Human gender estimation from CT images of skull using deep feature selection and feature fusion
This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 16879 - 14 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
23.07.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-65521-3 |
Cover
| Abstract | This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology. |
|---|---|
| AbstractList | This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology. This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology. Abstract This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology. This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology. |
| ArticleNumber | 16879 |
| Author | Samee, Nagwan Abdel Alkanhel, Reem Ibrahim Kurtoğlu, Ahmet Çiftçi, Rukiye Eken, Özgür Dönmez, Emrah |
| Author_xml | – sequence: 1 givenname: Rukiye surname: Çiftçi fullname: Çiftçi, Rukiye organization: Medical Faculty, Department of Anatomy, Gaziantep Islamıc Science and Technology University – sequence: 2 givenname: Emrah surname: Dönmez fullname: Dönmez, Emrah organization: Faculty of Engineering and Natural Sciences, Department of Software Engineering, Bandırma Onyedi Eylül University – sequence: 3 givenname: Ahmet surname: Kurtoğlu fullname: Kurtoğlu, Ahmet organization: Sport Science Faculty, Department of Coaching Education, Bandırma Onyedi Eylul University – sequence: 4 givenname: Özgür surname: Eken fullname: Eken, Özgür organization: Department of Physical Education and Sport Teaching, Inonu University – sequence: 5 givenname: Nagwan Abdel surname: Samee fullname: Samee, Nagwan Abdel organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University – sequence: 6 givenname: Reem Ibrahim surname: Alkanhel fullname: Alkanhel, Reem Ibrahim email: rialkanhal@pnu.edu.sa organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39043755$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUctuFDEQHKEgEkJ-gAOyxIXLgN8zPiG0AhIpEpdwtrx2e5jFay_2TFD-Hu-DJckhwhe721Wl6uqXzUlMEZrmNcHvCWb9h8KJUH2LKW-lEJS07FlzRjEXLWWUntx7nzYXpaxwPYIqTtSL5pQpzFknxFmjL-e1iWiA6CAjKNO4NtOYIvI5rdHiBtV6gIKSR-XnHAKayxgH5AA2yIOZ5gyoQAC7I5nojl1fkSm-ap57EwpcHO7z5vuXzzeLy_b629erxafr1gpOptZaJ6UwAJj7nnjvlGCqVg4rJ6SxzDrire1A0p4q5alTBrwhzlG5lNyx8-Zqr-uSWelNrrbznU5m1LtGyoM2eRptAN2J3jG8lGB9x5mypop2S9J12ErTLXHVYnutOW7M3W8TwlGQYL1NX-_T1zV9vUtfs8r6uGdt5uUanIU4ZRMeWHn4E8cfeki3mhBaZyekKrw7KOT0a6670OuxWAjBREhz0Qz3HDOsyNbi20fQVZpzrAlvUayTkrMt6s19S0cvf9dfAf0eYHMqJYPXdpx2-68Ox_D0uPQR9b8yOiRbKjgOkP_ZfoL1B9145bQ |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2025_111450 |
| Cites_doi | 10.1520/JFS2003385 10.5455/medscience.2020.11.235 10.1016/j.forsciint.2014.11.007 10.1016/j.jflm.2011.04.005 10.1007/s00414-020-02334-9 10.1080/20961790.2021.1889136 10.1007/s00414-010-0544-3 10.1520/JFS2004306 10.1016/j.jbi.2018.09.009 10.1111/j.1556-4029.2010.01635.x 10.1080/03014469200002152 10.1145/3065386 10.1109/5.726791 10.1016/j.forsciint.2009.07.014 10.1016/j.jbi.2018.07.014 10.1016/j.fri.2020.200393 10.1162/neco.1991.3.4.461 10.1038/s41598-022-07415-w 10.1007/BF00994018 10.1520/JFS14013J 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X 10.1111/1556-4029.13669 10.1016/j.forsciint.2013.03.005 10.37990/medr.843451 10.1186/s41935-018-0106-2 10.1007/s00414-017-1688-1 10.1109/CVPR.2016.90 10.1109/COMPSAC.2017.164 10.1109/AIMS.2013.9 10.1145/2046684.2046700 10.1002/ajpa.22754 10.1109/EMBC.2013.6609829 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-65521-3 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Central Science Database (via ProQuest) ProQuest Central Biological Science Database (via ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: SpringerLink Journals Open Access url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 14 |
| ExternalDocumentID | oai_doaj_org_article_758d30b6ecf7439cae627b1770c6a7b0 10.1038/s41598-024-65521-3 PMC11266511 39043755 10_1038_s41598_024_65521_3 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c541t-ccd665aee04f81ffd9539ee0d09d56ac3cd1fcc7e628299f2d9aefa1dd26b64d3 |
| IEDL.DBID | UNPAY |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:28:08 EDT 2025 Sun Oct 26 04:37:57 EDT 2025 Tue Sep 30 17:08:15 EDT 2025 Thu Sep 04 18:58:49 EDT 2025 Tue Oct 07 09:15:52 EDT 2025 Mon Jul 21 05:33:33 EDT 2025 Wed Oct 01 01:45:16 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Fri Feb 21 02:39:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Gender prognostication Precision gender estimation Skull computed tomography Convolutional neural networks (CNN) Deep learning algorithms |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-ccd665aee04f81ffd9539ee0d09d56ac3cd1fcc7e628299f2d9aefa1dd26b64d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s41598-024-65521-3 |
| PMID | 39043755 |
| PQID | 3083766430 |
| PQPubID | 2041939 |
| PageCount | 14 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_758d30b6ecf7439cae627b1770c6a7b0 unpaywall_primary_10_1038_s41598_024_65521_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266511 proquest_miscellaneous_3084030910 proquest_journals_3083766430 pubmed_primary_39043755 crossref_citationtrail_10_1038_s41598_024_65521_3 crossref_primary_10_1038_s41598_024_65521_3 springer_journals_10_1038_s41598_024_65521_3 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-23 |
| PublicationDateYYYYMMDD | 2024-07-23 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Awais, Naeem, Rasool, Mahmood (CR13) 2018; 8 Bertsatos, Chovalopoulou, Brůžek, Bejdová (CR34) 2020; 134 Pásztor (CR1) 2010; 56 Kalmey, Rathbun (CR35) 1996; 41 Rogers (CR6) 2005; 50 Gómez Pellico, Fernández Camacho (CR5) 1992; 181 Toy, Secgin, Oner, Turan, Oner, Senol (CR9) 2022; 12 CR19 Imaizumi, Bermejo, Taniguchi, Ogawa, Nagata, Kaga, Hayakawa, Shiotani (CR38) 2020; 22 CR15 Darmawan, Yusuf, Abdul Kadir, Haron (CR16) 2015; 247 CR14 Mello-Gentil, Souza-Mello (CR21) 2022; 7 Dayal, Bidmos (CR17) 2005; 50 du Jardin, Ponsaillé, Alunni-Perret, Quatrehomme (CR18) 2009; 192 CR12 Cortes, Vapnik (CR29) 1995; 20 CR33 CR10 MacLaughlin, Oldale (CR7) 1992; 19 Eshak, Ahmed, Abdel Gawad (CR3) 2011; 18 Xue, Liang, Norbury, Gillis, Killingworth (CR32) 2018; 86 Best, Garvin, Cabo (CR4) 2018; 63 Zaafrane, Ben Khelil, Naccache, Ezzedine, Savall, Telmon, Mnif, Hamdoun (CR40) 2018; 132 CR2 Eshak, Ahmed, Gawad (CR20) 2011; 18 Schulte-Geers, Obert, Schilling, Harth, Traupe, Gizewski, Verhoff (CR23) 2011; 125 Spradley, Jantz (CR8) 2011; 56 Zeybek, Ergur, Demiroglu (CR22) 2008; 181 CR28 CR27 CR26 Richard, Lippmann (CR30) 1991; 3 Franklin, Cardini, Flavel, Kuliukas (CR39) 2013; 229 Öner, Turan, Öner (CR11) 2021; 3 Urbanowicz, Meeker, La Cava, Olson, Moore (CR31) 2018; 85 Lecun, Bottou, Bengio, Haffner (CR24) 1998; 86 Krizhevsky, Sutskever, Hinton (CR25) 2017; 60 Secgin, Oner, Turan, Oner (CR37) 1970; 10 Loth, Henneberg (CR36) 1996; 99 MR Dayal (65521_CR17) 2005; 50 M Zaafrane (65521_CR40) 2018; 132 SR Loth (65521_CR36) 1996; 99 E Pásztor (65521_CR1) 2010; 56 SM MacLaughlin (65521_CR7) 1992; 19 Ph du Jardin (65521_CR18) 2009; 192 65521_CR14 TL Rogers (65521_CR6) 2005; 50 65521_CR15 65521_CR12 GA Eshak (65521_CR20) 2011; 18 C Cortes (65521_CR29) 1995; 20 D Franklin (65521_CR39) 2013; 229 65521_CR10 GA Eshak (65521_CR3) 2011; 18 65521_CR33 MD Richard (65521_CR30) 1991; 3 65521_CR2 G Zeybek (65521_CR22) 2008; 181 KC Best (65521_CR4) 2018; 63 K Imaizumi (65521_CR38) 2020; 22 M Awais (65521_CR13) 2018; 8 S Öner (65521_CR11) 2021; 3 S Toy (65521_CR9) 2022; 12 A Krizhevsky (65521_CR25) 2017; 60 L Gómez Pellico (65521_CR5) 1992; 181 Y Secgin (65521_CR37) 1970; 10 65521_CR27 MK Spradley (65521_CR8) 2011; 56 65521_CR28 65521_CR26 JK Kalmey (65521_CR35) 1996; 41 MF Darmawan (65521_CR16) 2015; 247 T Mello-Gentil (65521_CR21) 2022; 7 Y Xue (65521_CR32) 2018; 86 C Schulte-Geers (65521_CR23) 2011; 125 RJ Urbanowicz (65521_CR31) 2018; 85 65521_CR19 Y Lecun (65521_CR24) 1998; 86 A Bertsatos (65521_CR34) 2020; 134 |
| References_xml | – volume: 50 start-page: 493 year: 2005 end-page: 500 ident: CR6 article-title: Determining the sex of human remains through cranial morphology publication-title: J. Forensic Sci. doi: 10.1520/JFS2003385 – volume: 10 start-page: 356 year: 1970 end-page: 356 ident: CR37 article-title: Gender prediction with parameters obtained from pelvis computed tomography images and decision tree algorithm publication-title: Med. Sci. Int. Med. J. doi: 10.5455/medscience.2020.11.235 – volume: 247 start-page: e1 issue: 130 year: 2015 end-page: 130.e11 ident: CR16 article-title: Comparison on three classification techniques for sex estimation from the bone length of Asian children below 19 years old: An analysis using different group of ages publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2014.11.007 – volume: 18 start-page: 246 issue: 6 year: 2011 end-page: 252 ident: CR20 article-title: Gender determination from hand bones length and volume using multidetector computed tomography: A study in Egyptian people publication-title: J. Forensic Leg. Med. doi: 10.1016/j.jflm.2011.04.005 – ident: CR14 – volume: 134 start-page: 1927 year: 2020 end-page: 1937 ident: CR34 article-title: Advanced procedures for skull sex estimation using sexually dimorphic morphometric features publication-title: Int. J. Leg. Med. doi: 10.1007/s00414-020-02334-9 – ident: CR2 – ident: CR12 – volume: 7 start-page: 11 issue: 1 year: 2022 end-page: 23 ident: CR21 article-title: Contributions of anatomy to forensic sex estimation: Focus on head and neck bones publication-title: Forensic Sci. Res. doi: 10.1080/20961790.2021.1889136 – ident: CR10 – volume: 125 start-page: 417 year: 2011 end-page: 425 ident: CR23 article-title: Age and gender-dependent bone density changes of the human skull disclosed by high-resolution flat-panel computed tomography publication-title: Int. J. Leg. Med. doi: 10.1007/s00414-010-0544-3 – ident: CR33 – volume: 50 start-page: 1294 year: 2005 end-page: 1297 ident: CR17 article-title: Discriminating sex in South African blacks using patella dimensions publication-title: J. Forensic Sci. doi: 10.1520/JFS2004306 – volume: 86 start-page: 143 year: 2018 end-page: 148 ident: CR32 article-title: Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.09.009 – volume: 56 start-page: 289 year: 2011 end-page: 296 ident: CR8 article-title: Sex estimation in forensic anthropology: Skull versus postcranial elements publication-title: J. Forensic Sci. doi: 10.1111/j.1556-4029.2010.01635.x – ident: CR27 – volume: 56 start-page: 97 year: 2010 end-page: 119 ident: CR1 article-title: Anatomy of the skull publication-title: Orvostort. Kozl. – volume: 19 start-page: 285 year: 1992 end-page: 292 ident: CR7 article-title: Vertebral body diameters and sex prediction publication-title: Ann. Hum. Biol. doi: 10.1080/03014469200002152 – volume: 60 start-page: 84 year: 2017 end-page: 90 ident: CR25 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – ident: CR19 – volume: 181 start-page: 54 issue: 1–3 year: 2008 end-page: e1 ident: CR22 article-title: Stature and gender estimation using foot measurements publication-title: Forensic Sci. Int. – ident: CR15 – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: CR24 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 192 start-page: e1 issue: 127 year: 2009 end-page: 127.e6 ident: CR18 article-title: A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2009.07.014 – volume: 85 start-page: 189 year: 2018 end-page: 203 ident: CR31 article-title: Relief-based feature selection: Introduction and review publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – volume: 22 year: 2020 ident: CR38 article-title: Development of a sex estimation method for skulls using machine learning on three-dimensional shapes of skulls and skull parts publication-title: Forensic Imaging doi: 10.1016/j.fri.2020.200393 – volume: 3 start-page: 461 year: 1991 end-page: 483 ident: CR30 article-title: Neural network classifiers estimate bayesian a posteriori probabilities publication-title: Neural Comput. doi: 10.1162/neco.1991.3.4.461 – volume: 12 start-page: 4278 year: 2022 ident: CR9 article-title: A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium publication-title: Sci. Rep. doi: 10.1038/s41598-022-07415-w – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR29 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 41 start-page: 865 year: 1996 end-page: 867 ident: CR35 article-title: Sex determination by discriminant function analysis of the petrous portion of the temporal bone publication-title: J. Forensic Sci. doi: 10.1520/JFS14013J – volume: 99 start-page: 473 year: 1996 end-page: 485 ident: CR36 article-title: Mandibular ramus flexure: A new morphologic indicator of sexual dimorphism in the human skeleton publication-title: Am. J. Phys. Anthropol. doi: 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X – volume: 18 start-page: 246 year: 2011 end-page: 252 ident: CR3 article-title: Gender determination from hand bones length and volume using multidetector computed tomography: A study in Egyptian people publication-title: J. Forensic Leg. Med. doi: 10.1016/j.jflm.2011.04.005 – volume: 63 start-page: 990 year: 2018 end-page: 1000 ident: CR4 article-title: An investigation into the relationship between human cranial and pelvic sexual dimorphism publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.13669 – volume: 229 start-page: e1 issue: 158 year: 2013 end-page: 158.e8 ident: CR39 article-title: Estimation of sex from cranial measurements in a western Australian population publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2013.03.005 – volume: 3 start-page: 1 year: 2021 end-page: 9 ident: CR11 article-title: Estimation of gender by using decision tree, a machine learning algorithm, with patellar measurements obtained from MDCT images publication-title: Med. Rec. doi: 10.37990/medr.843451 – volume: 181 start-page: 417 year: 1992 end-page: 422 ident: CR5 article-title: Biometry of the anterior border of the human hip bone: Normal values and their use in sex determination publication-title: J. Anat. – volume: 8 start-page: 72 year: 2018 ident: CR13 article-title: Identification of sex from footprint dimensions using machine learning: A study on population of Punjab in Pakistan publication-title: Egypt. J. Forensic Sci. doi: 10.1186/s41935-018-0106-2 – ident: CR28 – ident: CR26 – volume: 132 start-page: 853 year: 2018 end-page: 862 ident: CR40 article-title: Sex determination of a tunisian population by CT scan analysis of the skull publication-title: Int. J. Leg. Med. doi: 10.1007/s00414-017-1688-1 – volume: 41 start-page: 865 year: 1996 ident: 65521_CR35 publication-title: J. Forensic Sci. doi: 10.1520/JFS14013J – volume: 10 start-page: 356 year: 1970 ident: 65521_CR37 publication-title: Med. Sci. Int. Med. J. doi: 10.5455/medscience.2020.11.235 – ident: 65521_CR28 – volume: 86 start-page: 2278 year: 1998 ident: 65521_CR24 publication-title: Proc. IEEE doi: 10.1109/5.726791 – ident: 65521_CR26 doi: 10.1109/CVPR.2016.90 – volume: 3 start-page: 461 year: 1991 ident: 65521_CR30 publication-title: Neural Comput. doi: 10.1162/neco.1991.3.4.461 – ident: 65521_CR14 doi: 10.1109/COMPSAC.2017.164 – ident: 65521_CR15 – volume: 3 start-page: 1 year: 2021 ident: 65521_CR11 publication-title: Med. Rec. doi: 10.37990/medr.843451 – volume: 50 start-page: 493 year: 2005 ident: 65521_CR6 publication-title: J. Forensic Sci. doi: 10.1520/JFS2003385 – ident: 65521_CR19 doi: 10.1109/AIMS.2013.9 – volume: 63 start-page: 990 year: 2018 ident: 65521_CR4 publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.13669 – ident: 65521_CR12 doi: 10.1145/2046684.2046700 – volume: 56 start-page: 289 year: 2011 ident: 65521_CR8 publication-title: J. Forensic Sci. doi: 10.1111/j.1556-4029.2010.01635.x – volume: 8 start-page: 72 year: 2018 ident: 65521_CR13 publication-title: Egypt. J. Forensic Sci. doi: 10.1186/s41935-018-0106-2 – volume: 20 start-page: 273 year: 1995 ident: 65521_CR29 publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 86 start-page: 143 year: 2018 ident: 65521_CR32 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.09.009 – volume: 56 start-page: 97 year: 2010 ident: 65521_CR1 publication-title: Orvostort. Kozl. – volume: 85 start-page: 189 year: 2018 ident: 65521_CR31 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2018.07.014 – volume: 19 start-page: 285 year: 1992 ident: 65521_CR7 publication-title: Ann. Hum. Biol. doi: 10.1080/03014469200002152 – volume: 247 start-page: e1 issue: 130 year: 2015 ident: 65521_CR16 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2014.11.007 – volume: 134 start-page: 1927 year: 2020 ident: 65521_CR34 publication-title: Int. J. Leg. Med. doi: 10.1007/s00414-020-02334-9 – volume: 50 start-page: 1294 year: 2005 ident: 65521_CR17 publication-title: J. Forensic Sci. doi: 10.1520/JFS2004306 – volume: 99 start-page: 473 year: 1996 ident: 65521_CR36 publication-title: Am. J. Phys. Anthropol. doi: 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X – ident: 65521_CR27 – volume: 229 start-page: e1 issue: 158 year: 2013 ident: 65521_CR39 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2013.03.005 – volume: 18 start-page: 246 issue: 6 year: 2011 ident: 65521_CR20 publication-title: J. Forensic Leg. Med. doi: 10.1016/j.jflm.2011.04.005 – volume: 132 start-page: 853 year: 2018 ident: 65521_CR40 publication-title: Int. J. Leg. Med. doi: 10.1007/s00414-017-1688-1 – volume: 181 start-page: 417 year: 1992 ident: 65521_CR5 publication-title: J. Anat. – ident: 65521_CR33 doi: 10.1002/ajpa.22754 – volume: 22 year: 2020 ident: 65521_CR38 publication-title: Forensic Imaging doi: 10.1016/j.fri.2020.200393 – volume: 12 start-page: 4278 year: 2022 ident: 65521_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-022-07415-w – volume: 192 start-page: e1 issue: 127 year: 2009 ident: 65521_CR18 publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2009.07.014 – volume: 7 start-page: 11 issue: 1 year: 2022 ident: 65521_CR21 publication-title: Forensic Sci. Res. doi: 10.1080/20961790.2021.1889136 – volume: 18 start-page: 246 year: 2011 ident: 65521_CR3 publication-title: J. Forensic Leg. Med. doi: 10.1016/j.jflm.2011.04.005 – volume: 181 start-page: 54 issue: 1–3 year: 2008 ident: 65521_CR22 publication-title: Forensic Sci. Int. – volume: 125 start-page: 417 year: 2011 ident: 65521_CR23 publication-title: Int. J. Leg. Med. doi: 10.1007/s00414-010-0544-3 – ident: 65521_CR10 doi: 10.1109/EMBC.2013.6609829 – volume: 60 start-page: 84 year: 2017 ident: 65521_CR25 publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 65521_CR2 |
| SSID | ssj0000529419 |
| Score | 2.444375 |
| Snippet | This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender... Abstract This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 16879 |
| SubjectTerms | 692/308 692/700/1421 Adult Aged Algorithms Computed tomography Convolutional neural networks (CNN) Deep Learning Deep learning algorithms Feature selection Female Forensic Anthropology - methods Gender Gender prognostication Humanities and Social Sciences Humans Learning algorithms Machine learning Male Middle Aged multidisciplinary Neural networks Neural Networks, Computer Precision gender estimation Radiography Reproducibility of Results Science Science (multidisciplinary) Sex Characteristics Skull Skull - diagnostic imaging Skull computed tomography Tomography, X-Ray Computed - standards |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeStOn26So0FtjIlkPW8c2NIRAekogNyHrsS1dvEu8S8m_74zsdXdpSXvoxSBLAnlm5Pn0mG8Iee9qGdBRllLUCR4VLxseTSllAO0r-D0yjEa--KLPruT5tbreSvWFd8IGeuBBcMeAZ4NgrY4-IXb2LuqqRs4k5rWr27xaZ43ZWkwNrN6VkdyMUTJMNMc9eCqMJqtkqRX4rFLseKJM2P8nlPn7ZcnpxPQRebDulu72h5vPt5zS6RPyeEST9OPwFfvkXuyekvtDfsnbZ8TmLXo6y-niKPJpDIGKFINK6MklhfIs9nSRaP8d1qIUb8HPaIhxSVPMlJ-0z4lysJPrwvQ2rXGX7Tm5Ov18eXJWjhkVSq8kX5XeB62Vi5HJ1PCUglHCQCkwE5R2XvjAk_c1yLgBP5WqYFxMjodQ6VbLIF6QvW7RxVeEGtayqFvoE2BFGVKbJHc--SB0CziqKQjfSNf6kW4cs17MbT72Fo0dNGJBIzZrxIqCfJj6LAeyjTtbf0KlTS2RKDu_APOxo_nYv5lPQQ42Krfj7O2tAFxaa8BqUP1uqoZ5h4cprouLdW4j8XiKQ5uXg4VMIxEGGaOUKkizYzs7Q92t6b59zdzeGNGlAQQX5GhjZr_GdZcsjiZT_AfRvf4fontDHlY4nVhdVuKA7K1u1vEQENqqfZsn40_LMjV7 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxO-uVongm12abLLZ3QcRW1qK4CHSQt9CNh-neOxee3dI_3sz2Y96KIcvC9kkkGRmMpNM5jcA73QhLCrKVPDCh0_G0pK5KhXCBurnYXukGI38ZSrPLsTny_xyB6ZDLAw-qxz2xLhR29bgHfkhD7ZCIYP-pB8XVylmjULv6pBCQ_epFeyHCDF2B3YzRMaawO7RyfTrt_HWBf1aglV99Azl5eEyaDCMMstEKvOgy1K-oaEikP-_rM-_H1GOntQHcG_dLPTNLz2f_6GsTh_Bw97KJJ86tngMO655Ane7vJM3T0HFq3syi2nkCOJsdAGMBINNyPE5CeWZW5LWk-XPcEYl-Dp-RqxzC-JdhAIly5hABzvpxo5__Rpv357BxenJ-fFZ2mdaSE0u2Co1xkqZa-eo8CXz3lY5r0LJ0srmUhtuLPPGFE6i47Xyma2085pZm8laCsufw6RpG7cHpKI1dbIOfWw4aVpfe8G08cZyWQf7qkyADaurTA9Djtkw5iq6w3mpOoqoQBEVKaJ4Au_HPosOhGNr6yMk2tgSAbTjj_Z6pnp5VOGYZDmtpTMej2RGh6kVCMVFjdRFTRPYH0iueqleqlseTODtWB3kEZ0sunHtOrYR6LZioc2LjkPGkfAKkaTyPIFyg3c2hrpZ0_z4HjG_MdJLBuM4gYOBzW7HtW0tDkZW_I-le7l91q_gfoaCQos04_swWV2v3etgk63qN72g_QZyLzNc priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEaIcEM8SKMhI3Gggjh0nPiAEFVWFVE5dqTfL8WOLWGWXza5g_z0zzgNWrCq4RIofkeOZycxkPN8Q8sqUwqGiTAUvA1xyllbMq1QIB9Qv4POYYTby-Rd5NhGfL4vLPTKUO-o3sN3p2mE9qcly9ubn9817EPh3Xcp49bYFJYSJYrlIZQHqKOU3yE3QVApLOZz35n6H9Z0rwVSfO7N76pZ-ijD-u2zPv49QjnHUO-T2ulmYzQ8zm_2hqk7vkbu9jUk_dExxn-z55gG51VWd3DwkOv64p9NYRI4iykaXvkgx1YSeXFC4n_qWzgNtv4GHSvFs_JQ67xc0-AgESttYPgcnmcaNrWGN_94ekcnpp4uTs7Svs5DaQrBVaq2TsjDeZyJULASnCq7gzmXKFdJYbh0L1pZeYthVhdwp44NhzuWylsLxx2S_mTf-CaEqqzMva5jjwM90oQ6CGRus47IG66pKCBt2V9sehBxrYcx0DIbzSncU0UARHSmieUJej3MWHQTHtaM_ItHGkQifHRvmy6nupVGDk-R4VktvAzpk1sCrlQjElVlpyjpLyNFAcj2wpOZgrZYSLDjofjl2gzRiiMU0fr6OYwQGrRiMOew4ZFwJV4gjVRQJqbZ4Z2up2z3N16uI-I15XhJM44QcD2z2e13X7cXxyIr_sHVP_-_pz8hBjoKTlWnOj8j-arn2z8FCW9Uvotj9AjeqNEc priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPUR9EL-vekoE39xi06Rp-7geHseCvngH9xbSfKzi0l3sLsf9986k3epycuhLIU2mpJmZziTT-Q3AO1NKR4YylaIMeMl5WnFfp1I65H6Bn8eMspE_f1FnF3J-WVwewHSXC7MXv4_Q3R2aGEoDy2WqCjQ2qbgDhxUKZjWBw9ls_nU-nqlQ1EryesiNQfIPN4n37E-E6f-bb3nzF8kxTvoA7m3btbm-MsvlH6bo9BE8HHxINuuZ_hgOfPsE7vZVJa-fgo4H82wRi8QxQtHo0xMZpZKwk3OG7YXv2Cqw7gfuQBn9-75gzvs1Cz4CfbIulschItO68W7Y0tnaM7g4_XR-cpYOdRRSW0i-Sa11ShXG-0yGiofg6kLU2HJZ7QplrLCOB2tLryisWofc1cYHw53LVaOkE89h0q5afwSszprMqwZpHO4jXWiC5MYG64Rq0HuqEuC71dV2ABmnWhdLHYPdotI9RzRyREeOaJHA-5Fm3UNs3Dr6IzFtHEnw2PEGSo0etE3jJsiJrFHeBtpwWYOvVhLQVmaVKZssgeMdy_Wgs51GicKvLXpo2P127EZtoxCKaf1qG8dICkpxHPOil5BxJqImnKiiSKDak529qe73tN-_RURvyuNS6PomMN2J2e953bYW01EU_2HpXv7f01_B_ZwUJyvTXBzDZPNz61-jB7Zp3gyK9wusNyeT priority: 102 providerName: Springer Nature |
| Title | Human gender estimation from CT images of skull using deep feature selection and feature fusion |
| URI | https://link.springer.com/article/10.1038/s41598-024-65521-3 https://www.ncbi.nlm.nih.gov/pubmed/39043755 https://www.proquest.com/docview/3083766430 https://www.proquest.com/docview/3084030910 https://pubmed.ncbi.nlm.nih.gov/PMC11266511 https://doi.org/10.1038/s41598-024-65521-3 https://doaj.org/article/758d30b6ecf7439cae627b1770c6a7b0 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYKwQ88P1RGJWReGMZSew4yWNXbZoqrZpglcqT5fijoFVpRRqh8ddz56SBwjSNl1Sxz5Jzvuudfb7fEfJepdygoQw4Sx084ijIIpsHnBtY_QT-HkPMRj6bitMZn8yTeQuTg7kwO_F7ln2swMBgEljMA5GAqQnYHumLBPzuHunPpuejL1g9DvySAFyDuM2KuX7gjuXxAP3XeZX_Xo7sIqQPyL26XKurH2q5_MMInTxqqhlVHrsQ755cHtab4lD__AvZ8Xbf95g8bH1ROmqE5wm5Y8un5G5TnfLqGZH-gJ8ufLE5imgcTZojxZQUOr6g8L6wFV05Wl3CTpbiHfoFNdauqbMeMJRWvswODlKl6VpdjWd0z8ns5PhifBq09RgCnfBoE2hthEiUtSF3WeScyROWw5sJc5MIpZk2kdM6tQLDs7mLTa6sU5ExsSgEN-wF6ZWr0r4iNA-L0IoCxhjYjxpXOB4p7bRhogAvLBuQaLtWUrdg5VgzYyl90JxlsmGcBMZJzzjJBuRDN2bdQHXcSH2EItBRIsy2b4DVka3WSthMGRYWwmqHGzet4NNSBOwKtVBpEQ7I_laAZKv7lWTg1aYCPD3oftd1g9ZiKEaVdlV7Go7BrQhoXjby1s2E5Yg3lSQDku1I4s5Ud3vKb189MjjmgwlwoQfkYCu0v-d1Ey8OOsG-Bete_x_5G3I_RvkOU9DRfdLbfK_tW_DkNsWQ7KXzdEj6o9Hk8wR-j46n55-gdSzGQ386As8zng1bVf8FAwVEQA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAkeGLRkthxkocJsbGpY1uFUCftzXP8URBVWpZWU_85_jbunDSjAlW87CVSEjtyfHe-O5_vd4S8VRk3qChDzjIHlyQO89gWIecGqJ_C8hhhNvJpX_TO-Ofz9HyN_FrkwuCxysWa6BdqM9a4R77DwFbIBOjP6MPkZ4hVozC6uiihodrSCmbXQ4y1iR3Hdn4FLly9e_QJ6P0uSQ4PBvu9sK0yEOqUx9NQayNEqqyNuMtj50yRsgLuTFSYVCjNtImd1pkVGHQsXGIKZZ2KjUlEKbhh8N1bZIMzXoDzt7F30P_ytdvlwTgaj4s2Wydi-U4NGhOz2hIeihR0Z8iWNKIvHPAva_fvQ5td5PYu2ZxVEzW_UqPRH8rx8D6511q19GPDhg_Imq0ekttNncv5IyJ9qIAOfdk6irgeTcIkxeQWuj-gcD-0NR07Wv8An5jiafwhNdZOqLMeepTWvmAPdlKV6Z66Ge72PSZnNzLnT8h6Na7sM0KLqIysKKGPAc_WuNLxWGmnDRMl2HN5QOLF7Erdwp5j9Y2R9OF3lsuGIhIoIj1FJAvI-67PpAH9WNl6D4nWtUTAbv9gfDmUrfxLcMsMi0phtUMXUCv4tQyhvyItVFZGAdlakFy2q0gtr3k-IG-61yD_GNRRlR3PfBuOYbIY2jxtOKQbCSsQuSpNA5Iv8c7SUJffVN-_eYxxzCwTYIwHZHvBZtfjWjUX2x0r_sfUPV_916_JZm9weiJPjvrHL8idBIUmysKEbZH16eXMvgR7cFq-aoWOkoublvPfSyxzOg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFbAfETqCAkeBEo0lix0kOCEHLqKVQcWilubmOl6HqKDM0M6rm1_g63nOWMgKNuPQSyY4dOW_xe_bbCHmjMm5QUIacZQ4eSRzmsS1Czg1gP4XtMcJo5G-HYu-Yfxmlow3yq4uFQbfKbk_0G7WZarwjHzDQFTIB8jMauNYt4vvu8MPsZ4gVpNDS2pXTaEjkwC4v4PhWv9_fBVy_TZLh56OdvbCtMBDqlMfzUGsjRKqsjbjLY-dMkbICWiYqTCqUZtrETuvMCjQ4Fi4xhbJOxcYkohTcMPjuNXI9Y6xAd8JslPX3O2hB43HRxulELB_UICsxni3hoUhBaoZsRRb6kgH_0nP_dtfsbbZ3yK1FNVPLCzWZ_CEWh_fI3VafpR8bArxPNmz1gNxoKlwuHxLpjQR07AvWUczo0YRKUgxroTtHFNpjW9Opo_UZAJyiH_6YGmtn1FmfdJTWvlQPTlKV6XvdAu_5HpHjK4H4Y7JZTSv7lNAiKiMrSphj4ExrXOl4rLTThokSNLk8IHEHXanbhOdYd2MiveGd5bLBiASMSI8RyQLyrp8za9J9rB39CZHWj8RU3b5jej6WLedLOJAZFpXCaoeHP63g1zJM-hVpobIyCshWh3LZ7h-1vKT2gLzuXwPnozlHVXa68GM4GshiGPOkoZB-JazAnFVpGpB8hXZWlrr6pjr94bOLY0yZADU8INsdmV2uax0stntS_A_QPVv_16_ITeBu-XX_8OA5uZ0gz0RZmLAtsjk_X9gXoAjOy5ee4yg5uWoW_w0rMXDU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceNOGFmQkbjQliR9JjqWiqpCoOHSlcrIcP7aoq-yKbFS1v54ZJxsIrapyiZR4LDnjmfhzxvMNIR90zi0ulDFnuYdLlsZF6sqYcwuzL-DzmGA28rdjeTTlX0_FaU-Tg7kwo_g9Kz41sMBgEljGYylgqYnZfbIhBeDuCdmYHn_f_4HV4wCXxAANsj4r5uaOo5UnEPTfhCqvH44cIqSPycO2XurLCz2f_7UIHT7tqhk1gbsQz56c77Wras9c_cPseLf3e0ae9FiU7nfG85zcc_UL8qCrTnn5kqjwg5_OQrE5imwcXZojxZQUenBC4X7mGrrwtDmHnSzFM_Qzap1bUu8CYShtQpkd7KRrOzz1Lf6je0Wmh19ODo7ivh5DbARPV7ExVkqhnUu4L1LvbSlYCXc2Ka2Q2jBjU29M7iSGZ0uf2VI7r1NrM1lJbtlrMqkXtdsitEyqxMkK-ljYj1pfeZ5q441lsgIUVkQkXc-VMj1ZOdbMmKsQNGeF6hSnQHEqKE6xiHwc-iw7qo5bpT-jCQySSLMdHsDsqN5rFWymLEsq6YzHjZvR8Go5EnYlRuq8SiKyszYg1ft-oxig2lwC0oPm90MzeC2GYnTtFm2Q4RjcSkFms7O3YSSsRL4pISJSjCxxNNRxS_3zLDCDYz6YBAgdkd210f4Z12262B0M-w6qe_N_4tvkUYb2neTgoztksvrVureA5FbVu96FfwPriT2H |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gender+estimation+from+CT+images+of+skull+using+deep+feature+selection+and+feature+fusion&rft.jtitle=Scientific+reports&rft.au=%C3%87ift%C3%A7i%2C+Rukiye&rft.au=D%C3%B6nmez%2C+Emrah&rft.au=Kurto%C4%9Flu%2C+Ahmet&rft.au=Eken%2C+%C3%96zg%C3%BCr&rft.date=2024-07-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-65521-3&rft.externalDocID=10_1038_s41598_024_65521_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |