Multiphysics Modelling and Simulation of Thrombolysis via Activated Platelet-Targeted Nanomedicine

Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are inves...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical research Vol. 39; no. 1; pp. 41 - 56
Main Authors Gu, Boram, Huang, Yu, Manchester, Emily Louise, Hughes, Alun D., Thom, Simon A. McG, Chen, Rongjun, Xu, Xiao Yun
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0724-8741
1573-904X
1573-904X
DOI10.1007/s11095-021-03161-2

Cover

Abstract Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. Methods The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Results Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Conclusions Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
AbstractList This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. Methods The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Results Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Conclusions Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
PurposeThis study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.MethodsThe model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.ResultsOur simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.ConclusionsOur simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.PURPOSEThis study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.METHODSThe model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.RESULTSOur simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.CONCLUSIONSOur simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. Methods The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Results Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Conclusions Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.
Audience Academic
Author Manchester, Emily Louise
Thom, Simon A. McG
Chen, Rongjun
Huang, Yu
Gu, Boram
Xu, Xiao Yun
Hughes, Alun D.
Author_xml – sequence: 1
  givenname: Boram
  surname: Gu
  fullname: Gu, Boram
  organization: Department of Chemical Engineering, Imperial College London, School of Chemical Engineering, Chonnam National University
– sequence: 2
  givenname: Yu
  surname: Huang
  fullname: Huang, Yu
  organization: Department of Chemical Engineering, Imperial College London, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine
– sequence: 3
  givenname: Emily Louise
  surname: Manchester
  fullname: Manchester, Emily Louise
  organization: Department of Chemical Engineering, Imperial College London
– sequence: 4
  givenname: Alun D.
  surname: Hughes
  fullname: Hughes, Alun D.
  organization: Institute of Cardiovascular Science, University College London, MRC Unit for Lifelong Health and Ageing at University College London
– sequence: 5
  givenname: Simon A. McG
  surname: Thom
  fullname: Thom, Simon A. McG
  organization: National Heart and Lung Institute, Imperial College London
– sequence: 6
  givenname: Rongjun
  surname: Chen
  fullname: Chen, Rongjun
  organization: Department of Chemical Engineering, Imperial College London
– sequence: 7
  givenname: Xiao Yun
  orcidid: 0000-0002-8267-621X
  surname: Xu
  fullname: Xu, Xiao Yun
  email: yun.xu@imperial.ac.uk
  organization: Department of Chemical Engineering, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35044591$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9rFDEYxoNU7Lb6BTzIgBcvU5NJsslchKVUW2hVcAVvIZN5M5syk6zJzEK_vZlubW2RkkMg-T3v8_47Qgc-eEDoLcEnBGPxMRGCa17iipSYkiUpqxdoQbigZY3ZrwO0wKJipRSMHKKjlK4xxpLU7BU6pBwzxmuyQM3V1I9uu7lJzqTiKrTQ9853hfZt8cMNU69HF3wRbLHexDA0oc9kKnZOFyszup0eoS2-Zwp6GMu1jh3ML1-1DwO0zjgPr9FLq_sEb-7uY_Tz89n69Ly8_Pbl4nR1WRrOyFgaUUvDLTfSMiIaMJZQq0XLOUhrGDHQNjlnvqQSbEMN45pXFDMiqeYaWnqMPu3jbqcmexvwY9S92kY36Hijgnbq8Y93G9WFnZKSCs5oDvDhLkAMvydIoxpcMrkh2kOYkqqWFal4XROR0fdP0OswRZ_LmymRe44Fe6A63YNy3obsa-agaiVYBuQSz7Yn_6HyaWFwJo_cuvz-SPDu30LvK_w71QxUe8DEkFIEe48QrObVUfvVUXl11O3qqCqL5BORcePt9HM6rn9eSvfSlH18B_GhG8-o_gAYANiC
CitedBy_id crossref_primary_10_1088_2516_1091_accc62
crossref_primary_10_1016_j_heliyon_2024_e26668
crossref_primary_10_1007_s11095_022_03330_x
Cites_doi 10.1161/STROKEAHA.111.617902
10.1136/practneurol-2017-001685
10.3390/pharmaceutics11030111
10.1016/j.biomaterials.2009.07.021
10.1161/01.CIR.96.3.761
10.1161/STROKEAHA.110.589606
10.1111/jth.14637
10.1161/STROKEAHA.114.008454
10.1177/1538574413497107
10.1007/s40119-017-0098-2
10.1146/annurev.bioeng.1.1.427
10.1111/j.1365-2141.2005.05444.x
10.1007/s00062-016-0497-0
10.1038/s41598-018-34082-7
10.1016/j.medengphy.2019.07.014
10.1161/STROKEAHA.114.005731
10.1016/j.biomaterials.2020.120297
10.1182/blood-2013-08-523860
10.1016/0002-9149(89)90419-0
10.5853/jos.2015.17.3.268
10.1007/s13346-019-00631-4
10.1056/NEJMoa1716405
10.1073/pnas.1818924116
10.1161/01.STR.0000257304.21967.ba
10.1161/STROKEAHA.116.012619
10.1016/j.bpj.2013.05.049
10.1161/STROKEAHA.116.014431
10.1080/14686996.2019.1590126
10.1038/clpt.1987.31
10.1161/STROKEAHA.110.609693
10.1080/17425247.2018.1384464
10.1126/sciadv.abf9033
10.1161/01.STR.0000230307.03438.94
10.1056/NEJM199512143332401
10.1054/blre.2001.0161
10.1371/journal.pone.0225841
10.1136/neurintsurg-2014-011212
10.1161/STROKEAHA.118.024442
10.1055/s-0038-1656374
10.1161/STROKEAHA.115.011401
10.1161/01.CIR.103.24.2897
10.1161/STROKEAHA.113.003079
10.3389/fneur.2019.01195
10.1161/ATVBAHA.114.304488
10.1111/jth.13033
10.1161/STROKEAHA.118.021864
10.1161/STROKEAHA.110.580662
10.1016/j.ajps.2018.12.004
10.1136/jnnp.57.1.17
10.1177/1747493017709671
10.1016/j.jstrokecerebrovasdis.2017.07.031
10.1016/j.jconrel.2019.02.033
10.1038/s41598-020-59526-x
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
COPYRIGHT 2022 Springer
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s11095-021-03161-2
DatabaseName Springer Nature Open Access Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest One Academic Middle East (New)
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1573-904X
EndPage 56
ExternalDocumentID PMC8837543
A747438603
35044591
10_1007_s11095_021_03161_2
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
YCJ
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c541t-c798c5f5c8f417becf13fa7d55e8fc41cedb4595638efb3c45a52304183a5aed3
IEDL.DBID C6C
ISSN 0724-8741
1573-904X
IngestDate Thu Aug 21 13:59:33 EDT 2025
Fri Sep 05 06:44:31 EDT 2025
Sat Sep 06 17:51:18 EDT 2025
Tue Jun 17 21:27:09 EDT 2025
Tue Jun 10 20:38:13 EDT 2025
Thu Apr 03 06:56:39 EDT 2025
Tue Jul 01 03:51:03 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Fri Feb 21 02:47:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pharmacokinetics
thrombolysis
targeted drug delivery
multiphysics modelling
pharmacodynamics
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-c798c5f5c8f417becf13fa7d55e8fc41cedb4595638efb3c45a52304183a5aed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8267-621X
OpenAccessLink https://doi.org/10.1007/s11095-021-03161-2
PMID 35044591
PQID 2627874074
PQPubID 37334
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837543
proquest_miscellaneous_2621259917
proquest_journals_2627874074
gale_infotracmisc_A747438603
gale_infotracacademiconefile_A747438603
pubmed_primary_35044591
crossref_primary_10_1007_s11095_021_03161_2
crossref_citationtrail_10_1007_s11095_021_03161_2
springer_journals_10_1007_s11095_021_03161_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
2022-Jan
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle Pharmaceutical research
PublicationTitleAbbrev Pharm Res
PublicationTitleAlternate Pharm Res
PublicationYear 2022
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Kurre, Aguilar-Pérez, Martinez-Moreno, Schmid, Bäzner, Henkes (CR14) 2017; 27
Kamalian, Morais, Pomerantz, Aceves, Sit, Bose, Hirsch, Lev, Yoo (CR33) 2013; 44
Friedrich, Gawlitza, Schob, Hobohm, Raviolo, Hoffmann, Lobsien (CR32) 2015; 46
Evans, White, Cowley, Werring (CR7) 2017; 17
Nakagawara, Minematsu, Okada, Tanahashi, Nagahiro, Mori, Shinohara, Yamaguchi (CR43) 2010; 41
Gu, Piebalgs, Huang, Longstaff, Hughes, Chen, Thom, Xu (CR28) 2019; 11
Campbell, Mitchell, Churilov, Yassi, Kleinig, Dowling, Yan, Bush, Dewey, Thijs, Scroop, Simpson, Brooks, Asadi, Wu, Shah, Wijeratne, Ang, Miteff, Levi, Rodrigues, Zhao, Salvaris, Garcia-Esperon, Bailey, Rice, de Villiers, Brown, Redmond, Leggett, Fink, Collecutt, Wong, Muller, Coulthard, Mitchell, Clouston, Mahady, Field, Ma, Phan, Chong, Chandra, Slater, Krause, Harrington, Faulder, Steinfort, Bladin, Sharma, Desmond, Parsons, Donnan, Davis (CR12) 2018; 378
Cines, Lebedeva, Nagaswami, Hayes, Massefski, Litvinov, Rauova, Lowery, Weisel (CR53) 2014; 123
Minnerup, Wersching, Teuber, Wellmann, Eyding, Weber, Reimann, Weber, Krause, Kurth, Berger, Homberg, Petrovitch, Heuser, Mönnigs, Krogias, Wallner, Hennigs, Ahlers, Sahl, Ranft, Dobis, Brassel, Nolden-Koch, Schmitt, Chapot, Nordmeyer, Schlamann, Weimar, Busch, Busch, Sigges, Ruf, Wohlfahrt, Karatschai, Klein, Höhle, Haass, Nasreldein, Büchele, Gahn, Sterker, Hantel, Krämer, Henningsen, Adelt, König, Schmidt, Hofmann, Niederstadt, Unrath, Rehfeldt, Fauser, Pfeiffer, Lowens, Stögbauer, Staudacher, Erdmann, Grotemeyer, Spüntrup, Bücke, Wienecke, Faiss, Wolzik-Großmann, Brune, Isenmann, Thomas, Mucha (CR11) 2016; 47
Ogata, Masuda, Yutani, Yamaguchi (CR47) 1994; 57
Shiraishi, Yokoyama (CR26) 2019; 20
Hong, Ko, Lee, Yu, Rha (CR9) 2015; 17
Kim, Kim, Park, Byun, Kim (CR25) 2009; 30
Riedel, Jensen, Rohr, Tietke, Alfke, Ulmer, Jansen (CR49) 2010; 41
Raskob, Angchaisuksiri, Blanco, Buller, Gallus, Hunt, Hylek, Kakkar, Konstantinides, McCumber, Ozaki, Wendelboe, Weitz (CR2) 2014; 34
Huang, Gu, Salles-Crawley, Taylor, Yu, Ren (CR24) 2021; 7
Huang, Yu, Ren, Gu, Longstaff, Hughes (CR23) 2019; 300
Piebalgs, Gu, Roi, Lobotesis, Thom, Xu (CR30) 2018; 8
Rohan, Baxa, Tupy, Cerna, Sevcik, Friesl, Polivka, Polivka, Ferda (CR45) 2014; 45
Huang, Li, Gao (CR19) 2019; 14
Chandler, Alessi, Aillaud, Henderson, Vague, Juhan-Vague (CR5) 1997; 96
Yu, Song, Tian, Dai, Zhu, Ahmad, Guo, Zhu, Zhong, Yuan, Zhang, Yi, Shi, Gan, Gao (CR35) 2019; 116
Castonguay, Jumaa, Zaidat, Haussen, Jadhav, Salahuddin (CR15) 2019; 10
Marder (CR1) 2001; 15
(CR6) 1995; 333
Diamond (CR31) 1999; 1
Alexandrov, Burgin, Demchuk, El-Mitwalli, Grotta (CR37) 2001; 103
Tebbe, Tanswell, Seifried, Feuerer, Scholz, Herrmann (CR42) 1989; 64
Heiferman, Li, Pecoraro, Smolenski, Tsimpas, Ashley (CR16) 2017; 26
Chernysh, Nagaswami, Kosolapova, Peshkova, Cuker, Cines (CR51) 2020; 10
Marder, Chute, Starkman, Abolian, Kidwell, Liebeskind, Ovbiagele, Vinuela, Duckwiler, Jahan, Vespa, Selco, Rajajee, Kim, Sanossian, Saver (CR50) 2006; 37
Zaidi, Castonguay, Jumaa, Malisch, Linfante, Marden (CR17) 2019; 50
Yoo, Baek, Park, Song, Kim, Hwang, Kim, Kim, Lee, Ahn, Cho, Kim, Kim, Lee, Song, Choi, Nam, Heo (CR34) 2018; 49
Andrew, Brooker, Leaker, Paes, Weitz (CR38) 1992; 68
Noe, Bell (CR41) 1987; 41
Liu, Feng, Jin, Li (CR3) 2018; 15
Behme, Kowoll, Weber, Mpotsaris (CR8) 2015; 7
Gu, Piebalgs, Huang, Roi, Lobotesis, Longstaff, Hughes, Chen, Thom, Xu (CR29) 2019; 73
Saqqur, Uchino, Demchuk, Molina, Garami, Calleja, Akhtar, Orouk, Salam, Shuaib, Alexandrov (CR39) 2007; 38
Riedel, Zimmermann, Jensen-Kondering, Stingele, Deuschl, Jansen (CR46) 2011; 42
Cesarman-Maus, Hajjar (CR4) 2005; 129
Yan, Chen, Xu, Sun, Liebeskind, Lou (CR44) 2016; 47
Skeik, Gits, Ehrenwald, Cragg (CR40) 2013; 47
Absar, Gupta, Nahar, Ahsan (CR21) 2015; 13
Hussain, Khan, Imran, Sohail, Shah, de Matas (CR27) 2019; 9
Fitzgerald, Wang, Dai, Murphree, Pandit, Douglas, Rizvi, Kadirvel, Gilvarry, McCarthy, Stritt, Gounis, Brinjikji, Kallmes, Doyle (CR52) 2019; 14
Disharoon, Marr, Neeves (CR20) 2019; 17
Zenych, Fournier, Chauvierre (CR22) 2020; 258
Bark, Ku (CR36) 2013; 105
Barreto, Alexandrov (CR13) 2012; 43
Scheitz, Abdul-Rahim, Macisaac, Cooray, Sucharew, Kleindorfer (CR10) 2017; 48
Hameed, Zafar, Mylotte, Sharif (CR18) 2017; 6
De Meyer, Andersson, Baxter, Bendszus, Brouwer, Brinjikji (CR48) 2017; 12
B Gu (3161_CR28) 2019; 11
S Yan (3161_CR44) 2016; 47
SL Diamond (3161_CR31) 1999; 1
WL Chandler (3161_CR5) 1997; 96
VJ Marder (3161_CR50) 2006; 37
DB Cines (3161_CR53) 2014; 123
S Fitzgerald (3161_CR52) 2019; 14
S Liu (3161_CR3) 2018; 15
K Shiraishi (3161_CR26) 2019; 20
M Saqqur (3161_CR39) 2007; 38
S Absar (3161_CR21) 2015; 13
JY Kim (3161_CR25) 2009; 30
D Disharoon (3161_CR20) 2019; 17
SF De Meyer (3161_CR48) 2017; 12
AV Alexandrov (3161_CR37) 2001; 103
K-S Hong (3161_CR9) 2015; 17
DL Bark (3161_CR36) 2013; 105
D Behme (3161_CR8) 2015; 7
S Kamalian (3161_CR33) 2013; 44
Y Huang (3161_CR24) 2021; 7
AC Castonguay (3161_CR15) 2019; 10
VJ Marder (3161_CR1) 2001; 15
T Huang (3161_CR19) 2019; 14
A Zenych (3161_CR22) 2020; 258
J Ogata (3161_CR47) 1994; 57
J Minnerup (3161_CR11) 2016; 47
J Nakagawara (3161_CR43) 2010; 41
A Hameed (3161_CR18) 2017; 6
A Piebalgs (3161_CR30) 2018; 8
V Rohan (3161_CR45) 2014; 45
J Yoo (3161_CR34) 2018; 49
DA Noe (3161_CR41) 1987; 41
CH Riedel (3161_CR49) 2010; 41
MRB Evans (3161_CR7) 2017; 17
M Andrew (3161_CR38) 1992; 68
IN Chernysh (3161_CR51) 2020; 10
N Skeik (3161_CR40) 2013; 47
M Yu (3161_CR35) 2019; 116
BCV Campbell (3161_CR12) 2018; 378
Group TNI of ND and S rt-PSS (3161_CR6) 1995; 333
DM Heiferman (3161_CR16) 2017; 26
AD Barreto (3161_CR13) 2012; 43
JF Scheitz (3161_CR10) 2017; 48
B Friedrich (3161_CR32) 2015; 46
B Gu (3161_CR29) 2019; 73
G Cesarman-Maus (3161_CR4) 2005; 129
GE Raskob (3161_CR2) 2014; 34
U Tebbe (3161_CR42) 1989; 64
W Kurre (3161_CR14) 2017; 27
SF Zaidi (3161_CR17) 2019; 50
CH Riedel (3161_CR46) 2011; 42
Y Huang (3161_CR23) 2019; 300
Z Hussain (3161_CR27) 2019; 9
References_xml – volume: 10
  start-page: 1195
  year: 2019
  ident: CR15
  article-title: Insights Into Intra-arterial Thrombolysis in the Modern Era of Mechanical Thrombectomy
  publication-title: Front Neurol
– volume: 9
  start-page: 721
  year: 2019
  end-page: 734
  ident: CR27
  article-title: PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution
  publication-title: Drug Deliv Transl Res
– volume: 50
  start-page: 1003
  year: 2019
  end-page: 1006
  ident: CR17
  article-title: Intraarterial thrombolysis as rescue therapy for large vessel occlusions: analysis from the North American solitaire stent-retriever acute stroke registry
  publication-title: Stroke
– volume: 34
  start-page: 2363
  year: 2014
  end-page: 2371
  ident: CR2
  article-title: Thrombosis
  publication-title: Arterioscler Thromb Vasc Biol
– volume: 26
  start-page: 3004
  year: 2017
  end-page: 3008
  ident: CR16
  article-title: Intra-arterial Alteplase thrombolysis during mechanical Thrombectomy for acute ischemic stroke
  publication-title: J Stroke Cerebrovasc Dis WB Saunders
– volume: 15
  start-page: 143
  year: 2001
  end-page: 157
  ident: CR1
  article-title: Thrombolytic therapy: 2001
  publication-title: Blood Rev
– volume: 333
  start-page: 1581
  year: 1995
  end-page: 1587
  ident: CR6
  article-title: Tissue plasminogen activator for acute ischemic stroke — NEJM
  publication-title: N Engl J Med
– volume: 17
  start-page: 2004
  year: 2019
  end-page: 2015
  ident: CR20
  article-title: Engineered microparticles and nanoparticles for fibrinolysis
  publication-title: J Thromb Haemost
– volume: 45
  start-page: 2010
  year: 2014
  end-page: 2017
  ident: CR45
  article-title: Length of occlusion predicts recanalization and outcome after intravenous thrombolysis in middle cerebral artery stroke
  publication-title: Stroke.
– volume: 73
  start-page: 9
  year: 2019
  end-page: 17
  ident: CR29
  article-title: Computational simulations of thrombolysis in acute stroke: effect of clot size and location on recanalisation
  publication-title: Med Eng Phys
– volume: 49
  start-page: 2108
  year: 2018
  end-page: 2115
  ident: CR34
  article-title: Thrombus volume as a predictor of nonrecanalization after intravenous thrombolysis in acute stroke
  publication-title: Stroke.
– volume: 41
  start-page: 1984
  year: 2010
  end-page: 1989
  ident: CR43
  article-title: Thrombolysis with 0.6 mg/kg intravenous alteplase for acute ischemic stroke in routine clinical practice: the Japan post-marketing Alteplase registration study (J-MARS)
  publication-title: Stroke.
– volume: 37
  start-page: 2086
  year: 2006
  end-page: 2093
  ident: CR50
  article-title: Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke
  publication-title: Stroke.
– volume: 103
  start-page: 2897
  year: 2001
  end-page: 2902
  ident: CR37
  article-title: Speed of intracranial clot lysis with intravenous tissue plasminogen activator therapy: sonographic classification and short-term improvement
  publication-title: Circulation.
– volume: 96
  start-page: 761
  year: 1997
  end-page: 768
  ident: CR5
  article-title: Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels
  publication-title: Circulation.
– volume: 27
  start-page: 351
  year: 2017
  end-page: 360
  ident: CR14
  article-title: Stent retriever Thrombectomy of small caliber intracranial vessels using pREset LITE: safety and efficacy
  publication-title: Clin Neuroradiol
– volume: 12
  start-page: 606
  year: 2017
  end-page: 614
  ident: CR48
  article-title: Analyses of thrombi in acute ischemic stroke: a consensus statement on current knowledge and future directions
  publication-title: Int J Stroke
– volume: 378
  start-page: 1573
  year: 2018
  end-page: 1582
  ident: CR12
  article-title: Tenecteplase versus Alteplase before Thrombectomy for ischemic stroke
  publication-title: N Engl J Med
– volume: 258
  start-page: 120297
  year: 2020
  ident: CR22
  article-title: Nanomedicine progress in thrombolytic therapy
  publication-title: Biomaterials
– volume: 7
  start-page: eabf9033
  year: 2021
  ident: CR24
  article-title: Fibrinogen-mimicking, multiarm nanovesicles for human thrombus-specific delivery of tissue plasminogen activator and targeted thrombolytic therapy
  publication-title: Sci Adv
– volume: 105
  start-page: 502
  year: 2013
  end-page: 511
  ident: CR36
  article-title: Platelet transport rates and binding kinetics at high shear over a thrombus
  publication-title: Biophys J
– volume: 20
  start-page: 324
  year: 2019
  end-page: 336
  ident: CR26
  article-title: Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review
  publication-title: Sci Technol Adv Mater
– volume: 300
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR23
  article-title: An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy
  publication-title: J Control Release
– volume: 64
  start-page: 448
  year: 1989
  end-page: 453
  ident: CR42
  article-title: Single-bolus injection of recombinant tissue-type plasminogen activator in acute myocardial infarction
  publication-title: Am J Cardiol
– volume: 7
  start-page: 559
  year: 2015
  end-page: 563
  ident: CR8
  article-title: M1 is not M1 in ischemic stroke: the disability-free survival after mechanical thrombectomy differs significantly between proximal and distal occlusions of the middle cerebral artery M1 segment
  publication-title: J Neurointerv Surg
– volume: 41
  start-page: 1659
  year: 2010
  end-page: 1664
  ident: CR49
  article-title: Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions
  publication-title: Stroke.
– volume: 43
  start-page: 591
  year: 2012
  end-page: 598
  ident: CR13
  article-title: Adjunctive and alternative approaches to current reperfusion therapy
  publication-title: Stroke.
– volume: 6
  start-page: 193
  year: 2017
  end-page: 202
  ident: CR18
  article-title: Recent trends in clot retrieval devices: a review
  publication-title: Cardiol Ther
– volume: 123
  start-page: 1596
  year: 2014
  end-page: 1603
  ident: CR53
  article-title: Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin
  publication-title: Blood.
– volume: 41
  start-page: 297
  year: 1987
  end-page: 303
  ident: CR41
  article-title: A kinetic analysis of fibrinogenolysis during plasminogen activator therapy
  publication-title: Clin Pharmacol Ther
– volume: 15
  start-page: 173
  year: 2018
  end-page: 184
  ident: CR3
  article-title: Tissue plasminogen activator-based nanothrombolysis for ischemic stroke
  publication-title: Expert Opin Drug Deliv
– volume: 30
  start-page: 5751
  year: 2009
  end-page: 5756
  ident: CR25
  article-title: The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator
  publication-title: Biomaterials.
– volume: 14
  year: 2019
  ident: CR52
  article-title: Orbit image analysis machine learning software can be used for the histological quantification of acute ischemic stroke blood clots
  publication-title: PLoS One
– volume: 44
  start-page: 3553
  year: 2013
  end-page: 3556
  ident: CR33
  article-title: Clot length distribution and predictors in anterior circulation stroke: implications for intra-arterial therapy
  publication-title: Stroke.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: CR51
  article-title: The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli
  publication-title: Sci Rep
– volume: 116
  start-page: 5362
  year: 2019
  end-page: 5369
  ident: CR35
  article-title: Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels
  publication-title: Proc Natl Acad Sci U S A
– volume: 42
  start-page: 1775
  year: 2011
  end-page: 1777
  ident: CR46
  article-title: The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length
  publication-title: Stroke.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 13
  ident: CR30
  article-title: Computational simulations of thrombolytic therapy in acute Ischaemic stroke
  publication-title: Sci Rep
– volume: 48
  start-page: 290
  year: 2017
  end-page: 297
  ident: CR10
  article-title: Clinical selection strategies to identify ischemic stroke patients with large anterior vessel occlusion: results from SITS-ISTR (safe implementation of thrombolysis in stroke international stroke thrombolysis registry)
  publication-title: Stroke.
– volume: 13
  start-page: 1545
  year: 2015
  end-page: 1556
  ident: CR21
  article-title: Engineering of plasminogen activators for targeting to thrombus and heightening thrombolytic efficacy
  publication-title: J Thromb Haemost
– volume: 57
  start-page: 17
  year: 1994
  end-page: 21
  ident: CR47
  article-title: Mechanisms of cerebral artery thrombosis: a histopathological analysis on eight necropsy cases
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 1
  start-page: 427
  year: 1999
  end-page: 461
  ident: CR31
  article-title: Engineering Design of Optimal Strategies for blood clot dissolution
  publication-title: Annu Rev Biomed Eng
– volume: 129
  start-page: 307
  year: 2005
  end-page: 321
  ident: CR4
  article-title: Molecular mechanisms of fibrinolysis
  publication-title: Br J Haematol
– volume: 17
  start-page: 268
  year: 2015
  end-page: 281
  ident: CR9
  article-title: Endovascular recanalization therapy in acute ischemic stroke: updated Meta-analysis of randomized controlled trials
  publication-title: J Stroke
– volume: 38
  start-page: 948
  year: 2007
  end-page: 954
  ident: CR39
  article-title: Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke
  publication-title: Stroke.
– volume: 47
  start-page: 519
  year: 2013
  end-page: 523
  ident: CR40
  article-title: Fibrinogen level as a surrogate for the outcome of thrombolytic therapy using tissue plasminogen activator for acute lower extremity intravascular thrombosis
  publication-title: Vasc Endovasc Surg
– volume: 11
  start-page: 111
  year: 2019
  ident: CR28
  article-title: Mathematical modelling of intravenous thrombolysis in acute ischaemic stroke: effects of dose regimens on levels of fibrinolytic proteins and clot lysis time
  publication-title: Pharmaceutics.
– volume: 46
  start-page: 692
  year: 2015
  end-page: 696
  ident: CR32
  article-title: Distance to thrombus in acute middle cerebral artery occlusion: a predictor of outcome after intravenous thrombolysis for acute ischemic stroke
  publication-title: Stroke.
– volume: 17
  start-page: 252
  year: 2017
  end-page: 265
  ident: CR7
  article-title: Revolution in acute ischaemic stroke care: a practical guide to mechanical thrombectomy
  publication-title: Pract Neurol
– volume: 68
  start-page: 325
  year: 1992
  end-page: 330
  ident: CR38
  article-title: Fibrin clot lysis by thrombolytic agents is impaired in newborns due to a low plasminogen concentration
  publication-title: Thromb Haemost
– volume: 14
  start-page: 233
  year: 2019
  end-page: 247
  ident: CR19
  article-title: Recent strategies on targeted delivery of thrombolytics
  publication-title: Asian J Pharm Sci.
– volume: 47
  start-page: 756
  year: 2016
  end-page: 761
  ident: CR44
  article-title: Thrombus length estimation on delayed gadolinium-enhanced T1
  publication-title: Stroke.
– volume: 47
  start-page: 1584
  year: 2016
  end-page: 1592
  ident: CR11
  article-title: Outcome after Thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: a prospective observational study
  publication-title: Stroke.
– volume: 43
  start-page: 591
  year: 2012
  ident: 3161_CR13
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.111.617902
– volume: 17
  start-page: 252
  year: 2017
  ident: 3161_CR7
  publication-title: Pract Neurol
  doi: 10.1136/practneurol-2017-001685
– volume: 11
  start-page: 111
  year: 2019
  ident: 3161_CR28
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics11030111
– volume: 30
  start-page: 5751
  year: 2009
  ident: 3161_CR25
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2009.07.021
– volume: 96
  start-page: 761
  year: 1997
  ident: 3161_CR5
  publication-title: Circulation.
  doi: 10.1161/01.CIR.96.3.761
– volume: 41
  start-page: 1984
  year: 2010
  ident: 3161_CR43
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.110.589606
– volume: 17
  start-page: 2004
  year: 2019
  ident: 3161_CR20
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.14637
– volume: 46
  start-page: 692
  year: 2015
  ident: 3161_CR32
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.114.008454
– volume: 47
  start-page: 519
  year: 2013
  ident: 3161_CR40
  publication-title: Vasc Endovasc Surg
  doi: 10.1177/1538574413497107
– volume: 6
  start-page: 193
  year: 2017
  ident: 3161_CR18
  publication-title: Cardiol Ther
  doi: 10.1007/s40119-017-0098-2
– volume: 1
  start-page: 427
  year: 1999
  ident: 3161_CR31
  publication-title: Annu Rev Biomed Eng
  doi: 10.1146/annurev.bioeng.1.1.427
– volume: 129
  start-page: 307
  year: 2005
  ident: 3161_CR4
  publication-title: Br J Haematol
  doi: 10.1111/j.1365-2141.2005.05444.x
– volume: 27
  start-page: 351
  year: 2017
  ident: 3161_CR14
  publication-title: Clin Neuroradiol
  doi: 10.1007/s00062-016-0497-0
– volume: 8
  start-page: 1
  year: 2018
  ident: 3161_CR30
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-34082-7
– volume: 73
  start-page: 9
  year: 2019
  ident: 3161_CR29
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2019.07.014
– volume: 45
  start-page: 2010
  year: 2014
  ident: 3161_CR45
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.114.005731
– volume: 258
  start-page: 120297
  year: 2020
  ident: 3161_CR22
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2020.120297
– volume: 123
  start-page: 1596
  year: 2014
  ident: 3161_CR53
  publication-title: Blood.
  doi: 10.1182/blood-2013-08-523860
– volume: 64
  start-page: 448
  year: 1989
  ident: 3161_CR42
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(89)90419-0
– volume: 17
  start-page: 268
  year: 2015
  ident: 3161_CR9
  publication-title: J Stroke
  doi: 10.5853/jos.2015.17.3.268
– volume: 9
  start-page: 721
  year: 2019
  ident: 3161_CR27
  publication-title: Drug Deliv Transl Res
  doi: 10.1007/s13346-019-00631-4
– volume: 378
  start-page: 1573
  year: 2018
  ident: 3161_CR12
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1716405
– volume: 116
  start-page: 5362
  year: 2019
  ident: 3161_CR35
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1818924116
– volume: 38
  start-page: 948
  year: 2007
  ident: 3161_CR39
  publication-title: Stroke.
  doi: 10.1161/01.STR.0000257304.21967.ba
– volume: 47
  start-page: 1584
  year: 2016
  ident: 3161_CR11
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.116.012619
– volume: 105
  start-page: 502
  year: 2013
  ident: 3161_CR36
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2013.05.049
– volume: 48
  start-page: 290
  year: 2017
  ident: 3161_CR10
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.116.014431
– volume: 20
  start-page: 324
  year: 2019
  ident: 3161_CR26
  publication-title: Sci Technol Adv Mater
  doi: 10.1080/14686996.2019.1590126
– volume: 41
  start-page: 297
  year: 1987
  ident: 3161_CR41
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1987.31
– volume: 42
  start-page: 1775
  year: 2011
  ident: 3161_CR46
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.110.609693
– volume: 15
  start-page: 173
  year: 2018
  ident: 3161_CR3
  publication-title: Expert Opin Drug Deliv
  doi: 10.1080/17425247.2018.1384464
– volume: 7
  start-page: eabf9033
  year: 2021
  ident: 3161_CR24
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abf9033
– volume: 37
  start-page: 2086
  year: 2006
  ident: 3161_CR50
  publication-title: Stroke.
  doi: 10.1161/01.STR.0000230307.03438.94
– volume: 333
  start-page: 1581
  year: 1995
  ident: 3161_CR6
  publication-title: N Engl J Med
  doi: 10.1056/NEJM199512143332401
– volume: 15
  start-page: 143
  year: 2001
  ident: 3161_CR1
  publication-title: Blood Rev
  doi: 10.1054/blre.2001.0161
– volume: 14
  year: 2019
  ident: 3161_CR52
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0225841
– volume: 7
  start-page: 559
  year: 2015
  ident: 3161_CR8
  publication-title: J Neurointerv Surg
  doi: 10.1136/neurintsurg-2014-011212
– volume: 50
  start-page: 1003
  year: 2019
  ident: 3161_CR17
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.118.024442
– volume: 68
  start-page: 325
  year: 1992
  ident: 3161_CR38
  publication-title: Thromb Haemost
  doi: 10.1055/s-0038-1656374
– volume: 47
  start-page: 756
  year: 2016
  ident: 3161_CR44
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.115.011401
– volume: 103
  start-page: 2897
  year: 2001
  ident: 3161_CR37
  publication-title: Circulation.
  doi: 10.1161/01.CIR.103.24.2897
– volume: 44
  start-page: 3553
  year: 2013
  ident: 3161_CR33
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.113.003079
– volume: 10
  start-page: 1195
  year: 2019
  ident: 3161_CR15
  publication-title: Front Neurol
  doi: 10.3389/fneur.2019.01195
– volume: 34
  start-page: 2363
  year: 2014
  ident: 3161_CR2
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.114.304488
– volume: 13
  start-page: 1545
  year: 2015
  ident: 3161_CR21
  publication-title: J Thromb Haemost
  doi: 10.1111/jth.13033
– volume: 49
  start-page: 2108
  year: 2018
  ident: 3161_CR34
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.118.021864
– volume: 41
  start-page: 1659
  year: 2010
  ident: 3161_CR49
  publication-title: Stroke.
  doi: 10.1161/STROKEAHA.110.580662
– volume: 14
  start-page: 233
  year: 2019
  ident: 3161_CR19
  publication-title: Asian J Pharm Sci.
  doi: 10.1016/j.ajps.2018.12.004
– volume: 57
  start-page: 17
  year: 1994
  ident: 3161_CR47
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.57.1.17
– volume: 12
  start-page: 606
  year: 2017
  ident: 3161_CR48
  publication-title: Int J Stroke
  doi: 10.1177/1747493017709671
– volume: 26
  start-page: 3004
  year: 2017
  ident: 3161_CR16
  publication-title: J Stroke Cerebrovasc Dis WB Saunders
  doi: 10.1016/j.jstrokecerebrovasdis.2017.07.031
– volume: 300
  start-page: 1
  year: 2019
  ident: 3161_CR23
  publication-title: J Control Release
  doi: 10.1016/j.jconrel.2019.02.033
– volume: 10
  start-page: 1
  year: 2020
  ident: 3161_CR51
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-59526-x
SSID ssj0008194
Score 2.405262
Snippet Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA)....
This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on...
Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA)....
PurposeThis study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA)....
SourceID pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 41
SubjectTerms Analysis
Biochemistry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blood platelets
Computer applications
Dosage
Fibrin
Fibrinolysis
Fibrinolytic Agents - pharmacology
Health aspects
Mathematical models
Medical Law
Nanomedicine
Nanotechnology
Pharmacodynamics
Pharmacokinetics
Pharmacology/Toxicology
Pharmacy
Platelets
Research Paper
Risk assessment
Simulation
Simulation methods
t-Plasminogen activator
Thrombolysis
Thrombolytic drugs
Thrombolytic Therapy - methods
Tissue plasminogen activator
Tissue Plasminogen Activator - pharmacology
Tissue Plasminogen Activator - therapeutic use
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0vvgifhtbZQWpD17wkt3Nbp_kEEsRlAOvcG9hP_HAJrV3LfS_d2azScyBfc1OwmTncz_mN4S8P3EQs1QZcpCwzrlyITfzUIBAvPKVkqVjWJz8_Ud1ds6_rcU6bbht07XK3idGR-1ai3vkn8qqlNg-TvLPl39y7BqFp6uphcZ98qCATARbN8j1sODCaBfho2TJwep5kYpmutK5Yh5rk_FCEWQ9eTkJTPvu-Z_4tH93cu8ANcal08fkUUoo6aLTgCfknm-ekuNlh0h9O6OrscBqO6PHdDliVd8-IyYW4HbbG1uKjdEiRjfVjaM_NxeptxdtA3znqr0wbUQwoTcbTRc2dkbzji6BCqLXLl_Fa-XwBHx225_aPyfnp19XX87y1HYht4IXu9zKE2VFEFYFXkiQcShY0NIJ4VWwvLDeGS5gXcWUD4ZZLnTcWgbnoIX2jr0gB03b-FeEasGddooZwxg3XJsqaKYqjyA6NlQmI0U_57VNmOTYGuN3PaIpo5xqkFMd5VSXGfk4vHPZIXLcSf0BRVmjucKXrU5VB8AfAl_VC1hOcWBpzjJyNKEEM7PT4V4Z6mTm23pUyoy8G4bxTby61vj2OtJAEglpuMzIy053Br6ZmHOYyiIjcqJVAwGCf09Hms2vCAKuFDYvBrZmvf6NbP1_Ol7f_ReH5GGJ5R1xi-mIHOyurv0bSLp25m20rL9s4ik3
  priority: 102
  providerName: ProQuest
Title Multiphysics Modelling and Simulation of Thrombolysis via Activated Platelet-Targeted Nanomedicine
URI https://link.springer.com/article/10.1007/s11095-021-03161-2
https://www.ncbi.nlm.nih.gov/pubmed/35044591
https://www.proquest.com/docview/2627874074
https://www.proquest.com/docview/2621259917
https://pubmed.ncbi.nlm.nih.gov/PMC8837543
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge-EF8U3YqIyExgONaGI79h7TqmUCUVXQSuUpsh1bq8QStHaT9t9z56QprQCJl0aqL9bJ9xnb9ztC3p6XELNU6mOQsI65Kn1sBj4BgTjlMiXTkmFx8pdpdrHgn5Zi2cLkYC3Mwfn9hzUiYmINMV78gewkBnd7LMDxojaPslHndSGyBagomXKwcJ60BTJ_nmMvCB264t9i0eE9yYPD0hCDJo_IwzZ5pHkj7cfknquekLNZgz5916fzXTHVuk_P6GyHS333lJhQbNtsZawpNkELeNxUVyX9trpq-3jR2sM81_WVqQNaCb1daZrb0AXNlXQGVBCpNvE8XCGHf8A_19sT-mdkMRnPRxdx22IhtoInm9jKc2WFF1Z5nkiQp0-Y17IUwilveWJdabiAbyimnDfMcqHDNjI4Ai20K9lzclTVlXtJqBa81KVixjDGDdcm85qpzCFgjvWZiUiyXfPCtvjj2AbjR7FDTkY5FSCnIsipSCPyvnvnZ4O-8U_qdyjKAk0TZra6rTAA_hDkqsjh04kDSwMWkdM9SjApuz-8VYaiNel1kWapxP6FkkfkTTeMb-I1tcrVN4EGEkZIuWVEXjS60_HNxIDDUiYRkXta1REg0Pf-SLW6DIDfSmGjYmCrv9W_HVt_X45X_0d-Qh6kWNoRtpdOydHm-sa9hoRrY3rkvlzKHjnOJ8PhFJ8fv38ew3M4ns6-9oIdwu8izX8BMVMoWg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEN8EBhgJxgONaGI78R4mVGBTx7aqgk7aW_CnqMSSsXag_nP8bZydpKWV2NteY8e6-L7sy93vAF7tGPRZInUxcljGTBgXq55LkCFW2EzkqaG-OPl4mA1O2OdTfroBf9paGJ9W2drEYKhNpX2M_F2apblvH5ez9-c_Y981yv9dbVtoyKa1gtkNEGNNYcehnf_GK9x09-AT8vt1mu7vjT8O4qbLQKw5S2axzneE5o5r4ViS4ye5hDqZG86tcJol2hrFOF4jqLBOUc24DJFU1AXJpTUU170Bm8wHUDqw-WFvOPqy8AXobwOAVZ4ytDssacp26uK9pBeqo31KE5674nTFNa47iH885Hr25tov3OAZ9-_A7eZIS_q1DN6FDVveg-1RjYk975LxssRr2iXbZLREy57fBxVKgOsAy5T41mwBJZzI0pCvk7OmuxipHK5zUZ2pKmCokF8TSfo69GazhoxwFvrPWTwOie34BL1G1eYNPICTa2HJQ-iUVWkfA5GcGWkEVYpSpphUmZNUZNbD-GiXqQiSds8L3aCi--YcP4olnrPnU4F8KgKfijSCt4t3zmtMkCtnv_GsLLzBwJW1bOoekD4PvVX08ULHkKQejWBrZSYqul4dboWhaAzNtFiqRQQvF8P-TZ88V9rqMszBYyxeBPIIHtWys6Cb8h7DrUwiyFekajHBw4-vjpST7wGGXAjfPhnJ6rbytyTr_9vx5OqveAE3B-Pjo-LoYHj4FG6lvtgkBLy2oDO7uLTP8Ag4U88bPSPw7bpV-y8lW24R
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiFeEN9kDDASjAcarYntxHuYUGGrNgZVBJ20t-BPUWlLxtqB-i_yV3F2nJZUYm97jS_WxfdlO3e_Q-j1roaYxVMbg4RFTLm2sezbBARiuMl4nmriipO_jLLDE_rplJ2uoT9tLYxLq2x9onfUulbujnwnzdLctY_L6Y4NaRHF_vD9xc_YdZByf1rbdhoitFnQex5uLBR5HJv5bzjOTfeO9kH2b9J0eDD-eBiHjgOxYjSZxSrf5YpZprilSQ6fZxNiRa4ZM9wqmiijJWVwpCDcWEkUZcLfqoJdCCaMJjDvLbSRQ9SHg-DGh4NR8XURFyD2ejCrPKXgg2gSSniaQr6k7yulXXoT7MHitBMmV4PFP9FyNZNz5Xeuj5LDe-hu2N7iQaOP99GaqR6g7aLBx5738HhZ7jXt4W1cLJGz5w-R9OXAzWXLFLs2bR4xHItK42-T89BpDNcW5rmsz2Xt8VTwr4nAA-X7tBmNC6CCWDqLxz7JHZ5ABKnbHIJH6ORGRPIYrVd1ZZ4iLBjVQnMiJSFUUiEzKwjPjIP0UTaTEUraNS9VQEh3jTrOyiW2s5NTCXIqvZzKNELvFu9cNPgg11K_daIsnfOAmZUINRDAn4PhKgdwuKPAUp9EaKtDCUavusOtMpTB6UzLpYlE6NVi2L3pEukqU195GtjSwqEgj9CTRncWfBPWp7CUSYTyjlYtCBwUeXekmvzwkOScu1bKwFav1b8lW_9fjs3rv-Ilug0mXn4-Gh0_Q3dSV3fi77620Prs8so8h93gTL4IZobR95u27L-DmXJV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiphysics+Modelling+and+Simulation+of+Thrombolysis+via+Activated+Platelet-Targeted+Nanomedicine&rft.jtitle=Pharmaceutical+research&rft.au=Gu%2C+Boram&rft.au=Huang%2C+Yu&rft.au=Manchester%2C+Emily+Louise&rft.au=Hughes%2C+Alun+D.&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=39&rft.issue=1&rft.spage=41&rft.epage=56&rft_id=info:doi/10.1007%2Fs11095-021-03161-2&rft.externalDocID=10_1007_s11095_021_03161_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon