Human gender estimation from CT images of skull using deep feature selection and feature fusion

This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 16879 - 14
Main Authors Çiftçi, Rukiye, Dönmez, Emrah, Kurtoğlu, Ahmet, Eken, Özgür, Samee, Nagwan Abdel, Alkanhel, Reem Ibrahim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-65521-3

Cover

Abstract This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.
AbstractList This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.
This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.
Abstract This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.
This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender identification in the realm of identification. The study encompasses a corpus of CT images of cranial structures derived from 218 male and 203 female subjects, constituting a total cohort of 421 individuals within the age bracket of 25 to 65 years. Employing deep learning, a prominent subset of machine learning algorithms, the study deploys convolutional neural network (CNN) models to excavate profound attributes inherent in the skull CT images. In pursuit of the research objective, the focal methodology involves the exclusive application of deep learning algorithms to image datasets, culminating in an accuracy rate of 96.4%. The gender estimation process exhibits a precision of 96.1% for male individuals and 96.8% for female individuals. The precision performance varies across different selections of feature numbers, namely 100, 300, and 500, alongside 1000 features without feature selection. The respective precision rates for these selections are recorded as 95.0%, 95.5%, 96.2%, and 96.4%. It is notable that gender estimation via visual radiography mitigates the discrepancy in measurements between experts, concurrently yielding an expedited estimation rate. Predicated on the empirical findings of this investigation, it is inferred that the efficacy of the CNN model, the configurational intricacies of the classifier, and the judicious selection of features collectively constitute pivotal determinants in shaping the performance attributes of the proposed methodology.
ArticleNumber 16879
Author Samee, Nagwan Abdel
Alkanhel, Reem Ibrahim
Kurtoğlu, Ahmet
Çiftçi, Rukiye
Eken, Özgür
Dönmez, Emrah
Author_xml – sequence: 1
  givenname: Rukiye
  surname: Çiftçi
  fullname: Çiftçi, Rukiye
  organization: Medical Faculty, Department of Anatomy, Gaziantep Islamıc Science and Technology University
– sequence: 2
  givenname: Emrah
  surname: Dönmez
  fullname: Dönmez, Emrah
  organization: Faculty of Engineering and Natural Sciences, Department of Software Engineering, Bandırma Onyedi Eylül University
– sequence: 3
  givenname: Ahmet
  surname: Kurtoğlu
  fullname: Kurtoğlu, Ahmet
  organization: Sport Science Faculty, Department of Coaching Education, Bandırma Onyedi Eylul University
– sequence: 4
  givenname: Özgür
  surname: Eken
  fullname: Eken, Özgür
  organization: Department of Physical Education and Sport Teaching, Inonu University
– sequence: 5
  givenname: Nagwan Abdel
  surname: Samee
  fullname: Samee, Nagwan Abdel
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University
– sequence: 6
  givenname: Reem Ibrahim
  surname: Alkanhel
  fullname: Alkanhel, Reem Ibrahim
  email: rialkanhal@pnu.edu.sa
  organization: Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39043755$$D View this record in MEDLINE/PubMed
BookMark eNqNUctuFDEQHKEgEkJ-gAOyxIXLgN8zPiG0AhIpEpdwtrx2e5jFay_2TFD-Hu-DJckhwhe721Wl6uqXzUlMEZrmNcHvCWb9h8KJUH2LKW-lEJS07FlzRjEXLWWUntx7nzYXpaxwPYIqTtSL5pQpzFknxFmjL-e1iWiA6CAjKNO4NtOYIvI5rdHiBtV6gIKSR-XnHAKayxgH5AA2yIOZ5gyoQAC7I5nojl1fkSm-ap57EwpcHO7z5vuXzzeLy_b629erxafr1gpOptZaJ6UwAJj7nnjvlGCqVg4rJ6SxzDrire1A0p4q5alTBrwhzlG5lNyx8-Zqr-uSWelNrrbznU5m1LtGyoM2eRptAN2J3jG8lGB9x5mypop2S9J12ErTLXHVYnutOW7M3W8TwlGQYL1NX-_T1zV9vUtfs8r6uGdt5uUanIU4ZRMeWHn4E8cfeki3mhBaZyekKrw7KOT0a6670OuxWAjBREhz0Qz3HDOsyNbi20fQVZpzrAlvUayTkrMt6s19S0cvf9dfAf0eYHMqJYPXdpx2-68Ox_D0uPQR9b8yOiRbKjgOkP_ZfoL1B9145bQ
CitedBy_id crossref_primary_10_1016_j_patcog_2025_111450
Cites_doi 10.1520/JFS2003385
10.5455/medscience.2020.11.235
10.1016/j.forsciint.2014.11.007
10.1016/j.jflm.2011.04.005
10.1007/s00414-020-02334-9
10.1080/20961790.2021.1889136
10.1007/s00414-010-0544-3
10.1520/JFS2004306
10.1016/j.jbi.2018.09.009
10.1111/j.1556-4029.2010.01635.x
10.1080/03014469200002152
10.1145/3065386
10.1109/5.726791
10.1016/j.forsciint.2009.07.014
10.1016/j.jbi.2018.07.014
10.1016/j.fri.2020.200393
10.1162/neco.1991.3.4.461
10.1038/s41598-022-07415-w
10.1007/BF00994018
10.1520/JFS14013J
10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X
10.1111/1556-4029.13669
10.1016/j.forsciint.2013.03.005
10.37990/medr.843451
10.1186/s41935-018-0106-2
10.1007/s00414-017-1688-1
10.1109/CVPR.2016.90
10.1109/COMPSAC.2017.164
10.1109/AIMS.2013.9
10.1145/2046684.2046700
10.1002/ajpa.22754
10.1109/EMBC.2013.6609829
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-65521-3
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Science Database (via ProQuest)
ProQuest Central Biological Science Database (via ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerLink Journals Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_758d30b6ecf7439cae627b1770c6a7b0
10.1038/s41598-024-65521-3
PMC11266511
39043755
10_1038_s41598_024_65521_3
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c541t-ccd665aee04f81ffd9539ee0d09d56ac3cd1fcc7e628299f2d9aefa1dd26b64d3
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Fri Oct 03 12:28:08 EDT 2025
Sun Oct 26 04:37:57 EDT 2025
Tue Sep 30 17:08:15 EDT 2025
Thu Sep 04 18:58:49 EDT 2025
Tue Oct 07 09:15:52 EDT 2025
Mon Jul 21 05:33:33 EDT 2025
Wed Oct 01 01:45:16 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Fri Feb 21 02:39:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Gender prognostication
Precision gender estimation
Skull computed tomography
Convolutional neural networks (CNN)
Deep learning algorithms
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ccd665aee04f81ffd9539ee0d09d56ac3cd1fcc7e628299f2d9aefa1dd26b64d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s41598-024-65521-3
PMID 39043755
PQID 3083766430
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_758d30b6ecf7439cae627b1770c6a7b0
unpaywall_primary_10_1038_s41598_024_65521_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11266511
proquest_miscellaneous_3084030910
proquest_journals_3083766430
pubmed_primary_39043755
crossref_citationtrail_10_1038_s41598_024_65521_3
crossref_primary_10_1038_s41598_024_65521_3
springer_journals_10_1038_s41598_024_65521_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-23
PublicationDateYYYYMMDD 2024-07-23
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Awais, Naeem, Rasool, Mahmood (CR13) 2018; 8
Bertsatos, Chovalopoulou, Brůžek, Bejdová (CR34) 2020; 134
Pásztor (CR1) 2010; 56
Kalmey, Rathbun (CR35) 1996; 41
Rogers (CR6) 2005; 50
Gómez Pellico, Fernández Camacho (CR5) 1992; 181
Toy, Secgin, Oner, Turan, Oner, Senol (CR9) 2022; 12
CR19
Imaizumi, Bermejo, Taniguchi, Ogawa, Nagata, Kaga, Hayakawa, Shiotani (CR38) 2020; 22
CR15
Darmawan, Yusuf, Abdul Kadir, Haron (CR16) 2015; 247
CR14
Mello-Gentil, Souza-Mello (CR21) 2022; 7
Dayal, Bidmos (CR17) 2005; 50
du Jardin, Ponsaillé, Alunni-Perret, Quatrehomme (CR18) 2009; 192
CR12
Cortes, Vapnik (CR29) 1995; 20
CR33
CR10
MacLaughlin, Oldale (CR7) 1992; 19
Eshak, Ahmed, Abdel Gawad (CR3) 2011; 18
Xue, Liang, Norbury, Gillis, Killingworth (CR32) 2018; 86
Best, Garvin, Cabo (CR4) 2018; 63
Zaafrane, Ben Khelil, Naccache, Ezzedine, Savall, Telmon, Mnif, Hamdoun (CR40) 2018; 132
CR2
Eshak, Ahmed, Gawad (CR20) 2011; 18
Schulte-Geers, Obert, Schilling, Harth, Traupe, Gizewski, Verhoff (CR23) 2011; 125
Spradley, Jantz (CR8) 2011; 56
Zeybek, Ergur, Demiroglu (CR22) 2008; 181
CR28
CR27
CR26
Richard, Lippmann (CR30) 1991; 3
Franklin, Cardini, Flavel, Kuliukas (CR39) 2013; 229
Öner, Turan, Öner (CR11) 2021; 3
Urbanowicz, Meeker, La Cava, Olson, Moore (CR31) 2018; 85
Lecun, Bottou, Bengio, Haffner (CR24) 1998; 86
Krizhevsky, Sutskever, Hinton (CR25) 2017; 60
Secgin, Oner, Turan, Oner (CR37) 1970; 10
Loth, Henneberg (CR36) 1996; 99
MR Dayal (65521_CR17) 2005; 50
M Zaafrane (65521_CR40) 2018; 132
SR Loth (65521_CR36) 1996; 99
E Pásztor (65521_CR1) 2010; 56
SM MacLaughlin (65521_CR7) 1992; 19
Ph du Jardin (65521_CR18) 2009; 192
65521_CR14
TL Rogers (65521_CR6) 2005; 50
65521_CR15
65521_CR12
GA Eshak (65521_CR20) 2011; 18
C Cortes (65521_CR29) 1995; 20
D Franklin (65521_CR39) 2013; 229
65521_CR10
GA Eshak (65521_CR3) 2011; 18
65521_CR33
MD Richard (65521_CR30) 1991; 3
65521_CR2
G Zeybek (65521_CR22) 2008; 181
KC Best (65521_CR4) 2018; 63
K Imaizumi (65521_CR38) 2020; 22
M Awais (65521_CR13) 2018; 8
S Öner (65521_CR11) 2021; 3
S Toy (65521_CR9) 2022; 12
A Krizhevsky (65521_CR25) 2017; 60
L Gómez Pellico (65521_CR5) 1992; 181
Y Secgin (65521_CR37) 1970; 10
65521_CR27
MK Spradley (65521_CR8) 2011; 56
65521_CR28
65521_CR26
JK Kalmey (65521_CR35) 1996; 41
MF Darmawan (65521_CR16) 2015; 247
T Mello-Gentil (65521_CR21) 2022; 7
Y Xue (65521_CR32) 2018; 86
C Schulte-Geers (65521_CR23) 2011; 125
RJ Urbanowicz (65521_CR31) 2018; 85
65521_CR19
Y Lecun (65521_CR24) 1998; 86
A Bertsatos (65521_CR34) 2020; 134
References_xml – volume: 50
  start-page: 493
  year: 2005
  end-page: 500
  ident: CR6
  article-title: Determining the sex of human remains through cranial morphology
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2003385
– volume: 10
  start-page: 356
  year: 1970
  end-page: 356
  ident: CR37
  article-title: Gender prediction with parameters obtained from pelvis computed tomography images and decision tree algorithm
  publication-title: Med. Sci. Int. Med. J.
  doi: 10.5455/medscience.2020.11.235
– volume: 247
  start-page: e1
  issue: 130
  year: 2015
  end-page: 130.e11
  ident: CR16
  article-title: Comparison on three classification techniques for sex estimation from the bone length of Asian children below 19 years old: An analysis using different group of ages
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2014.11.007
– volume: 18
  start-page: 246
  issue: 6
  year: 2011
  end-page: 252
  ident: CR20
  article-title: Gender determination from hand bones length and volume using multidetector computed tomography: A study in Egyptian people
  publication-title: J. Forensic Leg. Med.
  doi: 10.1016/j.jflm.2011.04.005
– ident: CR14
– volume: 134
  start-page: 1927
  year: 2020
  end-page: 1937
  ident: CR34
  article-title: Advanced procedures for skull sex estimation using sexually dimorphic morphometric features
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s00414-020-02334-9
– ident: CR2
– ident: CR12
– volume: 7
  start-page: 11
  issue: 1
  year: 2022
  end-page: 23
  ident: CR21
  article-title: Contributions of anatomy to forensic sex estimation: Focus on head and neck bones
  publication-title: Forensic Sci. Res.
  doi: 10.1080/20961790.2021.1889136
– ident: CR10
– volume: 125
  start-page: 417
  year: 2011
  end-page: 425
  ident: CR23
  article-title: Age and gender-dependent bone density changes of the human skull disclosed by high-resolution flat-panel computed tomography
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s00414-010-0544-3
– ident: CR33
– volume: 50
  start-page: 1294
  year: 2005
  end-page: 1297
  ident: CR17
  article-title: Discriminating sex in South African blacks using patella dimensions
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2004306
– volume: 86
  start-page: 143
  year: 2018
  end-page: 148
  ident: CR32
  article-title: Predicting the risk of acute care readmissions among rehabilitation inpatients: A machine learning approach
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.09.009
– volume: 56
  start-page: 289
  year: 2011
  end-page: 296
  ident: CR8
  article-title: Sex estimation in forensic anthropology: Skull versus postcranial elements
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2010.01635.x
– ident: CR27
– volume: 56
  start-page: 97
  year: 2010
  end-page: 119
  ident: CR1
  article-title: Anatomy of the skull
  publication-title: Orvostort. Kozl.
– volume: 19
  start-page: 285
  year: 1992
  end-page: 292
  ident: CR7
  article-title: Vertebral body diameters and sex prediction
  publication-title: Ann. Hum. Biol.
  doi: 10.1080/03014469200002152
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: CR25
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: CR19
– volume: 181
  start-page: 54
  issue: 1–3
  year: 2008
  end-page: e1
  ident: CR22
  article-title: Stature and gender estimation using foot measurements
  publication-title: Forensic Sci. Int.
– ident: CR15
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: CR24
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 192
  start-page: e1
  issue: 127
  year: 2009
  end-page: 127.e6
  ident: CR18
  article-title: A comparison between neural network and other metric methods to determine sex from the upper femur in a modern French population
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2009.07.014
– volume: 85
  start-page: 189
  year: 2018
  end-page: 203
  ident: CR31
  article-title: Relief-based feature selection: Introduction and review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– volume: 22
  year: 2020
  ident: CR38
  article-title: Development of a sex estimation method for skulls using machine learning on three-dimensional shapes of skulls and skull parts
  publication-title: Forensic Imaging
  doi: 10.1016/j.fri.2020.200393
– volume: 3
  start-page: 461
  year: 1991
  end-page: 483
  ident: CR30
  article-title: Neural network classifiers estimate bayesian a posteriori probabilities
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.461
– volume: 12
  start-page: 4278
  year: 2022
  ident: CR9
  article-title: A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07415-w
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR29
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 41
  start-page: 865
  year: 1996
  end-page: 867
  ident: CR35
  article-title: Sex determination by discriminant function analysis of the petrous portion of the temporal bone
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS14013J
– volume: 99
  start-page: 473
  year: 1996
  end-page: 485
  ident: CR36
  article-title: Mandibular ramus flexure: A new morphologic indicator of sexual dimorphism in the human skeleton
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X
– volume: 18
  start-page: 246
  year: 2011
  end-page: 252
  ident: CR3
  article-title: Gender determination from hand bones length and volume using multidetector computed tomography: A study in Egyptian people
  publication-title: J. Forensic Leg. Med.
  doi: 10.1016/j.jflm.2011.04.005
– volume: 63
  start-page: 990
  year: 2018
  end-page: 1000
  ident: CR4
  article-title: An investigation into the relationship between human cranial and pelvic sexual dimorphism
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.13669
– volume: 229
  start-page: e1
  issue: 158
  year: 2013
  end-page: 158.e8
  ident: CR39
  article-title: Estimation of sex from cranial measurements in a western Australian population
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2013.03.005
– volume: 3
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR11
  article-title: Estimation of gender by using decision tree, a machine learning algorithm, with patellar measurements obtained from MDCT images
  publication-title: Med. Rec.
  doi: 10.37990/medr.843451
– volume: 181
  start-page: 417
  year: 1992
  end-page: 422
  ident: CR5
  article-title: Biometry of the anterior border of the human hip bone: Normal values and their use in sex determination
  publication-title: J. Anat.
– volume: 8
  start-page: 72
  year: 2018
  ident: CR13
  article-title: Identification of sex from footprint dimensions using machine learning: A study on population of Punjab in Pakistan
  publication-title: Egypt. J. Forensic Sci.
  doi: 10.1186/s41935-018-0106-2
– ident: CR28
– ident: CR26
– volume: 132
  start-page: 853
  year: 2018
  end-page: 862
  ident: CR40
  article-title: Sex determination of a tunisian population by CT scan analysis of the skull
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s00414-017-1688-1
– volume: 41
  start-page: 865
  year: 1996
  ident: 65521_CR35
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS14013J
– volume: 10
  start-page: 356
  year: 1970
  ident: 65521_CR37
  publication-title: Med. Sci. Int. Med. J.
  doi: 10.5455/medscience.2020.11.235
– ident: 65521_CR28
– volume: 86
  start-page: 2278
  year: 1998
  ident: 65521_CR24
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 65521_CR26
  doi: 10.1109/CVPR.2016.90
– volume: 3
  start-page: 461
  year: 1991
  ident: 65521_CR30
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.4.461
– ident: 65521_CR14
  doi: 10.1109/COMPSAC.2017.164
– ident: 65521_CR15
– volume: 3
  start-page: 1
  year: 2021
  ident: 65521_CR11
  publication-title: Med. Rec.
  doi: 10.37990/medr.843451
– volume: 50
  start-page: 493
  year: 2005
  ident: 65521_CR6
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2003385
– ident: 65521_CR19
  doi: 10.1109/AIMS.2013.9
– volume: 63
  start-page: 990
  year: 2018
  ident: 65521_CR4
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.13669
– ident: 65521_CR12
  doi: 10.1145/2046684.2046700
– volume: 56
  start-page: 289
  year: 2011
  ident: 65521_CR8
  publication-title: J. Forensic Sci.
  doi: 10.1111/j.1556-4029.2010.01635.x
– volume: 8
  start-page: 72
  year: 2018
  ident: 65521_CR13
  publication-title: Egypt. J. Forensic Sci.
  doi: 10.1186/s41935-018-0106-2
– volume: 20
  start-page: 273
  year: 1995
  ident: 65521_CR29
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 86
  start-page: 143
  year: 2018
  ident: 65521_CR32
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.09.009
– volume: 56
  start-page: 97
  year: 2010
  ident: 65521_CR1
  publication-title: Orvostort. Kozl.
– volume: 85
  start-page: 189
  year: 2018
  ident: 65521_CR31
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2018.07.014
– volume: 19
  start-page: 285
  year: 1992
  ident: 65521_CR7
  publication-title: Ann. Hum. Biol.
  doi: 10.1080/03014469200002152
– volume: 247
  start-page: e1
  issue: 130
  year: 2015
  ident: 65521_CR16
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2014.11.007
– volume: 134
  start-page: 1927
  year: 2020
  ident: 65521_CR34
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s00414-020-02334-9
– volume: 50
  start-page: 1294
  year: 2005
  ident: 65521_CR17
  publication-title: J. Forensic Sci.
  doi: 10.1520/JFS2004306
– volume: 99
  start-page: 473
  year: 1996
  ident: 65521_CR36
  publication-title: Am. J. Phys. Anthropol.
  doi: 10.1002/(SICI)1096-8644(199603)99:3<473::AID-AJPA8>3.0.CO;2-X
– ident: 65521_CR27
– volume: 229
  start-page: e1
  issue: 158
  year: 2013
  ident: 65521_CR39
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2013.03.005
– volume: 18
  start-page: 246
  issue: 6
  year: 2011
  ident: 65521_CR20
  publication-title: J. Forensic Leg. Med.
  doi: 10.1016/j.jflm.2011.04.005
– volume: 132
  start-page: 853
  year: 2018
  ident: 65521_CR40
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s00414-017-1688-1
– volume: 181
  start-page: 417
  year: 1992
  ident: 65521_CR5
  publication-title: J. Anat.
– ident: 65521_CR33
  doi: 10.1002/ajpa.22754
– volume: 22
  year: 2020
  ident: 65521_CR38
  publication-title: Forensic Imaging
  doi: 10.1016/j.fri.2020.200393
– volume: 12
  start-page: 4278
  year: 2022
  ident: 65521_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-07415-w
– volume: 192
  start-page: e1
  issue: 127
  year: 2009
  ident: 65521_CR18
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2009.07.014
– volume: 7
  start-page: 11
  issue: 1
  year: 2022
  ident: 65521_CR21
  publication-title: Forensic Sci. Res.
  doi: 10.1080/20961790.2021.1889136
– volume: 18
  start-page: 246
  year: 2011
  ident: 65521_CR3
  publication-title: J. Forensic Leg. Med.
  doi: 10.1016/j.jflm.2011.04.005
– volume: 181
  start-page: 54
  issue: 1–3
  year: 2008
  ident: 65521_CR22
  publication-title: Forensic Sci. Int.
– volume: 125
  start-page: 417
  year: 2011
  ident: 65521_CR23
  publication-title: Int. J. Leg. Med.
  doi: 10.1007/s00414-010-0544-3
– ident: 65521_CR10
  doi: 10.1109/EMBC.2013.6609829
– volume: 60
  start-page: 84
  year: 2017
  ident: 65521_CR25
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– ident: 65521_CR2
SSID ssj0000529419
Score 2.444375
Snippet This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender...
Abstract This research endeavors to prognosticate gender by harnessing the potential of skull computed tomography (CT) images, given the seminal role of gender...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16879
SubjectTerms 692/308
692/700/1421
Adult
Aged
Algorithms
Computed tomography
Convolutional neural networks (CNN)
Deep Learning
Deep learning algorithms
Feature selection
Female
Forensic Anthropology - methods
Gender
Gender prognostication
Humanities and Social Sciences
Humans
Learning algorithms
Machine learning
Male
Middle Aged
multidisciplinary
Neural networks
Neural Networks, Computer
Precision gender estimation
Radiography
Reproducibility of Results
Science
Science (multidisciplinary)
Sex Characteristics
Skull
Skull - diagnostic imaging
Skull computed tomography
Tomography, X-Ray Computed - standards
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUNoeStOn26So0FtjIlkPW8c2NIRAekogNyHrsS1dvEu8S8m_74zsdXdpSXvoxSBLAnlm5Pn0mG8Iee9qGdBRllLUCR4VLxseTSllAO0r-D0yjEa--KLPruT5tbreSvWFd8IGeuBBcMeAZ4NgrY4-IXb2LuqqRs4k5rWr27xaZ43ZWkwNrN6VkdyMUTJMNMc9eCqMJqtkqRX4rFLseKJM2P8nlPn7ZcnpxPQRebDulu72h5vPt5zS6RPyeEST9OPwFfvkXuyekvtDfsnbZ8TmLXo6y-niKPJpDIGKFINK6MklhfIs9nSRaP8d1qIUb8HPaIhxSVPMlJ-0z4lysJPrwvQ2rXGX7Tm5Ov18eXJWjhkVSq8kX5XeB62Vi5HJ1PCUglHCQCkwE5R2XvjAk_c1yLgBP5WqYFxMjodQ6VbLIF6QvW7RxVeEGtayqFvoE2BFGVKbJHc--SB0CziqKQjfSNf6kW4cs17MbT72Fo0dNGJBIzZrxIqCfJj6LAeyjTtbf0KlTS2RKDu_APOxo_nYv5lPQQ42Krfj7O2tAFxaa8BqUP1uqoZ5h4cprouLdW4j8XiKQ5uXg4VMIxEGGaOUKkizYzs7Q92t6b59zdzeGNGlAQQX5GhjZr_GdZcsjiZT_AfRvf4fontDHlY4nVhdVuKA7K1u1vEQENqqfZsn40_LMjV7
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB_qFVEfxO-uVongm12abLLZ3QcRW1qK4CHSQt9CNh-neOxee3dI_3sz2Y96KIcvC9kkkGRmMpNM5jcA73QhLCrKVPDCh0_G0pK5KhXCBurnYXukGI38ZSrPLsTny_xyB6ZDLAw-qxz2xLhR29bgHfkhD7ZCIYP-pB8XVylmjULv6pBCQ_epFeyHCDF2B3YzRMaawO7RyfTrt_HWBf1aglV99Azl5eEyaDCMMstEKvOgy1K-oaEikP-_rM-_H1GOntQHcG_dLPTNLz2f_6GsTh_Bw97KJJ86tngMO655Ane7vJM3T0HFq3syi2nkCOJsdAGMBINNyPE5CeWZW5LWk-XPcEYl-Dp-RqxzC-JdhAIly5hABzvpxo5__Rpv357BxenJ-fFZ2mdaSE0u2Co1xkqZa-eo8CXz3lY5r0LJ0srmUhtuLPPGFE6i47Xyma2085pZm8laCsufw6RpG7cHpKI1dbIOfWw4aVpfe8G08cZyWQf7qkyADaurTA9Djtkw5iq6w3mpOoqoQBEVKaJ4Au_HPosOhGNr6yMk2tgSAbTjj_Z6pnp5VOGYZDmtpTMej2RGh6kVCMVFjdRFTRPYH0iueqleqlseTODtWB3kEZ0sunHtOrYR6LZioc2LjkPGkfAKkaTyPIFyg3c2hrpZ0_z4HjG_MdJLBuM4gYOBzW7HtW0tDkZW_I-le7l91q_gfoaCQos04_swWV2v3etgk63qN72g_QZyLzNc
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKEaIcEM8SKMhI3Gggjh0nPiAEFVWFVE5dqTfL8WOLWGWXza5g_z0zzgNWrCq4RIofkeOZycxkPN8Q8sqUwqGiTAUvA1xyllbMq1QIB9Qv4POYYTby-Rd5NhGfL4vLPTKUO-o3sN3p2mE9qcly9ubn9817EPh3Xcp49bYFJYSJYrlIZQHqKOU3yE3QVApLOZz35n6H9Z0rwVSfO7N76pZ-ijD-u2zPv49QjnHUO-T2ulmYzQ8zm_2hqk7vkbu9jUk_dExxn-z55gG51VWd3DwkOv64p9NYRI4iykaXvkgx1YSeXFC4n_qWzgNtv4GHSvFs_JQ67xc0-AgESttYPgcnmcaNrWGN_94ekcnpp4uTs7Svs5DaQrBVaq2TsjDeZyJULASnCq7gzmXKFdJYbh0L1pZeYthVhdwp44NhzuWylsLxx2S_mTf-CaEqqzMva5jjwM90oQ6CGRus47IG66pKCBt2V9sehBxrYcx0DIbzSncU0UARHSmieUJej3MWHQTHtaM_ItHGkQifHRvmy6nupVGDk-R4VktvAzpk1sCrlQjElVlpyjpLyNFAcj2wpOZgrZYSLDjofjl2gzRiiMU0fr6OYwQGrRiMOew4ZFwJV4gjVRQJqbZ4Z2up2z3N16uI-I15XhJM44QcD2z2e13X7cXxyIr_sHVP_-_pz8hBjoKTlWnOj8j-arn2z8FCW9Uvotj9AjeqNEc
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OPUR9EL-vekoE39xi06Rp-7geHseCvngH9xbSfKzi0l3sLsf9986k3epycuhLIU2mpJmZziTT-Q3AO1NKR4YylaIMeMl5WnFfp1I65H6Bn8eMspE_f1FnF3J-WVwewHSXC7MXv4_Q3R2aGEoDy2WqCjQ2qbgDhxUKZjWBw9ls_nU-nqlQ1EryesiNQfIPN4n37E-E6f-bb3nzF8kxTvoA7m3btbm-MsvlH6bo9BE8HHxINuuZ_hgOfPsE7vZVJa-fgo4H82wRi8QxQtHo0xMZpZKwk3OG7YXv2Cqw7gfuQBn9-75gzvs1Cz4CfbIulschItO68W7Y0tnaM7g4_XR-cpYOdRRSW0i-Sa11ShXG-0yGiofg6kLU2HJZ7QplrLCOB2tLryisWofc1cYHw53LVaOkE89h0q5afwSszprMqwZpHO4jXWiC5MYG64Rq0HuqEuC71dV2ABmnWhdLHYPdotI9RzRyREeOaJHA-5Fm3UNs3Dr6IzFtHEnw2PEGSo0etE3jJsiJrFHeBtpwWYOvVhLQVmaVKZssgeMdy_Wgs51GicKvLXpo2P127EZtoxCKaf1qG8dICkpxHPOil5BxJqImnKiiSKDak529qe73tN-_RURvyuNS6PomMN2J2e953bYW01EU_2HpXv7f01_B_ZwUJyvTXBzDZPNz61-jB7Zp3gyK9wusNyeT
  priority: 102
  providerName: Springer Nature
Title Human gender estimation from CT images of skull using deep feature selection and feature fusion
URI https://link.springer.com/article/10.1038/s41598-024-65521-3
https://www.ncbi.nlm.nih.gov/pubmed/39043755
https://www.proquest.com/docview/3083766430
https://www.proquest.com/docview/3084030910
https://pubmed.ncbi.nlm.nih.gov/PMC11266511
https://doi.org/10.1038/s41598-024-65521-3
https://doaj.org/article/758d30b6ecf7439cae627b1770c6a7b0
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYKwQ88P1RGJWReGMZSew4yWNXbZoqrZpglcqT5fijoFVpRRqh8ddz56SBwjSNl1Sxz5Jzvuudfb7fEfJepdygoQw4Sx084ijIIpsHnBtY_QT-HkPMRj6bitMZn8yTeQuTg7kwO_F7ln2swMBgEljMA5GAqQnYHumLBPzuHunPpuejL1g9DvySAFyDuM2KuX7gjuXxAP3XeZX_Xo7sIqQPyL26XKurH2q5_MMInTxqqhlVHrsQ755cHtab4lD__AvZ8Xbf95g8bH1ROmqE5wm5Y8un5G5TnfLqGZH-gJ8ufLE5imgcTZojxZQUOr6g8L6wFV05Wl3CTpbiHfoFNdauqbMeMJRWvswODlKl6VpdjWd0z8ns5PhifBq09RgCnfBoE2hthEiUtSF3WeScyROWw5sJc5MIpZk2kdM6tQLDs7mLTa6sU5ExsSgEN-wF6ZWr0r4iNA-L0IoCxhjYjxpXOB4p7bRhogAvLBuQaLtWUrdg5VgzYyl90JxlsmGcBMZJzzjJBuRDN2bdQHXcSH2EItBRIsy2b4DVka3WSthMGRYWwmqHGzet4NNSBOwKtVBpEQ7I_laAZKv7lWTg1aYCPD3oftd1g9ZiKEaVdlV7Go7BrQhoXjby1s2E5Yg3lSQDku1I4s5Ud3vKb189MjjmgwlwoQfkYCu0v-d1Ey8OOsG-Bete_x_5G3I_RvkOU9DRfdLbfK_tW_DkNsWQ7KXzdEj6o9Hk8wR-j46n55-gdSzGQ386As8zng1bVf8FAwVEQA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjR4QHwTGGAkeGLRkthxkocJsbGpY1uFUCftzXP8URBVWpZWU_85_jbunDSjAlW87CVSEjtyfHe-O5_vd4S8VRk3qChDzjIHlyQO89gWIecGqJ_C8hhhNvJpX_TO-Ofz9HyN_FrkwuCxysWa6BdqM9a4R77DwFbIBOjP6MPkZ4hVozC6uiihodrSCmbXQ4y1iR3Hdn4FLly9e_QJ6P0uSQ4PBvu9sK0yEOqUx9NQayNEqqyNuMtj50yRsgLuTFSYVCjNtImd1pkVGHQsXGIKZZ2KjUlEKbhh8N1bZIMzXoDzt7F30P_ytdvlwTgaj4s2Wydi-U4NGhOz2hIeihR0Z8iWNKIvHPAva_fvQ5td5PYu2ZxVEzW_UqPRH8rx8D6511q19GPDhg_Imq0ekttNncv5IyJ9qIAOfdk6irgeTcIkxeQWuj-gcD-0NR07Wv8An5jiafwhNdZOqLMeepTWvmAPdlKV6Z66Ge72PSZnNzLnT8h6Na7sM0KLqIysKKGPAc_WuNLxWGmnDRMl2HN5QOLF7Erdwp5j9Y2R9OF3lsuGIhIoIj1FJAvI-67PpAH9WNl6D4nWtUTAbv9gfDmUrfxLcMsMi0phtUMXUCv4tQyhvyItVFZGAdlakFy2q0gtr3k-IG-61yD_GNRRlR3PfBuOYbIY2jxtOKQbCSsQuSpNA5Iv8c7SUJffVN-_eYxxzCwTYIwHZHvBZtfjWjUX2x0r_sfUPV_916_JZm9weiJPjvrHL8idBIUmysKEbZH16eXMvgR7cFq-aoWOkoublvPfSyxzOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw1CpFbAfETqCAkeBEo0lix0kOCEHLqKVQcWilubmOl6HqKDM0M6rm1_g63nOWMgKNuPQSyY4dOW_xe_bbCHmjMm5QUIacZQ4eSRzmsS1Czg1gP4XtMcJo5G-HYu-Yfxmlow3yq4uFQbfKbk_0G7WZarwjHzDQFTIB8jMauNYt4vvu8MPsZ4gVpNDS2pXTaEjkwC4v4PhWv9_fBVy_TZLh56OdvbCtMBDqlMfzUGsjRKqsjbjLY-dMkbICWiYqTCqUZtrETuvMCjQ4Fi4xhbJOxcYkohTcMPjuNXI9Y6xAd8JslPX3O2hB43HRxulELB_UICsxni3hoUhBaoZsRRb6kgH_0nP_dtfsbbZ3yK1FNVPLCzWZ_CEWh_fI3VafpR8bArxPNmz1gNxoKlwuHxLpjQR07AvWUczo0YRKUgxroTtHFNpjW9Opo_UZAJyiH_6YGmtn1FmfdJTWvlQPTlKV6XvdAu_5HpHjK4H4Y7JZTSv7lNAiKiMrSphj4ExrXOl4rLTThokSNLk8IHEHXanbhOdYd2MiveGd5bLBiASMSI8RyQLyrp8za9J9rB39CZHWj8RU3b5jej6WLedLOJAZFpXCaoeHP63g1zJM-hVpobIyCshWh3LZ7h-1vKT2gLzuXwPnozlHVXa68GM4GshiGPOkoZB-JazAnFVpGpB8hXZWlrr6pjr94bOLY0yZADU8INsdmV2uax0stntS_A_QPVv_16_ITeBu-XX_8OA5uZ0gz0RZmLAtsjk_X9gXoAjOy5ee4yg5uWoW_w0rMXDU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceNOGFmQkbjQliR9JjqWiqpCoOHSlcrIcP7aoq-yKbFS1v54ZJxsIrapyiZR4LDnjmfhzxvMNIR90zi0ulDFnuYdLlsZF6sqYcwuzL-DzmGA28rdjeTTlX0_FaU-Tg7kwo_g9Kz41sMBgEljGYylgqYnZfbIhBeDuCdmYHn_f_4HV4wCXxAANsj4r5uaOo5UnEPTfhCqvH44cIqSPycO2XurLCz2f_7UIHT7tqhk1gbsQz56c77Wras9c_cPseLf3e0ae9FiU7nfG85zcc_UL8qCrTnn5kqjwg5_OQrE5imwcXZojxZQUenBC4X7mGrrwtDmHnSzFM_Qzap1bUu8CYShtQpkd7KRrOzz1Lf6je0Wmh19ODo7ivh5DbARPV7ExVkqhnUu4L1LvbSlYCXc2Ka2Q2jBjU29M7iSGZ0uf2VI7r1NrM1lJbtlrMqkXtdsitEyqxMkK-ljYj1pfeZ5q441lsgIUVkQkXc-VMj1ZOdbMmKsQNGeF6hSnQHEqKE6xiHwc-iw7qo5bpT-jCQySSLMdHsDsqN5rFWymLEsq6YzHjZvR8Go5EnYlRuq8SiKyszYg1ft-oxig2lwC0oPm90MzeC2GYnTtFm2Q4RjcSkFms7O3YSSsRL4pISJSjCxxNNRxS_3zLDCDYz6YBAgdkd210f4Z12262B0M-w6qe_N_4tvkUYb2neTgoztksvrVureA5FbVu96FfwPriT2H
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+gender+estimation+from+CT+images+of+skull+using+deep+feature+selection+and+feature+fusion&rft.jtitle=Scientific+reports&rft.au=%C3%87ift%C3%A7i%2C+Rukiye&rft.au=D%C3%B6nmez%2C+Emrah&rft.au=Kurto%C4%9Flu%2C+Ahmet&rft.au=Eken%2C+%C3%96zg%C3%BCr&rft.date=2024-07-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-65521-3&rft.externalDocID=10_1038_s41598_024_65521_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon