-09
10.1038/ng1830
10.1099/mic.0.072454-0
10.1128/jcm.15.3.443-446.1982
10.1128/JB.01832-08
10.1128/JB.01613-06
10.1194/jlr.R500013-JLR200
10.1128/JB.183.16.4886-4893.2001
10.1128/AAC.01611-12
10.1117/1.3494567
10.1128/IAI.00147-12
10.1371/journal.ppat.1003356
10.1128/JB.183.12.3742-3751.2001
10.1007/s00203-007-0292-z
10.1007/s00203-009-0465-z
10.1016/j.tim.2014.04.003
10.1039/a906846e
10.1128/JB.01765-07
10.1266/ggs.81.227
10.1099/mic.0.030965-0
10.1007/s00203-006-0152-2
10.1038/ncomms4114
10.1038/nature13828
10.1146/annurev.micro.61.080706.093224
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Copyright American Society for Microbiology Jul 2015
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Copyright American Society for Microbiology Jul 2015
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1128/JB.02575-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
CrossRef
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Novel Pathway for Spore Germination
EISSN 1098-5530
EndPage 2283
ExternalDocumentID 10.1128/jb.02575-14
PMC4524186
3729020181
25917906
10_1128_JB_02575_14
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R56AI108987
– fundername: NIAID NIH HHS
  grantid: R56 AI108987
GroupedDBID ---
-DZ
-~X
.55
0R~
18M
29J
2WC
39C
4.4
53G
5GY
5RE
5VS
79B
85S
AAGFI
AAYXX
ABPPZ
ACGFO
ACGOD
ACNCT
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
CITATION
CJ0
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
L7B
O9-
OK1
P-S
P2P
PQQKQ
RHI
RNS
RPM
RSF
RXW
TAE
TR2
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YQT
YR2
YZZ
ZCA
~02
~KM
.GJ
186
1VV
3O-
8WZ
9M8
A6W
ABTAH
AFFDN
AFFNX
AGCDD
AGVNZ
AI.
AIDAL
AJUXI
C1A
CGR
CUY
CVF
ECM
EIF
MVM
NHB
NPM
OHT
P-O
QZG
VH1
WHG
Y6R
ZCG
ZGI
ZXP
ZY4
7QL
7TM
7U9
8FD
ABUFD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ADTOC
ADXHL
GROUPED_DOAJ
UNPAY
ID FETCH-LOGICAL-c541t-ceb08d03ba933b7481da8cc49ba44d682c36d8dd02ec86db0b13a51b9b1d70f53
IEDL.DBID UNPAY
ISSN 0021-9193
1067-8832
1098-5530
IngestDate Wed Oct 29 12:07:21 EDT 2025
Tue Sep 30 16:07:17 EDT 2025
Sun Aug 24 02:50:35 EDT 2025
Tue Oct 07 09:26:05 EDT 2025
Thu Oct 02 12:09:07 EDT 2025
Tue Oct 21 03:33:39 EDT 2025
Thu Apr 03 06:58:26 EDT 2025
Wed Oct 01 04:06:39 EDT 2025
Thu Apr 24 23:05:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ceb08d03ba933b7481da8cc49ba44d682c36d8dd02ec86db0b13a51b9b1d70f53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Citation Francis MB, Allen CA, Sorg JA. 2015. Spore cortex hydrolysis precedes dipicolinic acid release during Clostridium difficile spore germination. J Bacteriol 197:2276–2283. doi:10.1128/JB.02575-14.
ORCID 0000-0001-7822-2656
OpenAccessLink https://proxy.k.utb.cz/login?url=https://jb.asm.org/content/jb/197/14/2276.full.pdf
PMID 25917906
PQID 1691828350
PQPubID 40724
PageCount 8
ParticipantIDs unpaywall_primary_10_1128_jb_02575_14
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4524186
proquest_miscellaneous_1705463749
proquest_miscellaneous_1701496629
proquest_miscellaneous_1690215661
proquest_journals_1691828350
pubmed_primary_25917906
crossref_primary_10_1128_JB_02575_14
crossref_citationtrail_10_1128_JB_02575_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of bacteriology
PublicationTitleAlternate J Bacteriol
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Railbaud P (e_1_3_3_41_2) 1974; 125
Wahome PG (e_1_3_3_46_2) 2008; 189
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
Nicholson WL (e_1_3_3_31_2) 1990
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_49_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
16299351 - J Lipid Res. 2006 Feb;47(2):241-59
16804543 - Nat Genet. 2006 Jul;38(7):779-86
24814671 - Trends Microbiol. 2014 Jul;22(7):406-16
19666724 - Appl Environ Microbiol. 2009 Oct;75(19):6299-305
20562307 - J Bacteriol. 2010 Aug;192(16):4215-22
21054104 - J Biomed Opt. 2010 Sep-Oct;15(5):056010
18083820 - J Bacteriol. 2008 Feb;190(4):1190-201
17158659 - J Bacteriol. 2007 Mar;189(5):1565-72
19592590 - J Bacteriol. 2009 Sep;191(18):5584-91
11371539 - J Bacteriol. 2001 Jun;183(12):3742-51
19218389 - J Bacteriol. 2009 Apr;191(8):2711-20
19564382 - Infect Immun. 2009 Sep;77(9):3661-9
24445449 - Nat Commun. 2014;5:3114
18035610 - Annu Rev Microbiol. 2007;61:555-88
25681667 - Anaerobe. 2015 Jun;33:64-70
10746319 - Analyst. 1999 Nov;124(11):1599-604
22328679 - J Bacteriol. 2012 Apr;194(8):1875-84
16897034 - Arch Microbiol. 2006 Nov;186(5):377-83
23408892 - PLoS Pathog. 2013 Feb;9(2):e1003165
19252899 - Arch Microbiol. 2009 May;191(5):403-14
4282561 - Ann Microbiol (Paris). 1974 Oct-Nov;125B(3):381-91
24140647 - Microbiology. 2014 Jan;160(Pt 1):209-16
11466292 - J Bacteriol. 2001 Aug;183(16):4886-93
17665170 - Arch Microbiol. 2008 Jan;189(1):49-58
19363495 - Nat Methods. 2009 May;6(5):343-5
22384234 - PLoS One. 2012;7(2):e32381
24488313 - J Bacteriol. 2014 Apr;196(7):1297-305
25337874 - Nature. 2015 Jan 8;517(7533):205-8
23675301 - PLoS Pathog. 2013 May;9(5):e1003356
7076817 - J Clin Microbiol. 1982 Mar;15(3):443-6
22615253 - Infect Immun. 2012 Aug;80(8):2704-11
17562803 - Antimicrob Agents Chemother. 2007 Aug;51(8):2883-7
24666282 - Mol Microbiol. 2014 May;92(4):813-23
19933358 - J Bacteriol. 2010 Feb;192(3):657-64
23417486 - J Bacteriol. 2013 May;195(9):1875-82
17391385 - Clin Microbiol Infect. 2007 Mar;13(3):298-304
23147724 - Antimicrob Agents Chemother. 2013 Jan;57(1):664-7
20675492 - J Bacteriol. 2010 Oct;192(19):4983-90
24040011 - PLoS One. 2013;8(9):e73653
19542279 - J Bacteriol. 2009 Sep;191(17):5377-86
19060152 - J Bacteriol. 2009 Feb;191(3):1115-7
17038794 - Genes Genet Syst. 2006 Aug;81(4):227-34
18245298 - J Bacteriol. 2008 Apr;190(7):2505-12
19628563 - Microbiology. 2009 Oct;155(Pt 10):3464-72
16000762 - Appl Environ Microbiol. 2005 Jul;71(7):3556-64
19445976 - J Microbiol Methods. 2009 Jul;78(1):79-85
References_xml – ident: e_1_3_3_37_2
  doi: 10.1128/JB.00736-09
– volume: 125
  start-page: 381
  year: 1974
  ident: e_1_3_3_41_2
  article-title: (Sodium taurocholate, a germination factor for anaerobic bacterial spores “in vitro” and “in vivo.”
  publication-title: Ann Microbiol
– ident: e_1_3_3_49_2
  doi: 10.1111/mmi.12591
– ident: e_1_3_3_14_2
  doi: 10.1128/JB.01260-08
– ident: e_1_3_3_26_2
  doi: 10.1111/j.1469-0691.2006.01634.x
– ident: e_1_3_3_19_2
  doi: 10.1128/JB.01209-09
– ident: e_1_3_3_42_2
  doi: 10.1128/JB.01748-07
– ident: e_1_3_3_21_2
  doi: 10.1371/journal.ppat.1003165
– ident: e_1_3_3_9_2
  doi: 10.1128/JB.01455-13
– ident: e_1_3_3_29_2
  doi: 10.1038/nmeth.1318
– ident: e_1_3_3_39_2
  doi: 10.1016/j.anaerobe.2015.02.003
– ident: e_1_3_3_36_2
  doi: 10.1128/AEM.71.7.3556-3564.2005
– ident: e_1_3_3_25_2
  doi: 10.1128/IAI.00558-09
– ident: e_1_3_3_34_2
  doi: 10.1016/0076-6879(66)08124-2
– ident: e_1_3_3_13_2
  doi: 10.1128/JB.00610-10
– ident: e_1_3_3_48_2
  doi: 10.1128/JB.00062-12
– ident: e_1_3_3_10_2
  doi: 10.1128/JB.00093-13
– ident: e_1_3_3_43_2
  doi: 10.1128/AEM.00822-09
– ident: e_1_3_3_16_2
  doi: 10.1371/journal.pone.0073653
– ident: e_1_3_3_38_2
  doi: 10.1371/journal.pone.0032381
– ident: e_1_3_3_5_2
  doi: 10.1128/AAC.01443-06
– ident: e_1_3_3_15_2
  doi: 10.1128/JB.00488-10
– ident: e_1_3_3_28_2
  doi: 10.1016/j.mimet.2009.05.004
– ident: e_1_3_3_6_2
  doi: 10.1128/JB.00597-09
– ident: e_1_3_3_18_2
  doi: 10.1038/ng1830
– ident: e_1_3_3_20_2
  doi: 10.1099/mic.0.072454-0
– ident: e_1_3_3_40_2
  doi: 10.1128/jcm.15.3.443-446.1982
– start-page: 391
  volume-title: Molecular biological methods for Bacillus
  year: 1990
  ident: e_1_3_3_31_2
– ident: e_1_3_3_24_2
  doi: 10.1128/JB.01832-08
– ident: e_1_3_3_47_2
  doi: 10.1128/JB.01613-06
– ident: e_1_3_3_12_2
  doi: 10.1194/jlr.R500013-JLR200
– ident: e_1_3_3_27_2
  doi: 10.1128/JB.183.16.4886-4893.2001
– ident: e_1_3_3_30_2
  doi: 10.1128/AAC.01611-12
– ident: e_1_3_3_35_2
  doi: 10.1117/1.3494567
– ident: e_1_3_3_4_2
  doi: 10.1128/IAI.00147-12
– ident: e_1_3_3_7_2
  doi: 10.1371/journal.ppat.1003356
– ident: e_1_3_3_23_2
  doi: 10.1128/JB.183.12.3742-3751.2001
– volume: 189
  start-page: 49
  year: 2008
  ident: e_1_3_3_46_2
  article-title: Growth, osmotic downshock resistance and differentiation of Bacillus subtilis strains lacking mechanosensitive channels
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-007-0292-z
– ident: e_1_3_3_44_2
  doi: 10.1007/s00203-009-0465-z
– ident: e_1_3_3_8_2
  doi: 10.1016/j.tim.2014.04.003
– ident: e_1_3_3_32_2
  doi: 10.1039/a906846e
– ident: e_1_3_3_11_2
  doi: 10.1128/JB.01765-07
– ident: e_1_3_3_22_2
  doi: 10.1266/ggs.81.227
– ident: e_1_3_3_33_2
  doi: 10.1099/mic.0.030965-0
– ident: e_1_3_3_45_2
  doi: 10.1007/s00203-006-0152-2
– ident: e_1_3_3_2_2
  doi: 10.1038/ncomms4114
– ident: e_1_3_3_3_2
  doi: 10.1038/nature13828
– ident: e_1_3_3_17_2
  doi: 10.1146/annurev.micro.61.080706.093224
– reference: 22328679 - J Bacteriol. 2012 Apr;194(8):1875-84
– reference: 16804543 - Nat Genet. 2006 Jul;38(7):779-86
– reference: 17665170 - Arch Microbiol. 2008 Jan;189(1):49-58
– reference: 19218389 - J Bacteriol. 2009 Apr;191(8):2711-20
– reference: 19628563 - Microbiology. 2009 Oct;155(Pt 10):3464-72
– reference: 16000762 - Appl Environ Microbiol. 2005 Jul;71(7):3556-64
– reference: 18083820 - J Bacteriol. 2008 Feb;190(4):1190-201
– reference: 19542279 - J Bacteriol. 2009 Sep;191(17):5377-86
– reference: 18035610 - Annu Rev Microbiol. 2007;61:555-88
– reference: 11466292 - J Bacteriol. 2001 Aug;183(16):4886-93
– reference: 19592590 - J Bacteriol. 2009 Sep;191(18):5584-91
– reference: 19445976 - J Microbiol Methods. 2009 Jul;78(1):79-85
– reference: 18245298 - J Bacteriol. 2008 Apr;190(7):2505-12
– reference: 17158659 - J Bacteriol. 2007 Mar;189(5):1565-72
– reference: 23417486 - J Bacteriol. 2013 May;195(9):1875-82
– reference: 24040011 - PLoS One. 2013;8(9):e73653
– reference: 23147724 - Antimicrob Agents Chemother. 2013 Jan;57(1):664-7
– reference: 16897034 - Arch Microbiol. 2006 Nov;186(5):377-83
– reference: 17562803 - Antimicrob Agents Chemother. 2007 Aug;51(8):2883-7
– reference: 11371539 - J Bacteriol. 2001 Jun;183(12):3742-51
– reference: 19060152 - J Bacteriol. 2009 Feb;191(3):1115-7
– reference: 22384234 - PLoS One. 2012;7(2):e32381
– reference: 25337874 - Nature. 2015 Jan 8;517(7533):205-8
– reference: 19564382 - Infect Immun. 2009 Sep;77(9):3661-9
– reference: 10746319 - Analyst. 1999 Nov;124(11):1599-604
– reference: 24140647 - Microbiology. 2014 Jan;160(Pt 1):209-16
– reference: 19666724 - Appl Environ Microbiol. 2009 Oct;75(19):6299-305
– reference: 4282561 - Ann Microbiol (Paris). 1974 Oct-Nov;125B(3):381-91
– reference: 22615253 - Infect Immun. 2012 Aug;80(8):2704-11
– reference: 23675301 - PLoS Pathog. 2013 May;9(5):e1003356
– reference: 25681667 - Anaerobe. 2015 Jun;33:64-70
– reference: 24488313 - J Bacteriol. 2014 Apr;196(7):1297-305
– reference: 17038794 - Genes Genet Syst. 2006 Aug;81(4):227-34
– reference: 23408892 - PLoS Pathog. 2013 Feb;9(2):e1003165
– reference: 19933358 - J Bacteriol. 2010 Feb;192(3):657-64
– reference: 20675492 - J Bacteriol. 2010 Oct;192(19):4983-90
– reference: 21054104 - J Biomed Opt. 2010 Sep-Oct;15(5):056010
– reference: 24814671 - Trends Microbiol. 2014 Jul;22(7):406-16
– reference: 7076817 - J Clin Microbiol. 1982 Mar;15(3):443-6
– reference: 16299351 - J Lipid Res. 2006 Feb;47(2):241-59
– reference: 24445449 - Nat Commun. 2014;5:3114
– reference: 24666282 - Mol Microbiol. 2014 May;92(4):813-23
– reference: 19363495 - Nat Methods. 2009 May;6(5):343-5
– reference: 19252899 - Arch Microbiol. 2009 May;191(5):403-14
– reference: 17391385 - Clin Microbiol Infect. 2007 Mar;13(3):298-304
– reference: 20562307 - J Bacteriol. 2010 Aug;192(16):4215-22
SSID ssj0014452
Score 2.4539328
Snippet Bacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in the model...
UNLABELLEDBacterial spore germination is a process whereby a dormant spore returns to active, vegetative growth, and this process has largely been studied in...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2276
SubjectTerms Bacillus subtilis
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
bacterial spores
Bacteriology
Bile
bile acids
Carrier Proteins - genetics
Carrier Proteins - metabolism
Clostridium difficile
Clostridium difficile - physiology
Gene Expression Regulation, Bacterial - physiology
Genetics
Germination
hosts
Hydrolysis
Inactivation
Mutation
Picolinic Acids - metabolism
receptors
spore germination
Spores, Bacterial - physiology
toxins
vegetative growth
Title Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination
URI https://www.ncbi.nlm.nih.gov/pubmed/25917906
https://www.proquest.com/docview/1691828350
https://www.proquest.com/docview/1690215661
https://www.proquest.com/docview/1701496629
https://www.proquest.com/docview/1705463749
https://pubmed.ncbi.nlm.nih.gov/PMC4524186
https://jb.asm.org/content/jb/197/14/2276.full.pdf
UnpaywallVersion publishedVersion
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1098-5530
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014452
  issn: 0021-9193
  databaseCode: KQ8
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1098-5530
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0014452
  issn: 0021-9193
  databaseCode: DIK
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1098-5530
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0014452
  issn: 0021-9193
  databaseCode: GX1
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1098-5530
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0014452
  issn: 0021-9193
  databaseCode: RPM
  dateStart: 19160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQvfH8ExmSk8YKUNk5sx3kshVFNYpoQlcZT5I9Ey-jSam0F5a_nLk4jStEEr8nl0-e739l3vyPkKI3A4jnGQ1smUchNXIaaMx0KZZzicWl5s13w6VSOJ_zkXJzvkXhTC3OJSTlXzRY-5mqD4YVDA5alA8YHcZzKPi5L9-euvEX2pQD83SP7k9Oz4Vefy8Fg9mY-qx4sgFKJ3-7MVIj9cdoCPbDJ-CBw96kIGd92STs4czdd8s6qnuv1dz2d_uaLju_7-sBFQ2GIKSjf-qul6duffxA8_t9nPiD3WmhKh16XHpK9on5EbvtmlevH5AIbohd0hNm5P-h47a5nDZ0JPQOjWbhiQd9Xc9QrLLWkQ1s5-hl8GnhJ6msh6Wg6wy4hrlpdUWzMUlkwSdTf9qNPykE1eUImxx--jMZh26chtIKzZWgLEykXJUZnSWJSDhBYKwujbDTnTqrYJtIp56K4sEo6ExmWaMFMZphLo1IkT0mvntXFc0KZMKJgkZGlUdxqqSDcAQhqIp1ym8k0IG83Q5XblsQce2lM8yaYiVV-8i5vxhVimoAcdcJzz93xd7GDzZjn7QRe5MghpJCLLgrI6-40TD3cT9F1MVs1MoiYAOHcIJNiDCplnN0og00J4EsD8syrWve-EJ0ih5oMSLqlhJ0A0oNvn6mri4YmnAtAZwqufNOp685vuDTdb3jxj3IvyV0AjcKnLB-Q3vJ6VbwCYLY0h81a2WE7H38B-og1dw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VVAguvAuBghapXJCceO3d9foYAiWqRFUhIpWTtQ9bdUmdqIkF4dcz43UsQlAF13jysHd25pvsN98QcpSEEPEc44Et4jDgJioCzZkOhDJO8aiwvDku-HQqJ1N-ci7O90i06YW5RFLOVXOEj1xtCLzw0pClyZDxYRQlcoB_Sw8WrrhF9qUA_N0j-9PTs9FXz-VgsHtTz6qHCKBU7I87UxXgfJy2QQ9iMn4RpPtEBIxvp6QdnLlLl7xTVwu9_q5ns99y0fF93x-4bCQMkYLybVCvzMD-_EPg8f9u8wG510JTOvK-9JDs5dUjctsPq1w_Jhc4ED2nY2Tn_qCTtbueN3Im9AyCZu7yJX1fLtCvsNWSjmzp6GfIaZAlqe-FpOPZHKeEuLK-ojiYpbQQkqj_2I-elINu8oRMjz98GU-Cdk5DYAVnq8DmJlQujI1O49gkHCCwVhZW2WjOnVSRjaVTzoVRbpV0JjQs1oKZ1DCXhIWID0ivmlf5M0KZMCJnoZGFUdxqqaDcAQhqQp1wm8qkT95uliqzrYg5ztKYZU0xE6ns5F3WrCvUNH1y1BkvvHbH380ON2uetRt4maGGkEIturBPXneXYevheYqu8nnd2CBiAoRzg02CNaiUUXqjDQ4lgDvtk6fe1brfC9UpaqjJPkm2nLAzQHnw7StVedHIhHMB6EzBO9907rrzGC5N9xie_6PdC3IXQKPwlOVD0ltd1_lLAGYr86rdib8Avww0Zw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spore+Cortex+Hydrolysis+Precedes+Dipicolinic+Acid+Release+during+Clostridium+difficile+Spore+Germination&rft.jtitle=Journal+of+bacteriology&rft.au=Francis%2C+Michael+B.&rft.au=Allen%2C+Charlotte+A.&rft.au=Sorg%2C+Joseph+A.&rft.date=2015-07-01&rft.issn=0021-9193&rft.eissn=1098-5530&rft.volume=197&rft.issue=14&rft.spage=2276&rft.epage=2283&rft_id=info:doi/10.1128%2FJB.02575-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JB_02575_14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9193&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9193&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9193&client=summon