A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data
Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical setting...
Saved in:
| Published in | BMC bioinformatics Vol. 24; no. 1; pp. 198 - 31 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
BioMed Central
15.05.2023
Springer Nature B.V BMC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1471-2105 1471-2105 |
| DOI | 10.1186/s12859-023-05262-8 |
Cover
| Abstract | Background
There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.
Methods
This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.
Results
We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of
bio-centric interpretability
and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.
Conclusions
The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce
bio-centric interpretability
which is an important step towards formalisation of
biological interpretability
of DL models and developing methods that are less problem- or application-specific. |
|---|---|
| AbstractList | There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.BACKGROUNDThere is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.METHODSThis systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.RESULTSWe discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.CONCLUSIONSThe paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific. There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific. Abstract Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. Results We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. Conclusions The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific. BackgroundThere is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.MethodsThis systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.ResultsWe discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.ConclusionsThe paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific. Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. Results We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. Conclusions The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific. |
| ArticleNumber | 198 |
| Author | Zufferey, Marie Wysocka, Magdalena Wysocki, Oskar Landers, Dónal Freitas, André |
| Author_xml | – sequence: 1 givenname: Magdalena surname: Wysocka fullname: Wysocka, Magdalena email: magdalena.wysocka@manchester.ac.uk organization: Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Department of Computer Science, University of Manchester – sequence: 2 givenname: Oskar surname: Wysocki fullname: Wysocki, Oskar email: oskar.wysocki@idiap.ch organization: Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Department of Computer Science, University of Manchester, Idiap Research Institute, National University of Sciences – sequence: 3 givenname: Marie surname: Zufferey fullname: Zufferey, Marie organization: Idiap Research Institute, National University of Sciences – sequence: 4 givenname: Dónal surname: Landers fullname: Landers, Dónal organization: DeLondra Oncology Ltd – sequence: 5 givenname: André surname: Freitas fullname: Freitas, André organization: Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Department of Computer Science, University of Manchester, Idiap Research Institute, National University of Sciences |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37189058$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUstu1TAUjFARfcAPsECW2LAJ-BHHDhtUVTwqVWIDa8uxTy6uHPtiJ63uP_SjcZpLabuoWCXymRnPmfFxdRBigKp6TfB7QmT7IRMqeVdjymrMaUtr-aw6Io0gNSWYH9z7P6yOc77EmAiJ-YvqkAkiO8zlUXVzivIuTzDqyRmU4MrBNYoD6l30ceOM9n5XuzDENIJFFmCLPOgUXNigMVrwGZUZMjoYSB_RMAerRwiT9mhKEOw6hmCiXSg6WOTCBGmbYFoOYpmUi3bI6km_rJ4P2md4tf-eVD-_fP5x9q2--P71_Oz0oja8IVPd67IXZj0VpmFAhG2E7RoreE-taZa9tBCa8qGzfUPbVjDNBtq3gzCWdFKyk-p81bVRX6ptcqNOOxW1U7cHMW2UTiUPD6oVnEnStK2EoWG064oy9NyynmMm2kWLrVpz2OrddcnrTpBgtfSk1p5U6Und9qQW1qeVtZ37EqwpiSXtH1h5OAnul9rEq6JZFFu-KLzbK6T4e4Y8qdFlA97rAHHOihbXnPJSeIG-fQS9jHMKJeEFxTmXRbKg3ty3dOfl71spALkCTIo5JxiUcVN5NnFx6PzT69JH1P_KaJ9sLuCwgfTP9hOsPzH-9Fo |
| CitedBy_id | crossref_primary_10_1093_bib_bbae384 crossref_primary_10_1038_s41576_025_00826_1 crossref_primary_10_1007_s00266_024_03932_3 crossref_primary_10_3390_cancers17050796 crossref_primary_10_1016_j_jmb_2025_168936 crossref_primary_10_1186_s12885_024_13292_5 crossref_primary_10_1016_j_cogsys_2023_101188 crossref_primary_10_1016_j_patter_2025_101203 crossref_primary_10_3390_cancers15245858 crossref_primary_10_1016_j_isci_2024_109509 crossref_primary_10_1038_s41540_023_00310_8 crossref_primary_10_1038_s41540_024_00341_9 crossref_primary_10_1080_87559129_2024_2432924 crossref_primary_10_1038_s41598_025_91007_x crossref_primary_10_1007_s10278_024_01247_y crossref_primary_10_1007_s10462_024_10918_9 crossref_primary_10_1093_bioadv_vbae147 crossref_primary_10_1093_bib_bbae449 crossref_primary_10_3389_fams_2024_1380996 |
| Cites_doi | 10.1155/2021/9949328 10.1016/j.csbj.2021.06.030 10.1186/s12859-018-2500-z 10.1038/nmeth.4627 10.1101/2021.03.02.433454 10.1038/s41576-022-00532-2 10.1016/j.humgen.2022.201140 10.1109/TKDE.2021.3079836 10.1109/JPROC.2021.3060483 10.1016/j.dsp.2017.10.011 10.1186/s12859-020-03850-6 10.1155/2021/9025470 10.1021/acs.jcim.0c00331 10.1002/wsbm.1302 10.1038/nrg1272 10.1038/s41598-021-98814-y 10.1016/j.cell.2017.06.010 10.3389/fdata.2021.688969 10.1002/bies.201900122 10.3390/genes11080888 10.1186/s13059-020-02100-5 10.1038/s41586-021-03710-0 10.1371/journal.pcbi.1008653 10.1016/j.csbj.2021.04.067 10.1038/s41467-019-13825-8 10.1093/nar/gkaa1074 10.1101/2021.08.22.457275 10.1016/j.cosrev.2021.100378 10.1016/j.artint.2022.103839 10.1007/s10479-011-0841-3 10.3389/fbinf.2021.639349 10.1093/bioinformatics/btz318 10.1038/s41467-021-26017-0 10.4137/CIN.S14021 10.3389/fgene.2019.01205 10.1007/978-3-030-30493-5_60 10.1126/sciadv.abh1275 10.1186/s40246-022-00396-x 10.1038/s41576-019-0122-6 10.3390/math9233101 10.1007/s11831-021-09648-w 10.1093/bib/bbac075 10.1016/j.cell.2011.02.016 10.1038/s41598-021-85285-4 10.1109/ACCESS.2018.2870052 10.1186/s12859-019-2952-9 10.1109/TCBB.2020.2986387 10.1186/s12859-020-3465-2 10.1162/coli_a_00462 10.3389/fdata.2021.568352 10.1101/2021.10.11.21264761 10.1016/j.cell.2011.01.004 10.1007/s00439-021-02387-9 10.1186/s13073-021-00968-x 10.1093/bib/bbab315 10.1158/2159-8290.CD-21-0090 10.1101/gr.1680803 10.1016/j.ebiom.2022.104001 10.1007/978-3-030-28954-6_1 10.1109/TNNLS.2020.3027314 10.1101/433763 10.1146/annurev-biodatasci-080917-013444 10.1093/bib/bbz171 10.1109/DSAA.2018.00018 10.1371/journal.pcbi.1006076 10.1002/widm.1379 10.3389/fphy.2020.00203 10.1007/s11831-021-09617-3 10.1186/s13040-020-00222-x 10.1016/j.ccell.2020.09.014 10.1016/j.coemr.2022.100350 10.1016/j.semcancer.2022.12.009 10.1093/nar/gkn863 10.1371/journal.pcbi.0040016 10.1007/978-1-4757-3294-8 10.21105/joss.00861 10.1186/s13073-021-00845-7 10.1093/nar/gkr988 10.48550/ARXIV.1604.00825 10.1073/pnas.1900654116 10.2139/ssrn.3748268 10.1093/bioinformatics/btaa1099 10.1093/bioinformatics/btab285 10.1093/bib/bbab454 10.1145/3097983.3098061 10.1093/nar/gky1015 10.1101/2020.12.03.409755 10.1093/nar/gkn892 10.1007/s11831-022-09821-9 10.1101/174474 10.3389/fgene.2019.00166 10.1038/s41467-021-23774-w 10.1109/MC.2021.3092610 10.1038/s41586-021-03922-4 10.1145/3236009 10.1038/s43588-021-00099-8 10.1016/j.gpb.2022.07.003 10.1093/bioinformatics/btaa203 10.1093/bioinformatics/btz158 10.21203/rs.3.rs-448572/v1 10.1093/bib/bbaa177 10.1016/j.jbi.2023.104367 10.1186/s12859-019-3130-9 10.1093/bfgp/elab021 10.1186/s12859-019-3298-z 10.1109/ICCV.2017.74 10.1016/j.inffus.2021.10.007 10.1016/j.coisb.2021.02.002 10.1098/rsif.2017.0387 10.1145/3397271.3401214 10.1186/1471-2105-9-559 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2023 2023. The Author(s). 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L7M LK8 L~C L~D M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1186/s12859-023-05262-8 |
| DatabaseName | Springer Nature Link OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Computer and Information Systems Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1471-2105 |
| EndPage | 31 |
| ExternalDocumentID | oai_doaj_org_article_6753814668ef4329977aeb5d3b503768 10.1186/s12859-023-05262-8 PMC10186658 37189058 10_1186_s12859_023_05262_8 |
| Genre | Systematic Review Journal Article |
| GrantInformation_xml | – fundername: Horizon 2020 grantid: 965397; 965397; 965397; 965397 funderid: http://dx.doi.org/10.13039/501100007601 – fundername: digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute grantid: P126273; P126273; P126273; P126273 – fundername: Horizon 2020 grantid: 965397 – fundername: digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute grantid: P126273 – fundername: ; grantid: P126273; P126273; P126273; P126273 – fundername: ; grantid: 965397; 965397; 965397; 965397 |
| GroupedDBID | --- 0R~ 23N 2WC 53G 5VS 6J9 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAFWJ AAJSJ AAKPC AASML ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS ARAPS AZQEC BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BGLVJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CS3 DIK DU5 DWQXO E3Z EAD EAP EAS EBD EBLON EBS EMB EMK EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO ICD IHR INH INR ISR ITC K6V K7- KQ8 LK8 M1P M48 M7P MK~ ML0 M~E O5R O5S OK1 OVT P2P P62 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XH6 XSB AAYXX CITATION ALIPV CGR CUY CVF ECM EIF NPM 3V. 7QO 7SC 7XB 8AL 8FD 8FK FR3 JQ2 K9. L7M L~C L~D M0N P64 PKEHL PQEST PQUKI Q9U 7X8 5PM 123 2VQ 4.4 ADRAZ ADTOC AHSBF C1A EJD H13 IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c541t-ba47103b27c43e17d47d94d75b2dc49058a77a25f9db426673a3f2b6f7cd19883 |
| IEDL.DBID | DOA |
| ISSN | 1471-2105 |
| IngestDate | Fri Oct 03 12:41:51 EDT 2025 Sun Oct 26 03:30:13 EDT 2025 Tue Sep 30 17:13:52 EDT 2025 Thu Sep 04 19:28:38 EDT 2025 Tue Oct 07 05:20:37 EDT 2025 Mon Jul 21 06:01:32 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Wed Oct 01 04:15:42 EDT 2025 Sat Sep 06 07:27:30 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Explainable AI Multi-omics Data Cancer Genomics Sparse Neural Networks Domain Knowledge Integration Deep Learning Graph Neural Networks |
| Language | English |
| License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-ba47103b27c43e17d47d94d75b2dc49058a77a25f9db426673a3f2b6f7cd19883 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Undefined-1 content type line 23 |
| OpenAccessLink | https://doaj.org/article/6753814668ef4329977aeb5d3b503768 |
| PMID | 37189058 |
| PQID | 2815558866 |
| PQPubID | 44065 |
| PageCount | 31 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6753814668ef4329977aeb5d3b503768 unpaywall_primary_10_1186_s12859_023_05262_8 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10186658 proquest_miscellaneous_2814525780 proquest_journals_2815558866 pubmed_primary_37189058 crossref_citationtrail_10_1186_s12859_023_05262_8 crossref_primary_10_1186_s12859_023_05262_8 springer_journals_10_1186_s12859_023_05262_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-15 |
| PublicationDateYYYYMMDD | 2023-05-15 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | BMC bioinformatics |
| PublicationTitleAbbrev | BMC Bioinformatics |
| PublicationTitleAlternate | BMC Bioinformatics |
| PublicationYear | 2023 |
| Publisher | BioMed Central Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: Springer Nature B.V – name: BMC |
| References | HR Hassanzadeh (5262_CR7) 2021; 4 MT Hira (5262_CR111) 2021; 11 S Lee (5262_CR68) 2020; 36 Y Xiao (5262_CR15) 2022; 79 E Tjoa (5262_CR33) 2021; 32 A Tsherniak (5262_CR89) 2017; 170 B Bhinder (5262_CR9) 2021; 11 A Bogatu (5262_CR36) 2023 5262_CR30 V Kumar (5262_CR52) 2021; 29 Y Lin (5262_CR123) 2020; 11 5262_CR34 R Guidotti (5262_CR21) 2018; 51 5262_CR39 JH Oh (5262_CR65) 2021; 37 PCAWG Tumor Subtypes and Clinical Translation Working Group, PCAWG Consortium, Jiao W, Atwal G, Polak P, Karlic R, Cuppen E, Danyi A, de Ridder J, van Herpen C, Lolkema MP, Steeghs N, Getz G, Morris Q, Stein LD (5262_CR6) 2020; 11 A Holzinger (5262_CR37) 2021; 54 P Mcgillivray (5262_CR60) 2018; 1 T Ching (5262_CR31) 2018; 15 J Zhang (5262_CR84) 2014; 13 S Oller-moreno (5262_CR126) 2021; 25 J Gao (5262_CR124) 2020 RM Turner (5262_CR101) 2015; 7 5262_CR22 5262_CR27 K Shi (5262_CR11) 2020; 18 N Fortelny (5262_CR100) 2020; 21 TA Dragani (5262_CR10) 2020; 42 5262_CR25 5262_CR127 E Kipkogei (5262_CR8) 2021 S Peri (5262_CR74) 2003; 13 5262_CR120 D Baptista (5262_CR49) 2021; 22 G Stiglic (5262_CR32) 2020; 10 M Picard (5262_CR53) 2021; 19 R Ramirez (5262_CR76) 2020; 8 5262_CR92 Y Zhao (5262_CR47) 2022 L-Y Guo (5262_CR108) 2020; 13 5262_CR96 X He (5262_CR16) 2022; 88 A Lemsara (5262_CR67) 2020; 21 M Kanehisa (5262_CR62) 2011; 2012 5262_CR116 A Talukder (5262_CR26) 2020; 22 A Torkamannia (5262_CR51) 2022; 23 5262_CR119 J Feng (5262_CR95) 2021; 22 5262_CR112 5262_CR81 S Althubaiti (5262_CR69) 2021 5262_CR86 M Kang (5262_CR17) 2022; 23 AB Tufail (5262_CR46) 2021; 9 F Anowar (5262_CR114) 2021; 40 Z Huang (5262_CR83) 2019; 10 E Withnell (5262_CR115) 2021; 22 A Adadi (5262_CR20) 2018; 6 5262_CR107 5262_CR104 J Ma (5262_CR103) 2018; 15 T Ching (5262_CR106) 2018; 14 A Dhillon (5262_CR14) 2023; 30 H Shu (5262_CR105) 2021; 1 L Matthews (5262_CR63) 2009; 37 L Rampášk (5262_CR109) 2019; 35 KA Tran (5262_CR4) 2021; 13 5262_CR71 BM Kuenzi (5262_CR102) 2020; 38 M Palazzo (5262_CR122) 2019; 20 AR Junejo (5262_CR50) 2021; 2021 5262_CR78 Z Wang (5262_CR121) 2019; 20 H Chereda (5262_CR73) 2021; 13 5262_CR79 O Wysocki (5262_CR35) 2023; 316 M Vidal (5262_CR61) 2011; 144 G Montavon (5262_CR38) 2019; 73 C Liu (5262_CR80) 2021; 37 T Wang (5262_CR85) 2021; 12 H Sharifi-Noghabi (5262_CR2) 2019; 35 P Langfelder (5262_CR88) 2008; 9 5262_CR66 JG Tate (5262_CR70) 2018; 47 G Eraslan (5262_CR13) 2019; 20 HA Elmarakeby (5262_CR91) 2021; 598 Q Liu (5262_CR82) 2021; 17 Y Cun (5262_CR125) 2012; 13 D Szklarczyk (5262_CR77) 2020; 49 L Zhao (5262_CR94) 2021; 19 L Seninge (5262_CR99) 2021; 12 X Xing (5262_CR87) 2020 S Kinalis (5262_CR117) 2019; 20 A Holzinger (5262_CR45) 2022; 79 Y-H Chuang (5262_CR72) 2021; 11 N Novershtern (5262_CR118) 2011; 144 WS Alharbi (5262_CR54) 2022; 16 5262_CR56 5262_CR57 W Samek (5262_CR24) 2021; 109 5262_CR55 5262_CR58 O Wysocki (5262_CR28) 2023; 49 H Zhang (5262_CR97) 2021; 1 H Kaur (5262_CR12) 2021; 20 V Belle (5262_CR23) 2021; 4 N Simidjievski (5262_CR110) 2019; 10 G Montavon (5262_CR19) 2018; 73 X Yu (5262_CR18) 2022; 35 A-L Barabási (5262_CR59) 2004; 5 TS Keshava Prasad (5262_CR75) 2009; 37 GA Viswanathan (5262_CR64) 2008; 4 L Deng (5262_CR93) 2020; 60 AB Tufail (5262_CR5) 2021; 2021 Y Kumar (5262_CR3) 2021; 29 J Hao (5262_CR98) 2018; 19 5262_CR41 5262_CR42 5262_CR40 5262_CR43 5262_CR44 Y-C Chiu (5262_CR90) 2021; 7 G Novakovsky (5262_CR29) 2022; 24 DS Watson (5262_CR48) 2022; 141 D Baptista (5262_CR1) 2020; 22 L van der Maaten (5262_CR113) 2008; 9 |
| References_xml | – volume: 2021 start-page: 1 year: 2021 ident: 5262_CR50 publication-title: Comput Math Methods Med doi: 10.1155/2021/9949328 – volume: 19 start-page: 3735 year: 2021 ident: 5262_CR53 publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.06.030 – volume: 19 start-page: 510 issue: 1 year: 2018 ident: 5262_CR98 publication-title: BMC Bioinformatics. doi: 10.1186/s12859-018-2500-z – volume: 15 start-page: 290 issue: 4 year: 2018 ident: 5262_CR103 publication-title: Nat Methods doi: 10.1038/nmeth.4627 – year: 2021 ident: 5262_CR69 publication-title: Bioinformatics doi: 10.1101/2021.03.02.433454 – volume: 24 start-page: 125 issue: 2 year: 2022 ident: 5262_CR29 publication-title: Nat Rev Genet doi: 10.1038/s41576-022-00532-2 – volume: 35 start-page: 201140 year: 2022 ident: 5262_CR18 publication-title: Hum Gene doi: 10.1016/j.humgen.2022.201140 – ident: 5262_CR58 doi: 10.1109/TKDE.2021.3079836 – volume: 109 start-page: 247 issue: 3 year: 2021 ident: 5262_CR24 publication-title: Proc IEEE. doi: 10.1109/JPROC.2021.3060483 – volume: 73 start-page: 1 year: 2019 ident: 5262_CR38 publication-title: Proc Natl Acad Sci doi: 10.1016/j.dsp.2017.10.011 – volume: 22 start-page: 47 issue: 1 year: 2021 ident: 5262_CR95 publication-title: BMC Bioinform. doi: 10.1186/s12859-020-03850-6 – volume: 2021 start-page: 1 year: 2021 ident: 5262_CR5 publication-title: Comput Math Methods Med. doi: 10.1155/2021/9025470 – volume: 60 start-page: 4497 year: 2020 ident: 5262_CR93 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.0c00331 – volume: 7 start-page: 221 year: 2015 ident: 5262_CR101 publication-title: WIREs Syst Biol Med doi: 10.1002/wsbm.1302 – volume: 5 start-page: 101 issue: February year: 2004 ident: 5262_CR59 publication-title: Nat Rev Genet doi: 10.1038/nrg1272 – volume: 11 start-page: 20691 issue: 1 year: 2021 ident: 5262_CR72 publication-title: Sci Rep. doi: 10.1038/s41598-021-98814-y – volume: 170 start-page: 564 year: 2017 ident: 5262_CR89 publication-title: Cell doi: 10.1016/j.cell.2017.06.010 – volume: 4 start-page: 39 year: 2021 ident: 5262_CR23 publication-title: Front Big Data doi: 10.3389/fdata.2021.688969 – volume: 42 start-page: 1900122 issue: 4 year: 2020 ident: 5262_CR10 publication-title: BioEssays doi: 10.1002/bies.201900122 – volume: 11 start-page: 1 issue: 8 year: 2020 ident: 5262_CR123 publication-title: Genes doi: 10.3390/genes11080888 – volume: 21 start-page: 190 issue: 1 year: 2020 ident: 5262_CR100 publication-title: Genome Biol. doi: 10.1186/s13059-020-02100-5 – ident: 5262_CR34 doi: 10.1038/s41586-021-03710-0 – volume: 17 start-page: 1008653 issue: 2 year: 2021 ident: 5262_CR82 publication-title: PLOS Comput Biol. doi: 10.1371/journal.pcbi.1008653 – volume: 19 start-page: 2719 year: 2021 ident: 5262_CR94 publication-title: Comput Struct Biotechnol J. doi: 10.1016/j.csbj.2021.04.067 – volume: 11 start-page: 728 issue: 1 year: 2020 ident: 5262_CR6 publication-title: Nat Commun. doi: 10.1038/s41467-019-13825-8 – volume: 49 start-page: 605 issue: D1 year: 2020 ident: 5262_CR77 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1074 – volume: 73 start-page: 1 year: 2018 ident: 5262_CR19 publication-title: Digit Signal Process. doi: 10.1016/j.dsp.2017.10.011 – ident: 5262_CR86 doi: 10.1101/2021.08.22.457275 – ident: 5262_CR44 – volume: 40 year: 2021 ident: 5262_CR114 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2021.100378 – volume: 316 year: 2023 ident: 5262_CR35 publication-title: Artif Intell doi: 10.1016/j.artint.2022.103839 – volume: 9 start-page: 2579 year: 2008 ident: 5262_CR113 publication-title: J Mach Learn Res doi: 10.1007/s10479-011-0841-3 – ident: 5262_CR92 – volume: 1 year: 2021 ident: 5262_CR97 publication-title: Front Bioinform. doi: 10.3389/fbinf.2021.639349 – volume: 35 start-page: 501 issue: 14 year: 2019 ident: 5262_CR2 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btz318 – volume: 12 start-page: 5684 issue: 1 year: 2021 ident: 5262_CR99 publication-title: Nat Commun. doi: 10.1038/s41467-021-26017-0 – volume: 13 start-page: 14021 issue: s3 year: 2014 ident: 5262_CR84 publication-title: Cancer Inform. doi: 10.4137/CIN.S14021 – volume: 10 start-page: 1205 year: 2019 ident: 5262_CR110 publication-title: Front Genet. doi: 10.3389/fgene.2019.01205 – ident: 5262_CR78 doi: 10.1007/978-3-030-30493-5_60 – volume: 7 start-page: 1275 issue: 34 year: 2021 ident: 5262_CR90 publication-title: Sci Adv. doi: 10.1126/sciadv.abh1275 – volume: 16 start-page: 26 issue: 1 year: 2022 ident: 5262_CR54 publication-title: Human Genom doi: 10.1186/s40246-022-00396-x – volume: 20 start-page: 389 issue: 7 year: 2019 ident: 5262_CR13 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0122-6 – ident: 5262_CR104 – volume: 9 start-page: 3101 issue: 23 year: 2021 ident: 5262_CR46 publication-title: Mathematics doi: 10.3390/math9233101 – ident: 5262_CR39 – volume: 29 start-page: 2043 year: 2021 ident: 5262_CR3 publication-title: Archiv Comput Methods Eng. doi: 10.1007/s11831-021-09648-w – volume: 23 start-page: 75 issue: 3 year: 2022 ident: 5262_CR51 publication-title: Brief Bioinform doi: 10.1093/bib/bbac075 – ident: 5262_CR22 – volume: 144 start-page: 986 year: 2011 ident: 5262_CR61 publication-title: Cell doi: 10.1016/j.cell.2011.02.016 – volume: 11 start-page: 6265 issue: 1 year: 2021 ident: 5262_CR111 publication-title: Sci. Rep. doi: 10.1038/s41598-021-85285-4 – volume: 6 start-page: 52138 year: 2018 ident: 5262_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 20 start-page: 379 issue: 1 year: 2019 ident: 5262_CR117 publication-title: BMC Bioinformatics. doi: 10.1186/s12859-019-2952-9 – volume: 18 start-page: 2514 issue: 6 year: 2020 ident: 5262_CR11 publication-title: IEEE/ACM Trans Comput Biol Bioinform doi: 10.1109/TCBB.2020.2986387 – volume: 21 start-page: 146 issue: 1 year: 2020 ident: 5262_CR67 publication-title: BMC Bioinform. doi: 10.1186/s12859-020-3465-2 – volume: 49 start-page: 73 issue: 1 year: 2023 ident: 5262_CR28 publication-title: Comput Linguist doi: 10.1162/coli_a_00462 – volume: 4 year: 2021 ident: 5262_CR7 publication-title: Front Big Data. doi: 10.3389/fdata.2021.568352 – year: 2021 ident: 5262_CR8 publication-title: medRxiv doi: 10.1101/2021.10.11.21264761 – volume: 144 start-page: 296 issue: 2 year: 2011 ident: 5262_CR118 publication-title: Cell doi: 10.1016/j.cell.2011.01.004 – volume: 141 start-page: 1499 issue: 9 year: 2022 ident: 5262_CR48 publication-title: Hum Genet doi: 10.1007/s00439-021-02387-9 – ident: 5262_CR25 – volume: 13 start-page: 152 issue: 1 year: 2021 ident: 5262_CR4 publication-title: Genome Med. doi: 10.1186/s13073-021-00968-x – volume: 22 start-page: 315 issue: 6 year: 2021 ident: 5262_CR115 publication-title: Brief Bioinform doi: 10.1093/bib/bbab315 – volume: 11 start-page: 900 issue: 4 year: 2021 ident: 5262_CR9 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-21-0090 – volume: 13 start-page: 2363 issue: 10 year: 2003 ident: 5262_CR74 publication-title: Genome Res doi: 10.1101/gr.1680803 – volume: 79 year: 2022 ident: 5262_CR15 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.104001 – ident: 5262_CR42 doi: 10.1007/978-3-030-28954-6_1 – volume: 32 start-page: 4793 year: 2021 ident: 5262_CR33 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3027314 – ident: 5262_CR120 doi: 10.1101/433763 – ident: 5262_CR71 – volume: 1 start-page: 153 year: 2018 ident: 5262_CR60 publication-title: Annu Rev Biomed Data Sci doi: 10.1146/annurev-biodatasci-080917-013444 – volume: 22 start-page: 360 issue: 1 year: 2021 ident: 5262_CR49 publication-title: Brief Bioinformat doi: 10.1093/bib/bbz171 – ident: 5262_CR41 doi: 10.1109/DSAA.2018.00018 – volume: 14 start-page: 1006076 issue: 4 year: 2018 ident: 5262_CR106 publication-title: PLOS Comput Biol. doi: 10.1371/journal.pcbi.1006076 – volume: 10 start-page: e1379 issue: 5 year: 2020 ident: 5262_CR32 publication-title: WIREs Data Mining Knowl Discov doi: 10.1002/widm.1379 – volume: 8 start-page: 203 year: 2020 ident: 5262_CR76 publication-title: Front Phys. doi: 10.3389/fphy.2020.00203 – volume: 29 start-page: 1443 issue: 3 year: 2021 ident: 5262_CR52 publication-title: Archiv Comput Methods Eng doi: 10.1007/s11831-021-09617-3 – volume: 13 start-page: 1 year: 2020 ident: 5262_CR108 publication-title: BioData Mining doi: 10.1186/s13040-020-00222-x – volume: 38 start-page: 672 issue: 5 year: 2020 ident: 5262_CR102 publication-title: Cancer Cell. doi: 10.1016/j.ccell.2020.09.014 – ident: 5262_CR55 doi: 10.1016/j.coemr.2022.100350 – volume: 88 start-page: 187 year: 2022 ident: 5262_CR16 publication-title: Sem Cancer Biol doi: 10.1016/j.semcancer.2022.12.009 – volume: 37 start-page: 619 year: 2009 ident: 5262_CR63 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn863 – volume: 4 start-page: 1 issue: 2 year: 2008 ident: 5262_CR64 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.0040016 – ident: 5262_CR107 doi: 10.1007/978-1-4757-3294-8 – ident: 5262_CR112 doi: 10.21105/joss.00861 – volume: 13 start-page: 42 issue: 1 year: 2021 ident: 5262_CR73 publication-title: Genome Med. doi: 10.1186/s13073-021-00845-7 – volume: 2012 start-page: 109 issue: 40 year: 2011 ident: 5262_CR62 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr988 – ident: 5262_CR79 doi: 10.48550/ARXIV.1604.00825 – volume: 22 start-page: 360 issue: 1 year: 2020 ident: 5262_CR1 publication-title: Brief Bioinform doi: 10.1093/bib/bbz171 – ident: 5262_CR30 – ident: 5262_CR43 doi: 10.1073/pnas.1900654116 – ident: 5262_CR56 doi: 10.2139/ssrn.3748268 – volume: 37 start-page: 82 issue: 1 year: 2021 ident: 5262_CR80 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btaa1099 – volume: 37 start-page: 443 issue: S1 year: 2021 ident: 5262_CR65 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btab285 – volume: 23 start-page: 454 issue: 1 year: 2022 ident: 5262_CR17 publication-title: Brief Bioinform doi: 10.1093/bib/bbab454 – ident: 5262_CR81 doi: 10.1145/3097983.3098061 – ident: 5262_CR40 – volume: 47 start-page: 941 issue: D1 year: 2018 ident: 5262_CR70 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1015 – year: 2020 ident: 5262_CR87 publication-title: Bioinformatics doi: 10.1101/2020.12.03.409755 – volume: 37 start-page: 767 year: 2009 ident: 5262_CR75 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn892 – volume: 30 start-page: 917 issue: 2 year: 2023 ident: 5262_CR14 publication-title: Archiv Comput Methods Eng doi: 10.1007/s11831-022-09821-9 – ident: 5262_CR119 doi: 10.1101/174474 – volume: 10 start-page: 166 year: 2019 ident: 5262_CR83 publication-title: Front Genet. doi: 10.3389/fgene.2019.00166 – volume: 12 start-page: 3445 issue: 1 year: 2021 ident: 5262_CR85 publication-title: Nat Commun. doi: 10.1038/s41467-021-23774-w – volume: 54 start-page: 78 issue: 10 year: 2021 ident: 5262_CR37 publication-title: Computer doi: 10.1109/MC.2021.3092610 – ident: 5262_CR57 – volume: 598 start-page: 348 issue: 7880 year: 2021 ident: 5262_CR91 publication-title: Nature. doi: 10.1038/s41586-021-03922-4 – volume: 51 start-page: 1 issue: 5 year: 2018 ident: 5262_CR21 publication-title: ACM Comput Surv. doi: 10.1145/3236009 – ident: 5262_CR96 – volume: 1 start-page: 491 issue: 7 year: 2021 ident: 5262_CR105 publication-title: Nat Comput Sci. doi: 10.1038/s43588-021-00099-8 – year: 2022 ident: 5262_CR47 publication-title: Genom Proteomics Bioinform doi: 10.1016/j.gpb.2022.07.003 – volume: 36 start-page: 3818 issue: 12 year: 2020 ident: 5262_CR68 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btaa203 – volume: 35 start-page: 3743 issue: 19 year: 2019 ident: 5262_CR109 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btz158 – ident: 5262_CR27 doi: 10.21203/rs.3.rs-448572/v1 – volume: 22 start-page: bbaa177 issue: 3 year: 2020 ident: 5262_CR26 publication-title: Brief Bioinform. doi: 10.1093/bib/bbaa177 – year: 2023 ident: 5262_CR36 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2023.104367 – volume: 20 start-page: 568 issue: S18 year: 2019 ident: 5262_CR121 publication-title: BMC Bioinformatics. doi: 10.1186/s12859-019-3130-9 – ident: 5262_CR127 – volume: 13 start-page: 1 issue: 69 year: 2012 ident: 5262_CR125 publication-title: BMC Bioinformatics – volume: 20 start-page: 213 issue: 4 year: 2021 ident: 5262_CR12 publication-title: Brief Funct Genomics doi: 10.1093/bfgp/elab021 – volume: 20 start-page: 655 issue: 1 year: 2019 ident: 5262_CR122 publication-title: BMC Bioinformatics. doi: 10.1186/s12859-019-3298-z – ident: 5262_CR116 – ident: 5262_CR66 doi: 10.1109/ICCV.2017.74 – volume: 79 start-page: 263 year: 2022 ident: 5262_CR45 publication-title: Inf Fusion doi: 10.1016/j.inffus.2021.10.007 – volume: 25 start-page: 27 year: 2021 ident: 5262_CR126 publication-title: Curr Opin Syst Biol doi: 10.1016/j.coisb.2021.02.002 – volume: 15 start-page: 20170387 issue: 141 year: 2018 ident: 5262_CR31 publication-title: J R Soc Interface doi: 10.1098/rsif.2017.0387 – start-page: 1697 volume-title: MGNN: A Multimodal Graph Neural Network for Predicting the Survival of Cancer Patients year: 2020 ident: 5262_CR124 doi: 10.1145/3397271.3401214 – volume: 9 start-page: 1 issue: 559 year: 2008 ident: 5262_CR88 publication-title: BMC Bioinform doi: 10.1186/1471-2105-9-559 |
| SSID | ssj0017805 |
| Score | 2.5743794 |
| SecondaryResourceType | review_article |
| Snippet | Background
There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most... There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct... BackgroundThere is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct... Abstract Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However,... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 198 |
| SubjectTerms | Algorithms Bioinformatics Biological Evolution Biology Biomarkers Biomedical and Life Sciences Cancer Cancer Genomics Coding Computational Biology/Bioinformatics Computer Appl. in Life Sciences Deep Learning Domains Explainable AI Genomics Graph Neural Networks Graph representations Humans Knowledge Life Sciences Machine learning Medical Oncology Medical research Microarrays Multi-omics Data Neoplasms - genetics Oncology Proteins Sparse Neural Networks Statistical analysis Statistical inference Systematic review Taxonomy Trends |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA7nHqJ-EN9dPSWC37xwbZImqSByJ3ccgouIB_ctJE16d7C0674g-x_80WaStuuiLH5t0pJmnskkmZlnEHobjshKmTKAN-OOcFd7YowEGlcRjtqW1TyD5OQvE3F-wT9fFpd7aNLnwkBYZb8mxoXatRXckR9RlQM1lRLi4-wHgapR4F3tS2iYrrSC-xApxm6hfQrMWCO0f3I6-fpt8CsAg3-fOqPE0SIH_jYS7BYB3pOwNmyZp8ji_6-t598RlIMb9R66s2pmZv3TTKd_WKqzB-h-t8XExwkTD9Gebx6h26no5Pox-nWMN_TNOKWu4LbGiY4JZDZdk8Sn6h123s9wV1riCse6OQsc2nAFcJm_xzWkkqQKAXgZA2xjM_BjglnEpnH4po9shAdtE4my1xiCU5-gi7PT75_OSVeTgVQFz5fEmmDNMmaprDjzuXRcupI7WVjqKl5mhTJSGlrUpbNg_CUzrKZW1LJyeakUe4pGTdv45whTmVMb69ZnijvulPfSuczBJlIxR8co70Whq46wHOpmTHU8uCihk_h0EJ-O4tNqjN4N78wSXcfO3icg4aEnUG3HB-38Sneaq8OJisE9qVC-5ixY7_B_3haO2SILq3P4yEGPD93p_0Jv0DpGb4bmoLngjjGNb1exDziVAyTH6FmC0zASFrYMMJljpLaAtjXU7Zbm5jqygwMFmxDw6mGPyc24ds3F4YDb_5i6F7v_-iW6S5NWkbw4QKPlfOVfhd3b0r7uVPI3aR9BdQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA3riqgP4rfVVSL45tZtkzRJBZFVXBZhfXJg30LSpOtCacf5QPsf_NHmJm3HwWHxwdcmGdJ7z-29mSTnIPTKL5Gl1KUHb8ZsymztUq0F0Lhyv9Q2tGYZXE4--8JPZ-zzeXG-h0a5o8GAy51LO9CTmi2aNz-_9-99wL8LAS_50TIHFrbUZ58U2Et8hF9D132mKkHK4YxtdhWAv3-8OLNz3FZyChz-uwrPv89PTpuot9HNdTvX_Q_dNH_kqZO76M5QYOLjiIh7aM-199GNKDnZP0C_jvGGvBnHiyu4q3EkYwKPNX0a2VSdxda5OR6EJS5wUM1ZYt-GKwDL4i2u4SJJ1AfAq3C8NjQDOyYkRaxbiy_Hc43woGsDTXaP4WjqQzQ7-fT142k6KDKkVcHyVWq0z2UZNURUjLpcWCZsyawoDLEVK7NCaiE0KerSGkj9gmpaE8NrUdm8lJI-Qvtt17onCBORExNU6zPJLLPSOWFtZqGElNSSBOWjK1Q10JWDakajwrJFchXdp7z7VHCfkgl6PY2ZR7KOK3t_AA9PPYFoOzzoFhdqiFvl11MU_iXl0tWM-tzt38-ZwlJTZP7b7H_kYMSHGsGriMyBRk1ynqCXU7OPW9iM0a3r1qEPbCl7SCbocYTTNBPqCwYwZoLkFtC2prrd0l5-C9zgQMDGOQw9HDG5mddVtjiccPsPpnv6P0z3DN0iMfbSvDhA-6vF2j33Fd7KvAhh-xsdJUpA priority: 102 providerName: Scholars Portal – databaseName: Springer Nature Link OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxKs0UJCRuFGLOHZsh1upqCokOFGpN8uOHai0yq66u0L7H_jRnbGTtCuqCq7xQ47nm8w44_mGkPdwRDbGNQDeUgYmQxeZcxppXBUctb3oZInJyd--q5NT-fWsPhtocjAX5nr8nhv1ccmRYY2BZWHITALae5fcAyOlUmBWHU0RA-TmH5Nibhy3ZXgSP_9NTuXfdyOnAOkj8mDdL9zmt5vNrtmg4yfk8eA80sMs7afkTuyfkfu5nOTmOflzSK-ImWlOSqHzjmaiJZTGbMMyU2oMNMS4oEPRiJ80VcRZUmijLQLh4hPtMEkkc__TVbo6m5qR-RINHnV9oOfjnUV8MO8TBfaG4rXTF-T0-MuPoxM2VFtgbS35inkHdqoUvtKtFJHrIHVoZNC1r0Irm7I2TmtX1V0TPJp1LZzoKq863QbeGCN2yU4_7-MeoZXmlU8V6UsjgwwmRh1CGdA9NCJUBeGjKGw7UJFjRYyZTUcSo2wWnwXx2SQ-awryYRqzyEQct_b-jBKeeiKJdnoA2LKDTlo4Kwn8A6pM7KQAuwzvF30dhK9L-O7CJPsjPuyg2UtbGY4UaUapgrybmkEnMdDi-jhfpz4YLgZIFuRlhtO0EgHOAG5mQcwW0LaWut3Sn_9KvN9IrqYUDj0YMXm1rtv24mDC7T9s3av_m_01eVhlLWO83ic7q4t1fAN-2sq_TQp6CZahM70 priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PujMJCReGPpktixXd4KYpqQmBCi0niK7NgZFSGp-iFU_gb-aHx2kq0wTSDxGtuVc_2d7y6--x3ACxciS6nGDrwxMxEzpY2UEkjjyl2orWnJYixOfn_Mj6bs3Ul2sgMfu1oY_a3Qs6YlDUWi4tH5MvQqVDlgFwW7OJibMii95AfLBJnYImeBImQwcVp-BXZ55vzzAexOjz9MPvsyI5FELsbJuuqZCxduWShP5H-R9_lnEmV_k3oDrq3rudp8V1V1zlgd3oJl95ohR-XraL3So-LHbwyQ_1cOt-Fm69uSSQDjHdix9V24Grpdbu7Bzwk5440moWaGNCUJPFAIlmoThb1YQ4y1c9L2tDglvmHPkrgxUiBOF69IiTUsoTUBWfnMXj-MxJxoj4mqDZl1KZX4oKk9Q_eGYFbsfZgevv305ihqm0FERcaSVaSV-_NiqlNRMGoTYZgwY2ZEplNTsHGcSSWESrNybDR6HYIqWqaal6IwyVhK-gAGdVPbR0BSkaQai2plLJlhRlorjIkNeq-SmnQISQeAvGiZ0rFhR5X7iEnyPEg5d1LOvZRzOYSX_Zp54Am5dPZrxFU_Ezm-_YNmcZq3R0buQjmKH2i5tCWjzm1w72d1ZqjOYmcW3I_sdajM24NnmacyQQY3yfkQnvfD7sjAeyBV22bt5-BttpDxEB4GEPc7oc5XQWEOQW7Be2ur2yP17IunJUfuN85x6X6nCWf7ukwW-722_IXoHv_b9CdwPQ3KECXZHgxWi7V96tzIlX7Wngu_ACBvbEE priority: 102 providerName: Unpaywall |
| Title | A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data |
| URI | https://link.springer.com/article/10.1186/s12859-023-05262-8 https://www.ncbi.nlm.nih.gov/pubmed/37189058 https://www.proquest.com/docview/2815558866 https://www.proquest.com/docview/2814525780 https://pubmed.ncbi.nlm.nih.gov/PMC10186658 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05262-8 https://doaj.org/article/6753814668ef4329977aeb5d3b503768 |
| UnpaywallVersion | publishedVersion |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCDEeEL8XGJWReGPRktixHd6yamWqtGoCKpWnyIkdmFSl1doK9X_gj-bOTrJVoMEDL4lkO5Jz913uHPu-I-QdLJGV0hmAN-Im5Ka2odYSaVwFLLVLVvMIk5PPJ-JsysezdHaj1BeeCfP0wF5wxxDQMvxNJZStOYOPp5TalqlhZRqBcbg030hl3WKq3T9Apv4uRUaJ41WMPG0h-KcQ-U3gG7Djhhxb_59CzN9PSvbbpQ_Jg02z1Nsfej6_4ZFGj8mjNpSkuX-FJ-SObZ6S-7645PYZ-ZnTa5pm6lNU6KKmnnYJdTPfhp431RpqrF3StoTEN-rq46wo9NEKYXH1gdaYMuIrAdC1O0jrupEHE90f1Y2hl90JRmxYNI4Qe0vxEOpzMh2dfhmehW3thbBKebwOSw1eK2JlIivObCwNlybjRqZlYiqeRanSoIgkrTNTopOXTLM6KUUtKxNnSrEXZK9ZNPaA0ETGSenq00eKG26UtdKYyGCwqJhJAhJ3qiiqlpgc62PMC7dAUaLw6itAfYVTX6EC8r5_ZulpOW4dfYIa7kcipbZrAKAVLdCKvwEtIIcdPorWzldFomIkTFNCBORt3w0WitsuurGLjRuDm8cAyYC89HDqZ8IgNEBhBkTtAG1nqrs9zeV3xwKOVGtC4KNHHSav53WbLI563P6D6F79D9G9JvuJt70wTg_J3vpqY99ALLcuB-SunEm4qtHHAbmX5-PPY7ifnE4uPkHrUAwHzrDhes4V9EwnF_nXX3G1SiQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8WChgJTjRqYjuxFwmh8qi29HFqpb25TuyUSqtk2Yeq_Q_8Fn4jM3aSZQVacek1diLH83k8Y898Q8gbcJGVMn0AbyxsJGzpImMk0rhm4GrnvBQxJicfn2SDM_FtmA43yK82FwbDKlud6BW1rQs8I99lKkFqKpVlH8c_IqwahberbQmNAItDt7gCl2364eALyPctY_tfTz8PoqaqQFSkIplFuQF9HPOcyUJwl0grpO0LK9Oc2UL041QZKQ1Ly77NcfuS3PCS5VkpCwseuuLw3RvkpuCgS2D9yGHn4CVYH6BNzFHZ7jRBdrgIdsUIWVVA86xsfr5GwL8M27_jM7tL2jtka16NzeLKjEZ_7IP798jdxoClewFx98mGqx6QW6Gk5eIh-blHl-TQNCTG0LqkgewJETFaRIGt1VlqnRvTpnDFBfVVeaYU2miBYJy8pyUmqoT6A3Tmw3d9M7Jv4qZLTWXpZRs3iQ_qytNwLyiGvj4iZ9cim8dks6or95RQJhOWY-asipWwwirnpLWxRRNVcct6JGlFoYuGDh2rcoy0d4tUpoP4NIhPe_Fp1SPvunfGgQxkbe9PKOGuJxJ5-wf15EI3ekGDv8bxFDZTrhQcbAP4P5enludpDLofPrLd4kM32mWql2uhR153zaAX8LLHVK6e-z54ZQ2Q7JEnAU7dSDgYJDiZPaJWgLYy1NWW6vK75x5Hgrcsw1d3Wkwux7VuLnY63P7H1D1b_9evyNbg9PhIHx2cHD4nt1lYYVGSbpPN2WTuXoCdOMtf-sVJyfl1a4PffK124g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAoHxKOUQAEjcaNRE9uxHW5lYVVeFQcq9WbZsVMqrZLVblZo_wM_Go-dpF1RVXCN7cjr-WZnnJn5BqE3_oospS49eDNmU2Zrl2otgMaV-6u2oTXLoDj52zE_OmGfT4vTS1X8Idt9CEnGmgZgaWq6g7mto4pLfrDMgXct9fYmBb4Sr9M30S3mrRv0MJjwyRhHAMb-oVTmynUb5iiw9l_lav6dMTmGTe-h7VUz1-tfeja7ZJmmD9D93qXEhxEDD9EN1zxCt2OTyfVj9PsQX9A141iqgtsaR_olkNFsnUb-VGexdW6O-1YSZzj0yVliP4YrgMfiHa6hdCR2BMBdSKgNw8CHCWYQ68bi8yGTER60TSDGXmNIRt1BJ9OPPyZHad-DIa0Klnep0d56ZdQQUTHqcmGZsCWzojDEVqzMCqmF0KSoS2vA2AuqaU0Mr0Vl81JK-gRtNW3jniJMRE5M6FOfSWaZlc4JazMLTqOkliQoH0Shqp6gHPpkzFS4qEiuoviUF58K4lMyQW_HNfNIz3Ht7Pcg4XEmUGuHB-3iTPWaqvwNisJ3US5dzai31v73OVNYaorM_xv7l-wN-FC9vi8VkTkQp0nOE_R6HPaaCuEX3bh2FeZAENlDMkG7EU7jTqh3EeAwEyQ3gLax1c2R5vxnYAMHyjXOYen-gMmLfV13Fvsjbv_h6J7939tfoTvfP0zV10_HX56juyQqXJoXe2irW6zcC-_IdeZl0NU_BKI-8w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PujMJCReGPpktixXd4KYpqQmBCi0niK7NgZFSGp-iFU_gb-aHx2kq0wTSDxGtuVc_2d7y6--x3ACxciS6nGDrwxMxEzpY2UEkjjyl2orWnJYixOfn_Mj6bs3Ul2sgMfu1oY_a3Qs6YlDUWi4tH5MvQqVDlgFwW7OJibMii95AfLBJnYImeBImQwcVp-BXZ55vzzAexOjz9MPvsyI5FELsbJuuqZCxduWShP5H-R9_lnEmV_k3oDrq3rudp8V1V1zlgd3oJl95ohR-XraL3So-LHbwyQ_1cOt-Fm69uSSQDjHdix9V24Grpdbu7Bzwk5440moWaGNCUJPFAIlmoThb1YQ4y1c9L2tDglvmHPkrgxUiBOF69IiTUsoTUBWfnMXj-MxJxoj4mqDZl1KZX4oKk9Q_eGYFbsfZgevv305ihqm0FERcaSVaSV-_NiqlNRMGoTYZgwY2ZEplNTsHGcSSWESrNybDR6HYIqWqaal6IwyVhK-gAGdVPbR0BSkaQai2plLJlhRlorjIkNeq-SmnQISQeAvGiZ0rFhR5X7iEnyPEg5d1LOvZRzOYSX_Zp54Am5dPZrxFU_Ezm-_YNmcZq3R0buQjmKH2i5tCWjzm1w72d1ZqjOYmcW3I_sdajM24NnmacyQQY3yfkQnvfD7sjAeyBV22bt5-BttpDxEB4GEPc7oc5XQWEOQW7Be2ur2yP17IunJUfuN85x6X6nCWf7ukwW-722_IXoHv_b9CdwPQ3KECXZHgxWi7V96tzIlX7Wngu_ACBvbEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+biologically-informed+deep+learning+models+for+cancer%3A+fundamental+trends+for+encoding+and+interpreting+oncology+data&rft.jtitle=BMC+bioinformatics&rft.au=Magdalena+Wysocka&rft.au=Oskar+Wysocki&rft.au=Marie+Zufferey&rft.au=D%C3%B3nal+Landers&rft.date=2023-05-15&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1186%2Fs12859-023-05262-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6753814668ef4329977aeb5d3b503768 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |