Robust Vehicle Detection and Counting Algorithm Employing a Convolution Neural Network and Optical Flow

Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-b...

Full description

Saved in:
Bibliographic Details
Published inSensors Vol. 19; no. 20; p. 4588
Main Authors Gomaa, Ahmed, Abdelwahab, Moataz M., Abo-Zahhad, Mohammed, Minematsu, Tsubasa, Taniguchi, Rin-ichiro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 22.10.2019
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s19204588

Cover

Abstract Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle’s robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle’s trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.
AbstractList Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle’s robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle’s trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.
Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle's robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle's trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for vehicle detection and counting in complex traffic scenes by combining both convolution neural network (CNN) and the optical flow feature tracking-based methods. In this algorithm, both the detection and tracking procedures have been linked together to get robust feature points that are updated regularly every fixed number of frames. The proposed algorithm detects moving vehicles based on a background subtraction method using CNN. Then, the vehicle's robust features are refined and clustered by motion feature points analysis using a combined technique between KLT tracker and K-means clustering. Finally, an efficient strategy is presented using the detected and tracked points information to assign each vehicle label with its corresponding one in the vehicle's trajectories and truly counted it. The proposed method is evaluated on videos representing challenging environments, and the experimental results showed an average detection and counting precision of 96.3% and 96.8%, respectively, which outperforms other existing approaches.
Author Mohammed Abo-Zahhad
Ahmed Gomaa
Moataz M. Abdelwahab
Tsubasa Minematsu
Rin-ichiro Taniguchi
AuthorAffiliation 4 Electrical and Electronics Engineering Department, Faculty of Engineering, Assiut University, Assiut 71511, Egypt
2 Graduate School of Information Science and Electrical Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; minematsu@limu.ait.kyushu-u.ac.jp (T.M.)
1 School of Electronics, Communication and Computer Engineering (ECCE), Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt; moataz.abdelwahab@ejust.edu.eg (M.M.A.); mohammed.zahhad@ejust.edu.eg (M.A.-Z.)
3 National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11731, Egypt
AuthorAffiliation_xml – name: 1 School of Electronics, Communication and Computer Engineering (ECCE), Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt; moataz.abdelwahab@ejust.edu.eg (M.M.A.); mohammed.zahhad@ejust.edu.eg (M.A.-Z.)
– name: 4 Electrical and Electronics Engineering Department, Faculty of Engineering, Assiut University, Assiut 71511, Egypt
– name: 2 Graduate School of Information Science and Electrical Engineering, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan; minematsu@limu.ait.kyushu-u.ac.jp (T.M.)
– name: 3 National Research Institute of Astronomy and Geophysics (NRIAG), Helwan 11731, Egypt
Author_xml – sequence: 1
  givenname: Ahmed
  orcidid: 0000-0003-0130-9088
  surname: Gomaa
  fullname: Gomaa, Ahmed
– sequence: 2
  givenname: Moataz M.
  surname: Abdelwahab
  fullname: Abdelwahab, Moataz M.
– sequence: 3
  givenname: Mohammed
  surname: Abo-Zahhad
  fullname: Abo-Zahhad, Mohammed
– sequence: 4
  givenname: Tsubasa
  surname: Minematsu
  fullname: Minematsu, Tsubasa
– sequence: 5
  givenname: Rin-ichiro
  surname: Taniguchi
  fullname: Taniguchi, Rin-ichiro
BackLink https://cir.nii.ac.jp/crid/1870020693047552384$$DView record in CiNii
BookMark eNp9kl1rFDEUhgep2Fp74T8Y0AsV1uZ7khuhrK0WigVRb0MmycymZpJtJtNl_72Z3VJsEW9ywnue83JyTl5WByEGW1WvIfiIsQCnIxQIEMr5s-oIEkQWHCFw8Nf9sDoZR9cWBiOMOXhRHWLIKKIUHVX999hOY65_2ZXT3tafbbY6uxhqFUy9jFPILvT1me9jcnk11OfD2sftrKmSDnfRTzv8m52S8iXkTUy_d9XX6-x00S583LyqnnfKj_bkPh5XPy_Ofyy_Lq6uv1wuz64WmhKYF1ph3lgIO2ChoqzVpKNQMSoYpZCajgjdYmiABq3toLGgyABpZQTUTHQEH1eXe18T1Y1cJzeotJVRObkTYuqlSnl-qmwQpLyUtIZ1xBghDGNaNwwo0hiDefH6sPeawlptN8r7B0MI5Dx8-TD8An_aw-upHazRNuQyj0cdPM4Et5J9vJOMl7VwUQze3RukeDvZMcvBjdp6r4KN0ygRBoKChnJW0DdP0Js4pVDmKhHFlGJBmrmj93tKpziOyXb_7f70CatdVvNiS6_O_7Pi7b4iOFfg-YS8AQABJjAgTfldmBP8B6jczu4
CitedBy_id crossref_primary_10_3390_infrastructures6090134
crossref_primary_10_1049_cvi2_12156
crossref_primary_10_1016_j_measurement_2024_115558
crossref_primary_10_1049_cvi2_12117
crossref_primary_10_1016_j_measurement_2023_113159
crossref_primary_10_1080_01431161_2021_1895449
crossref_primary_10_1109_ACCESS_2020_3008165
crossref_primary_10_1109_ACCESS_2022_3224063
crossref_primary_10_3390_su16041684
crossref_primary_10_1038_s41598_022_19249_7
crossref_primary_10_3390_s24010249
crossref_primary_10_1155_2021_1577614
crossref_primary_10_1007_s11042_024_20546_8
crossref_primary_10_3390_s22176437
crossref_primary_10_1109_ACCESS_2024_3380188
crossref_primary_10_1049_iet_ipr_2020_0077
crossref_primary_10_3390_s20185051
crossref_primary_10_1109_ACCESS_2024_3365529
crossref_primary_10_3390_wevj15060255
crossref_primary_10_1109_TITS_2022_3182410
crossref_primary_10_1049_cvi2_12146
crossref_primary_10_1016_j_ins_2024_120968
crossref_primary_10_1049_ipr2_12564
crossref_primary_10_3390_buildings11100463
crossref_primary_10_1049_cvi2_12105
crossref_primary_10_3390_app10051622
crossref_primary_10_1049_cvi2_12103
crossref_primary_10_1007_s11042_020_09242_5
crossref_primary_10_1155_2020_1698323
crossref_primary_10_1061_JTEPBS_0000728
crossref_primary_10_1016_j_compeleceng_2023_108839
crossref_primary_10_3390_app11156831
crossref_primary_10_48175_IJARSCT_18054
crossref_primary_10_1109_ACCESS_2021_3135505
crossref_primary_10_1007_s11760_021_01854_0
crossref_primary_10_3390_s21041354
crossref_primary_10_1007_s11760_022_02198_z
crossref_primary_10_1007_s11042_022_12370_9
crossref_primary_10_1109_ACCESS_2020_3028395
crossref_primary_10_1109_ACCESS_2020_3047091
crossref_primary_10_1049_cvi2_12087
crossref_primary_10_1049_ell2_13145
Cites_doi 10.1109/TPAMI.2008.57
10.1109/CVPRW.2014.126
10.1109/TITS.2011.2174358
10.1007/978-3-642-38622-0_32
10.1049/el.2018.6719
10.3390/a12070128
10.3390/s18124269
10.1109/IWSSIP.2016.7502717
10.3390/s19010058
10.1109/ICIP.2016.7533075
10.3390/jimaging4050071
10.1016/j.patcog.2008.07.015
10.1049/iet-its.2017.0047
10.1109/TITS.2016.2595526
10.1109/TIP.2007.891147
10.1016/j.cviu.2016.02.009
10.1109/ACCESS.2019.2914961
10.1016/j.imavis.2017.09.008
10.1109/ACCESS.2018.2825229
10.1049/iet-its.2015.0157
10.3390/jimaging4060078
ContentType Journal Article
Copyright 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2019 by the authors. 2019
Copyright_xml – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2019 by the authors. 2019
DBID RYH
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s19204588
DatabaseName CiNii Complete
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_72158f43bd6f4dd99d66cc760a47dd38
10.3390/s19204588
PMC6832389
10_3390_s19204588
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
RYH
TUS
UKHRP
XSB
~8M
AAYXX
CITATION
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ADRAZ
ADTOC
IAO
IPNFZ
ITC
RIG
UNPAY
ID FETCH-LOGICAL-c541t-ca387e11f0e1a56bc4f51a65965515df49cb31d0c0bef1de055102cad91c69f43
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 19:08:30 EDT 2025
Sun Oct 26 03:35:03 EDT 2025
Tue Sep 30 16:02:08 EDT 2025
Thu Sep 04 19:56:55 EDT 2025
Tue Oct 07 06:58:10 EDT 2025
Thu Apr 24 23:11:20 EDT 2025
Thu Oct 16 04:37:16 EDT 2025
Fri Jun 27 00:33:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ca387e11f0e1a56bc4f51a65965515df49cb31d0c0bef1de055102cad91c69f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0130-9088
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s19204588
PMID 31652552
PQID 2535539478
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_72158f43bd6f4dd99d66cc760a47dd38
unpaywall_primary_10_3390_s19204588
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6832389
proquest_miscellaneous_2309507586
proquest_journals_2535539478
crossref_primary_10_3390_s19204588
crossref_citationtrail_10_3390_s19204588
nii_cinii_1870020693047552384
PublicationCentury 2000
PublicationDate 20191022
PublicationDateYYYYMMDD 2019-10-22
PublicationDate_xml – month: 10
  year: 2019
  text: 20191022
  day: 22
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors
PublicationYear 2019
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Yang (ref_13) 2017; 12
Abdelwahab (ref_15) 2018; 55
Jia (ref_6) 2009; 42
Tsai (ref_7) 2007; 16
Chen (ref_8) 2018; 6
ref_14
Bouguet (ref_19) 2001; 5
ref_24
ref_23
ref_11
ref_21
Yang (ref_1) 2018; 69
ref_3
ref_2
Kamkar (ref_10) 2016; 10
Kalsotra (ref_20) 2019; 7
ref_17
Kasturi (ref_22) 2009; 31
ref_16
Ke (ref_18) 2017; 18
ref_9
Unzueta (ref_5) 2011; 13
ref_4
Shakeri (ref_12) 2016; 146
References_xml – volume: 31
  start-page: 319
  year: 2009
  ident: ref_22
  article-title: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.57
– ident: ref_9
– volume: 5
  start-page: 4
  year: 2001
  ident: ref_19
  article-title: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm
  publication-title: Intel Corp.
– ident: ref_24
  doi: 10.1109/CVPRW.2014.126
– volume: 13
  start-page: 527
  year: 2011
  ident: ref_5
  article-title: Adaptive multicue background subtraction for robust vehicle counting and classification
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2011.2174358
– ident: ref_23
  doi: 10.1007/978-3-642-38622-0_32
– volume: 55
  start-page: 20
  year: 2018
  ident: ref_15
  article-title: Fast approach for efficient vehicle counting
  publication-title: Electron. Lett.
  doi: 10.1049/el.2018.6719
– ident: ref_4
  doi: 10.3390/a12070128
– ident: ref_3
  doi: 10.3390/s18124269
– ident: ref_16
  doi: 10.1109/IWSSIP.2016.7502717
– ident: ref_2
  doi: 10.3390/s19010058
– ident: ref_14
  doi: 10.1109/ICIP.2016.7533075
– ident: ref_11
  doi: 10.3390/jimaging4050071
– volume: 42
  start-page: 313
  year: 2009
  ident: ref_6
  article-title: Front-view vehicle detection by Markov chain Monte Carlo method
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.07.015
– volume: 12
  start-page: 75
  year: 2017
  ident: ref_13
  article-title: Real-time vehicle detection and counting in complex traffic scenes using background subtraction model with low-rank decomposition
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2017.0047
– volume: 18
  start-page: 890
  year: 2017
  ident: ref_18
  article-title: Real-time bidirectional traffic flow parameter estimation from aerial videos
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2595526
– volume: 16
  start-page: 850
  year: 2007
  ident: ref_7
  article-title: Vehicle detection using normalized color and edge map
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.891147
– volume: 146
  start-page: 27
  year: 2016
  ident: ref_12
  article-title: COROLA: A sequential solution to moving object detection using low-rank approximation
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.02.009
– volume: 7
  start-page: 59143
  year: 2019
  ident: ref_20
  article-title: A Comprehensive Survey of Video Datasets for Background Subtraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914961
– volume: 69
  start-page: 143
  year: 2018
  ident: ref_1
  article-title: Vehicle detection in intelligent transportation systems and its applications under varying environments: A review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2017.09.008
– volume: 6
  start-page: 19654
  year: 2018
  ident: ref_8
  article-title: Road Object Detection Using a Disparity-Based Fusion Model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2825229
– volume: 10
  start-page: 406
  year: 2016
  ident: ref_10
  article-title: Vehicle detection, counting and classification in various conditions
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2015.0157
– ident: ref_21
– ident: ref_17
  doi: 10.3390/jimaging4060078
SSID ssib045323380
ssj0023338
ssib045318463
ssib045318440
ssib045317690
ssib045318460
ssib045320967
ssib045318445
ssib045318456
ssib045323835
ssib045315351
ssib045318454
ssib045316199
ssib045314840
ssib045319069
ssib045315347
ssib045315201
ssib045316148
ssib045318468
ssib045315722
ssib045314936
ssib045314816
ssib045315718
Score 2.5163643
Snippet Automatic vehicle detection and counting are considered vital in improving traffic control and management. This work presents an effective algorithm for...
SourceID doaj
unpaywall
pubmedcentral
proquest
crossref
nii
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4588
SubjectTerms Accuracy
Algorithms
background subtraction
Chemical technology
deep convolutional neural network
intelligent transportation system
Methods
Neural networks
Parameter estimation
Sensors
TP1-1185
vehicle counting
vehicle dtection
Vehicles
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8AB8RSBFpnHgUtUO_EjPpbCqkKiSIii3iK_0l0pOKtulop_z9jJRhsE4sIlB3usODPjzDeJ_Q1Cb6SyXhpFcyOIyZlxTW6oNrmoKkN0o7hOZTo_nYuzC_bxkl_ulfqKe8IGeuBBcceQofCqYaVxomHOKeWEsFYKopl0rkzHfEmldsnUmGqVkHkNPEIlJPXHG8Ax6UzmLPokkn6IKWG1muHL33dH3t6Gtf55o9t2L_Qs7qN7I2bEJ8NcH6BbPjxEd_eYBB-hqy-d2W56_M0vowx-7_u0xypgHRw-HQtC4JP2qrte9cvveKj0G9s0dIcfowfiSNYB9zofdoen0Z_X6Xs3XrTdzWN0sfjw9fQsH2so5JYz2udWl5X0lDbEU82FsazhVAuuBEAl7hqmrCmpI5YY31DnCTSTwmqnqBUK9P4EHYQu-KcIUw-pW-nBei6GfVYxRhxjRSNlAzBDZOjtTre1HQnGY52LtoZEI5qhnsyQoVeT6Hpg1fiT0LtooEkgEmGnBnCPenSP-l_ukaEjMC_MJ14pvJwAHsfqj0xySMErlqHDneHrcfVu6oIDCisVkzD85dQN6y7-TNHBd1uQKQGcAt6q4LnlzGFmE573hNUyMXgLeI8CUszQ68m1_q6HZ_9DD8_RHYB6KkbdojhEB_311h8BnOrNi7RyfgGs5Ryi
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcEE810CLzOHCJGieOHR8QaktXFRILqijqLfJzd6UlWbpZKv49Y-dBg4BLDvYkcTy255vE-T6EXnOhLVeCxIolKqbKuFgRqWJWFCqRTuQyyHR-nLGzC_rhMr_cQbP-Xxi_rbJfE8NCbWrt35EfpjlExkxQXrxbf4-9apT_utpLaMhOWsG8DRRjt9Bu6pmxJmj3-HT2-XxIwTLIyFp-oQyS_cMN4Jvwr-YoKgXyfog11XI5wp1_7pq8va3W8ue1XK1uhKTpfXSvw5L4qHX-A7Rjq4fo7g2GwUdofl6r7abBX-3C2-D3tgl7ryosK4NPOqEIfLSaw7M2i2-4VQD2ZRKqqx_dyMSexAPuNWt3jYezP63De3A8XdXXj9HF9PTLyVncaSvEOqekibXMCm4JcYklMmdKU5cTyXLBoP9y46jQKiMm0YmyjhibQHGSamkE0Uw4mj1Bk6qu7B7CxEJKl1nwqvFwgBaUJobS1HHuAH6wCL3p-7bUHfG4179YlZCAeDeUgxsi9HIwXbdsG38zOvYOGgw8QXYoqK_mZTffSkhs8wKaqQxz1BghDGNac5ZIyo3J4CIH4F5ojz8SWLQANntVSMpzSM0LGqH93vFlN6s35e8xGKEXQzXMR_-RRVa23oJNBqAVcFgBz81HA2bU4HFNtVwEZm8G6ysgyAi9GobWv_vh6f-b-AzdAXAnfJxN0300aa629gAAVKOed7PiF5KJGnU
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvFcUdlF4HLhkGye2E59QWahWSBSEKFpOkZ9tREiqNtkV_HrGSRo1K5CQuPRgj1MnHnu-SWa-QehlzJWJJce-ZIH0idTWl1hInyWJDITlVDRlOj_M2dmCvD-n53tZ_C6sElzxrDmkXRaWDxYsmGAOXvrEZVVO1tq-vujeJWHqPiKHPKTX0QGjgMZH6GAx_zT91iQVdaNbQqEIvPvJFgBNk5w5MEMNWz8YlyLLBkDzapjkjbpYi5-XIs_3bNDsDhK72behJ99P6kqeqF9XiB3_5_buotsdQPWmrUbdQ9dMcR_d2qMtfICWn0tZbyvvq1k5Ge-tqZqArsIThfZOu-oT3jRflpusWv3w2rLCrk1Ad3HRqbvnmEHgv-ZtKHoz-uO6ebnuzfLy8iFazN59OT3zu4INvqIEV74SURIbjG1gsKBMKmIpFm5dAJdRbQlXMsI6UIE0FmsTQHMQKqE5VoxbEh2iUVEW5hHysAE_MTKgKtphDJIQEmhCQhvHFh4ZG6NXu_VLVcdm7opq5Cl4NW6p036px-h5L7puKTz-JPTGKUEv4Fi3m4Zys0y7TZyCt0wTmKbUzBKtOdeMKRWzQJBY6wgucgwqBPNxvxhOQsDirtQkiSn4-wkZo6OdcqXdUbFNQwqQL-IkhuHP-m7Y5O7LjShMWYNMBEgYwF0C9x0PlHIw4WFPka0aunAGhzbA0jF60avv35_D43-SeoJuAnDkzoaH4REaVZvaHAM4q-TTbv_9BmsEMhI
  priority: 102
  providerName: Unpaywall
Title Robust Vehicle Detection and Counting Algorithm Employing a Convolution Neural Network and Optical Flow
URI https://cir.nii.ac.jp/crid/1870020693047552384
https://www.proquest.com/docview/2535539478
https://www.proquest.com/docview/2309507586
https://pubmed.ncbi.nlm.nih.gov/PMC6832389
https://www.mdpi.com/1424-8220/19/20/4588/pdf?version=1571732925
https://doaj.org/article/72158f43bd6f4dd99d66cc760a47dd38
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed (Medline)
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLf2IcF2QHyKjq0KHwcuYXHs2PEBoW6sTEgr00RROUX-SlspJKVNGfvveU7SaEHjwiUH-8Vx_J79fs9x3g-hN1xoy5XAvmKB8qkyqa-wVD6LYxXIVESyoum8GLHzMf08iSZbaMOx2Qzg6s7QzvFJjZfZu98_bz7AhH_vIk4I2Y9XgFKqPy630S44KOEYHC5o-zEhJBCG1UmFuuJ76B7BLAJQHXa8UpW8H3xNPp93cOffpybvr_OFvLmWWXbLJQ0fogcNlvQGtfIfoS2bP0b7tzIMPkHTq0KtV6X3zc6cjPfRltXZq9yTufFOG6IIb5BNi-W8nP3wagZgVyahOv_VWKbnknjAs0b1qfHq7i-Lah_cG2bF9VM0Hp59PT33G24FX0cUl76WJOYW4zSwWEZMaZpGWLJIMIBQkUmp0IpgE-hA2RQbG0BxEGppBNZMpJQ8Qzt5kdvnyMMWQjpiQavGwQEaUxoYSsOU8xTgB-uht5uxTXSTeNzxX2QJBCBOI0mrkR561You6mwbdwmdOAW1Ai5BdlVQLKdJM98SCGyjGLqpDEupMUIYxrTmLJCUG0OgkSNQL_THXTEsWgCbHSsk5WANJKY9dLhRfLIxyiSMAJ0RQTnc_rKthvnoPrLI3BZrkCEAWgGHxfDevGMwnQ53a_L5rMrszWB9BQTZQ69b0_r3OBz8d_sv0B7gPuFccBgeop1yubZHgK1K1UfbfMLhGg8_9dHuydno8qpf7VP0qzkFZePR5eD7HxRoKK4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGeBg8IK6isIG5SbxEi2PHjh8QGhtVx7YioQ31LfiWtlJJyppS7U_xGzlO0mxBwNte-mCfpq7P7TuJcz6EXgtpnNCSBJqHOmDaZoEmSgc8SXSoMhmriqbzZMgHZ-zTKB5toF_rd2H8scp1TKwCtS2Mv0e-G8WQGalkInk__xF41ij_dHVNoVGbxZG7WEHJtnh3eAD6fRNF_Y-n-4OgYRUITMxIGRhFE-EIyUJHVMy1YVlMFI8lB_AQ24xJoymxoQm1y4h1IQyHkVFWEsNlxihc9wa6ySjEEvAfMbos8CjUe3X3IkpluLsA9FS9CdrJeRU1AGSyfDrtoNo_z2RuLfO5ulip2exKwuvfRXcapIr3atO6hzZcfh_dvtK_8AEafyn0clHir27iZfCBK6uTXTlWucX7DQ0F3puNYSfLyXdc8wv7MQXT-c_G7rFvEQK_NazPpFff_jyv7rLj_qxYPURn17LHj9BmXuTuMcLEQcFIHdiM9WCDJYyFlrEoEyIDcMN76O16b1PTtDX37BqzFMobr4a0VUMPvWxF53Uvj78JffAKagV8--1qoDgfp403p1A2xwksU1ueMWultJwbI3iomLCWwkV2QL2wHv9JICQCKPeck0zEUPgnrIe214pPm5ixSC8tvIdetNPg7f4RjspdsQQZCpAYUF4C_1t0DKaz4O5MPp1UfcM5RG_Apz30qjWtf-_Dk_8v8TnaGpyeHKfHh8Ojp-gWwEjpM3oUbaPN8nzpdgCqlfpZ5R8Yfbtuh_wNLTdRGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIvE4IJ4i0MLykrhY8dr78B4QKg1RSyEgRFFuZp9JpGCHxiHqX-PXMWs7aYOAWy8-7I7t9c5jv9kdzyD0XEjjhJYk0jzWEdXWR5ooHfEs07Hykqm6TOeHAT84pu-GbLiFfq3-hQlhlSubWBtqW5qwR95NGKyMqaQi6_o2LOJTr_969iMKFaTCSeuqnEYjIkfudAnu2_zVYQ94_SJJ-m-_7B9EbYWByDBKqsioNBOOEB87ohjXhnpGFGeSA5Bg1lNpdEpsbGLtPLEuhuY4McpKYrj0NIXnXkKXRZrKEE4ohmfOXgq-X5PJCDrj7hyQVP1X6Mb6V5cJgFWtmEw2EO6f8ZlXF8VMnS7VdHpu8evfRDda1Ir3GjG7hbZccRtdP5fL8A4afS71Yl7hr24caHDPVXWUV4FVYfF-W5IC701HMJPV-Dtuag2HNgXdxc9WB3BIFwLvGjTx6fXdH2f1jjvuT8vlXXR8IXN8D20XZeHuI0wcOI-pA_mxAXjQjNLYUpp4ITwAHd5BL1dzm5s2xXmotDHNwdUJbMjXbOigp2vSWZPX429EbwKD1gQhFXfdUJ6M8lazc3ChWQbD1JZ7aq2UlnNjBI8VFdam8JBdYC-MJ1wJmEcA6KH-JBWMAV6iHbSzYnze2o95fibtHfRk3Q2aH45zVOHKBdCkAI8B8WXw3WJDYDYGvNlTTMZ1DnEOlhywagc9W4vWv-fhwf-H-BhdAVXM3x8Ojh6ia4AoZbNHtYO2q5OF2wXUVulHtXpg9O2i9fE3DClVWA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvFcUdlF4HLhkGye2E59QWahWSBSEKFpOkZ9tREiqNtkV_HrGSRo1K5CQuPRgj1MnHnu-SWa-QehlzJWJJce-ZIH0idTWl1hInyWJDITlVDRlOj_M2dmCvD-n53tZ_C6sElzxrDmkXRaWDxYsmGAOXvrEZVVO1tq-vujeJWHqPiKHPKTX0QGjgMZH6GAx_zT91iQVdaNbQqEIvPvJFgBNk5w5MEMNWz8YlyLLBkDzapjkjbpYi5-XIs_3bNDsDhK72behJ99P6kqeqF9XiB3_5_buotsdQPWmrUbdQ9dMcR_d2qMtfICWn0tZbyvvq1k5Ge-tqZqArsIThfZOu-oT3jRflpusWv3w2rLCrk1Ad3HRqbvnmEHgv-ZtKHoz-uO6ebnuzfLy8iFazN59OT3zu4INvqIEV74SURIbjG1gsKBMKmIpFm5dAJdRbQlXMsI6UIE0FmsTQHMQKqE5VoxbEh2iUVEW5hHysAE_MTKgKtphDJIQEmhCQhvHFh4ZG6NXu_VLVcdm7opq5Cl4NW6p036px-h5L7puKTz-JPTGKUEv4Fi3m4Zys0y7TZyCt0wTmKbUzBKtOdeMKRWzQJBY6wgucgwqBPNxvxhOQsDirtQkiSn4-wkZo6OdcqXdUbFNQwqQL-IkhuHP-m7Y5O7LjShMWYNMBEgYwF0C9x0PlHIw4WFPka0aunAGhzbA0jF60avv35_D43-SeoJuAnDkzoaH4REaVZvaHAM4q-TTbv_9BmsEMhI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+Vehicle+Detection+and+Counting+Algorithm+Employing+a+Convolution+Neural+Network+and+Optical+Flow&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Gomaa%2C+Ahmed&rft.au=Abdelwahab%2C+Moataz+M.&rft.au=Abo-Zahhad%2C+Mohammed&rft.au=Minematsu%2C+Tsubasa&rft.date=2019-10-22&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=19&rft.issue=20&rft_id=info:doi/10.3390%2Fs19204588&rft_id=info%3Apmid%2F31652552&rft.externalDocID=PMC6832389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon