Multiphysics Modelling and Simulation of Thrombolysis via Activated Platelet-Targeted Nanomedicine
Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are inves...
Saved in:
Published in | Pharmaceutical research Vol. 39; no. 1; pp. 41 - 56 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0724-8741 1573-904X 1573-904X |
DOI | 10.1007/s11095-021-03161-2 |
Cover
Abstract | Purpose
This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.
Methods
The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our
in vitro
experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.
Results
Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.
Conclusions
Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. |
---|---|
AbstractList | This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.
The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.
Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.
Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. Methods The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Results Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Conclusions Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. PurposeThis study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.MethodsThe model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.ResultsOur simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.ConclusionsOur simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.PURPOSEThis study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated.The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.METHODSThe model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV.Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.RESULTSOur simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots.Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios.CONCLUSIONSOur simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on our computational results, the effects of therapeutic parameters on the dynamics of thrombolysis and the risk of side effects are investigated. Methods The model extends our previously developed one-dimensional(1D) mathematical models for fibrinolysis by incorporating targeted thrombolysis. It consists of two parts: (i) a coupled mathematical model of systemic pharmacokinetics (PK) and pharmacodynamics (PD) and local PD in a 1D occluded artery, and (ii) a mechanistic model for a targeted thrombolytic system via activated platelet-targeted tPA-loaded nanovesicles (tPA-NV), with model parameters derived from our in vitro experiments. A total of 16 therapeutic scenarios are simulated by varying the clot location and composition as well as the dosing regimen with free tPA or tPA-NV. Results Our simulation results indicate that tPA-NV offers several advantages over free tPA for thrombolysis. It reduces systemic exposure of tPA, thereby minimising the risk of bleeding complications. Simulations with different tPA-NV doses reveal that tPA-NV at 10% of the recommended dose can be as effective as the standard regimen with the full recommended dose of free tPA, demonstrating the potential of our tPA-NV as a new thrombolytic strategy with a reduced tPA dose. Moreover, faster recanalisation can be achieved with tPA-NV, especially for platelet-rich(or fibrin-poor) clots. Conclusions Our simulation platform for thrombolysis with well-tuned model parameters can be used to evaluate and optimise treatment regimens of existing and new thrombolytic therapies via benefit/risk assessment under various therapeutic scenarios. |
Audience | Academic |
Author | Manchester, Emily Louise Thom, Simon A. McG Chen, Rongjun Huang, Yu Gu, Boram Xu, Xiao Yun Hughes, Alun D. |
Author_xml | – sequence: 1 givenname: Boram surname: Gu fullname: Gu, Boram organization: Department of Chemical Engineering, Imperial College London, School of Chemical Engineering, Chonnam National University – sequence: 2 givenname: Yu surname: Huang fullname: Huang, Yu organization: Department of Chemical Engineering, Imperial College London, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University School of Medicine – sequence: 3 givenname: Emily Louise surname: Manchester fullname: Manchester, Emily Louise organization: Department of Chemical Engineering, Imperial College London – sequence: 4 givenname: Alun D. surname: Hughes fullname: Hughes, Alun D. organization: Institute of Cardiovascular Science, University College London, MRC Unit for Lifelong Health and Ageing at University College London – sequence: 5 givenname: Simon A. McG surname: Thom fullname: Thom, Simon A. McG organization: National Heart and Lung Institute, Imperial College London – sequence: 6 givenname: Rongjun surname: Chen fullname: Chen, Rongjun organization: Department of Chemical Engineering, Imperial College London – sequence: 7 givenname: Xiao Yun orcidid: 0000-0002-8267-621X surname: Xu fullname: Xu, Xiao Yun email: yun.xu@imperial.ac.uk organization: Department of Chemical Engineering, Imperial College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35044591$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9rFDEYxoNU7Lb6BTzIgBcvU5NJsslchKVUW2hVcAVvIZN5M5syk6zJzEK_vZlubW2RkkMg-T3v8_47Qgc-eEDoLcEnBGPxMRGCa17iipSYkiUpqxdoQbigZY3ZrwO0wKJipRSMHKKjlK4xxpLU7BU6pBwzxmuyQM3V1I9uu7lJzqTiKrTQ9853hfZt8cMNU69HF3wRbLHexDA0oc9kKnZOFyszup0eoS2-Zwp6GMu1jh3ML1-1DwO0zjgPr9FLq_sEb-7uY_Tz89n69Ly8_Pbl4nR1WRrOyFgaUUvDLTfSMiIaMJZQq0XLOUhrGDHQNjlnvqQSbEMN45pXFDMiqeYaWnqMPu3jbqcmexvwY9S92kY36Hijgnbq8Y93G9WFnZKSCs5oDvDhLkAMvydIoxpcMrkh2kOYkqqWFal4XROR0fdP0OswRZ_LmymRe44Fe6A63YNy3obsa-agaiVYBuQSz7Yn_6HyaWFwJo_cuvz-SPDu30LvK_w71QxUe8DEkFIEe48QrObVUfvVUXl11O3qqCqL5BORcePt9HM6rn9eSvfSlH18B_GhG8-o_gAYANiC |
CitedBy_id | crossref_primary_10_1088_2516_1091_accc62 crossref_primary_10_1016_j_heliyon_2024_e26668 crossref_primary_10_1007_s11095_022_03330_x |
Cites_doi | 10.1161/STROKEAHA.111.617902 10.1136/practneurol-2017-001685 10.3390/pharmaceutics11030111 10.1016/j.biomaterials.2009.07.021 10.1161/01.CIR.96.3.761 10.1161/STROKEAHA.110.589606 10.1111/jth.14637 10.1161/STROKEAHA.114.008454 10.1177/1538574413497107 10.1007/s40119-017-0098-2 10.1146/annurev.bioeng.1.1.427 10.1111/j.1365-2141.2005.05444.x 10.1007/s00062-016-0497-0 10.1038/s41598-018-34082-7 10.1016/j.medengphy.2019.07.014 10.1161/STROKEAHA.114.005731 10.1016/j.biomaterials.2020.120297 10.1182/blood-2013-08-523860 10.1016/0002-9149(89)90419-0 10.5853/jos.2015.17.3.268 10.1007/s13346-019-00631-4 10.1056/NEJMoa1716405 10.1073/pnas.1818924116 10.1161/01.STR.0000257304.21967.ba 10.1161/STROKEAHA.116.012619 10.1016/j.bpj.2013.05.049 10.1161/STROKEAHA.116.014431 10.1080/14686996.2019.1590126 10.1038/clpt.1987.31 10.1161/STROKEAHA.110.609693 10.1080/17425247.2018.1384464 10.1126/sciadv.abf9033 10.1161/01.STR.0000230307.03438.94 10.1056/NEJM199512143332401 10.1054/blre.2001.0161 10.1371/journal.pone.0225841 10.1136/neurintsurg-2014-011212 10.1161/STROKEAHA.118.024442 10.1055/s-0038-1656374 10.1161/STROKEAHA.115.011401 10.1161/01.CIR.103.24.2897 10.1161/STROKEAHA.113.003079 10.3389/fneur.2019.01195 10.1161/ATVBAHA.114.304488 10.1111/jth.13033 10.1161/STROKEAHA.118.021864 10.1161/STROKEAHA.110.580662 10.1016/j.ajps.2018.12.004 10.1136/jnnp.57.1.17 10.1177/1747493017709671 10.1016/j.jstrokecerebrovasdis.2017.07.031 10.1016/j.jconrel.2019.02.033 10.1038/s41598-020-59526-x |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). COPYRIGHT 2022 Springer The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s11095-021-03161-2 |
DatabaseName | Springer Nature Open Access Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest One Academic Middle East (New) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1573-904X |
EndPage | 56 |
ExternalDocumentID | PMC8837543 A747438603 35044591 10_1007_s11095_021_03161_2 |
Genre | Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ INH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW YCJ YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z84 Z87 Z88 Z8N Z8O Z8P Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM AEIIB PMFND 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c541t-c798c5f5c8f417becf13fa7d55e8fc41cedb4595638efb3c45a52304183a5aed3 |
IEDL.DBID | C6C |
ISSN | 0724-8741 1573-904X |
IngestDate | Thu Aug 21 13:59:33 EDT 2025 Fri Sep 05 06:44:31 EDT 2025 Sat Sep 06 17:51:18 EDT 2025 Tue Jun 17 21:27:09 EDT 2025 Tue Jun 10 20:38:13 EDT 2025 Thu Apr 03 06:56:39 EDT 2025 Tue Jul 01 03:51:03 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Fri Feb 21 02:47:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | pharmacokinetics thrombolysis targeted drug delivery multiphysics modelling pharmacodynamics |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-c798c5f5c8f417becf13fa7d55e8fc41cedb4595638efb3c45a52304183a5aed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8267-621X |
OpenAccessLink | https://doi.org/10.1007/s11095-021-03161-2 |
PMID | 35044591 |
PQID | 2627874074 |
PQPubID | 37334 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837543 proquest_miscellaneous_2621259917 proquest_journals_2627874074 gale_infotracmisc_A747438603 gale_infotracacademiconefile_A747438603 pubmed_primary_35044591 crossref_primary_10_1007_s11095_021_03161_2 crossref_citationtrail_10_1007_s11095_021_03161_2 springer_journals_10_1007_s11095_021_03161_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 2022-Jan 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | Pharmaceutical research |
PublicationTitleAbbrev | Pharm Res |
PublicationTitleAlternate | Pharm Res |
PublicationYear | 2022 |
Publisher | Springer US Springer Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
References | Kurre, Aguilar-Pérez, Martinez-Moreno, Schmid, Bäzner, Henkes (CR14) 2017; 27 Kamalian, Morais, Pomerantz, Aceves, Sit, Bose, Hirsch, Lev, Yoo (CR33) 2013; 44 Friedrich, Gawlitza, Schob, Hobohm, Raviolo, Hoffmann, Lobsien (CR32) 2015; 46 Evans, White, Cowley, Werring (CR7) 2017; 17 Nakagawara, Minematsu, Okada, Tanahashi, Nagahiro, Mori, Shinohara, Yamaguchi (CR43) 2010; 41 Gu, Piebalgs, Huang, Longstaff, Hughes, Chen, Thom, Xu (CR28) 2019; 11 Campbell, Mitchell, Churilov, Yassi, Kleinig, Dowling, Yan, Bush, Dewey, Thijs, Scroop, Simpson, Brooks, Asadi, Wu, Shah, Wijeratne, Ang, Miteff, Levi, Rodrigues, Zhao, Salvaris, Garcia-Esperon, Bailey, Rice, de Villiers, Brown, Redmond, Leggett, Fink, Collecutt, Wong, Muller, Coulthard, Mitchell, Clouston, Mahady, Field, Ma, Phan, Chong, Chandra, Slater, Krause, Harrington, Faulder, Steinfort, Bladin, Sharma, Desmond, Parsons, Donnan, Davis (CR12) 2018; 378 Cines, Lebedeva, Nagaswami, Hayes, Massefski, Litvinov, Rauova, Lowery, Weisel (CR53) 2014; 123 Minnerup, Wersching, Teuber, Wellmann, Eyding, Weber, Reimann, Weber, Krause, Kurth, Berger, Homberg, Petrovitch, Heuser, Mönnigs, Krogias, Wallner, Hennigs, Ahlers, Sahl, Ranft, Dobis, Brassel, Nolden-Koch, Schmitt, Chapot, Nordmeyer, Schlamann, Weimar, Busch, Busch, Sigges, Ruf, Wohlfahrt, Karatschai, Klein, Höhle, Haass, Nasreldein, Büchele, Gahn, Sterker, Hantel, Krämer, Henningsen, Adelt, König, Schmidt, Hofmann, Niederstadt, Unrath, Rehfeldt, Fauser, Pfeiffer, Lowens, Stögbauer, Staudacher, Erdmann, Grotemeyer, Spüntrup, Bücke, Wienecke, Faiss, Wolzik-Großmann, Brune, Isenmann, Thomas, Mucha (CR11) 2016; 47 Ogata, Masuda, Yutani, Yamaguchi (CR47) 1994; 57 Shiraishi, Yokoyama (CR26) 2019; 20 Hong, Ko, Lee, Yu, Rha (CR9) 2015; 17 Kim, Kim, Park, Byun, Kim (CR25) 2009; 30 Riedel, Jensen, Rohr, Tietke, Alfke, Ulmer, Jansen (CR49) 2010; 41 Raskob, Angchaisuksiri, Blanco, Buller, Gallus, Hunt, Hylek, Kakkar, Konstantinides, McCumber, Ozaki, Wendelboe, Weitz (CR2) 2014; 34 Huang, Gu, Salles-Crawley, Taylor, Yu, Ren (CR24) 2021; 7 Huang, Yu, Ren, Gu, Longstaff, Hughes (CR23) 2019; 300 Piebalgs, Gu, Roi, Lobotesis, Thom, Xu (CR30) 2018; 8 Rohan, Baxa, Tupy, Cerna, Sevcik, Friesl, Polivka, Polivka, Ferda (CR45) 2014; 45 Huang, Li, Gao (CR19) 2019; 14 Chandler, Alessi, Aillaud, Henderson, Vague, Juhan-Vague (CR5) 1997; 96 Yu, Song, Tian, Dai, Zhu, Ahmad, Guo, Zhu, Zhong, Yuan, Zhang, Yi, Shi, Gan, Gao (CR35) 2019; 116 Castonguay, Jumaa, Zaidat, Haussen, Jadhav, Salahuddin (CR15) 2019; 10 Marder (CR1) 2001; 15 (CR6) 1995; 333 Diamond (CR31) 1999; 1 Alexandrov, Burgin, Demchuk, El-Mitwalli, Grotta (CR37) 2001; 103 Tebbe, Tanswell, Seifried, Feuerer, Scholz, Herrmann (CR42) 1989; 64 Heiferman, Li, Pecoraro, Smolenski, Tsimpas, Ashley (CR16) 2017; 26 Chernysh, Nagaswami, Kosolapova, Peshkova, Cuker, Cines (CR51) 2020; 10 Marder, Chute, Starkman, Abolian, Kidwell, Liebeskind, Ovbiagele, Vinuela, Duckwiler, Jahan, Vespa, Selco, Rajajee, Kim, Sanossian, Saver (CR50) 2006; 37 Zaidi, Castonguay, Jumaa, Malisch, Linfante, Marden (CR17) 2019; 50 Yoo, Baek, Park, Song, Kim, Hwang, Kim, Kim, Lee, Ahn, Cho, Kim, Kim, Lee, Song, Choi, Nam, Heo (CR34) 2018; 49 Andrew, Brooker, Leaker, Paes, Weitz (CR38) 1992; 68 Noe, Bell (CR41) 1987; 41 Liu, Feng, Jin, Li (CR3) 2018; 15 Behme, Kowoll, Weber, Mpotsaris (CR8) 2015; 7 Gu, Piebalgs, Huang, Roi, Lobotesis, Longstaff, Hughes, Chen, Thom, Xu (CR29) 2019; 73 Saqqur, Uchino, Demchuk, Molina, Garami, Calleja, Akhtar, Orouk, Salam, Shuaib, Alexandrov (CR39) 2007; 38 Riedel, Zimmermann, Jensen-Kondering, Stingele, Deuschl, Jansen (CR46) 2011; 42 Cesarman-Maus, Hajjar (CR4) 2005; 129 Yan, Chen, Xu, Sun, Liebeskind, Lou (CR44) 2016; 47 Skeik, Gits, Ehrenwald, Cragg (CR40) 2013; 47 Absar, Gupta, Nahar, Ahsan (CR21) 2015; 13 Hussain, Khan, Imran, Sohail, Shah, de Matas (CR27) 2019; 9 Fitzgerald, Wang, Dai, Murphree, Pandit, Douglas, Rizvi, Kadirvel, Gilvarry, McCarthy, Stritt, Gounis, Brinjikji, Kallmes, Doyle (CR52) 2019; 14 Disharoon, Marr, Neeves (CR20) 2019; 17 Zenych, Fournier, Chauvierre (CR22) 2020; 258 Bark, Ku (CR36) 2013; 105 Barreto, Alexandrov (CR13) 2012; 43 Scheitz, Abdul-Rahim, Macisaac, Cooray, Sucharew, Kleindorfer (CR10) 2017; 48 Hameed, Zafar, Mylotte, Sharif (CR18) 2017; 6 De Meyer, Andersson, Baxter, Bendszus, Brouwer, Brinjikji (CR48) 2017; 12 B Gu (3161_CR28) 2019; 11 S Yan (3161_CR44) 2016; 47 SL Diamond (3161_CR31) 1999; 1 WL Chandler (3161_CR5) 1997; 96 VJ Marder (3161_CR50) 2006; 37 DB Cines (3161_CR53) 2014; 123 S Fitzgerald (3161_CR52) 2019; 14 S Liu (3161_CR3) 2018; 15 K Shiraishi (3161_CR26) 2019; 20 M Saqqur (3161_CR39) 2007; 38 S Absar (3161_CR21) 2015; 13 JY Kim (3161_CR25) 2009; 30 D Disharoon (3161_CR20) 2019; 17 SF De Meyer (3161_CR48) 2017; 12 AV Alexandrov (3161_CR37) 2001; 103 K-S Hong (3161_CR9) 2015; 17 DL Bark (3161_CR36) 2013; 105 D Behme (3161_CR8) 2015; 7 S Kamalian (3161_CR33) 2013; 44 Y Huang (3161_CR24) 2021; 7 AC Castonguay (3161_CR15) 2019; 10 VJ Marder (3161_CR1) 2001; 15 T Huang (3161_CR19) 2019; 14 A Zenych (3161_CR22) 2020; 258 J Ogata (3161_CR47) 1994; 57 J Minnerup (3161_CR11) 2016; 47 J Nakagawara (3161_CR43) 2010; 41 A Hameed (3161_CR18) 2017; 6 A Piebalgs (3161_CR30) 2018; 8 V Rohan (3161_CR45) 2014; 45 J Yoo (3161_CR34) 2018; 49 DA Noe (3161_CR41) 1987; 41 CH Riedel (3161_CR49) 2010; 41 MRB Evans (3161_CR7) 2017; 17 M Andrew (3161_CR38) 1992; 68 IN Chernysh (3161_CR51) 2020; 10 N Skeik (3161_CR40) 2013; 47 M Yu (3161_CR35) 2019; 116 BCV Campbell (3161_CR12) 2018; 378 Group TNI of ND and S rt-PSS (3161_CR6) 1995; 333 DM Heiferman (3161_CR16) 2017; 26 AD Barreto (3161_CR13) 2012; 43 JF Scheitz (3161_CR10) 2017; 48 B Friedrich (3161_CR32) 2015; 46 B Gu (3161_CR29) 2019; 73 G Cesarman-Maus (3161_CR4) 2005; 129 GE Raskob (3161_CR2) 2014; 34 U Tebbe (3161_CR42) 1989; 64 W Kurre (3161_CR14) 2017; 27 SF Zaidi (3161_CR17) 2019; 50 CH Riedel (3161_CR46) 2011; 42 Y Huang (3161_CR23) 2019; 300 Z Hussain (3161_CR27) 2019; 9 |
References_xml | – volume: 10 start-page: 1195 year: 2019 ident: CR15 article-title: Insights Into Intra-arterial Thrombolysis in the Modern Era of Mechanical Thrombectomy publication-title: Front Neurol – volume: 9 start-page: 721 year: 2019 end-page: 734 ident: CR27 article-title: PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution publication-title: Drug Deliv Transl Res – volume: 50 start-page: 1003 year: 2019 end-page: 1006 ident: CR17 article-title: Intraarterial thrombolysis as rescue therapy for large vessel occlusions: analysis from the North American solitaire stent-retriever acute stroke registry publication-title: Stroke – volume: 34 start-page: 2363 year: 2014 end-page: 2371 ident: CR2 article-title: Thrombosis publication-title: Arterioscler Thromb Vasc Biol – volume: 26 start-page: 3004 year: 2017 end-page: 3008 ident: CR16 article-title: Intra-arterial Alteplase thrombolysis during mechanical Thrombectomy for acute ischemic stroke publication-title: J Stroke Cerebrovasc Dis WB Saunders – volume: 15 start-page: 143 year: 2001 end-page: 157 ident: CR1 article-title: Thrombolytic therapy: 2001 publication-title: Blood Rev – volume: 333 start-page: 1581 year: 1995 end-page: 1587 ident: CR6 article-title: Tissue plasminogen activator for acute ischemic stroke — NEJM publication-title: N Engl J Med – volume: 17 start-page: 2004 year: 2019 end-page: 2015 ident: CR20 article-title: Engineered microparticles and nanoparticles for fibrinolysis publication-title: J Thromb Haemost – volume: 45 start-page: 2010 year: 2014 end-page: 2017 ident: CR45 article-title: Length of occlusion predicts recanalization and outcome after intravenous thrombolysis in middle cerebral artery stroke publication-title: Stroke. – volume: 73 start-page: 9 year: 2019 end-page: 17 ident: CR29 article-title: Computational simulations of thrombolysis in acute stroke: effect of clot size and location on recanalisation publication-title: Med Eng Phys – volume: 49 start-page: 2108 year: 2018 end-page: 2115 ident: CR34 article-title: Thrombus volume as a predictor of nonrecanalization after intravenous thrombolysis in acute stroke publication-title: Stroke. – volume: 41 start-page: 1984 year: 2010 end-page: 1989 ident: CR43 article-title: Thrombolysis with 0.6 mg/kg intravenous alteplase for acute ischemic stroke in routine clinical practice: the Japan post-marketing Alteplase registration study (J-MARS) publication-title: Stroke. – volume: 37 start-page: 2086 year: 2006 end-page: 2093 ident: CR50 article-title: Analysis of thrombi retrieved from cerebral arteries of patients with acute ischemic stroke publication-title: Stroke. – volume: 103 start-page: 2897 year: 2001 end-page: 2902 ident: CR37 article-title: Speed of intracranial clot lysis with intravenous tissue plasminogen activator therapy: sonographic classification and short-term improvement publication-title: Circulation. – volume: 96 start-page: 761 year: 1997 end-page: 768 ident: CR5 article-title: Clearance of tissue plasminogen activator (TPA) and TPA/plasminogen activator inhibitor type 1 (PAI-1) complex: relationship to elevated TPA antigen in patients with high PAI-1 activity levels publication-title: Circulation. – volume: 27 start-page: 351 year: 2017 end-page: 360 ident: CR14 article-title: Stent retriever Thrombectomy of small caliber intracranial vessels using pREset LITE: safety and efficacy publication-title: Clin Neuroradiol – volume: 12 start-page: 606 year: 2017 end-page: 614 ident: CR48 article-title: Analyses of thrombi in acute ischemic stroke: a consensus statement on current knowledge and future directions publication-title: Int J Stroke – volume: 378 start-page: 1573 year: 2018 end-page: 1582 ident: CR12 article-title: Tenecteplase versus Alteplase before Thrombectomy for ischemic stroke publication-title: N Engl J Med – volume: 258 start-page: 120297 year: 2020 ident: CR22 article-title: Nanomedicine progress in thrombolytic therapy publication-title: Biomaterials – volume: 7 start-page: eabf9033 year: 2021 ident: CR24 article-title: Fibrinogen-mimicking, multiarm nanovesicles for human thrombus-specific delivery of tissue plasminogen activator and targeted thrombolytic therapy publication-title: Sci Adv – volume: 105 start-page: 502 year: 2013 end-page: 511 ident: CR36 article-title: Platelet transport rates and binding kinetics at high shear over a thrombus publication-title: Biophys J – volume: 20 start-page: 324 year: 2019 end-page: 336 ident: CR26 article-title: Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: a review publication-title: Sci Technol Adv Mater – volume: 300 start-page: 1 year: 2019 end-page: 12 ident: CR23 article-title: An activated-platelet-sensitive nanocarrier enables targeted delivery of tissue plasminogen activator for effective thrombolytic therapy publication-title: J Control Release – volume: 64 start-page: 448 year: 1989 end-page: 453 ident: CR42 article-title: Single-bolus injection of recombinant tissue-type plasminogen activator in acute myocardial infarction publication-title: Am J Cardiol – volume: 7 start-page: 559 year: 2015 end-page: 563 ident: CR8 article-title: M1 is not M1 in ischemic stroke: the disability-free survival after mechanical thrombectomy differs significantly between proximal and distal occlusions of the middle cerebral artery M1 segment publication-title: J Neurointerv Surg – volume: 41 start-page: 1659 year: 2010 end-page: 1664 ident: CR49 article-title: Assessment of thrombus in acute middle cerebral artery occlusion using thin-slice nonenhanced computed tomography reconstructions publication-title: Stroke. – volume: 43 start-page: 591 year: 2012 end-page: 598 ident: CR13 article-title: Adjunctive and alternative approaches to current reperfusion therapy publication-title: Stroke. – volume: 6 start-page: 193 year: 2017 end-page: 202 ident: CR18 article-title: Recent trends in clot retrieval devices: a review publication-title: Cardiol Ther – volume: 123 start-page: 1596 year: 2014 end-page: 1603 ident: CR53 article-title: Clot contraction: compression of erythrocytes into tightly packed polyhedra and redistribution of platelets and fibrin publication-title: Blood. – volume: 41 start-page: 297 year: 1987 end-page: 303 ident: CR41 article-title: A kinetic analysis of fibrinogenolysis during plasminogen activator therapy publication-title: Clin Pharmacol Ther – volume: 15 start-page: 173 year: 2018 end-page: 184 ident: CR3 article-title: Tissue plasminogen activator-based nanothrombolysis for ischemic stroke publication-title: Expert Opin Drug Deliv – volume: 30 start-page: 5751 year: 2009 end-page: 5756 ident: CR25 article-title: The use of PEGylated liposomes to prolong circulation lifetimes of tissue plasminogen activator publication-title: Biomaterials. – volume: 14 year: 2019 ident: CR52 article-title: Orbit image analysis machine learning software can be used for the histological quantification of acute ischemic stroke blood clots publication-title: PLoS One – volume: 44 start-page: 3553 year: 2013 end-page: 3556 ident: CR33 article-title: Clot length distribution and predictors in anterior circulation stroke: implications for intra-arterial therapy publication-title: Stroke. – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: CR51 article-title: The distinctive structure and composition of arterial and venous thrombi and pulmonary emboli publication-title: Sci Rep – volume: 116 start-page: 5362 year: 2019 end-page: 5369 ident: CR35 article-title: Temperature- and rigidity-mediated rapid transport of lipid nanovesicles in hydrogels publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 1775 year: 2011 end-page: 1777 ident: CR46 article-title: The importance of size: successful recanalization by intravenous thrombolysis in acute anterior stroke depends on thrombus length publication-title: Stroke. – volume: 8 start-page: 1 year: 2018 end-page: 13 ident: CR30 article-title: Computational simulations of thrombolytic therapy in acute Ischaemic stroke publication-title: Sci Rep – volume: 48 start-page: 290 year: 2017 end-page: 297 ident: CR10 article-title: Clinical selection strategies to identify ischemic stroke patients with large anterior vessel occlusion: results from SITS-ISTR (safe implementation of thrombolysis in stroke international stroke thrombolysis registry) publication-title: Stroke. – volume: 13 start-page: 1545 year: 2015 end-page: 1556 ident: CR21 article-title: Engineering of plasminogen activators for targeting to thrombus and heightening thrombolytic efficacy publication-title: J Thromb Haemost – volume: 57 start-page: 17 year: 1994 end-page: 21 ident: CR47 article-title: Mechanisms of cerebral artery thrombosis: a histopathological analysis on eight necropsy cases publication-title: J Neurol Neurosurg Psychiatry – volume: 1 start-page: 427 year: 1999 end-page: 461 ident: CR31 article-title: Engineering Design of Optimal Strategies for blood clot dissolution publication-title: Annu Rev Biomed Eng – volume: 129 start-page: 307 year: 2005 end-page: 321 ident: CR4 article-title: Molecular mechanisms of fibrinolysis publication-title: Br J Haematol – volume: 17 start-page: 268 year: 2015 end-page: 281 ident: CR9 article-title: Endovascular recanalization therapy in acute ischemic stroke: updated Meta-analysis of randomized controlled trials publication-title: J Stroke – volume: 38 start-page: 948 year: 2007 end-page: 954 ident: CR39 article-title: Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke publication-title: Stroke. – volume: 47 start-page: 519 year: 2013 end-page: 523 ident: CR40 article-title: Fibrinogen level as a surrogate for the outcome of thrombolytic therapy using tissue plasminogen activator for acute lower extremity intravascular thrombosis publication-title: Vasc Endovasc Surg – volume: 11 start-page: 111 year: 2019 ident: CR28 article-title: Mathematical modelling of intravenous thrombolysis in acute ischaemic stroke: effects of dose regimens on levels of fibrinolytic proteins and clot lysis time publication-title: Pharmaceutics. – volume: 46 start-page: 692 year: 2015 end-page: 696 ident: CR32 article-title: Distance to thrombus in acute middle cerebral artery occlusion: a predictor of outcome after intravenous thrombolysis for acute ischemic stroke publication-title: Stroke. – volume: 17 start-page: 252 year: 2017 end-page: 265 ident: CR7 article-title: Revolution in acute ischaemic stroke care: a practical guide to mechanical thrombectomy publication-title: Pract Neurol – volume: 68 start-page: 325 year: 1992 end-page: 330 ident: CR38 article-title: Fibrin clot lysis by thrombolytic agents is impaired in newborns due to a low plasminogen concentration publication-title: Thromb Haemost – volume: 14 start-page: 233 year: 2019 end-page: 247 ident: CR19 article-title: Recent strategies on targeted delivery of thrombolytics publication-title: Asian J Pharm Sci. – volume: 47 start-page: 756 year: 2016 end-page: 761 ident: CR44 article-title: Thrombus length estimation on delayed gadolinium-enhanced T1 publication-title: Stroke. – volume: 47 start-page: 1584 year: 2016 end-page: 1592 ident: CR11 article-title: Outcome after Thrombectomy and intravenous thrombolysis in patients with acute ischemic stroke: a prospective observational study publication-title: Stroke. – volume: 43 start-page: 591 year: 2012 ident: 3161_CR13 publication-title: Stroke. doi: 10.1161/STROKEAHA.111.617902 – volume: 17 start-page: 252 year: 2017 ident: 3161_CR7 publication-title: Pract Neurol doi: 10.1136/practneurol-2017-001685 – volume: 11 start-page: 111 year: 2019 ident: 3161_CR28 publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics11030111 – volume: 30 start-page: 5751 year: 2009 ident: 3161_CR25 publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2009.07.021 – volume: 96 start-page: 761 year: 1997 ident: 3161_CR5 publication-title: Circulation. doi: 10.1161/01.CIR.96.3.761 – volume: 41 start-page: 1984 year: 2010 ident: 3161_CR43 publication-title: Stroke. doi: 10.1161/STROKEAHA.110.589606 – volume: 17 start-page: 2004 year: 2019 ident: 3161_CR20 publication-title: J Thromb Haemost doi: 10.1111/jth.14637 – volume: 46 start-page: 692 year: 2015 ident: 3161_CR32 publication-title: Stroke. doi: 10.1161/STROKEAHA.114.008454 – volume: 47 start-page: 519 year: 2013 ident: 3161_CR40 publication-title: Vasc Endovasc Surg doi: 10.1177/1538574413497107 – volume: 6 start-page: 193 year: 2017 ident: 3161_CR18 publication-title: Cardiol Ther doi: 10.1007/s40119-017-0098-2 – volume: 1 start-page: 427 year: 1999 ident: 3161_CR31 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev.bioeng.1.1.427 – volume: 129 start-page: 307 year: 2005 ident: 3161_CR4 publication-title: Br J Haematol doi: 10.1111/j.1365-2141.2005.05444.x – volume: 27 start-page: 351 year: 2017 ident: 3161_CR14 publication-title: Clin Neuroradiol doi: 10.1007/s00062-016-0497-0 – volume: 8 start-page: 1 year: 2018 ident: 3161_CR30 publication-title: Sci Rep doi: 10.1038/s41598-018-34082-7 – volume: 73 start-page: 9 year: 2019 ident: 3161_CR29 publication-title: Med Eng Phys doi: 10.1016/j.medengphy.2019.07.014 – volume: 45 start-page: 2010 year: 2014 ident: 3161_CR45 publication-title: Stroke. doi: 10.1161/STROKEAHA.114.005731 – volume: 258 start-page: 120297 year: 2020 ident: 3161_CR22 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120297 – volume: 123 start-page: 1596 year: 2014 ident: 3161_CR53 publication-title: Blood. doi: 10.1182/blood-2013-08-523860 – volume: 64 start-page: 448 year: 1989 ident: 3161_CR42 publication-title: Am J Cardiol doi: 10.1016/0002-9149(89)90419-0 – volume: 17 start-page: 268 year: 2015 ident: 3161_CR9 publication-title: J Stroke doi: 10.5853/jos.2015.17.3.268 – volume: 9 start-page: 721 year: 2019 ident: 3161_CR27 publication-title: Drug Deliv Transl Res doi: 10.1007/s13346-019-00631-4 – volume: 378 start-page: 1573 year: 2018 ident: 3161_CR12 publication-title: N Engl J Med doi: 10.1056/NEJMoa1716405 – volume: 116 start-page: 5362 year: 2019 ident: 3161_CR35 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1818924116 – volume: 38 start-page: 948 year: 2007 ident: 3161_CR39 publication-title: Stroke. doi: 10.1161/01.STR.0000257304.21967.ba – volume: 47 start-page: 1584 year: 2016 ident: 3161_CR11 publication-title: Stroke. doi: 10.1161/STROKEAHA.116.012619 – volume: 105 start-page: 502 year: 2013 ident: 3161_CR36 publication-title: Biophys J doi: 10.1016/j.bpj.2013.05.049 – volume: 48 start-page: 290 year: 2017 ident: 3161_CR10 publication-title: Stroke. doi: 10.1161/STROKEAHA.116.014431 – volume: 20 start-page: 324 year: 2019 ident: 3161_CR26 publication-title: Sci Technol Adv Mater doi: 10.1080/14686996.2019.1590126 – volume: 41 start-page: 297 year: 1987 ident: 3161_CR41 publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.1987.31 – volume: 42 start-page: 1775 year: 2011 ident: 3161_CR46 publication-title: Stroke. doi: 10.1161/STROKEAHA.110.609693 – volume: 15 start-page: 173 year: 2018 ident: 3161_CR3 publication-title: Expert Opin Drug Deliv doi: 10.1080/17425247.2018.1384464 – volume: 7 start-page: eabf9033 year: 2021 ident: 3161_CR24 publication-title: Sci Adv doi: 10.1126/sciadv.abf9033 – volume: 37 start-page: 2086 year: 2006 ident: 3161_CR50 publication-title: Stroke. doi: 10.1161/01.STR.0000230307.03438.94 – volume: 333 start-page: 1581 year: 1995 ident: 3161_CR6 publication-title: N Engl J Med doi: 10.1056/NEJM199512143332401 – volume: 15 start-page: 143 year: 2001 ident: 3161_CR1 publication-title: Blood Rev doi: 10.1054/blre.2001.0161 – volume: 14 year: 2019 ident: 3161_CR52 publication-title: PLoS One doi: 10.1371/journal.pone.0225841 – volume: 7 start-page: 559 year: 2015 ident: 3161_CR8 publication-title: J Neurointerv Surg doi: 10.1136/neurintsurg-2014-011212 – volume: 50 start-page: 1003 year: 2019 ident: 3161_CR17 publication-title: Stroke doi: 10.1161/STROKEAHA.118.024442 – volume: 68 start-page: 325 year: 1992 ident: 3161_CR38 publication-title: Thromb Haemost doi: 10.1055/s-0038-1656374 – volume: 47 start-page: 756 year: 2016 ident: 3161_CR44 publication-title: Stroke. doi: 10.1161/STROKEAHA.115.011401 – volume: 103 start-page: 2897 year: 2001 ident: 3161_CR37 publication-title: Circulation. doi: 10.1161/01.CIR.103.24.2897 – volume: 44 start-page: 3553 year: 2013 ident: 3161_CR33 publication-title: Stroke. doi: 10.1161/STROKEAHA.113.003079 – volume: 10 start-page: 1195 year: 2019 ident: 3161_CR15 publication-title: Front Neurol doi: 10.3389/fneur.2019.01195 – volume: 34 start-page: 2363 year: 2014 ident: 3161_CR2 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.114.304488 – volume: 13 start-page: 1545 year: 2015 ident: 3161_CR21 publication-title: J Thromb Haemost doi: 10.1111/jth.13033 – volume: 49 start-page: 2108 year: 2018 ident: 3161_CR34 publication-title: Stroke. doi: 10.1161/STROKEAHA.118.021864 – volume: 41 start-page: 1659 year: 2010 ident: 3161_CR49 publication-title: Stroke. doi: 10.1161/STROKEAHA.110.580662 – volume: 14 start-page: 233 year: 2019 ident: 3161_CR19 publication-title: Asian J Pharm Sci. doi: 10.1016/j.ajps.2018.12.004 – volume: 57 start-page: 17 year: 1994 ident: 3161_CR47 publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.57.1.17 – volume: 12 start-page: 606 year: 2017 ident: 3161_CR48 publication-title: Int J Stroke doi: 10.1177/1747493017709671 – volume: 26 start-page: 3004 year: 2017 ident: 3161_CR16 publication-title: J Stroke Cerebrovasc Dis WB Saunders doi: 10.1016/j.jstrokecerebrovasdis.2017.07.031 – volume: 300 start-page: 1 year: 2019 ident: 3161_CR23 publication-title: J Control Release doi: 10.1016/j.jconrel.2019.02.033 – volume: 10 start-page: 1 year: 2020 ident: 3161_CR51 publication-title: Sci Rep doi: 10.1038/s41598-020-59526-x |
SSID | ssj0008194 |
Score | 2.405262 |
Snippet | Purpose
This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA).... This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA). Based on... Purpose This study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA).... PurposeThis study establishes a multiphysics simulation platform for both conventional and targeted thrombolysis using tissue plasminogen activator (tPA).... |
SourceID | pubmedcentral proquest gale pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 41 |
SubjectTerms | Analysis Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Blood platelets Computer applications Dosage Fibrin Fibrinolysis Fibrinolytic Agents - pharmacology Health aspects Mathematical models Medical Law Nanomedicine Nanotechnology Pharmacodynamics Pharmacokinetics Pharmacology/Toxicology Pharmacy Platelets Research Paper Risk assessment Simulation Simulation methods t-Plasminogen activator Thrombolysis Thrombolytic drugs Thrombolytic Therapy - methods Tissue plasminogen activator Tissue Plasminogen Activator - pharmacology Tissue Plasminogen Activator - therapeutic use |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9RAEF-0vvgifhtbZQWpD17wkt3Nbp_kEEsRlAOvcG9hP_HAJrV3LfS_d2azScyBfc1OwmTncz_mN4S8P3EQs1QZcpCwzrlyITfzUIBAvPKVkqVjWJz8_Ud1ds6_rcU6bbht07XK3idGR-1ai3vkn8qqlNg-TvLPl39y7BqFp6uphcZ98qCATARbN8j1sODCaBfho2TJwep5kYpmutK5Yh5rk_FCEWQ9eTkJTPvu-Z_4tH93cu8ANcal08fkUUoo6aLTgCfknm-ekuNlh0h9O6OrscBqO6PHdDliVd8-IyYW4HbbG1uKjdEiRjfVjaM_NxeptxdtA3znqr0wbUQwoTcbTRc2dkbzji6BCqLXLl_Fa-XwBHx225_aPyfnp19XX87y1HYht4IXu9zKE2VFEFYFXkiQcShY0NIJ4VWwvLDeGS5gXcWUD4ZZLnTcWgbnoIX2jr0gB03b-FeEasGddooZwxg3XJsqaKYqjyA6NlQmI0U_57VNmOTYGuN3PaIpo5xqkFMd5VSXGfk4vHPZIXLcSf0BRVmjucKXrU5VB8AfAl_VC1hOcWBpzjJyNKEEM7PT4V4Z6mTm23pUyoy8G4bxTby61vj2OtJAEglpuMzIy053Br6ZmHOYyiIjcqJVAwGCf09Hms2vCAKuFDYvBrZmvf6NbP1_Ol7f_ReH5GGJ5R1xi-mIHOyurv0bSLp25m20rL9s4ik3 priority: 102 providerName: ProQuest |
Title | Multiphysics Modelling and Simulation of Thrombolysis via Activated Platelet-Targeted Nanomedicine |
URI | https://link.springer.com/article/10.1007/s11095-021-03161-2 https://www.ncbi.nlm.nih.gov/pubmed/35044591 https://www.proquest.com/docview/2627874074 https://www.proquest.com/docview/2621259917 https://pubmed.ncbi.nlm.nih.gov/PMC8837543 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdge-EF8U3YqIyExgONaGI79h7TqmUCUVXQSuUpsh1bq8QStHaT9t9z56QprQCJl0aqL9bJ9xnb9ztC3p6XELNU6mOQsI65Kn1sBj4BgTjlMiXTkmFx8pdpdrHgn5Zi2cLkYC3Mwfn9hzUiYmINMV78gewkBnd7LMDxojaPslHndSGyBagomXKwcJ60BTJ_nmMvCB264t9i0eE9yYPD0hCDJo_IwzZ5pHkj7cfknquekLNZgz5916fzXTHVuk_P6GyHS333lJhQbNtsZawpNkELeNxUVyX9trpq-3jR2sM81_WVqQNaCb1daZrb0AXNlXQGVBCpNvE8XCGHf8A_19sT-mdkMRnPRxdx22IhtoInm9jKc2WFF1Z5nkiQp0-Y17IUwilveWJdabiAbyimnDfMcqHDNjI4Ai20K9lzclTVlXtJqBa81KVixjDGDdcm85qpzCFgjvWZiUiyXfPCtvjj2AbjR7FDTkY5FSCnIsipSCPyvnvnZ4O-8U_qdyjKAk0TZra6rTAA_hDkqsjh04kDSwMWkdM9SjApuz-8VYaiNel1kWapxP6FkkfkTTeMb-I1tcrVN4EGEkZIuWVEXjS60_HNxIDDUiYRkXta1REg0Pf-SLW6DIDfSmGjYmCrv9W_HVt_X45X_0d-Qh6kWNoRtpdOydHm-sa9hoRrY3rkvlzKHjnOJ8PhFJ8fv38ew3M4ns6-9oIdwu8izX8BMVMoWg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N7gFeEN8EBhgJxgONaGI78R4mVGBTx7aqgk7aW_CnqMSSsXag_nP8bZydpKWV2NteY8e6-L7sy93vAF7tGPRZInUxcljGTBgXq55LkCFW2EzkqaG-OPl4mA1O2OdTfroBf9paGJ9W2drEYKhNpX2M_F2apblvH5ez9-c_Y981yv9dbVtoyKa1gtkNEGNNYcehnf_GK9x09-AT8vt1mu7vjT8O4qbLQKw5S2axzneE5o5r4ViS4ye5hDqZG86tcJol2hrFOF4jqLBOUc24DJFU1AXJpTUU170Bm8wHUDqw-WFvOPqy8AXobwOAVZ4ytDssacp26uK9pBeqo31KE5674nTFNa47iH885Hr25tov3OAZ9-_A7eZIS_q1DN6FDVveg-1RjYk975LxssRr2iXbZLREy57fBxVKgOsAy5T41mwBJZzI0pCvk7OmuxipHK5zUZ2pKmCokF8TSfo69GazhoxwFvrPWTwOie34BL1G1eYNPICTa2HJQ-iUVWkfA5GcGWkEVYpSpphUmZNUZNbD-GiXqQiSds8L3aCi--YcP4olnrPnU4F8KgKfijSCt4t3zmtMkCtnv_GsLLzBwJW1bOoekD4PvVX08ULHkKQejWBrZSYqul4dboWhaAzNtFiqRQQvF8P-TZ88V9rqMszBYyxeBPIIHtWys6Cb8h7DrUwiyFekajHBw4-vjpST7wGGXAjfPhnJ6rbytyTr_9vx5OqveAE3B-Pjo-LoYHj4FG6lvtgkBLy2oDO7uLTP8Ag4U88bPSPw7bpV-y8lW24R |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJiFeEN9kDDASjAcarYntxHuYUGGrNgZVBJ20t-BPUWlLxtqB-i_yV3F2nJZUYm97jS_WxfdlO3e_Q-j1roaYxVMbg4RFTLm2sezbBARiuMl4nmriipO_jLLDE_rplJ2uoT9tLYxLq2x9onfUulbujnwnzdLctY_L6Y4NaRHF_vD9xc_YdZByf1rbdhoitFnQex5uLBR5HJv5bzjOTfeO9kH2b9J0eDD-eBiHjgOxYjSZxSrf5YpZprilSQ6fZxNiRa4ZM9wqmiijJWVwpCDcWEkUZcLfqoJdCCaMJjDvLbSRQ9SHg-DGh4NR8XURFyD2ejCrPKXgg2gSSniaQr6k7yulXXoT7MHitBMmV4PFP9FyNZNz5Xeuj5LDe-hu2N7iQaOP99GaqR6g7aLBx5738HhZ7jXt4W1cLJGz5w-R9OXAzWXLFLs2bR4xHItK42-T89BpDNcW5rmsz2Xt8VTwr4nAA-X7tBmNC6CCWDqLxz7JHZ5ABKnbHIJH6ORGRPIYrVd1ZZ4iLBjVQnMiJSFUUiEzKwjPjIP0UTaTEUraNS9VQEh3jTrOyiW2s5NTCXIqvZzKNELvFu9cNPgg11K_daIsnfOAmZUINRDAn4PhKgdwuKPAUp9EaKtDCUavusOtMpTB6UzLpYlE6NVi2L3pEukqU195GtjSwqEgj9CTRncWfBPWp7CUSYTyjlYtCBwUeXekmvzwkOScu1bKwFav1b8lW_9fjs3rv-Ilug0mXn4-Gh0_Q3dSV3fi77620Prs8so8h93gTL4IZobR95u27L-DmXJV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiphysics+Modelling+and+Simulation+of+Thrombolysis+via+Activated+Platelet-Targeted+Nanomedicine&rft.jtitle=Pharmaceutical+research&rft.au=Gu%2C+Boram&rft.au=Huang%2C+Yu&rft.au=Manchester%2C+Emily+Louise&rft.au=Hughes%2C+Alun+D.&rft.date=2022-01-01&rft.pub=Springer+US&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=39&rft.issue=1&rft.spage=41&rft.epage=56&rft_id=info:doi/10.1007%2Fs11095-021-03161-2&rft.externalDocID=10_1007_s11095_021_03161_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon |