A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data

Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical setting...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 24; no. 1; pp. 198 - 31
Main Authors Wysocka, Magdalena, Wysocki, Oskar, Zufferey, Marie, Landers, Dónal, Freitas, André
Format Journal Article
LanguageEnglish
Published London BioMed Central 15.05.2023
Springer Nature B.V
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-023-05262-8

Cover

Abstract Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. Results We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. Conclusions The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
AbstractList There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.BACKGROUNDThere is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.METHODSThis systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.RESULTSWe discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.CONCLUSIONSThe paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
Abstract Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. Results We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. Conclusions The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
BackgroundThere is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings.MethodsThis systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods.ResultsWe discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models.ConclusionsThe paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct applications of DL will deliver models with limited transparency and explainability, which constrain their deployment in biomedical settings. Methods This systematic review discusses DL models used to support inference in cancer biology with a particular emphasis on multi-omics analysis. It focuses on how existing models address the need for better dialogue with prior knowledge, biological plausibility and interpretability, fundamental properties in the biomedical domain. For this, we retrieved and analyzed 42 studies focusing on emerging architectural and methodological advances, the encoding of biological domain knowledge and the integration of explainability methods. Results We discuss the recent evolutionary arch of DL models in the direction of integrating prior biological relational and network knowledge to support better generalisation (e.g. pathways or Protein-Protein-Interaction networks) and interpretability. This represents a fundamental functional shift towards models which can integrate mechanistic and statistical inference aspects. We introduce a concept of bio-centric interpretability and according to its taxonomy, we discuss representational methodologies for the integration of domain prior knowledge in such models. Conclusions The paper provides a critical outlook into contemporary methods for explainability and interpretability used in DL for cancer. The analysis points in the direction of a convergence between encoding prior knowledge and improved interpretability. We introduce bio-centric interpretability which is an important step towards formalisation of biological interpretability of DL models and developing methods that are less problem- or application-specific.
ArticleNumber 198
Author Zufferey, Marie
Wysocka, Magdalena
Wysocki, Oskar
Landers, Dónal
Freitas, André
Author_xml – sequence: 1
  givenname: Magdalena
  surname: Wysocka
  fullname: Wysocka, Magdalena
  email: magdalena.wysocka@manchester.ac.uk
  organization: Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Department of Computer Science, University of Manchester
– sequence: 2
  givenname: Oskar
  surname: Wysocki
  fullname: Wysocki, Oskar
  email: oskar.wysocki@idiap.ch
  organization: Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Department of Computer Science, University of Manchester, Idiap Research Institute, National University of Sciences
– sequence: 3
  givenname: Marie
  surname: Zufferey
  fullname: Zufferey, Marie
  organization: Idiap Research Institute, National University of Sciences
– sequence: 4
  givenname: Dónal
  surname: Landers
  fullname: Landers, Dónal
  organization: DeLondra Oncology Ltd
– sequence: 5
  givenname: André
  surname: Freitas
  fullname: Freitas, André
  organization: Digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Department of Computer Science, University of Manchester, Idiap Research Institute, National University of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37189058$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAUjFARfcAPsECW2LAJ-BHHDhtUVTwqVWIDa8uxTy6uHPtiJ63uP_SjcZpLabuoWCXymRnPmfFxdRBigKp6TfB7QmT7IRMqeVdjymrMaUtr-aw6Io0gNSWYH9z7P6yOc77EmAiJ-YvqkAkiO8zlUXVzivIuTzDqyRmU4MrBNYoD6l30ceOM9n5XuzDENIJFFmCLPOgUXNigMVrwGZUZMjoYSB_RMAerRwiT9mhKEOw6hmCiXSg6WOTCBGmbYFoOYpmUi3bI6km_rJ4P2md4tf-eVD-_fP5x9q2--P71_Oz0oja8IVPd67IXZj0VpmFAhG2E7RoreE-taZa9tBCa8qGzfUPbVjDNBtq3gzCWdFKyk-p81bVRX6ptcqNOOxW1U7cHMW2UTiUPD6oVnEnStK2EoWG064oy9NyynmMm2kWLrVpz2OrddcnrTpBgtfSk1p5U6Und9qQW1qeVtZ37EqwpiSXtH1h5OAnul9rEq6JZFFu-KLzbK6T4e4Y8qdFlA97rAHHOihbXnPJSeIG-fQS9jHMKJeEFxTmXRbKg3ty3dOfl71spALkCTIo5JxiUcVN5NnFx6PzT69JH1P_KaJ9sLuCwgfTP9hOsPzH-9Fo
CitedBy_id crossref_primary_10_1093_bib_bbae384
crossref_primary_10_1038_s41576_025_00826_1
crossref_primary_10_1007_s00266_024_03932_3
crossref_primary_10_3390_cancers17050796
crossref_primary_10_1016_j_jmb_2025_168936
crossref_primary_10_1186_s12885_024_13292_5
crossref_primary_10_1016_j_cogsys_2023_101188
crossref_primary_10_1016_j_patter_2025_101203
crossref_primary_10_3390_cancers15245858
crossref_primary_10_1016_j_isci_2024_109509
crossref_primary_10_1038_s41540_023_00310_8
crossref_primary_10_1038_s41540_024_00341_9
crossref_primary_10_1080_87559129_2024_2432924
crossref_primary_10_1038_s41598_025_91007_x
crossref_primary_10_1007_s10278_024_01247_y
crossref_primary_10_1007_s10462_024_10918_9
crossref_primary_10_1093_bioadv_vbae147
crossref_primary_10_1093_bib_bbae449
crossref_primary_10_3389_fams_2024_1380996
Cites_doi 10.1155/2021/9949328
10.1016/j.csbj.2021.06.030
10.1186/s12859-018-2500-z
10.1038/nmeth.4627
10.1101/2021.03.02.433454
10.1038/s41576-022-00532-2
10.1016/j.humgen.2022.201140
10.1109/TKDE.2021.3079836
10.1109/JPROC.2021.3060483
10.1016/j.dsp.2017.10.011
10.1186/s12859-020-03850-6
10.1155/2021/9025470
10.1021/acs.jcim.0c00331
10.1002/wsbm.1302
10.1038/nrg1272
10.1038/s41598-021-98814-y
10.1016/j.cell.2017.06.010
10.3389/fdata.2021.688969
10.1002/bies.201900122
10.3390/genes11080888
10.1186/s13059-020-02100-5
10.1038/s41586-021-03710-0
10.1371/journal.pcbi.1008653
10.1016/j.csbj.2021.04.067
10.1038/s41467-019-13825-8
10.1093/nar/gkaa1074
10.1101/2021.08.22.457275
10.1016/j.cosrev.2021.100378
10.1016/j.artint.2022.103839
10.1007/s10479-011-0841-3
10.3389/fbinf.2021.639349
10.1093/bioinformatics/btz318
10.1038/s41467-021-26017-0
10.4137/CIN.S14021
10.3389/fgene.2019.01205
10.1007/978-3-030-30493-5_60
10.1126/sciadv.abh1275
10.1186/s40246-022-00396-x
10.1038/s41576-019-0122-6
10.3390/math9233101
10.1007/s11831-021-09648-w
10.1093/bib/bbac075
10.1016/j.cell.2011.02.016
10.1038/s41598-021-85285-4
10.1109/ACCESS.2018.2870052
10.1186/s12859-019-2952-9
10.1109/TCBB.2020.2986387
10.1186/s12859-020-3465-2
10.1162/coli_a_00462
10.3389/fdata.2021.568352
10.1101/2021.10.11.21264761
10.1016/j.cell.2011.01.004
10.1007/s00439-021-02387-9
10.1186/s13073-021-00968-x
10.1093/bib/bbab315
10.1158/2159-8290.CD-21-0090
10.1101/gr.1680803
10.1016/j.ebiom.2022.104001
10.1007/978-3-030-28954-6_1
10.1109/TNNLS.2020.3027314
10.1101/433763
10.1146/annurev-biodatasci-080917-013444
10.1093/bib/bbz171
10.1109/DSAA.2018.00018
10.1371/journal.pcbi.1006076
10.1002/widm.1379
10.3389/fphy.2020.00203
10.1007/s11831-021-09617-3
10.1186/s13040-020-00222-x
10.1016/j.ccell.2020.09.014
10.1016/j.coemr.2022.100350
10.1016/j.semcancer.2022.12.009
10.1093/nar/gkn863
10.1371/journal.pcbi.0040016
10.1007/978-1-4757-3294-8
10.21105/joss.00861
10.1186/s13073-021-00845-7
10.1093/nar/gkr988
10.48550/ARXIV.1604.00825
10.1073/pnas.1900654116
10.2139/ssrn.3748268
10.1093/bioinformatics/btaa1099
10.1093/bioinformatics/btab285
10.1093/bib/bbab454
10.1145/3097983.3098061
10.1093/nar/gky1015
10.1101/2020.12.03.409755
10.1093/nar/gkn892
10.1007/s11831-022-09821-9
10.1101/174474
10.3389/fgene.2019.00166
10.1038/s41467-021-23774-w
10.1109/MC.2021.3092610
10.1038/s41586-021-03922-4
10.1145/3236009
10.1038/s43588-021-00099-8
10.1016/j.gpb.2022.07.003
10.1093/bioinformatics/btaa203
10.1093/bioinformatics/btz158
10.21203/rs.3.rs-448572/v1
10.1093/bib/bbaa177
10.1016/j.jbi.2023.104367
10.1186/s12859-019-3130-9
10.1093/bfgp/elab021
10.1186/s12859-019-3298-z
10.1109/ICCV.2017.74
10.1016/j.inffus.2021.10.007
10.1016/j.coisb.2021.02.002
10.1098/rsif.2017.0387
10.1145/3397271.3401214
10.1186/1471-2105-9-559
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/s12859-023-05262-8
DatabaseName Springer Nature Link OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 31
ExternalDocumentID oai_doaj_org_article_6753814668ef4329977aeb5d3b503768
10.1186/s12859-023-05262-8
PMC10186658
37189058
10_1186_s12859_023_05262_8
Genre Systematic Review
Journal Article
GrantInformation_xml – fundername: Horizon 2020
  grantid: 965397; 965397; 965397; 965397
  funderid: http://dx.doi.org/10.13039/501100007601
– fundername: digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute
  grantid: P126273; P126273; P126273; P126273
– fundername: Horizon 2020
  grantid: 965397
– fundername: digital Experimental Cancer Medicine Team, Cancer Biomarker Centre, Cancer Research UK Manchester Institute
  grantid: P126273
– fundername: ;
  grantid: P126273; P126273; P126273; P126273
– fundername: ;
  grantid: 965397; 965397; 965397; 965397
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
CITATION
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
123
2VQ
4.4
ADRAZ
ADTOC
AHSBF
C1A
EJD
H13
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c541t-ba47103b27c43e17d47d94d75b2dc49058a77a25f9db426673a3f2b6f7cd19883
IEDL.DBID DOA
ISSN 1471-2105
IngestDate Fri Oct 03 12:41:51 EDT 2025
Sun Oct 26 03:30:13 EDT 2025
Tue Sep 30 17:13:52 EDT 2025
Thu Sep 04 19:28:38 EDT 2025
Tue Oct 07 05:20:37 EDT 2025
Mon Jul 21 06:01:32 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Wed Oct 01 04:15:42 EDT 2025
Sat Sep 06 07:27:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Explainable AI
Multi-omics Data
Cancer Genomics
Sparse Neural Networks
Domain Knowledge Integration
Deep Learning
Graph Neural Networks
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-ba47103b27c43e17d47d94d75b2dc49058a77a25f9db426673a3f2b6f7cd19883
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Undefined-1
content type line 23
OpenAccessLink https://doaj.org/article/6753814668ef4329977aeb5d3b503768
PMID 37189058
PQID 2815558866
PQPubID 44065
PageCount 31
ParticipantIDs doaj_primary_oai_doaj_org_article_6753814668ef4329977aeb5d3b503768
unpaywall_primary_10_1186_s12859_023_05262_8
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10186658
proquest_miscellaneous_2814525780
proquest_journals_2815558866
pubmed_primary_37189058
crossref_citationtrail_10_1186_s12859_023_05262_8
crossref_primary_10_1186_s12859_023_05262_8
springer_journals_10_1186_s12859_023_05262_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-15
PublicationDateYYYYMMDD 2023-05-15
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2023
Publisher BioMed Central
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: Springer Nature B.V
– name: BMC
References HR Hassanzadeh (5262_CR7) 2021; 4
MT Hira (5262_CR111) 2021; 11
S Lee (5262_CR68) 2020; 36
Y Xiao (5262_CR15) 2022; 79
E Tjoa (5262_CR33) 2021; 32
A Tsherniak (5262_CR89) 2017; 170
B Bhinder (5262_CR9) 2021; 11
A Bogatu (5262_CR36) 2023
5262_CR30
V Kumar (5262_CR52) 2021; 29
Y Lin (5262_CR123) 2020; 11
5262_CR34
R Guidotti (5262_CR21) 2018; 51
5262_CR39
JH Oh (5262_CR65) 2021; 37
PCAWG Tumor Subtypes and Clinical Translation Working Group, PCAWG Consortium, Jiao W, Atwal G, Polak P, Karlic R, Cuppen E, Danyi A, de Ridder J, van Herpen C, Lolkema MP, Steeghs N, Getz G, Morris Q, Stein LD (5262_CR6) 2020; 11
A Holzinger (5262_CR37) 2021; 54
P Mcgillivray (5262_CR60) 2018; 1
T Ching (5262_CR31) 2018; 15
J Zhang (5262_CR84) 2014; 13
S Oller-moreno (5262_CR126) 2021; 25
J Gao (5262_CR124) 2020
RM Turner (5262_CR101) 2015; 7
5262_CR22
5262_CR27
K Shi (5262_CR11) 2020; 18
N Fortelny (5262_CR100) 2020; 21
TA Dragani (5262_CR10) 2020; 42
5262_CR25
5262_CR127
E Kipkogei (5262_CR8) 2021
S Peri (5262_CR74) 2003; 13
5262_CR120
D Baptista (5262_CR49) 2021; 22
G Stiglic (5262_CR32) 2020; 10
M Picard (5262_CR53) 2021; 19
R Ramirez (5262_CR76) 2020; 8
5262_CR92
Y Zhao (5262_CR47) 2022
L-Y Guo (5262_CR108) 2020; 13
5262_CR96
X He (5262_CR16) 2022; 88
A Lemsara (5262_CR67) 2020; 21
M Kanehisa (5262_CR62) 2011; 2012
5262_CR116
A Talukder (5262_CR26) 2020; 22
A Torkamannia (5262_CR51) 2022; 23
5262_CR119
J Feng (5262_CR95) 2021; 22
5262_CR112
5262_CR81
S Althubaiti (5262_CR69) 2021
5262_CR86
M Kang (5262_CR17) 2022; 23
AB Tufail (5262_CR46) 2021; 9
F Anowar (5262_CR114) 2021; 40
Z Huang (5262_CR83) 2019; 10
E Withnell (5262_CR115) 2021; 22
A Adadi (5262_CR20) 2018; 6
5262_CR107
5262_CR104
J Ma (5262_CR103) 2018; 15
T Ching (5262_CR106) 2018; 14
A Dhillon (5262_CR14) 2023; 30
H Shu (5262_CR105) 2021; 1
L Matthews (5262_CR63) 2009; 37
L Rampášk (5262_CR109) 2019; 35
KA Tran (5262_CR4) 2021; 13
5262_CR71
BM Kuenzi (5262_CR102) 2020; 38
M Palazzo (5262_CR122) 2019; 20
AR Junejo (5262_CR50) 2021; 2021
5262_CR78
Z Wang (5262_CR121) 2019; 20
H Chereda (5262_CR73) 2021; 13
5262_CR79
O Wysocki (5262_CR35) 2023; 316
M Vidal (5262_CR61) 2011; 144
G Montavon (5262_CR38) 2019; 73
C Liu (5262_CR80) 2021; 37
T Wang (5262_CR85) 2021; 12
H Sharifi-Noghabi (5262_CR2) 2019; 35
P Langfelder (5262_CR88) 2008; 9
5262_CR66
JG Tate (5262_CR70) 2018; 47
G Eraslan (5262_CR13) 2019; 20
HA Elmarakeby (5262_CR91) 2021; 598
Q Liu (5262_CR82) 2021; 17
Y Cun (5262_CR125) 2012; 13
D Szklarczyk (5262_CR77) 2020; 49
L Zhao (5262_CR94) 2021; 19
L Seninge (5262_CR99) 2021; 12
X Xing (5262_CR87) 2020
S Kinalis (5262_CR117) 2019; 20
A Holzinger (5262_CR45) 2022; 79
Y-H Chuang (5262_CR72) 2021; 11
N Novershtern (5262_CR118) 2011; 144
WS Alharbi (5262_CR54) 2022; 16
5262_CR56
5262_CR57
W Samek (5262_CR24) 2021; 109
5262_CR55
5262_CR58
O Wysocki (5262_CR28) 2023; 49
H Zhang (5262_CR97) 2021; 1
H Kaur (5262_CR12) 2021; 20
V Belle (5262_CR23) 2021; 4
N Simidjievski (5262_CR110) 2019; 10
G Montavon (5262_CR19) 2018; 73
X Yu (5262_CR18) 2022; 35
A-L Barabási (5262_CR59) 2004; 5
TS Keshava Prasad (5262_CR75) 2009; 37
GA Viswanathan (5262_CR64) 2008; 4
L Deng (5262_CR93) 2020; 60
AB Tufail (5262_CR5) 2021; 2021
Y Kumar (5262_CR3) 2021; 29
J Hao (5262_CR98) 2018; 19
5262_CR41
5262_CR42
5262_CR40
5262_CR43
5262_CR44
Y-C Chiu (5262_CR90) 2021; 7
G Novakovsky (5262_CR29) 2022; 24
DS Watson (5262_CR48) 2022; 141
D Baptista (5262_CR1) 2020; 22
L van der Maaten (5262_CR113) 2008; 9
References_xml – volume: 2021
  start-page: 1
  year: 2021
  ident: 5262_CR50
  publication-title: Comput Math Methods Med
  doi: 10.1155/2021/9949328
– volume: 19
  start-page: 3735
  year: 2021
  ident: 5262_CR53
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.06.030
– volume: 19
  start-page: 510
  issue: 1
  year: 2018
  ident: 5262_CR98
  publication-title: BMC Bioinformatics.
  doi: 10.1186/s12859-018-2500-z
– volume: 15
  start-page: 290
  issue: 4
  year: 2018
  ident: 5262_CR103
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4627
– year: 2021
  ident: 5262_CR69
  publication-title: Bioinformatics
  doi: 10.1101/2021.03.02.433454
– volume: 24
  start-page: 125
  issue: 2
  year: 2022
  ident: 5262_CR29
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-022-00532-2
– volume: 35
  start-page: 201140
  year: 2022
  ident: 5262_CR18
  publication-title: Hum Gene
  doi: 10.1016/j.humgen.2022.201140
– ident: 5262_CR58
  doi: 10.1109/TKDE.2021.3079836
– volume: 109
  start-page: 247
  issue: 3
  year: 2021
  ident: 5262_CR24
  publication-title: Proc IEEE.
  doi: 10.1109/JPROC.2021.3060483
– volume: 73
  start-page: 1
  year: 2019
  ident: 5262_CR38
  publication-title: Proc Natl Acad Sci
  doi: 10.1016/j.dsp.2017.10.011
– volume: 22
  start-page: 47
  issue: 1
  year: 2021
  ident: 5262_CR95
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-03850-6
– volume: 2021
  start-page: 1
  year: 2021
  ident: 5262_CR5
  publication-title: Comput Math Methods Med.
  doi: 10.1155/2021/9025470
– volume: 60
  start-page: 4497
  year: 2020
  ident: 5262_CR93
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00331
– volume: 7
  start-page: 221
  year: 2015
  ident: 5262_CR101
  publication-title: WIREs Syst Biol Med
  doi: 10.1002/wsbm.1302
– volume: 5
  start-page: 101
  issue: February
  year: 2004
  ident: 5262_CR59
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg1272
– volume: 11
  start-page: 20691
  issue: 1
  year: 2021
  ident: 5262_CR72
  publication-title: Sci Rep.
  doi: 10.1038/s41598-021-98814-y
– volume: 170
  start-page: 564
  year: 2017
  ident: 5262_CR89
  publication-title: Cell
  doi: 10.1016/j.cell.2017.06.010
– volume: 4
  start-page: 39
  year: 2021
  ident: 5262_CR23
  publication-title: Front Big Data
  doi: 10.3389/fdata.2021.688969
– volume: 42
  start-page: 1900122
  issue: 4
  year: 2020
  ident: 5262_CR10
  publication-title: BioEssays
  doi: 10.1002/bies.201900122
– volume: 11
  start-page: 1
  issue: 8
  year: 2020
  ident: 5262_CR123
  publication-title: Genes
  doi: 10.3390/genes11080888
– volume: 21
  start-page: 190
  issue: 1
  year: 2020
  ident: 5262_CR100
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02100-5
– ident: 5262_CR34
  doi: 10.1038/s41586-021-03710-0
– volume: 17
  start-page: 1008653
  issue: 2
  year: 2021
  ident: 5262_CR82
  publication-title: PLOS Comput Biol.
  doi: 10.1371/journal.pcbi.1008653
– volume: 19
  start-page: 2719
  year: 2021
  ident: 5262_CR94
  publication-title: Comput Struct Biotechnol J.
  doi: 10.1016/j.csbj.2021.04.067
– volume: 11
  start-page: 728
  issue: 1
  year: 2020
  ident: 5262_CR6
  publication-title: Nat Commun.
  doi: 10.1038/s41467-019-13825-8
– volume: 49
  start-page: 605
  issue: D1
  year: 2020
  ident: 5262_CR77
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1074
– volume: 73
  start-page: 1
  year: 2018
  ident: 5262_CR19
  publication-title: Digit Signal Process.
  doi: 10.1016/j.dsp.2017.10.011
– ident: 5262_CR86
  doi: 10.1101/2021.08.22.457275
– ident: 5262_CR44
– volume: 40
  year: 2021
  ident: 5262_CR114
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2021.100378
– volume: 316
  year: 2023
  ident: 5262_CR35
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2022.103839
– volume: 9
  start-page: 2579
  year: 2008
  ident: 5262_CR113
  publication-title: J Mach Learn Res
  doi: 10.1007/s10479-011-0841-3
– ident: 5262_CR92
– volume: 1
  year: 2021
  ident: 5262_CR97
  publication-title: Front Bioinform.
  doi: 10.3389/fbinf.2021.639349
– volume: 35
  start-page: 501
  issue: 14
  year: 2019
  ident: 5262_CR2
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btz318
– volume: 12
  start-page: 5684
  issue: 1
  year: 2021
  ident: 5262_CR99
  publication-title: Nat Commun.
  doi: 10.1038/s41467-021-26017-0
– volume: 13
  start-page: 14021
  issue: s3
  year: 2014
  ident: 5262_CR84
  publication-title: Cancer Inform.
  doi: 10.4137/CIN.S14021
– volume: 10
  start-page: 1205
  year: 2019
  ident: 5262_CR110
  publication-title: Front Genet.
  doi: 10.3389/fgene.2019.01205
– ident: 5262_CR78
  doi: 10.1007/978-3-030-30493-5_60
– volume: 7
  start-page: 1275
  issue: 34
  year: 2021
  ident: 5262_CR90
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.abh1275
– volume: 16
  start-page: 26
  issue: 1
  year: 2022
  ident: 5262_CR54
  publication-title: Human Genom
  doi: 10.1186/s40246-022-00396-x
– volume: 20
  start-page: 389
  issue: 7
  year: 2019
  ident: 5262_CR13
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0122-6
– ident: 5262_CR104
– volume: 9
  start-page: 3101
  issue: 23
  year: 2021
  ident: 5262_CR46
  publication-title: Mathematics
  doi: 10.3390/math9233101
– ident: 5262_CR39
– volume: 29
  start-page: 2043
  year: 2021
  ident: 5262_CR3
  publication-title: Archiv Comput Methods Eng.
  doi: 10.1007/s11831-021-09648-w
– volume: 23
  start-page: 75
  issue: 3
  year: 2022
  ident: 5262_CR51
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac075
– ident: 5262_CR22
– volume: 144
  start-page: 986
  year: 2011
  ident: 5262_CR61
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.016
– volume: 11
  start-page: 6265
  issue: 1
  year: 2021
  ident: 5262_CR111
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-85285-4
– volume: 6
  start-page: 52138
  year: 2018
  ident: 5262_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– volume: 20
  start-page: 379
  issue: 1
  year: 2019
  ident: 5262_CR117
  publication-title: BMC Bioinformatics.
  doi: 10.1186/s12859-019-2952-9
– volume: 18
  start-page: 2514
  issue: 6
  year: 2020
  ident: 5262_CR11
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2020.2986387
– volume: 21
  start-page: 146
  issue: 1
  year: 2020
  ident: 5262_CR67
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-020-3465-2
– volume: 49
  start-page: 73
  issue: 1
  year: 2023
  ident: 5262_CR28
  publication-title: Comput Linguist
  doi: 10.1162/coli_a_00462
– volume: 4
  year: 2021
  ident: 5262_CR7
  publication-title: Front Big Data.
  doi: 10.3389/fdata.2021.568352
– year: 2021
  ident: 5262_CR8
  publication-title: medRxiv
  doi: 10.1101/2021.10.11.21264761
– volume: 144
  start-page: 296
  issue: 2
  year: 2011
  ident: 5262_CR118
  publication-title: Cell
  doi: 10.1016/j.cell.2011.01.004
– volume: 141
  start-page: 1499
  issue: 9
  year: 2022
  ident: 5262_CR48
  publication-title: Hum Genet
  doi: 10.1007/s00439-021-02387-9
– ident: 5262_CR25
– volume: 13
  start-page: 152
  issue: 1
  year: 2021
  ident: 5262_CR4
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00968-x
– volume: 22
  start-page: 315
  issue: 6
  year: 2021
  ident: 5262_CR115
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab315
– volume: 11
  start-page: 900
  issue: 4
  year: 2021
  ident: 5262_CR9
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-21-0090
– volume: 13
  start-page: 2363
  issue: 10
  year: 2003
  ident: 5262_CR74
  publication-title: Genome Res
  doi: 10.1101/gr.1680803
– volume: 79
  year: 2022
  ident: 5262_CR15
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2022.104001
– ident: 5262_CR42
  doi: 10.1007/978-3-030-28954-6_1
– volume: 32
  start-page: 4793
  year: 2021
  ident: 5262_CR33
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2020.3027314
– ident: 5262_CR120
  doi: 10.1101/433763
– ident: 5262_CR71
– volume: 1
  start-page: 153
  year: 2018
  ident: 5262_CR60
  publication-title: Annu Rev Biomed Data Sci
  doi: 10.1146/annurev-biodatasci-080917-013444
– volume: 22
  start-page: 360
  issue: 1
  year: 2021
  ident: 5262_CR49
  publication-title: Brief Bioinformat
  doi: 10.1093/bib/bbz171
– ident: 5262_CR41
  doi: 10.1109/DSAA.2018.00018
– volume: 14
  start-page: 1006076
  issue: 4
  year: 2018
  ident: 5262_CR106
  publication-title: PLOS Comput Biol.
  doi: 10.1371/journal.pcbi.1006076
– volume: 10
  start-page: e1379
  issue: 5
  year: 2020
  ident: 5262_CR32
  publication-title: WIREs Data Mining Knowl Discov
  doi: 10.1002/widm.1379
– volume: 8
  start-page: 203
  year: 2020
  ident: 5262_CR76
  publication-title: Front Phys.
  doi: 10.3389/fphy.2020.00203
– volume: 29
  start-page: 1443
  issue: 3
  year: 2021
  ident: 5262_CR52
  publication-title: Archiv Comput Methods Eng
  doi: 10.1007/s11831-021-09617-3
– volume: 13
  start-page: 1
  year: 2020
  ident: 5262_CR108
  publication-title: BioData Mining
  doi: 10.1186/s13040-020-00222-x
– volume: 38
  start-page: 672
  issue: 5
  year: 2020
  ident: 5262_CR102
  publication-title: Cancer Cell.
  doi: 10.1016/j.ccell.2020.09.014
– ident: 5262_CR55
  doi: 10.1016/j.coemr.2022.100350
– volume: 88
  start-page: 187
  year: 2022
  ident: 5262_CR16
  publication-title: Sem Cancer Biol
  doi: 10.1016/j.semcancer.2022.12.009
– volume: 37
  start-page: 619
  year: 2009
  ident: 5262_CR63
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn863
– volume: 4
  start-page: 1
  issue: 2
  year: 2008
  ident: 5262_CR64
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.0040016
– ident: 5262_CR107
  doi: 10.1007/978-1-4757-3294-8
– ident: 5262_CR112
  doi: 10.21105/joss.00861
– volume: 13
  start-page: 42
  issue: 1
  year: 2021
  ident: 5262_CR73
  publication-title: Genome Med.
  doi: 10.1186/s13073-021-00845-7
– volume: 2012
  start-page: 109
  issue: 40
  year: 2011
  ident: 5262_CR62
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr988
– ident: 5262_CR79
  doi: 10.48550/ARXIV.1604.00825
– volume: 22
  start-page: 360
  issue: 1
  year: 2020
  ident: 5262_CR1
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz171
– ident: 5262_CR30
– ident: 5262_CR43
  doi: 10.1073/pnas.1900654116
– ident: 5262_CR56
  doi: 10.2139/ssrn.3748268
– volume: 37
  start-page: 82
  issue: 1
  year: 2021
  ident: 5262_CR80
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btaa1099
– volume: 37
  start-page: 443
  issue: S1
  year: 2021
  ident: 5262_CR65
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btab285
– volume: 23
  start-page: 454
  issue: 1
  year: 2022
  ident: 5262_CR17
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab454
– ident: 5262_CR81
  doi: 10.1145/3097983.3098061
– ident: 5262_CR40
– volume: 47
  start-page: 941
  issue: D1
  year: 2018
  ident: 5262_CR70
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1015
– year: 2020
  ident: 5262_CR87
  publication-title: Bioinformatics
  doi: 10.1101/2020.12.03.409755
– volume: 37
  start-page: 767
  year: 2009
  ident: 5262_CR75
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn892
– volume: 30
  start-page: 917
  issue: 2
  year: 2023
  ident: 5262_CR14
  publication-title: Archiv Comput Methods Eng
  doi: 10.1007/s11831-022-09821-9
– ident: 5262_CR119
  doi: 10.1101/174474
– volume: 10
  start-page: 166
  year: 2019
  ident: 5262_CR83
  publication-title: Front Genet.
  doi: 10.3389/fgene.2019.00166
– volume: 12
  start-page: 3445
  issue: 1
  year: 2021
  ident: 5262_CR85
  publication-title: Nat Commun.
  doi: 10.1038/s41467-021-23774-w
– volume: 54
  start-page: 78
  issue: 10
  year: 2021
  ident: 5262_CR37
  publication-title: Computer
  doi: 10.1109/MC.2021.3092610
– ident: 5262_CR57
– volume: 598
  start-page: 348
  issue: 7880
  year: 2021
  ident: 5262_CR91
  publication-title: Nature.
  doi: 10.1038/s41586-021-03922-4
– volume: 51
  start-page: 1
  issue: 5
  year: 2018
  ident: 5262_CR21
  publication-title: ACM Comput Surv.
  doi: 10.1145/3236009
– ident: 5262_CR96
– volume: 1
  start-page: 491
  issue: 7
  year: 2021
  ident: 5262_CR105
  publication-title: Nat Comput Sci.
  doi: 10.1038/s43588-021-00099-8
– year: 2022
  ident: 5262_CR47
  publication-title: Genom Proteomics Bioinform
  doi: 10.1016/j.gpb.2022.07.003
– volume: 36
  start-page: 3818
  issue: 12
  year: 2020
  ident: 5262_CR68
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btaa203
– volume: 35
  start-page: 3743
  issue: 19
  year: 2019
  ident: 5262_CR109
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btz158
– ident: 5262_CR27
  doi: 10.21203/rs.3.rs-448572/v1
– volume: 22
  start-page: bbaa177
  issue: 3
  year: 2020
  ident: 5262_CR26
  publication-title: Brief Bioinform.
  doi: 10.1093/bib/bbaa177
– year: 2023
  ident: 5262_CR36
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2023.104367
– volume: 20
  start-page: 568
  issue: S18
  year: 2019
  ident: 5262_CR121
  publication-title: BMC Bioinformatics.
  doi: 10.1186/s12859-019-3130-9
– ident: 5262_CR127
– volume: 13
  start-page: 1
  issue: 69
  year: 2012
  ident: 5262_CR125
  publication-title: BMC Bioinformatics
– volume: 20
  start-page: 213
  issue: 4
  year: 2021
  ident: 5262_CR12
  publication-title: Brief Funct Genomics
  doi: 10.1093/bfgp/elab021
– volume: 20
  start-page: 655
  issue: 1
  year: 2019
  ident: 5262_CR122
  publication-title: BMC Bioinformatics.
  doi: 10.1186/s12859-019-3298-z
– ident: 5262_CR116
– ident: 5262_CR66
  doi: 10.1109/ICCV.2017.74
– volume: 79
  start-page: 263
  year: 2022
  ident: 5262_CR45
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2021.10.007
– volume: 25
  start-page: 27
  year: 2021
  ident: 5262_CR126
  publication-title: Curr Opin Syst Biol
  doi: 10.1016/j.coisb.2021.02.002
– volume: 15
  start-page: 20170387
  issue: 141
  year: 2018
  ident: 5262_CR31
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2017.0387
– start-page: 1697
  volume-title: MGNN: A Multimodal Graph Neural Network for Predicting the Survival of Cancer Patients
  year: 2020
  ident: 5262_CR124
  doi: 10.1145/3397271.3401214
– volume: 9
  start-page: 1
  issue: 559
  year: 2008
  ident: 5262_CR88
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-9-559
SSID ssj0017805
Score 2.5743794
SecondaryResourceType review_article
Snippet Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most...
There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct...
BackgroundThere is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However, most direct...
Abstract Background There is an increasing interest in the use of Deep Learning (DL) based methods as a supporting analytical framework in oncology. However,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 198
SubjectTerms Algorithms
Bioinformatics
Biological Evolution
Biology
Biomarkers
Biomedical and Life Sciences
Cancer
Cancer Genomics
Coding
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Deep Learning
Domains
Explainable AI
Genomics
Graph Neural Networks
Graph representations
Humans
Knowledge
Life Sciences
Machine learning
Medical Oncology
Medical research
Microarrays
Multi-omics Data
Neoplasms - genetics
Oncology
Proteins
Sparse Neural Networks
Statistical analysis
Statistical inference
Systematic review
Taxonomy
Trends
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ti9QwEA7nHqJ-EN9dPSWC37xwbZImqSByJ3ccgouIB_ctJE16d7C0674g-x_80WaStuuiLH5t0pJmnskkmZlnEHobjshKmTKAN-OOcFd7YowEGlcRjtqW1TyD5OQvE3F-wT9fFpd7aNLnwkBYZb8mxoXatRXckR9RlQM1lRLi4-wHgapR4F3tS2iYrrSC-xApxm6hfQrMWCO0f3I6-fpt8CsAg3-fOqPE0SIH_jYS7BYB3pOwNmyZp8ji_6-t598RlIMb9R66s2pmZv3TTKd_WKqzB-h-t8XExwkTD9Gebx6h26no5Pox-nWMN_TNOKWu4LbGiY4JZDZdk8Sn6h123s9wV1riCse6OQsc2nAFcJm_xzWkkqQKAXgZA2xjM_BjglnEpnH4po9shAdtE4my1xiCU5-gi7PT75_OSVeTgVQFz5fEmmDNMmaprDjzuXRcupI7WVjqKl5mhTJSGlrUpbNg_CUzrKZW1LJyeakUe4pGTdv45whTmVMb69ZnijvulPfSuczBJlIxR8co70Whq46wHOpmTHU8uCihk_h0EJ-O4tNqjN4N78wSXcfO3icg4aEnUG3HB-38Sneaq8OJisE9qVC-5ixY7_B_3haO2SILq3P4yEGPD93p_0Jv0DpGb4bmoLngjjGNb1exDziVAyTH6FmC0zASFrYMMJljpLaAtjXU7Zbm5jqygwMFmxDw6mGPyc24ds3F4YDb_5i6F7v_-iW6S5NWkbw4QKPlfOVfhd3b0r7uVPI3aR9BdQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1di9QwFA3riqgP4rfVVSL45tZtkzRJBZFVXBZhfXJg30LSpOtCacf5QPsf_NHmJm3HwWHxwdcmGdJ7z-29mSTnIPTKL5Gl1KUHb8ZsymztUq0F0Lhyv9Q2tGYZXE4--8JPZ-zzeXG-h0a5o8GAy51LO9CTmi2aNz-_9-99wL8LAS_50TIHFrbUZ58U2Et8hF9D132mKkHK4YxtdhWAv3-8OLNz3FZyChz-uwrPv89PTpuot9HNdTvX_Q_dNH_kqZO76M5QYOLjiIh7aM-199GNKDnZP0C_jvGGvBnHiyu4q3EkYwKPNX0a2VSdxda5OR6EJS5wUM1ZYt-GKwDL4i2u4SJJ1AfAq3C8NjQDOyYkRaxbiy_Hc43woGsDTXaP4WjqQzQ7-fT142k6KDKkVcHyVWq0z2UZNURUjLpcWCZsyawoDLEVK7NCaiE0KerSGkj9gmpaE8NrUdm8lJI-Qvtt17onCBORExNU6zPJLLPSOWFtZqGElNSSBOWjK1Q10JWDakajwrJFchXdp7z7VHCfkgl6PY2ZR7KOK3t_AA9PPYFoOzzoFhdqiFvl11MU_iXl0tWM-tzt38-ZwlJTZP7b7H_kYMSHGsGriMyBRk1ynqCXU7OPW9iM0a3r1qEPbCl7SCbocYTTNBPqCwYwZoLkFtC2prrd0l5-C9zgQMDGOQw9HDG5mddVtjiccPsPpnv6P0z3DN0iMfbSvDhA-6vF2j33Fd7KvAhh-xsdJUpA
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature Link OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAEHxKs0UJCRuFGLOHZsh1upqCokOFGpN8uOHai0yq66u0L7H_jRnbGTtCuqCq7xQ47nm8w44_mGkPdwRDbGNQDeUgYmQxeZcxppXBUctb3oZInJyd--q5NT-fWsPhtocjAX5nr8nhv1ccmRYY2BZWHITALae5fcAyOlUmBWHU0RA-TmH5Nibhy3ZXgSP_9NTuXfdyOnAOkj8mDdL9zmt5vNrtmg4yfk8eA80sMs7afkTuyfkfu5nOTmOflzSK-ImWlOSqHzjmaiJZTGbMMyU2oMNMS4oEPRiJ80VcRZUmijLQLh4hPtMEkkc__TVbo6m5qR-RINHnV9oOfjnUV8MO8TBfaG4rXTF-T0-MuPoxM2VFtgbS35inkHdqoUvtKtFJHrIHVoZNC1r0Irm7I2TmtX1V0TPJp1LZzoKq863QbeGCN2yU4_7-MeoZXmlU8V6UsjgwwmRh1CGdA9NCJUBeGjKGw7UJFjRYyZTUcSo2wWnwXx2SQ-awryYRqzyEQct_b-jBKeeiKJdnoA2LKDTlo4Kwn8A6pM7KQAuwzvF30dhK9L-O7CJPsjPuyg2UtbGY4UaUapgrybmkEnMdDi-jhfpz4YLgZIFuRlhtO0EgHOAG5mQcwW0LaWut3Sn_9KvN9IrqYUDj0YMXm1rtv24mDC7T9s3av_m_01eVhlLWO83ic7q4t1fAN-2sq_TQp6CZahM70
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PujMJCReGPpktixXd4KYpqQmBCi0niK7NgZFSGp-iFU_gb-aHx2kq0wTSDxGtuVc_2d7y6--x3ACxciS6nGDrwxMxEzpY2UEkjjyl2orWnJYixOfn_Mj6bs3Ul2sgMfu1oY_a3Qs6YlDUWi4tH5MvQqVDlgFwW7OJibMii95AfLBJnYImeBImQwcVp-BXZ55vzzAexOjz9MPvsyI5FELsbJuuqZCxduWShP5H-R9_lnEmV_k3oDrq3rudp8V1V1zlgd3oJl95ohR-XraL3So-LHbwyQ_1cOt-Fm69uSSQDjHdix9V24Grpdbu7Bzwk5440moWaGNCUJPFAIlmoThb1YQ4y1c9L2tDglvmHPkrgxUiBOF69IiTUsoTUBWfnMXj-MxJxoj4mqDZl1KZX4oKk9Q_eGYFbsfZgevv305ihqm0FERcaSVaSV-_NiqlNRMGoTYZgwY2ZEplNTsHGcSSWESrNybDR6HYIqWqaal6IwyVhK-gAGdVPbR0BSkaQai2plLJlhRlorjIkNeq-SmnQISQeAvGiZ0rFhR5X7iEnyPEg5d1LOvZRzOYSX_Zp54Am5dPZrxFU_Ezm-_YNmcZq3R0buQjmKH2i5tCWjzm1w72d1ZqjOYmcW3I_sdajM24NnmacyQQY3yfkQnvfD7sjAeyBV22bt5-BttpDxEB4GEPc7oc5XQWEOQW7Be2ur2yP17IunJUfuN85x6X6nCWf7ukwW-722_IXoHv_b9CdwPQ3KECXZHgxWi7V96tzIlX7Wngu_ACBvbEE
  priority: 102
  providerName: Unpaywall
Title A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data
URI https://link.springer.com/article/10.1186/s12859-023-05262-8
https://www.ncbi.nlm.nih.gov/pubmed/37189058
https://www.proquest.com/docview/2815558866
https://www.proquest.com/docview/2814525780
https://pubmed.ncbi.nlm.nih.gov/PMC10186658
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/s12859-023-05262-8
https://doaj.org/article/6753814668ef4329977aeb5d3b503768
UnpaywallVersion publishedVersion
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central Open Access Free
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCDEeEL8XGJWReGPRktixHd6yamWqtGoCKpWnyIkdmFSl1doK9X_gj-bOTrJVoMEDL4lkO5Jz913uHPu-I-QdLJGV0hmAN-Im5Ka2odYSaVwFLLVLVvMIk5PPJ-JsysezdHaj1BeeCfP0wF5wxxDQMvxNJZStOYOPp5TalqlhZRqBcbg030hl3WKq3T9Apv4uRUaJ41WMPG0h-KcQ-U3gG7Djhhxb_59CzN9PSvbbpQ_Jg02z1Nsfej6_4ZFGj8mjNpSkuX-FJ-SObZ6S-7645PYZ-ZnTa5pm6lNU6KKmnnYJdTPfhp431RpqrF3StoTEN-rq46wo9NEKYXH1gdaYMuIrAdC1O0jrupEHE90f1Y2hl90JRmxYNI4Qe0vxEOpzMh2dfhmehW3thbBKebwOSw1eK2JlIivObCwNlybjRqZlYiqeRanSoIgkrTNTopOXTLM6KUUtKxNnSrEXZK9ZNPaA0ETGSenq00eKG26UtdKYyGCwqJhJAhJ3qiiqlpgc62PMC7dAUaLw6itAfYVTX6EC8r5_ZulpOW4dfYIa7kcipbZrAKAVLdCKvwEtIIcdPorWzldFomIkTFNCBORt3w0WitsuurGLjRuDm8cAyYC89HDqZ8IgNEBhBkTtAG1nqrs9zeV3xwKOVGtC4KNHHSav53WbLI563P6D6F79D9G9JvuJt70wTg_J3vpqY99ALLcuB-SunEm4qtHHAbmX5-PPY7ifnE4uPkHrUAwHzrDhes4V9EwnF_nXX3G1SiQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKESocEG8WChgJTjRqYjuxFwmh8qi29HFqpb25TuyUSqtk2Yeq_Q_8Fn4jM3aSZQVacek1diLH83k8Y898Q8gbcJGVMn0AbyxsJGzpImMk0rhm4GrnvBQxJicfn2SDM_FtmA43yK82FwbDKlud6BW1rQs8I99lKkFqKpVlH8c_IqwahberbQmNAItDt7gCl2364eALyPctY_tfTz8PoqaqQFSkIplFuQF9HPOcyUJwl0grpO0LK9Oc2UL041QZKQ1Ly77NcfuS3PCS5VkpCwseuuLw3RvkpuCgS2D9yGHn4CVYH6BNzFHZ7jRBdrgIdsUIWVVA86xsfr5GwL8M27_jM7tL2jtka16NzeLKjEZ_7IP798jdxoClewFx98mGqx6QW6Gk5eIh-blHl-TQNCTG0LqkgewJETFaRIGt1VlqnRvTpnDFBfVVeaYU2miBYJy8pyUmqoT6A3Tmw3d9M7Jv4qZLTWXpZRs3iQ_qytNwLyiGvj4iZ9cim8dks6or95RQJhOWY-asipWwwirnpLWxRRNVcct6JGlFoYuGDh2rcoy0d4tUpoP4NIhPe_Fp1SPvunfGgQxkbe9PKOGuJxJ5-wf15EI3ekGDv8bxFDZTrhQcbAP4P5enludpDLofPrLd4kM32mWql2uhR153zaAX8LLHVK6e-z54ZQ2Q7JEnAU7dSDgYJDiZPaJWgLYy1NWW6vK75x5Hgrcsw1d3Wkwux7VuLnY63P7H1D1b_9evyNbg9PhIHx2cHD4nt1lYYVGSbpPN2WTuXoCdOMtf-sVJyfl1a4PffK124g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagCAoHxKOUQAEjcaNRE9uxHW5lYVVeFQcq9WbZsVMqrZLVblZo_wM_Go-dpF1RVXCN7cjr-WZnnJn5BqE3_oospS49eDNmU2Zrl2otgMaV-6u2oTXLoDj52zE_OmGfT4vTS1X8Idt9CEnGmgZgaWq6g7mto4pLfrDMgXct9fYmBb4Sr9M30S3mrRv0MJjwyRhHAMb-oVTmynUb5iiw9l_lav6dMTmGTe-h7VUz1-tfeja7ZJmmD9D93qXEhxEDD9EN1zxCt2OTyfVj9PsQX9A141iqgtsaR_olkNFsnUb-VGexdW6O-1YSZzj0yVliP4YrgMfiHa6hdCR2BMBdSKgNw8CHCWYQ68bi8yGTER60TSDGXmNIRt1BJ9OPPyZHad-DIa0Klnep0d56ZdQQUTHqcmGZsCWzojDEVqzMCqmF0KSoS2vA2AuqaU0Mr0Vl81JK-gRtNW3jniJMRE5M6FOfSWaZlc4JazMLTqOkliQoH0Shqp6gHPpkzFS4qEiuoviUF58K4lMyQW_HNfNIz3Ht7Pcg4XEmUGuHB-3iTPWaqvwNisJ3US5dzai31v73OVNYaorM_xv7l-wN-FC9vi8VkTkQp0nOE_R6HPaaCuEX3bh2FeZAENlDMkG7EU7jTqh3EeAwEyQ3gLax1c2R5vxnYAMHyjXOYen-gMmLfV13Fvsjbv_h6J7939tfoTvfP0zV10_HX56juyQqXJoXe2irW6zcC-_IdeZl0NU_BKI-8w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-NTgh44PujMJCReGPpktixXd4KYpqQmBCi0niK7NgZFSGp-iFU_gb-aHx2kq0wTSDxGtuVc_2d7y6--x3ACxciS6nGDrwxMxEzpY2UEkjjyl2orWnJYixOfn_Mj6bs3Ul2sgMfu1oY_a3Qs6YlDUWi4tH5MvQqVDlgFwW7OJibMii95AfLBJnYImeBImQwcVp-BXZ55vzzAexOjz9MPvsyI5FELsbJuuqZCxduWShP5H-R9_lnEmV_k3oDrq3rudp8V1V1zlgd3oJl95ohR-XraL3So-LHbwyQ_1cOt-Fm69uSSQDjHdix9V24Grpdbu7Bzwk5440moWaGNCUJPFAIlmoThb1YQ4y1c9L2tDglvmHPkrgxUiBOF69IiTUsoTUBWfnMXj-MxJxoj4mqDZl1KZX4oKk9Q_eGYFbsfZgevv305ihqm0FERcaSVaSV-_NiqlNRMGoTYZgwY2ZEplNTsHGcSSWESrNybDR6HYIqWqaal6IwyVhK-gAGdVPbR0BSkaQai2plLJlhRlorjIkNeq-SmnQISQeAvGiZ0rFhR5X7iEnyPEg5d1LOvZRzOYSX_Zp54Am5dPZrxFU_Ezm-_YNmcZq3R0buQjmKH2i5tCWjzm1w72d1ZqjOYmcW3I_sdajM24NnmacyQQY3yfkQnvfD7sjAeyBV22bt5-BttpDxEB4GEPc7oc5XQWEOQW7Be2ur2yP17IunJUfuN85x6X6nCWf7ukwW-722_IXoHv_b9CdwPQ3KECXZHgxWi7V96tzIlX7Wngu_ACBvbEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+review+of+biologically-informed+deep+learning+models+for+cancer%3A+fundamental+trends+for+encoding+and+interpreting+oncology+data&rft.jtitle=BMC+bioinformatics&rft.au=Magdalena+Wysocka&rft.au=Oskar+Wysocki&rft.au=Marie+Zufferey&rft.au=D%C3%B3nal+Landers&rft.date=2023-05-15&rft.pub=BMC&rft.eissn=1471-2105&rft.volume=24&rft.issue=1&rft.spage=1&rft.epage=31&rft_id=info:doi/10.1186%2Fs12859-023-05262-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6753814668ef4329977aeb5d3b503768
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon