Robust Vehicle Detection and Counting Algorithm Employing a Convolution Neural Network and Optical Flow
Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-b...
        Saved in:
      
    
          | Published in | Sensors Vol. 19; no. 20; p. 4588 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        22.10.2019
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s19204588 | 
Cover
| Abstract | Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle’s robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle’s trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches. | 
    
|---|---|
| AbstractList | Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle’s robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle’s trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches. Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle's robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle's trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle's robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle's trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.  | 
    
| Author | Mohammed Abo-Zahhad Ahmed Gomaa Moataz M. Abdelwahab Tsubasa Minematsu Rin-ichiro Taniguchi  | 
    
| AuthorAffiliation | 4 Electrical and Electronics Engineering Department, Faculty of Engineering, Assiut University, Assiut 71511, Egypt 2 Graduate School of Information Science and Electrical Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; minematsu@limu.ait.kyushu-u.ac.jp (T.M.) 1 School of Electronics, Communication and Computer Engineering (ECCE), Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt; moataz.abdelwahab@ejust.edu.eg (M.M.A.); mohammed.zahhad@ejust.edu.eg (M.A.-Z.) 3 National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11731, Egypt  | 
    
| AuthorAffiliation_xml | – name: 1 School of Electronics, Communication and Computer Engineering (ECCE), Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt; moataz.abdelwahab@ejust.edu.eg (M.M.A.); mohammed.zahhad@ejust.edu.eg (M.A.-Z.) – name: 4 Electrical and Electronics Engineering Department, Faculty of Engineering, Assiut University, Assiut 71511, Egypt – name: 2 Graduate School of Information Science and Electrical Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; minematsu@limu.ait.kyushu-u.ac.jp (T.M.) – name: 3 National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11731, Egypt  | 
    
| Author_xml | – sequence: 1 givenname: Ahmed orcidid: 0000-0003-0130-9088 surname: Gomaa fullname: Gomaa, Ahmed – sequence: 2 givenname: Moataz M. surname: Abdelwahab fullname: Abdelwahab, Moataz M. – sequence: 3 givenname: Mohammed surname: Abo-Zahhad fullname: Abo-Zahhad, Mohammed – sequence: 4 givenname: Tsubasa surname: Minematsu fullname: Minematsu, Tsubasa – sequence: 5 givenname: Rin-ichiro surname: Taniguchi fullname: Taniguchi, Rin-ichiro  | 
    
| BackLink | https://cir.nii.ac.jp/crid/1870020693047552384$$DView record in CiNii | 
    
| BookMark | eNp9kl1rFDEUhgep2Fp74T8Y0AsV1uZ7khuhrK0WigVRb0MmycymZpJtJtNl_72Z3VJsEW9ywnue83JyTl5WByEGW1WvIfiIsQCnIxQIEMr5s-oIEkQWHCFw8Nf9sDoZR9cWBiOMOXhRHWLIKKIUHVX999hOY65_2ZXT3tafbbY6uxhqFUy9jFPILvT1me9jcnk11OfD2sftrKmSDnfRTzv8m52S8iXkTUy_d9XX6-x00S583LyqnnfKj_bkPh5XPy_Ofyy_Lq6uv1wuz64WmhKYF1ph3lgIO2ChoqzVpKNQMSoYpZCajgjdYmiABq3toLGgyABpZQTUTHQEH1eXe18T1Y1cJzeotJVRObkTYuqlSnl-qmwQpLyUtIZ1xBghDGNaNwwo0hiDefH6sPeawlptN8r7B0MI5Dx8-TD8An_aw-upHazRNuQyj0cdPM4Et5J9vJOMl7VwUQze3RukeDvZMcvBjdp6r4KN0ygRBoKChnJW0DdP0Js4pVDmKhHFlGJBmrmj93tKpziOyXb_7f70CatdVvNiS6_O_7Pi7b4iOFfg-YS8AQABJjAgTfldmBP8B6jczu4 | 
    
| CitedBy_id | crossref_primary_10_3390_infrastructures6090134 crossref_primary_10_1049_cvi2_12156 crossref_primary_10_1016_j_measurement_2024_115558 crossref_primary_10_1049_cvi2_12117 crossref_primary_10_1016_j_measurement_2023_113159 crossref_primary_10_1080_01431161_2021_1895449 crossref_primary_10_1109_ACCESS_2020_3008165 crossref_primary_10_1109_ACCESS_2022_3224063 crossref_primary_10_3390_su16041684 crossref_primary_10_1038_s41598_022_19249_7 crossref_primary_10_3390_s24010249 crossref_primary_10_1155_2021_1577614 crossref_primary_10_1007_s11042_024_20546_8 crossref_primary_10_3390_s22176437 crossref_primary_10_1109_ACCESS_2024_3380188 crossref_primary_10_1049_iet_ipr_2020_0077 crossref_primary_10_3390_s20185051 crossref_primary_10_1109_ACCESS_2024_3365529 crossref_primary_10_3390_wevj15060255 crossref_primary_10_1109_TITS_2022_3182410 crossref_primary_10_1049_cvi2_12146 crossref_primary_10_1016_j_ins_2024_120968 crossref_primary_10_1049_ipr2_12564 crossref_primary_10_3390_buildings11100463 crossref_primary_10_1049_cvi2_12105 crossref_primary_10_3390_app10051622 crossref_primary_10_1049_cvi2_12103 crossref_primary_10_1007_s11042_020_09242_5 crossref_primary_10_1155_2020_1698323 crossref_primary_10_1061_JTEPBS_0000728 crossref_primary_10_1016_j_compeleceng_2023_108839 crossref_primary_10_3390_app11156831 crossref_primary_10_48175_IJARSCT_18054 crossref_primary_10_1109_ACCESS_2021_3135505 crossref_primary_10_1007_s11760_021_01854_0 crossref_primary_10_3390_s21041354 crossref_primary_10_1007_s11760_022_02198_z crossref_primary_10_1007_s11042_022_12370_9 crossref_primary_10_1109_ACCESS_2020_3028395 crossref_primary_10_1109_ACCESS_2020_3047091 crossref_primary_10_1049_cvi2_12087 crossref_primary_10_1049_ell2_13145  | 
    
| Cites_doi | 10.1109/TPAMI.2008.57 10.1109/CVPRW.2014.126 10.1109/TITS.2011.2174358 10.1007/978-3-642-38622-0_32 10.1049/el.2018.6719 10.3390/a12070128 10.3390/s18124269 10.1109/IWSSIP.2016.7502717 10.3390/s19010058 10.1109/ICIP.2016.7533075 10.3390/jimaging4050071 10.1016/j.patcog.2008.07.015 10.1049/iet-its.2017.0047 10.1109/TITS.2016.2595526 10.1109/TIP.2007.891147 10.1016/j.cviu.2016.02.009 10.1109/ACCESS.2019.2914961 10.1016/j.imavis.2017.09.008 10.1109/ACCESS.2018.2825229 10.1049/iet-its.2015.0157 10.3390/jimaging4060078  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019  | 
    
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019  | 
    
| DBID | RYH AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s19204588 | 
    
| DatabaseName | CiNii Complete CrossRef ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_72158f43bd6f4dd99d66cc760a47dd38 10.3390/s19204588 PMC6832389 10_3390_s19204588  | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM RYH TUS UKHRP XSB ~8M AAYXX CITATION PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM ADRAZ ADTOC IAO IPNFZ ITC RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c541t-ca387e11f0e1a56bc4f51a65965515df49cb31d0c0bef1de055102cad91c69f43 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Tue Oct 14 19:08:30 EDT 2025 Sun Oct 26 03:35:03 EDT 2025 Tue Sep 30 16:02:08 EDT 2025 Thu Sep 04 19:56:55 EDT 2025 Tue Oct 07 06:58:10 EDT 2025 Thu Apr 24 23:11:20 EDT 2025 Thu Oct 16 04:37:16 EDT 2025 Fri Jun 27 00:33:43 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 20 | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c541t-ca387e11f0e1a56bc4f51a65965515df49cb31d0c0bef1de055102cad91c69f43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-0130-9088 | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19204588 | 
    
| PMID | 31652552 | 
    
| PQID | 2535539478 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_72158f43bd6f4dd99d66cc760a47dd38 unpaywall_primary_10_3390_s19204588 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6832389 proquest_miscellaneous_2309507586 proquest_journals_2535539478 crossref_primary_10_3390_s19204588 crossref_citationtrail_10_3390_s19204588 nii_cinii_1870020693047552384  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20191022 | 
    
| PublicationDateYYYYMMDD | 2019-10-22 | 
    
| PublicationDate_xml | – month: 10 year: 2019 text: 20191022 day: 22  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Sensors | 
    
| PublicationYear | 2019 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | Yang (ref_13) 2017; 12 Abdelwahab (ref_15) 2018; 55 Jia (ref_6) 2009; 42 Tsai (ref_7) 2007; 16 Chen (ref_8) 2018; 6 ref_14 Bouguet (ref_19) 2001; 5 ref_24 ref_23 ref_11 ref_21 Yang (ref_1) 2018; 69 ref_3 ref_2 Kamkar (ref_10) 2016; 10 Kalsotra (ref_20) 2019; 7 ref_17 Kasturi (ref_22) 2009; 31 ref_16 Ke (ref_18) 2017; 18 ref_9 Unzueta (ref_5) 2011; 13 ref_4 Shakeri (ref_12) 2016; 146  | 
    
| References_xml | – volume: 31 start-page: 319 year: 2009 ident: ref_22 article-title: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.57 – ident: ref_9 – volume: 5 start-page: 4 year: 2001 ident: ref_19 article-title: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm publication-title: Intel Corp. – ident: ref_24 doi: 10.1109/CVPRW.2014.126 – volume: 13 start-page: 527 year: 2011 ident: ref_5 article-title: Adaptive multicue background subtraction for robust vehicle counting and classification publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2011.2174358 – ident: ref_23 doi: 10.1007/978-3-642-38622-0_32 – volume: 55 start-page: 20 year: 2018 ident: ref_15 article-title: Fast approach for efficient vehicle counting publication-title: Electron. Lett. doi: 10.1049/el.2018.6719 – ident: ref_4 doi: 10.3390/a12070128 – ident: ref_3 doi: 10.3390/s18124269 – ident: ref_16 doi: 10.1109/IWSSIP.2016.7502717 – ident: ref_2 doi: 10.3390/s19010058 – ident: ref_14 doi: 10.1109/ICIP.2016.7533075 – ident: ref_11 doi: 10.3390/jimaging4050071 – volume: 42 start-page: 313 year: 2009 ident: ref_6 article-title: Front-view vehicle detection by Markov chain Monte Carlo method publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.07.015 – volume: 12 start-page: 75 year: 2017 ident: ref_13 article-title: Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2017.0047 – volume: 18 start-page: 890 year: 2017 ident: ref_18 article-title: Real-time bidirectional traffic flow parameter estimation from aerial videos publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2595526 – volume: 16 start-page: 850 year: 2007 ident: ref_7 article-title: Vehicle detection using normalized color and edge map publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2007.891147 – volume: 146 start-page: 27 year: 2016 ident: ref_12 article-title: COROLA: A sequential solution to moving object detection using low-rank approximation publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.02.009 – volume: 7 start-page: 59143 year: 2019 ident: ref_20 article-title: A Comprehensive Survey of Video Datasets for Background Subtraction publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2914961 – volume: 69 start-page: 143 year: 2018 ident: ref_1 article-title: Vehicle detection in intelligent transportation systems and its applications under varying environments: A review publication-title: Image Vis. Comput. doi: 10.1016/j.imavis.2017.09.008 – volume: 6 start-page: 19654 year: 2018 ident: ref_8 article-title: Road Object Detection Using a Disparity-Based Fusion Model publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2825229 – volume: 10 start-page: 406 year: 2016 ident: ref_10 article-title: Vehicle detection, counting and classification in various conditions publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2015.0157 – ident: ref_21 – ident: ref_17 doi: 10.3390/jimaging4060078  | 
    
| SSID | ssib045323380 ssj0023338 ssib045318463 ssib045318440 ssib045317690 ssib045318460 ssib045320967 ssib045318445 ssib045318456 ssib045323835 ssib045315351 ssib045318454 ssib045316199 ssib045314840 ssib045319069 ssib045315347 ssib045315201 ssib045316148 ssib045318468 ssib045315722 ssib045314936 ssib045314816 ssib045315718  | 
    
| Score | 2.5163643 | 
    
| Snippet | Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for... | 
    
| SourceID | doaj unpaywall pubmedcentral proquest crossref nii  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 4588 | 
    
| SubjectTerms | Accuracy Algorithms background subtraction Chemical technology deep convolutional neural network intelligent transportation system Methods Neural networks Parameter estimation Sensors TP1-1185 vehicle counting vehicle dtection Vehicles  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RSBFpnHgUtUO_EjPpbCqkKiSIii3iK_0l0pOKtulop_z9jJRhsE4sIlB3usODPjzDeJ_Q1Cb6SyXhpFcyOIyZlxTW6oNrmoKkN0o7hOZTo_nYuzC_bxkl_ulfqKe8IGeuBBcceQofCqYaVxomHOKeWEsFYKopl0rkzHfEmldsnUmGqVkHkNPEIlJPXHG8Ax6UzmLPokkn6IKWG1muHL33dH3t6Gtf55o9t2L_Qs7qN7I2bEJ8NcH6BbPjxEd_eYBB-hqy-d2W56_M0vowx-7_u0xypgHRw-HQtC4JP2qrte9cvveKj0G9s0dIcfowfiSNYB9zofdoen0Z_X6Xs3XrTdzWN0sfjw9fQsH2so5JYz2udWl5X0lDbEU82FsazhVAuuBEAl7hqmrCmpI5YY31DnCTSTwmqnqBUK9P4EHYQu-KcIUw-pW-nBei6GfVYxRhxjRSNlAzBDZOjtTre1HQnGY52LtoZEI5qhnsyQoVeT6Hpg1fiT0LtooEkgEmGnBnCPenSP-l_ukaEjMC_MJ14pvJwAHsfqj0xySMErlqHDneHrcfVu6oIDCisVkzD85dQN6y7-TNHBd1uQKQGcAt6q4LnlzGFmE573hNUyMXgLeI8CUszQ68m1_q6HZ_9DD8_RHYB6KkbdojhEB_311h8BnOrNi7RyfgGs5Ryi priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEE810CLzOHCJGieOHR8QaktXFRILqijqLfJzd6UlWbpZKv49Y-dBg4BLDvYkcTy255vE-T6EXnOhLVeCxIolKqbKuFgRqWJWFCqRTuQyyHR-nLGzC_rhMr_cQbP-Xxi_rbJfE8NCbWrt35EfpjlExkxQXrxbf4-9apT_utpLaMhOWsG8DRRjt9Bu6pmxJmj3-HT2-XxIwTLIyFp-oQyS_cMN4Jvwr-YoKgXyfog11XI5wp1_7pq8va3W8ue1XK1uhKTpfXSvw5L4qHX-A7Rjq4fo7g2GwUdofl6r7abBX-3C2-D3tgl7ryosK4NPOqEIfLSaw7M2i2-4VQD2ZRKqqx_dyMSexAPuNWt3jYezP63De3A8XdXXj9HF9PTLyVncaSvEOqekibXMCm4JcYklMmdKU5cTyXLBoP9y46jQKiMm0YmyjhibQHGSamkE0Uw4mj1Bk6qu7B7CxEJKl1nwqvFwgBaUJobS1HHuAH6wCL3p-7bUHfG4179YlZCAeDeUgxsi9HIwXbdsG38zOvYOGgw8QXYoqK_mZTffSkhs8wKaqQxz1BghDGNac5ZIyo3J4CIH4F5ojz8SWLQANntVSMpzSM0LGqH93vFlN6s35e8xGKEXQzXMR_-RRVa23oJNBqAVcFgBz81HA2bU4HFNtVwEZm8G6ysgyAi9GobWv_vh6f-b-AzdAXAnfJxN0300aa629gAAVKOed7PiF5KJGnU priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvFcUdlF4HLhkGye2E59QWahWSBSEKFpOkZ9tREiqNtkV_HrGSRo1K5CQuPRgj1MnHnu-SWa-QehlzJWJJce-ZIH0idTWl1hInyWJDITlVDRlOj_M2dmCvD-n53tZ_C6sElzxrDmkXRaWDxYsmGAOXvrEZVVO1tq-vujeJWHqPiKHPKTX0QGjgMZH6GAx_zT91iQVdaNbQqEIvPvJFgBNk5w5MEMNWz8YlyLLBkDzapjkjbpYi5-XIs_3bNDsDhK72behJ99P6kqeqF9XiB3_5_buotsdQPWmrUbdQ9dMcR_d2qMtfICWn0tZbyvvq1k5Ge-tqZqArsIThfZOu-oT3jRflpusWv3w2rLCrk1Ad3HRqbvnmEHgv-ZtKHoz-uO6ebnuzfLy8iFazN59OT3zu4INvqIEV74SURIbjG1gsKBMKmIpFm5dAJdRbQlXMsI6UIE0FmsTQHMQKqE5VoxbEh2iUVEW5hHysAE_MTKgKtphDJIQEmhCQhvHFh4ZG6NXu_VLVcdm7opq5Cl4NW6p036px-h5L7puKTz-JPTGKUEv4Fi3m4Zys0y7TZyCt0wTmKbUzBKtOdeMKRWzQJBY6wgucgwqBPNxvxhOQsDirtQkiSn4-wkZo6OdcqXdUbFNQwqQL-IkhuHP-m7Y5O7LjShMWYNMBEgYwF0C9x0PlHIw4WFPka0aunAGhzbA0jF60avv35_D43-SeoJuAnDkzoaH4REaVZvaHAM4q-TTbv_9BmsEMhI priority: 102 providerName: Unpaywall  | 
    
| Title | Robust Vehicle Detection and Counting Algorithm Employing a Convolution Neural Network and Optical Flow | 
    
| URI | https://cir.nii.ac.jp/crid/1870020693047552384 https://www.proquest.com/docview/2535539478 https://www.proquest.com/docview/2309507586 https://pubmed.ncbi.nlm.nih.gov/PMC6832389 https://www.mdpi.com/1424-8220/19/20/4588/pdf?version=1571732925 https://doaj.org/article/72158f43bd6f4dd99d66cc760a47dd38  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed (Medline) customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLf2IcF2QHyKjq0KHwcuYXHs2PEBoW6sTEgr00RROUX-SlspJKVNGfvveU7SaEHjwiUH-8Vx_J79fs9x3g-hN1xoy5XAvmKB8qkyqa-wVD6LYxXIVESyoum8GLHzMf08iSZbaMOx2Qzg6s7QzvFJjZfZu98_bz7AhH_vIk4I2Y9XgFKqPy630S44KOEYHC5o-zEhJBCG1UmFuuJ76B7BLAJQHXa8UpW8H3xNPp93cOffpybvr_OFvLmWWXbLJQ0fogcNlvQGtfIfoS2bP0b7tzIMPkHTq0KtV6X3zc6cjPfRltXZq9yTufFOG6IIb5BNi-W8nP3wagZgVyahOv_VWKbnknjAs0b1qfHq7i-Lah_cG2bF9VM0Hp59PT33G24FX0cUl76WJOYW4zSwWEZMaZpGWLJIMIBQkUmp0IpgE-hA2RQbG0BxEGppBNZMpJQ8Qzt5kdvnyMMWQjpiQavGwQEaUxoYSsOU8xTgB-uht5uxTXSTeNzxX2QJBCBOI0mrkR561You6mwbdwmdOAW1Ai5BdlVQLKdJM98SCGyjGLqpDEupMUIYxrTmLJCUG0OgkSNQL_THXTEsWgCbHSsk5WANJKY9dLhRfLIxyiSMAJ0RQTnc_rKthvnoPrLI3BZrkCEAWgGHxfDevGMwnQ53a_L5rMrszWB9BQTZQ69b0_r3OBz8d_sv0B7gPuFccBgeop1yubZHgK1K1UfbfMLhGg8_9dHuydno8qpf7VP0qzkFZePR5eD7HxRoKK4 | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBg8IK6isIG5SbxEi2PHjh8QGhtVx7YioQ31LfiWtlJJyppS7U_xGzlO0mxBwNte-mCfpq7P7TuJcz6EXgtpnNCSBJqHOmDaZoEmSgc8SXSoMhmriqbzZMgHZ-zTKB5toF_rd2H8scp1TKwCtS2Mv0e-G8WQGalkInk__xF41ij_dHVNoVGbxZG7WEHJtnh3eAD6fRNF_Y-n-4OgYRUITMxIGRhFE-EIyUJHVMy1YVlMFI8lB_AQ24xJoymxoQm1y4h1IQyHkVFWEsNlxihc9wa6ySjEEvAfMbos8CjUe3X3IkpluLsA9FS9CdrJeRU1AGSyfDrtoNo_z2RuLfO5ulip2exKwuvfRXcapIr3atO6hzZcfh_dvtK_8AEafyn0clHir27iZfCBK6uTXTlWucX7DQ0F3puNYSfLyXdc8wv7MQXT-c_G7rFvEQK_NazPpFff_jyv7rLj_qxYPURn17LHj9BmXuTuMcLEQcFIHdiM9WCDJYyFlrEoEyIDcMN76O16b1PTtDX37BqzFMobr4a0VUMPvWxF53Uvj78JffAKagV8--1qoDgfp403p1A2xwksU1ueMWultJwbI3iomLCWwkV2QL2wHv9JICQCKPeck0zEUPgnrIe214pPm5ixSC8tvIdetNPg7f4RjspdsQQZCpAYUF4C_1t0DKaz4O5MPp1UfcM5RG_Apz30qjWtf-_Dk_8v8TnaGpyeHKfHh8Ojp-gWwEjpM3oUbaPN8nzpdgCqlfpZ5R8Yfbtuh_wNLTdRGA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IJ4i0MLykrhY8dr78B4QKg1RSyEgRFFuZp9JpGCHxiHqX-PXMWs7aYOAWy8-7I7t9c5jv9kdzyD0XEjjhJYk0jzWEdXWR5ooHfEs07Hykqm6TOeHAT84pu-GbLiFfq3-hQlhlSubWBtqW5qwR95NGKyMqaQi6_o2LOJTr_969iMKFaTCSeuqnEYjIkfudAnu2_zVYQ94_SJJ-m-_7B9EbYWByDBKqsioNBOOEB87ohjXhnpGFGeSA5Bg1lNpdEpsbGLtPLEuhuY4McpKYrj0NIXnXkKXRZrKEE4ohmfOXgq-X5PJCDrj7hyQVP1X6Mb6V5cJgFWtmEw2EO6f8ZlXF8VMnS7VdHpu8evfRDda1Ir3GjG7hbZccRtdP5fL8A4afS71Yl7hr24caHDPVXWUV4FVYfF-W5IC701HMJPV-Dtuag2HNgXdxc9WB3BIFwLvGjTx6fXdH2f1jjvuT8vlXXR8IXN8D20XZeHuI0wcOI-pA_mxAXjQjNLYUpp4ITwAHd5BL1dzm5s2xXmotDHNwdUJbMjXbOigp2vSWZPX429EbwKD1gQhFXfdUJ6M8lazc3ChWQbD1JZ7aq2UlnNjBI8VFdam8JBdYC-MJ1wJmEcA6KH-JBWMAV6iHbSzYnze2o95fibtHfRk3Q2aH45zVOHKBdCkAI8B8WXw3WJDYDYGvNlTTMZ1DnEOlhywagc9W4vWv-fhwf-H-BhdAVXM3x8Ojh6ia4AoZbNHtYO2q5OF2wXUVulHtXpg9O2i9fE3DClVWA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvFcUdlF4HLhkGye2E59QWahWSBSEKFpOkZ9tREiqNtkV_HrGSRo1K5CQuPRgj1MnHnu-SWa-QehlzJWJJce-ZIH0idTWl1hInyWJDITlVDRlOj_M2dmCvD-n53tZ_C6sElzxrDmkXRaWDxYsmGAOXvrEZVVO1tq-vujeJWHqPiKHPKTX0QGjgMZH6GAx_zT91iQVdaNbQqEIvPvJFgBNk5w5MEMNWz8YlyLLBkDzapjkjbpYi5-XIs_3bNDsDhK72behJ99P6kqeqF9XiB3_5_buotsdQPWmrUbdQ9dMcR_d2qMtfICWn0tZbyvvq1k5Ge-tqZqArsIThfZOu-oT3jRflpusWv3w2rLCrk1Ad3HRqbvnmEHgv-ZtKHoz-uO6ebnuzfLy8iFazN59OT3zu4INvqIEV74SURIbjG1gsKBMKmIpFm5dAJdRbQlXMsI6UIE0FmsTQHMQKqE5VoxbEh2iUVEW5hHysAE_MTKgKtphDJIQEmhCQhvHFh4ZG6NXu_VLVcdm7opq5Cl4NW6p036px-h5L7puKTz-JPTGKUEv4Fi3m4Zys0y7TZyCt0wTmKbUzBKtOdeMKRWzQJBY6wgucgwqBPNxvxhOQsDirtQkiSn4-wkZo6OdcqXdUbFNQwqQL-IkhuHP-m7Y5O7LjShMWYNMBEgYwF0C9x0PlHIw4WFPka0aunAGhzbA0jF60avv35_D43-SeoJuAnDkzoaH4REaVZvaHAM4q-TTbv_9BmsEMhI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Vehicle+Detection+and+Counting+Algorithm+Employing+a+Convolution+Neural+Network+and+Optical+Flow&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gomaa%2C+Ahmed&rft.au=Abdelwahab%2C+Moataz+M.&rft.au=Abo-Zahhad%2C+Mohammed&rft.au=Minematsu%2C+Tsubasa&rft.date=2019-10-22&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=20&rft_id=info:doi/10.3390%2Fs19204588&rft_id=info%3Apmid%2F31652552&rft.externalDocID=PMC6832389 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |