Computational pathology improves risk stratification of a multi-gene assay for early stage ER+ breast cancer

Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inte...

Full description

Saved in:
Bibliographic Details
Published inNPJ breast cancer Vol. 9; no. 1; pp. 40 - 10
Main Authors Chen, Yuli, Li, Haojia, Janowczyk, Andrew, Toro, Paula, Corredor, Germán, Whitney, Jon, Lu, Cheng, Koyuncu, Can F., Mokhtari, Mojgan, Buzzy, Christina, Ganesan, Shridar, Feldman, Michael D., Fu, Pingfu, Corbin, Haley, Harbhajanka, Aparna, Gilmore, Hannah, Goldstein, Lori J., Davidson, Nancy E., Desai, Sangeeta, Parmar, Vani, Madabhushi, Anant
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.05.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2374-4677
2374-4677
DOI10.1038/s41523-023-00545-y

Cover

Abstract Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN− IBC. H&E images from a total of n  = 321 patients with ER+ and LN− IBC from three cohorts were employed for this study (Training set: D1 ( n  = 116), Validation sets: D2 ( n  = 121) and D3 ( n  = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02–5.32, p  = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18–7.35, p  = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20–89.18, p  = 0.0106; D1: p  = 0.0238; D2: p  = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
AbstractList Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN− IBC. H&E images from a total of n  = 321 patients with ER+ and LN− IBC from three cohorts were employed for this study (Training set: D1 ( n  = 116), Validation sets: D2 ( n  = 121) and D3 ( n  = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02–5.32, p  = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18–7.35, p  = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20–89.18, p  = 0.0106; D1: p  = 0.0238; D2: p  = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN− IBC. H&E images from a total of n = 321 patients with ER+ and LN− IBC from three cohorts were employed for this study (Training set: D1 (n = 116), Validation sets: D2 (n = 121) and D3 (n = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02–5.32, p = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18–7.35, p = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20–89.18, p = 0.0106; D1: p = 0.0238; D2: p = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
Abstract Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN− IBC. H&E images from a total of n = 321 patients with ER+ and LN− IBC from three cohorts were employed for this study (Training set: D1 (n = 116), Validation sets: D2 (n = 121) and D3 (n = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02–5.32, p = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18–7.35, p = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20–89.18, p = 0.0106; D1: p = 0.0238; D2: p = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN-) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN- IBC. H&E images from a total of n = 321 patients with ER+ and LN- IBC from three cohorts were employed for this study (Training set: D1 (n = 116), Validation sets: D2 (n = 121) and D3 (n = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02-5.32, p = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18-7.35, p = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20-89.18, p = 0.0106; D1: p = 0.0238; D2: p = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN-) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN- IBC. H&E images from a total of n = 321 patients with ER+ and LN- IBC from three cohorts were employed for this study (Training set: D1 (n = 116), Validation sets: D2 (n = 121) and D3 (n = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02-5.32, p = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18-7.35, p = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20-89.18, p = 0.0106; D1: p = 0.0238; D2: p = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN-) invasive breast cancer (IBC) patients include the Nottingham grading system and Oncotype Dx (ODx). However, these biomarkers are not always optimal and remain subject to inter-/intra-observer variability and high cost. In this study, we evaluated the association between computationally derived image features from H&E images and disease-free survival (DFS) in ER+ and LN- IBC. H&E images from a total of n = 321 patients with ER+ and LN- IBC from three cohorts were employed for this study (Training set: D1 (n = 116), Validation sets: D2 (n = 121) and D3 (n = 84)). A total of 343 features relating to nuclear morphology, mitotic activity, and tubule formation were computationally extracted from each slide image. A Cox regression model (IbRiS) was trained to identify significant predictors of DFS and predict a high/low-risk category using D1 and was validated on independent testing sets D2 and D3 as well as within each ODx risk category. IbRiS was significantly prognostic of DFS with a hazard ratio (HR) of 2.33 (95% confidence interval (95% CI) = 1.02-5.32, p = 0.045) on D2 and a HR of 2.94 (95% CI = 1.18-7.35, p = 0.0208) on D3. In addition, IbRiS yielded significant risk stratification within high ODx risk categories (D1 + D2: HR = 10.35, 95% CI = 1.20-89.18, p = 0.0106; D1: p = 0.0238; D2: p = 0.0389), potentially providing more granular risk stratification than offered by ODx alone.
ArticleNumber 40
Author Madabhushi, Anant
Mokhtari, Mojgan
Parmar, Vani
Toro, Paula
Feldman, Michael D.
Davidson, Nancy E.
Gilmore, Hannah
Koyuncu, Can F.
Ganesan, Shridar
Fu, Pingfu
Janowczyk, Andrew
Lu, Cheng
Chen, Yuli
Corbin, Haley
Whitney, Jon
Corredor, Germán
Harbhajanka, Aparna
Goldstein, Lori J.
Buzzy, Christina
Desai, Sangeeta
Li, Haojia
Author_xml – sequence: 1
  givenname: Yuli
  surname: Chen
  fullname: Chen, Yuli
  organization: Shaanxi Normal University, School of Computer Science, Department of Biomedical Engineering, Case Western Reserve University
– sequence: 2
  givenname: Haojia
  orcidid: 0000-0001-5000-5334
  surname: Li
  fullname: Li, Haojia
  organization: Department of Biomedical Engineering, Case Western Reserve University
– sequence: 3
  givenname: Andrew
  surname: Janowczyk
  fullname: Janowczyk, Andrew
  organization: Department of Biomedical Engineering, Case Western Reserve University, Precision Oncology Center, University of Lausanne
– sequence: 4
  givenname: Paula
  surname: Toro
  fullname: Toro, Paula
  organization: Department of Biomedical Engineering, Case Western Reserve University
– sequence: 5
  givenname: Germán
  orcidid: 0000-0003-3002-0937
  surname: Corredor
  fullname: Corredor, Germán
  organization: Department of Biomedical Engineering, Case Western Reserve University, Department of Biomedical Engineering, Georgia Institute of Technology and Emory University
– sequence: 6
  givenname: Jon
  surname: Whitney
  fullname: Whitney, Jon
  organization: Department of Biomedical Engineering, Case Western Reserve University
– sequence: 7
  givenname: Cheng
  surname: Lu
  fullname: Lu, Cheng
  organization: Shaanxi Normal University, School of Computer Science, Department of Biomedical Engineering, Case Western Reserve University
– sequence: 8
  givenname: Can F.
  surname: Koyuncu
  fullname: Koyuncu, Can F.
  organization: Department of Biomedical Engineering, Case Western Reserve University
– sequence: 9
  givenname: Mojgan
  surname: Mokhtari
  fullname: Mokhtari, Mojgan
  organization: Department of Biomedical Engineering, Case Western Reserve University
– sequence: 10
  givenname: Christina
  surname: Buzzy
  fullname: Buzzy, Christina
  organization: Department of Biomedical Engineering, Case Western Reserve University
– sequence: 11
  givenname: Shridar
  surname: Ganesan
  fullname: Ganesan, Shridar
  organization: Rutgers Cancer Institute of New Jersey
– sequence: 12
  givenname: Michael D.
  surname: Feldman
  fullname: Feldman, Michael D.
  organization: Perelman School of Medicine, University of Pennsylvania
– sequence: 13
  givenname: Pingfu
  orcidid: 0000-0002-2334-5218
  surname: Fu
  fullname: Fu, Pingfu
  organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, School of Medicine
– sequence: 14
  givenname: Haley
  orcidid: 0000-0002-0079-4459
  surname: Corbin
  fullname: Corbin, Haley
  organization: University Hospitals Cleveland Medical Center
– sequence: 15
  givenname: Aparna
  surname: Harbhajanka
  fullname: Harbhajanka, Aparna
  organization: University Hospitals Cleveland Medical Center
– sequence: 16
  givenname: Hannah
  surname: Gilmore
  fullname: Gilmore, Hannah
  organization: University Hospitals Cleveland Medical Center
– sequence: 17
  givenname: Lori J.
  surname: Goldstein
  fullname: Goldstein, Lori J.
  organization: Fox Chase Cancer Center
– sequence: 18
  givenname: Nancy E.
  surname: Davidson
  fullname: Davidson, Nancy E.
  organization: Fred Hutchinson Cancer Research Center, University of Washington, and Seattle Cancer Care Alliance
– sequence: 19
  givenname: Sangeeta
  orcidid: 0000-0002-3588-9888
  surname: Desai
  fullname: Desai, Sangeeta
  organization: Tata Memorial Centre, Homi Bhabha National Institute
– sequence: 20
  givenname: Vani
  surname: Parmar
  fullname: Parmar, Vani
  organization: Tata Memorial Centre, Homi Bhabha National Institute
– sequence: 21
  givenname: Anant
  orcidid: 0000-0002-5741-0399
  surname: Madabhushi
  fullname: Madabhushi, Anant
  email: anantm@emory.edu
  organization: Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Louis Stokes VA Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37198173$$D View this record in MEDLINE/PubMed
BookMark eNqNklFr1TAUx4tM3Jz7Aj5IwBdhVJMmadonkcumg4Eg-hxO06TLNW1q0k767c29vc5tD8OHQ0LyO__8c855mR0NftBZ9prg9wTT6kNkhBc0x7vAnPF8eZadFFSwnJVCHN3bH2dnMW4xxoSVVc3Ji-yYClJXRNCTzG18P84TTNYP4NAI0413vluQ7cfgb3VEwcafKE4hIcaqPYi8QYD62U027_SgEcQICzI-IA3BLQmHTqOLb-eoCRrihBQMSodX2XMDLuqzw3qa_bi8-L75kl9__Xy1-XSdK87IlDfAoDFYaQJNgetknLZVq0SpeFvVwImhUFPFjE6fYrjFpuGkEKQoVaOUwPQ0u1p1Ww9bOQbbQ1ikByv3Bz50EsJkldOyFG1LRVuQElrGOakxxZSAbpVp0qMiadFVax5GWH6Dc3eCBMtdK-TaCol3sWuFXFLWxzVrnJs-iekhFdA9sPLwZrA3svO3SZDUBSvqpPDuoBD8r1nHSfY2Ku0cDNrPURZVepRVhPCEvn2Ebv0cUjv3FCupoNWOenPf0p2Xv7OQgGoFVPAxBm2ksutgJIfWPf3d4lHqf9XoUNmY4KHT4Z_tJ7L-AESL6yc
CitedBy_id crossref_primary_10_1038_s41467_025_57283_x
crossref_primary_10_1038_s41698_023_00472_y
crossref_primary_10_1038_s41591_023_02643_7
crossref_primary_10_1080_14789450_2024_2423625
crossref_primary_10_1200_OP_24_00797
crossref_primary_10_1038_s43018_024_00793_2
crossref_primary_10_1002_INMD_20240037
crossref_primary_10_1186_s13058_024_01840_7
crossref_primary_10_1016_j_ebiom_2025_105663
crossref_primary_10_1371_journal_pcbi_1011716
crossref_primary_10_1038_s41467_024_45589_1
crossref_primary_10_1038_s41523_024_00651_5
Cites_doi 10.1080/028418600430950
10.21105/joss.01830
10.1002/cyto.a.23065
10.1007/s10549-011-1791-9
10.1245/s10434-015-4616-y
10.1023/B:BREA.0000025410.41220.67
10.1002/ijc.32330
10.3389/fbioe.2019.00145
10.1056/NEJMoa1904819
10.1146/annurev-bioeng-112415-114722
10.1007/BF01807642
10.1002/(SICI)1096-9098(199906)71:2<101::AID-JSO8>3.0.CO;2-G
10.1016/j.breast.2019.12.007
10.1007/s10549-020-05931-9
10.1200/JCO.2007.15.5986
10.1200/jco.2005.23.16_suppl.512
10.1109/PROC.1979.11328
10.1200/JCO.2000.18.14.2695
10.1186/s12885-018-4448-9
10.1016/j.ctarc.2021.100306
10.1002/cncr.2820741326
10.1145/116873.116880
10.1038/s41571-019-0252-y
10.3322/caac.21565
10.1038/modpathol.3800496
10.1016/j.media.2016.06.037
10.2307/2532051
10.1038/s41523-022-00478-y
10.3322/caac.21583
10.1056/NEJMoa041588
10.1016/j.annonc.2021.09.007
10.1038/srep32706
10.1038/modpathol.2008.54
10.3322/caac.21590
10.1038/s41374-018-0095-7
10.1177/1010428317694550
10.1056/NEJMoa1804710
10.1001/jamaoncol.2020.7320
10.1016/S0344-0338(11)80263-3
10.1111/j.2517-6161.1996.tb02080.x
10.1046/j.1365-2559.2002.14691.x
10.1007/978-3-642-40760-4_50
10.1111/j.2517-6161.1972.tb00899.x
10.1038/modpathol.2016.261
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41523-023-00545-y
DatabaseName SpringerOpen
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2374-4677
EndPage 10
ExternalDocumentID oai_doaj_org_article_67dd37d216ad4551903031aedcfbd8d7
10.1038/s41523-023-00545-y
PMC10192429
37198173
10_1038_s41523_023_00545_y
Genre Journal Article
GrantInformation_xml – fundername: Research reported in this study was supported by the National Cancer Institute under award numbers R01CA249992-01A1, R01CA202752-01A1, R01CA208236-01A1, R01CA216579-01A1, R01CA220581-01A1, R01CA257612-01A1, 1U01CA239055-01, 1U01CA248226-01, 1U54CA254566-01, National Heart, Lung and Blood Institute 1R01HL15127701A1, R01HL15807101A1, National Institute of Biomedical Imaging and Bioengineering 1R43EB028736-01, National Center for Research Resources under award number 1 C06 RR12463-01, VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service the Office of the Assistant Secretary of Defense for Health Affairs, through the Breast Cancer Research Program (W81XWH-19-1-0668), the Prostate Cancer Research Program (W81XWH-15-1-0558, W81XWH-20-1-0851), the Lung Cancer Research Program (W81XWH-18-1-0440, W81XWH-20-1-0595), the Peer Reviewed Cancer Research Program (W81XWH-18-1-0404, W81XWH-21-1-0345, W81XWH-21-1-0160), the Kidney Precision Medicine Project (KPMP) Glue Grant and sponsored research agreements from Bristol Myers-Squibb, Boehringer-Ingelheim, Eli-Lilly and Astrazeneca.
– fundername: NCI NIH HHS
  grantid: U01 CA248226
– fundername: NIBIB NIH HHS
  grantid: R43 EB028736
– fundername: NCI NIH HHS
  grantid: R01 CA257612
– fundername: NCRR NIH HHS
  grantid: C06 RR012463
– fundername: NCI NIH HHS
  grantid: U01 CA239055
– fundername: NCI NIH HHS
  grantid: U54 CA254566
– fundername: NCI NIH HHS
  grantid: UG1 CA233328
– fundername: BLRD VA
  grantid: I01 BX004121
– fundername: NCI NIH HHS
  grantid: R01 CA208236
– fundername: NCI NIH HHS
  grantid: R01 CA216579
– fundername: ;
GroupedDBID 0R~
3V.
53G
5VS
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NO~
OK1
PGMZT
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PUEGO
NPM
7XB
8FK
AZQEC
DWQXO
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
7X8
5PM
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c541t-ba4abf0ce1ab2090013d8dc76c5d89a51f3a93c4fe00040d0fb5127126cbcc703
IEDL.DBID BENPR
ISSN 2374-4677
IngestDate Fri Oct 03 12:39:57 EDT 2025
Sun Oct 26 02:51:14 EDT 2025
Tue Sep 30 17:14:22 EDT 2025
Thu Sep 04 15:50:53 EDT 2025
Tue Oct 07 06:47:53 EDT 2025
Thu Jan 02 22:37:32 EST 2025
Wed Oct 01 03:50:32 EDT 2025
Thu Apr 24 22:50:46 EDT 2025
Fri Feb 21 02:40:30 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ba4abf0ce1ab2090013d8dc76c5d89a51f3a93c4fe00040d0fb5127126cbcc703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3002-0937
0000-0002-0079-4459
0000-0002-2334-5218
0000-0002-3588-9888
0000-0002-5741-0399
0000-0001-5000-5334
OpenAccessLink https://www.proquest.com/docview/2814637385?pq-origsite=%requestingapplication%&accountid=15518
PMID 37198173
PQID 2814637385
PQPubID 2041925
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_67dd37d216ad4551903031aedcfbd8d7
unpaywall_primary_10_1038_s41523_023_00545_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10192429
proquest_miscellaneous_2815248115
proquest_journals_2814637385
pubmed_primary_37198173
crossref_citationtrail_10_1038_s41523_023_00545_y
crossref_primary_10_1038_s41523_023_00545_y
springer_journals_10_1038_s41523_023_00545_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-17
PublicationDateYYYYMMDD 2023-05-17
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle NPJ breast cancer
PublicationTitleAbbrev npj Breast Cancer
PublicationTitleAlternate NPJ Breast Cancer
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Abdelhakam, Hanna, Nassar (CR12) 2021; 26
van, Dooijeweert (CR17) 2020; 146
Ibrahim (CR2) 2020; 49
Theissig, Kunze, Haroske, Meyer (CR18) 1990; 186
Sahirzeeshan, Robert, Jonathan, Christhunesa, Anant (CR42) 2013; 8676
Tibshirani (CR45) 1996; 58
Losk (CR7) 2020; 185
Mansour, Ravdin, Dressler (CR19) 1994; 74
Wang (CR37) 2021; 33
Chang (CR27) 2018; 22
Romo-Bucheli, Janowczyk, Gilmore, Romero, Madabhushi (CR31) 2016; 6
Elston, Ellis (CR13) 2002; 41
Longacre (CR20) 2006; 19
Jimenez, Racoceanu (CR28) 2019; 7
Sparano (CR8) 2018; 379
Whitney (CR35) 2018; 18
Sparano (CR34) 2019; 380
Miller (CR5) 2019; 69
Whitney, Janowczyk, Corredor, Gilmore, Madabhushi (CR36) 2017; 30
Haralick (CR44) 1979; 67
Siegel, Miller, Jemal (CR3) 2020; 70
Gilchrist (CR16) 1895; 5
Jacquemier, Charpin (CR22) 1998; 18
Lawrence (CR33) 1989; 45
Schootman, Jeffe, Reschke, Aft (CR4) 2004; 85
Chen (CR29) 2017; 39
Creed, Gerke, Berglund (CR46) 2020; 5
Paik (CR9) 2004; 351
Flanagan, Dabbs, Brufsky, Beriwal, Bhargava (CR10) 2008; 21
Lu (CR26) 2018; 98
Madabhushi, Lee (CR23) 2016; 33
Bhargava, Madabhushi (CR24) 2016; 18
Goldstein (CR40) 2005; 23
Rakha (CR15) 2008; 26
CR47
Saimura (CR14) 1999; 71
Brezden, Phillips, Abdolell, Bunston, Tannock (CR6) 2000; 18
Cox (CR32) 1972; 34
CR43
Romo-Bucheli, Janowczyk, Gilmore, Romero, Madabhushi (CR30) 2017; 91
Aurenhammer (CR41) 1991; 23
Boiesen (CR21) 2000; 39
DeSantis (CR1) 2019; 69
Hoskins, Danciu, Ko, Calip (CR11) 2021; 7
Bera, Schalper, Rimm, Velcheti, Madabhushi (CR25) 2019; 16
Jaroensri (CR38) 2022; 8
Brewer, Richman, DeFrank, Reyna, Carey (CR39) 2012; 133
JA Sparano (545_CR8) 2018; 379
RM Haralick (545_CR44) 1979; 67
M Saimura (545_CR14) 1999; 71
G Jimenez (545_CR28) 2019; 7
TA Longacre (545_CR20) 2006; 19
LJ Goldstein (545_CR40) 2005; 23
R Bhargava (545_CR24) 2016; 18
D Romo-Bucheli (545_CR30) 2017; 91
K Losk (545_CR7) 2020; 185
KD Miller (545_CR5) 2019; 69
J Jacquemier (545_CR22) 1998; 18
F Aurenhammer (545_CR41) 1991; 23
IKL Lawrence (545_CR33) 1989; 45
CE DeSantis (545_CR1) 2019; 69
KF Hoskins (545_CR11) 2021; 7
RL Siegel (545_CR3) 2020; 70
M Schootman (545_CR4) 2004; 85
EA Rakha (545_CR15) 2008; 26
R Tibshirani (545_CR45) 1996; 58
J Creed (545_CR46) 2020; 5
KW Gilchrist (545_CR16) 1895; 5
CW Elston (545_CR13) 2002; 41
D Romo-Bucheli (545_CR31) 2016; 6
JM Chang (545_CR27) 2018; 22
DR Cox (545_CR32) 1972; 34
J Whitney (545_CR36) 2017; 30
DA Abdelhakam (545_CR12) 2021; 26
A Ibrahim (545_CR2) 2020; 49
K Bera (545_CR25) 2019; 16
F Theissig (545_CR18) 1990; 186
A Sahirzeeshan (545_CR42) 2013; 8676
C van, Dooijeweert (545_CR17) 2020; 146
EG Mansour (545_CR19) 1994; 74
S Paik (545_CR9) 2004; 351
R Jaroensri (545_CR38) 2022; 8
C Lu (545_CR26) 2018; 98
J-M Chen (545_CR29) 2017; 39
CB Brezden (545_CR6) 2000; 18
P Boiesen (545_CR21) 2000; 39
545_CR47
JA Sparano (545_CR34) 2019; 380
545_CR43
A Madabhushi (545_CR23) 2016; 33
J Whitney (545_CR35) 2018; 18
NT Brewer (545_CR39) 2012; 133
Y Wang (545_CR37) 2021; 33
MB Flanagan (545_CR10) 2008; 21
References_xml – volume: 39
  start-page: 41
  year: 2000
  end-page: 45
  ident: CR21
  article-title: Histologic grading in breast cancer–reproducibility between seven pathologic departments. South Sweden Breast Cancer Group
  publication-title: Acta Oncol.
  doi: 10.1080/028418600430950
– volume: 5
  start-page: 1830
  year: 2020
  ident: CR46
  article-title: MatSurv: survival analysis and visualization in MATLAB
  publication-title: J. Open Source Softw
  doi: 10.21105/joss.01830
– volume: 91
  start-page: 566
  year: 2017
  end-page: 573
  ident: CR30
  article-title: A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers
  publication-title: Cytom. Part A: J. Int. Soc. Anal. Cytol.
  doi: 10.1002/cyto.a.23065
– volume: 133
  start-page: 553
  year: 2012
  end-page: 561
  ident: CR39
  article-title: Improving communication of breast cancer recurrence risk
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-011-1791-9
– ident: CR43
– volume: 22
  start-page: S509
  year: 2018
  end-page: S515
  ident: CR27
  article-title: Back to basics: traditional Nottingham grade mitotic counts alone are significant in predicting survival in invasive breast carcinoma
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-015-4616-y
– ident: CR47
– volume: 8676
  start-page: 164
  year: 2013
  end-page: 174
  ident: CR42
  article-title: Cell cluster graph for prediction of biochemical recurrence in prostate cancer patients from tissue microarrays
  publication-title: SPIE, Medical Imaging 2013: Digital Pathology
– volume: 85
  start-page: 219
  year: 2004
  end-page: 222
  ident: CR4
  article-title: The full potential of breast cancer screening use to reduce mortality has not yet been realized in the United States
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1023/B:BREA.0000025410.41220.67
– volume: 146
  start-page: 769
  year: 2020
  end-page: 780
  ident: CR17
  article-title: Significant inter- and intra-laboratory variation in grading of invasive breast cancer: a nationwide study of 33,043 patients in the Netherlands
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32330
– volume: 7
  start-page: 145
  year: 2019
  ident: CR28
  article-title: Deep learning for semantic segmentation vs. classification in computational pathology: application to mitosis analysis in breast cancer grading
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00145
– volume: 380
  start-page: 2395
  year: 2019
  end-page: 2405
  ident: CR34
  article-title: Clinical and genomic risk to guide the use of adjuvant therapy for breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1904819
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR45
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 18
  start-page: 387
  year: 2016
  end-page: 412
  ident: CR24
  article-title: Emerging themes in image informatics and molecular analysis for digital pathology
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-112415-114722
– volume: 5
  start-page: 3
  year: 1895
  end-page: 10
  ident: CR16
  article-title: Interobserver reproducibility of histopathological features in stage II breast cancer. An ECOG study
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/BF01807642
– volume: 71
  start-page: 101
  year: 1999
  end-page: 105
  ident: CR14
  article-title: Prognosis of a series of 763 consecutive node-negative invasive breast cancer patients without adjuvant therapy: analysis of clinicopathological prognostic factor
  publication-title: J. Surg. Oncol.
  doi: 10.1002/(SICI)1096-9098(199906)71:2<101::AID-JSO8>3.0.CO;2-G
– volume: 49
  start-page: 267
  year: 2020
  end-page: 273
  ident: CR2
  article-title: Artificial intelligence in digital breast pathology: techniques and applications
  publication-title: Breast
  doi: 10.1016/j.breast.2019.12.007
– volume: 185
  start-page: 215
  year: 2020
  end-page: 227
  ident: CR7
  article-title: Oncotype DX testing in node-positive imbreast cancer strongly impacts chemotherapy use at a comprehensive cancer center
  publication-title: Breast Cancer Res. Treat
  doi: 10.1007/s10549-020-05931-9
– volume: 26
  start-page: 3153
  year: 2008
  end-page: 3158
  ident: CR15
  article-title: Prognostic significance of Nottingham histologic grade in invasive breast carcinoma
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.15.5986
– volume: 23
  start-page: 512
  year: 2005
  ident: CR40
  article-title: E2197: phase III AT (doxorubicin/docetaxel) vs. AC (doxorubicin/cyclophosphamide) in the adjuvant treatment of node positive and high risk node negative breast cancer
  publication-title: J. Clin. Oncol.
  doi: 10.1200/jco.2005.23.16_suppl.512
– volume: 67
  start-page: 786
  year: 1979
  end-page: 804
  ident: CR44
  article-title: Statistical and structural approaches to texture
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1979.11328
– volume: 18
  start-page: 2695
  year: 2000
  end-page: 2701
  ident: CR6
  article-title: Cognitive function in breast cancer patients receiving adjuvant chemotherapy
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2000.18.14.2695
– volume: 18
  year: 2018
  ident: CR35
  article-title: Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
  publication-title: BMC Cancer
  doi: 10.1186/s12885-018-4448-9
– volume: 26
  start-page: 100306
  year: 2021
  ident: CR12
  article-title: Oncotype DX and prosigna in breast cancer patients: a comparison study
  publication-title: Cancer Treat. Res. Commun.
  doi: 10.1016/j.ctarc.2021.100306
– volume: 41
  start-page: 154
  year: 2002
  end-page: 161
  ident: CR13
  article-title: Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up
  publication-title: Histopathology
– volume: 74
  start-page: 381
  year: 1994
  end-page: 400
  ident: CR19
  article-title: Prognostic factors in early breast carcinoma
  publication-title: Cancer
  doi: 10.1002/cncr.2820741326
– volume: 23
  start-page: 345
  year: 1991
  end-page: 405
  ident: CR41
  article-title: Voronoi diagrams—a survey of a fundamental geometric data structure
  publication-title: ACM Comput. Surv.
  doi: 10.1145/116873.116880
– volume: 16
  start-page: 703
  year: 2019
  end-page: 715
  ident: CR25
  article-title: Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-019-0252-y
– volume: 69
  start-page: 363
  year: 2019
  end-page: 385
  ident: CR5
  article-title: Cancer treatment and survivorship statistics, 2019
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21565
– volume: 19
  start-page: 195
  year: 2006
  end-page: 207
  ident: CR20
  article-title: Interobserver agreement and reproducibility in classification of invasive breast carcinoma: an NCI breast cancer family registry study
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3800496
– volume: 18
  start-page: 385
  year: 1998
  end-page: 390
  ident: CR22
  article-title: Reproducibility of histoprognostic grades of invasive breast cancer
  publication-title: Ann. Pathol.
– volume: 33
  start-page: 170
  year: 2016
  end-page: 175
  ident: CR23
  article-title: Image analysis and machine learning in digital pathology: challenges and opportunities
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.037
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: CR33
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 8
  year: 2022
  ident: CR38
  article-title: Deep learning models for histologic grading of breast cancer and association with disease prognosis
  publication-title: npj Breast Cancer
  doi: 10.1038/s41523-022-00478-y
– volume: 69
  start-page: 438
  year: 2019
  end-page: 451
  ident: CR1
  article-title: Breast cancer statistics, 2019
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21583
– volume: 351
  start-page: 2817
  year: 2004
  end-page: 2826
  ident: CR9
  article-title: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa041588
– volume: 33
  start-page: 89
  year: 2021
  end-page: 98
  ident: CR37
  article-title: Improved breast cancer histological grading using deep learning
  publication-title: Ann. Oncol
  doi: 10.1016/j.annonc.2021.09.007
– volume: 6
  year: 2016
  ident: CR31
  article-title: Automated tubule nuclei quantification and correlation with oncotype DX risk categories in ER+ breast cancer whole slide images
  publication-title: Sci. Rep.
  doi: 10.1038/srep32706
– volume: 21
  start-page: 1255
  year: 2008
  end-page: 1261
  ident: CR10
  article-title: Histopathologic variables predict Oncotype DX™ Recurrence Score
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2008.54
– volume: 70
  start-page: 7
  year: 2020
  end-page: 30
  ident: CR3
  article-title: Cancer statistics, 2020
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 98
  start-page: 1438
  year: 2018
  end-page: 1448
  ident: CR26
  article-title: Nuclear shape and orientation features from H&E images predict survival in early-stage estrogen receptor-positive breast cancers
  publication-title: Lab. Investig.
  doi: 10.1038/s41374-018-0095-7
– volume: 39
  start-page: 1010428317694550
  year: 2017
  ident: CR29
  article-title: Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: a review
  publication-title: Tumor Biol.
  doi: 10.1177/1010428317694550
– volume: 30
  start-page: 464a
  year: 2017
  end-page: 464aa
  ident: CR36
  article-title: Computer extracted features of nuclear shape and architecture predict oncotype DX risk categories for early stage ER plus breast cancer
  publication-title: Mod. Pathol.
– volume: 379
  start-page: 111
  year: 2018
  end-page: 121
  ident: CR8
  article-title: Adjuvant chemotherapy guided by a 21-gene expression assay in breast cancer
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1804710
– volume: 34
  start-page: 187
  year: 1972
  end-page: 220
  ident: CR32
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
– volume: 7
  start-page: 370
  year: 2021
  end-page: 378
  ident: CR11
  article-title: Association of race/ethnicity and the 21-Gene Recurrence Score with breast cancer-specific mortality among US women
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.7320
– volume: 186
  start-page: 732
  year: 1990
  end-page: 736
  ident: CR18
  article-title: Histological grading of breast cancer. Interobserver, reproducibility and prognostic significance
  publication-title: Pathol. Res. Pract.
  doi: 10.1016/S0344-0338(11)80263-3
– volume: 39
  start-page: 101042831769455
  year: 2017
  ident: 545_CR29
  publication-title: Tumor Biol.
  doi: 10.1177/1010428317694550
– volume: 91
  start-page: 566
  year: 2017
  ident: 545_CR30
  publication-title: Cytom. Part A: J. Int. Soc. Anal. Cytol.
  doi: 10.1002/cyto.a.23065
– volume: 23
  start-page: 512
  year: 2005
  ident: 545_CR40
  publication-title: J. Clin. Oncol.
  doi: 10.1200/jco.2005.23.16_suppl.512
– volume: 18
  year: 2018
  ident: 545_CR35
  publication-title: BMC Cancer
  doi: 10.1186/s12885-018-4448-9
– volume: 58
  start-page: 267
  year: 1996
  ident: 545_CR45
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 379
  start-page: 111
  year: 2018
  ident: 545_CR8
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1804710
– volume: 45
  start-page: 255
  year: 1989
  ident: 545_CR33
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 5
  start-page: 1830
  year: 2020
  ident: 545_CR46
  publication-title: J. Open Source Softw
  doi: 10.21105/joss.01830
– volume: 23
  start-page: 345
  year: 1991
  ident: 545_CR41
  publication-title: ACM Comput. Surv.
  doi: 10.1145/116873.116880
– volume: 67
  start-page: 786
  year: 1979
  ident: 545_CR44
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1979.11328
– volume: 26
  start-page: 3153
  year: 2008
  ident: 545_CR15
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2007.15.5986
– volume: 7
  start-page: 145
  year: 2019
  ident: 545_CR28
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00145
– volume: 6
  year: 2016
  ident: 545_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/srep32706
– volume: 85
  start-page: 219
  year: 2004
  ident: 545_CR4
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1023/B:BREA.0000025410.41220.67
– volume: 33
  start-page: 170
  year: 2016
  ident: 545_CR23
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.037
– volume: 351
  start-page: 2817
  year: 2004
  ident: 545_CR9
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa041588
– volume: 186
  start-page: 732
  year: 1990
  ident: 545_CR18
  publication-title: Pathol. Res. Pract.
  doi: 10.1016/S0344-0338(11)80263-3
– volume: 19
  start-page: 195
  year: 2006
  ident: 545_CR20
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.3800496
– volume: 18
  start-page: 387
  year: 2016
  ident: 545_CR24
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-112415-114722
– volume: 74
  start-page: 381
  year: 1994
  ident: 545_CR19
  publication-title: Cancer
  doi: 10.1002/cncr.2820741326
– volume: 16
  start-page: 703
  year: 2019
  ident: 545_CR25
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-019-0252-y
– ident: 545_CR47
– volume: 26
  start-page: 100306
  year: 2021
  ident: 545_CR12
  publication-title: Cancer Treat. Res. Commun.
  doi: 10.1016/j.ctarc.2021.100306
– volume: 18
  start-page: 2695
  year: 2000
  ident: 545_CR6
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2000.18.14.2695
– volume: 22
  start-page: S509
  year: 2018
  ident: 545_CR27
  publication-title: Ann. Surg. Oncol.
  doi: 10.1245/s10434-015-4616-y
– volume: 18
  start-page: 385
  year: 1998
  ident: 545_CR22
  publication-title: Ann. Pathol.
– volume: 98
  start-page: 1438
  year: 2018
  ident: 545_CR26
  publication-title: Lab. Investig.
  doi: 10.1038/s41374-018-0095-7
– volume: 33
  start-page: 89
  year: 2021
  ident: 545_CR37
  publication-title: Ann. Oncol
  doi: 10.1016/j.annonc.2021.09.007
– volume: 41
  start-page: 154
  year: 2002
  ident: 545_CR13
  publication-title: Histopathology
  doi: 10.1046/j.1365-2559.2002.14691.x
– volume: 49
  start-page: 267
  year: 2020
  ident: 545_CR2
  publication-title: Breast
  doi: 10.1016/j.breast.2019.12.007
– volume: 21
  start-page: 1255
  year: 2008
  ident: 545_CR10
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2008.54
– volume: 8
  year: 2022
  ident: 545_CR38
  publication-title: npj Breast Cancer
  doi: 10.1038/s41523-022-00478-y
– ident: 545_CR43
  doi: 10.1007/978-3-642-40760-4_50
– volume: 34
  start-page: 187
  year: 1972
  ident: 545_CR32
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 70
  start-page: 7
  year: 2020
  ident: 545_CR3
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21590
– volume: 185
  start-page: 215
  year: 2020
  ident: 545_CR7
  publication-title: Breast Cancer Res. Treat
  doi: 10.1007/s10549-020-05931-9
– volume: 380
  start-page: 2395
  year: 2019
  ident: 545_CR34
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1904819
– volume: 7
  start-page: 370
  year: 2021
  ident: 545_CR11
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.7320
– volume: 8676
  start-page: 164
  year: 2013
  ident: 545_CR42
  publication-title: SPIE, Medical Imaging 2013: Digital Pathology
– volume: 30
  start-page: 464a
  year: 2017
  ident: 545_CR36
  publication-title: Mod. Pathol.
  doi: 10.1038/modpathol.2016.261
– volume: 133
  start-page: 553
  year: 2012
  ident: 545_CR39
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-011-1791-9
– volume: 71
  start-page: 101
  year: 1999
  ident: 545_CR14
  publication-title: J. Surg. Oncol.
  doi: 10.1002/(SICI)1096-9098(199906)71:2<101::AID-JSO8>3.0.CO;2-G
– volume: 69
  start-page: 363
  year: 2019
  ident: 545_CR5
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21565
– volume: 5
  start-page: 3
  year: 1895
  ident: 545_CR16
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/BF01807642
– volume: 146
  start-page: 769
  year: 2020
  ident: 545_CR17
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.32330
– volume: 39
  start-page: 41
  year: 2000
  ident: 545_CR21
  publication-title: Acta Oncol.
  doi: 10.1080/028418600430950
– volume: 69
  start-page: 438
  year: 2019
  ident: 545_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21583
SSID ssj0001468951
Score 2.3442454
Snippet Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer (IBC)...
Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN-) invasive breast cancer (IBC)...
Abstract Prognostic markers currently utilized in clinical practice for estrogen receptor-positive (ER+) and lymph node-negative (LN−) invasive breast cancer...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 40
SubjectTerms 631/67/1347
692/53/2422
Biomedical and Life Sciences
Biomedicine
Breast cancer
Cancer Research
Cell Biology
Human Genetics
Oncology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KDn0cSt91khYVektMJEuy5GNbEkIhPZQGcjN6mQYWb8juUvbfd0b2uru0pD304Islgzz6Rvo0M5oBeC-jT1p7VSIVSaXSdFlZcNIrk1zyKphcteTiS31-qT5f6autUl8UEzakBx4Ed1KbGKWJlahdVLi9N4hKKVyKofPRxnyPnNtm6zCVrSuqtsgdxlsyXNqTBe1U5LLEB2mKLtc7O1FO2P8nlvl7sOTkMX0ED1b9jVv_cLPZ1qZ09gQej2ySfRj-4incS_0zuH8x-sufw2wo2jAa_BiVH85mdHadbQlpwSi0nA25c7vRfMfmHXMsRxqWCK_EkF-7NUN2yxKlQ8buuAix069HzFNI-5IFgs7tC7g8O_326bwc6yuUQSuxLL1Tznc8JOF8xRtigyjRYOqgo22cFp10jQyqS8T8eOSdR3pgRFUHHwIuFS9hr5_36TWwJOvAq4TnoYDny2hsIxxvHPdKGa91V4DYyLoNY_JxqoExa7MTXNp2mJ-W00Pz064LOJq-uRlSb9zZ-yNN4dST0mbnFwimdgRT-zcwFXC4AUA76vKirchKSgmgdAHvpmbUQnKtuD7NV7mPrpRFel3AqwEv00ikEY0VRhZgd5C0M9Tdlv76e870LYiAI2Mo4HgDul_juksWxxMw_0F0-_9DdAfwsMrKpUthDmFvebtKb5CvLf3brJo_AXOBOvs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7SDfRxKH3HbVpU6C1ratmSZR-3JSEspIe2gdyMXqaBxRuyu5T995mRtU5NSmgPvliSkTXfSJ9mpBmAT4UzXkojUqQiPhWSLivzjPRKee2NsCpkLTn7Vp6ei_mFvNiD6e4uzMh_H0J3r2iJIV8jPsgvZLp9APsVArOawP5sNv8xv7WpiLJCxhDvxmDzz3cbj9afEKb_b9zy7hHJwU_6BB5tuiu9_a0Xiz-WopNn8DRySDbrhf4c9nz3Ah6eRS_5S1j0qRqimY9R0uFgPGeXwYLgV4wOlLM-Ym4bjXZs2TLNwvnCFEHlGbJqvWXIaZmnIMhYHacedvz9iBk6yL5mlgBz_QrOT45_fj1NY1aF1ErB16nRQps2s55rk2c1cUBXOatKK11Va8nbQteFFa0nvpe5rDVIChTPS2usxQniNUy6ZecPgPmitFnucRdkcVfpVFVzndU6M0IoI2WbAN-NdWNjyHHKfLFoguu7qJpePk1GD8mn2SZwNLS56gNu3Fv7C4lwqEnBssMLxFATda8plXOFcjkvtRPIEGuc2AquUbitwV9XCRzuANBEDV41OdlGKeyTTODjUIy6Rw4V3fnlJtSRuaiQVCfwpsfL0JNC8briqkigGiFp1NVxSXf5K8T35kS7kSckMN2B7rZf943FdADmPwzd2__7-jt4nAc1kilXhzBZX2_8e-Rja_MhquENx8ctKw
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VrQTlwHchUJCRuLVZ4sSOk2NBrSqkVgixopwif6VUrLKr3azQ8usZO05goaroIZdkItnOs_0yM34D8CYzynKuWIxUxMaMu8PKNHHzSlhpFdPCVy05PctPJuzDOT_fgrw_C-OT9r2kpV-m--ywt0u30biII17IMni8Hs9NfQu2c44cfATbk7OPh199JTnBYpz9IpyQSbLiipc3diEv1n8Vw_w3UXKIlt6FO6tmLtc_5HT6x4Z0fB--9F3p8lC-j1etGuuff6k83ryvD-Be4KjksLN8CFu2eQS3T0MU_jFMu1IQwY1IXFFj75wnl95DYZfEJayTTpG3Dk5BMquJJD5_MUbQWoKsXa4JcmZincgymuPSRo4-7RPlEuVboh0gF09gcnz0-f1JHKo2xJoz2sZKMqnqRFsqVZqUjmOawmiRa26KUnJaZ7LMNKut45OJSWqFpEPQNNdKa1yAdmHUzBr7DIjNcp2kFv-yNP61GlGUVCalTBRjQnFeR0D7r1jpIGnuKmtMKx9az4qqG8oqcZcbymodwf7wzrwT9LjW-p0Dx2DpxLj9jdniogofrMqFMZkwKc2lYchAS1w4MyoRNrXCrosI9npoVWGFWFap8706WSkewevhMc5tF7CRjZ2tvA1PWYGkPYKnHRKHlmSClgUVWQTFBkY3mrr5pLn85vXDqaP1yEMiOOjh_Ltd143FwQD5_xi65zczfwE7qUc8j6nYg1G7WNmXyPda9SpM7l_3nE_9
  priority: 102
  providerName: Unpaywall
Title Computational pathology improves risk stratification of a multi-gene assay for early stage ER+ breast cancer
URI https://link.springer.com/article/10.1038/s41523-023-00545-y
https://www.ncbi.nlm.nih.gov/pubmed/37198173
https://www.proquest.com/docview/2814637385
https://www.proquest.com/docview/2815248115
https://pubmed.ncbi.nlm.nih.gov/PMC10192429
https://www.nature.com/articles/s41523-023-00545-y.pdf
https://doaj.org/article/67dd37d216ad4551903031aedcfbd8d7
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2374-4677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001468951
  issn: 2374-4677
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2374-4677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001468951
  issn: 2374-4677
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2374-4677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001468951
  issn: 2374-4677
  databaseCode: RPM
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2374-4677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001468951
  issn: 2374-4677
  databaseCode: NAO
  dateStart: 20151101
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2374-4677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001468951
  issn: 2374-4677
  databaseCode: AAJSJ
  dateStart: 20151101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2374-4677
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001468951
  issn: 2374-4677
  databaseCode: C6C
  dateStart: 20151101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Li9swEB52E-jjUPqu221Qobdds5YtWfahlGzIsgQ2LNsG0pPRy-1CSNI8KPn31ciPNLQsPegiyyBL34w-z4xmAD4mRlnOFQsdFbEh43hZmUYoV8JKq5gWvmrJ9Ti9mrDRlE-PYNzchcGwykYnekVtFhpt5Ocx2qowDQ__vPwZYtUo9K42JTRkXVrBfPIpxo6hG2NmrA50L4bjm9u91YWlmeMU9e2ZKMnO13iCoSvTNUdfeLg7OKF8Iv9_sc-_gyhbT-pjeLidL-Xul5zN_jisLp_Ck5plkn4Fi2dwZOfP4cF17Ud_AbOqmENtCCRYltib18mdtzHYNcGQc1Ll1C1rsx5ZlEQSH4EYOthZ4ni33BHHeonFNMluuFNOZHh7ShSGum-IRkitXsLkcvh1cBXWdRdCzRndhEoyqcpIWypVHOXIEk1mtEg1N1kuOS0TmSealRYZYWSiUjnaIGicaqW1UyGvoDNfzO0bIDZJdRRb95-k3X-nEVlOZZTLSDEmFOdlALRZ60LXScmxNsas8M7xJCuq_SkibLg_xS6A0_adZZWS497RF7iF7UhMp-07FqvvRS2dRSqMSYSJaSoNcwDKnepLqHSbWyr36SKAkwYARS3j62KPyAA-tI-ddKLLRc7tYuvH8JhljnYH8LrCSzuTRNA8oyIJIDtA0sFUD5_M7374DOAUibljEgGcNaDbz-u-tThrgfkfS_f2_q9-B49iLzY8pOIEOpvV1r53DG2jenAspqIH3X5_9GXUq4XQ9Q7SQc9bPVzfZHzT__Yba78-jw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1E4IN4EChgJTm3UOLHj5FAhClttaXeFqlbqLbUdByqtsss-VO2f47cx4zi7rEArLj3kkjiR43n4m4dnCHmflNoKoXkIUMSGXOBhZRahXEmrrOZGuq4lvX7aveBfL8XlBvnVnoXBtMpWJzpFXQ4N-sj3Y_RVYRke8XH0M8SuURhdbVtoKN9aoTxwJcb8wY4TO78BE25ycPwF6P0hjo8655-7oe8yEBrB2TTUiitdRcYypeMoR0xUZqWRqRFllivBqkTlieGVRfwTlVGlYZOULE6NNgYEBr57h2zxhOdg_G0ddvrfzpZeHp5mgGH8aZ0oyfYnuGNi6BQugEsinK_siK5xwL_Q7t9Jm4vI7X2yPatHan6jBoM_Nsejh-SBR7X0U8OGj8iGrR-Tuz0ft39CBk3zCO94pNgG2bnz6bXzadgJxRR32tTwrbwbkQ4rqqjLeAyBzS0FnK_mFFA2tViWGYaDMqSds12qMbV-Sg2y8PgpubgVCjwjm_Wwti8ItUlqotiCXWbAzi1lljMV5SrSnEstRBUQ1q51YXwRdOzFMShcMD7JioY-RYQX0qeYB2R38c6oKQGydvQhknAxEst3uxvD8ffCa4MilWWZyDJmqSo5MGwOqjZhCohbafh1GZCdlgEKr1MmxVICAvJu8Ri0AYZ4VG2HMzdGxDwDmB-Q5w2_LGaSSJZnTCYByVY4aWWqq0_q6x-u4jhDQwCQS0D2WqZbzmvdWuwtGPM_lu7l-r9-S7a7573T4vS4f_KK3IudCImQyR2yOR3P7GtAh1P9xosgJVe3LfW_AcW1dgw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEG8CBYwEpzbaOLbj5IAQ0K5aSiuEqLS3YDsOVFolyz5U7V_j1zHjPJYVaMWlh1wSJ3Lsb8afZ8YzhLzihXFSGhECFXGhkHhYmUUoV8ppZ4RVvmrJ6VlydC4-juRoi_zqzsJgWGWnE72iLmqLNvJBjLYqTMMjB2UbFvH5YPh28jPEClLoae3KaTQQOXHLS9i-zd4cH8Bcv47j4eHXD0dhW2EgtFKweWi00KaMrGPaxFGGfKhIC6sSK4s005KVXGfcitIh94mKqDSwQCoWJ9ZYC8IC371GrivOMwwnVCO1su-IJAX20p7TiXg6mOFaiU5TuIAoyXC5thb6kgH_4rl_h2v2Pttb5MaimujlpR6P_1gWh3fI7ZbP0ncNAO-SLVfdIzunrcf-Phk3ZSNakyPFAsjekE8vvDXDzSgGt9Mme2_ZGhBpXVJNfaxjCAB3FBi-XlLg19RhQmZoDmqQHn7ZowaD6ufUIninD8j5lYz_Q7Jd1ZV7TKjjiY1iBzsyCzvcQqUZ01GmIyOEMlKWAWHdWOe2TX-OVTjGuXfD8zRv5ieP8ML5yZcB2evfmTTJPza2fo9T2LfExN3-Rj39nrd6IE9UUXBVxCzRhQC2moGS5UzD5JYGfl0FZLcDQN5qk1m-wn5AXvaPQQ-gc0dXrl74NjIWKRD8gDxq8NL3hCuWpUzxgKRrSFrr6vqT6uKHzzXOcAsAnCUg-x3oVv3aNBb7PTD_Y-iebP7rF2QHZD3_dHx28pTcjL0EyZCpXbI9ny7cM6CFc_Pcyx8l365a4H8DhQ5zpg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VrQTlwHchUJCRuLVZ4sSOk2NBrSqkVgixopwif6VUrLKr3azQ8usZO05goaroIZdkItnOs_0yM34D8CYzynKuWIxUxMaMu8PKNHHzSlhpFdPCVy05PctPJuzDOT_fgrw_C-OT9r2kpV-m--ywt0u30biII17IMni8Hs9NfQu2c44cfATbk7OPh199JTnBYpz9IpyQSbLiipc3diEv1n8Vw_w3UXKIlt6FO6tmLtc_5HT6x4Z0fB--9F3p8lC-j1etGuuff6k83ryvD-Be4KjksLN8CFu2eQS3T0MU_jFMu1IQwY1IXFFj75wnl95DYZfEJayTTpG3Dk5BMquJJD5_MUbQWoKsXa4JcmZincgymuPSRo4-7RPlEuVboh0gF09gcnz0-f1JHKo2xJoz2sZKMqnqRFsqVZqUjmOawmiRa26KUnJaZ7LMNKut45OJSWqFpEPQNNdKa1yAdmHUzBr7DIjNcp2kFv-yNP61GlGUVCalTBRjQnFeR0D7r1jpIGnuKmtMKx9az4qqG8oqcZcbymodwf7wzrwT9LjW-p0Dx2DpxLj9jdniogofrMqFMZkwKc2lYchAS1w4MyoRNrXCrosI9npoVWGFWFap8706WSkewevhMc5tF7CRjZ2tvA1PWYGkPYKnHRKHlmSClgUVWQTFBkY3mrr5pLn85vXDqaP1yEMiOOjh_Ltd143FwQD5_xi65zczfwE7qUc8j6nYg1G7WNmXyPda9SpM7l_3nE_9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+pathology+improves+risk+stratification+of+a+multi-gene+assay+for+early+stage+ER%2B+breast+cancer&rft.jtitle=NPJ+breast+cancer&rft.au=Chen%2C+Yuli&rft.au=Li%2C+Haojia&rft.au=Janowczyk%2C+Andrew&rft.au=Toro%2C+Paula&rft.date=2023-05-17&rft.pub=Nature+Publishing+Group&rft.eissn=2374-4677&rft.volume=9&rft.issue=1&rft.spage=40&rft_id=info:doi/10.1038%2Fs41523-023-00545-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2374-4677&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2374-4677&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2374-4677&client=summon