Plasmepsin X activates the PCRCR complex of Plasmodium falciparum by processing PfRh5 for erythrocyte invasion
Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and protease...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 2219 - 15 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.04.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-37890-2 |
Cover
Abstract | Plasmodium falciparum
causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in
P. falciparum
biology.
Plasmodium falciparum
is known to secrete an aspartic protease called plasmepsin X. Here, Triglia
et al
present a characterisation of plasmepsin X function in the context of erythrocyte invasion and its regulation of PCRCR, a complex that anchors the leading vaccine candidate PfRh5 to the parasite surface. |
---|---|
AbstractList | Plasmodium falciparum
causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in
P. falciparum
biology.
Plasmodium falciparum
is known to secrete an aspartic protease called plasmepsin X. Here, Triglia
et al
present a characterisation of plasmepsin X function in the context of erythrocyte invasion and its regulation of PCRCR, a complex that anchors the leading vaccine candidate PfRh5 to the parasite surface. Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology. Abstract Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology. Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology.Plasmodium falciparum is known to secrete an aspartic protease called plasmepsin X. Here, Triglia et al present a characterisation of plasmepsin X function in the context of erythrocyte invasion and its regulation of PCRCR, a complex that anchors the leading vaccine candidate PfRh5 to the parasite surface. Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology.Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology. Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain more than 16 merozoites, which egress and invade fresh erythrocytes. The aspartic protease plasmepsin X (PMX), processes proteins and proteases essential for merozoite egress from the schizont and invasion of the host erythrocyte, including the leading vaccine candidate PfRh5. PfRh5 is anchored to the merozoite surface through a 5-membered complex (PCRCR), consisting of Plasmodium thrombospondin-related apical merozoite protein, cysteine-rich small secreted protein, Rh5-interacting protein and cysteine-rich protective antigen. Here, we show that PCRCR is processed by PMX in micronemes to remove the N-terminal prodomain of PhRh5 and this activates the function of the complex unmasking a form that can bind basigin on the erythrocyte membrane and mediate merozoite invasion. The ability to activate PCRCR at a specific time in merozoite invasion most likely masks potential deleterious effects of its function until they are required. These results provide an important understanding of the essential role of PMX and the fine regulation of PCRCR function in P. falciparum biology. |
ArticleNumber | 2219 |
Author | Triglia, Tony Scally, Stephen W. Dagley, Laura F. Seager, Benjamin A. Cowman, Alan F. Pasternak, Michał |
Author_xml | – sequence: 1 givenname: Tony surname: Triglia fullname: Triglia, Tony organization: The Walter and Eliza Hall Institute of Medical Research – sequence: 2 givenname: Stephen W. orcidid: 0000-0002-4264-7772 surname: Scally fullname: Scally, Stephen W. organization: The Walter and Eliza Hall Institute of Medical Research, University of Melbourne – sequence: 3 givenname: Benjamin A. surname: Seager fullname: Seager, Benjamin A. organization: The Walter and Eliza Hall Institute of Medical Research, University of Melbourne – sequence: 4 givenname: Michał surname: Pasternak fullname: Pasternak, Michał organization: The Walter and Eliza Hall Institute of Medical Research, University of Melbourne – sequence: 5 givenname: Laura F. orcidid: 0000-0003-4171-3712 surname: Dagley fullname: Dagley, Laura F. organization: The Walter and Eliza Hall Institute of Medical Research, University of Melbourne – sequence: 6 givenname: Alan F. orcidid: 0000-0001-5145-9004 surname: Cowman fullname: Cowman, Alan F. email: cowman@wehi.edu.au organization: The Walter and Eliza Hall Institute of Medical Research, University of Melbourne |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37072430$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktvEzEUhUeoiLahf4AFssSGzYBfM7ZXCEVAK1UiikBiZ_k1iaMZe7AnEfn3OEkLbRf1xpbvOZ-Ofe9ldRZicFX1BsEPCBL-MVNEW1ZDTGrCuIA1flFdYEhRjRgmZw_O59VVzhtYFhGIU_qqOicMMkwJvKjCold5cGP2AfwCykx-pyaXwbR2YDFfzpfAxGHs3R8QO3DURuu3A-hUb_yoUjnqPRhTNC4XxgosuuW6AV1MwKX9tC6F_eSADzuVfQyvq5fFmd3V3T6rfn798mN-Xd9-_3Yz_3xbm4aiqdaEOmEFpMoKjVvRtJ1zjECiHbWQ8gYp0hIiGmK5bnGDWIcbawVrmWh1R8msujlxbVQbOSY_qLSXUXl5vIhpJVWavOmdxK1pGg2RtsxShVqOOO-YJoYqLSyDhfXpxBq3enDWuDAl1T-CPq4Ev5aruJMIIkSQOBDe3xFS_L11eZKDz8b1vQoubrPEHBJCIOaH4O-eSDdxm0L5q4MKt5zR8upZ9fZhpH9Z7vtaBPwkMCnmnFwnjZ_UVDpQEvq-RJOHKZKnKZJliuRxiiQuVvzEek9_1kROplzEYeXS_9jPuP4C59PZHw |
CitedBy_id | crossref_primary_10_1038_s41541_024_00986_x crossref_primary_10_1016_j_cell_2024_06_015 crossref_primary_10_1080_07391102_2023_2279700 crossref_primary_10_1111_febs_70038 crossref_primary_10_1016_j_bbagen_2024_130665 crossref_primary_10_1016_j_xcrm_2024_101654 |
Cites_doi | 10.1182/blood-2010-08-299883 10.1038/s41586-018-0779-6 10.1128/mBio.00130-18 10.1016/j.chom.2016.06.004 10.1016/j.chom.2020.02.005 10.7554/eLife.61121 10.1126/science.aan1478 10.1007/978-1-4939-2272-7_12 10.1038/s41598-017-03984-3 10.1038/s41598-019-43039-3 10.1038/nature10606 10.1371/journal.ppat.1005343 10.1111/cmi.13042 10.1016/j.ijpara.2008.09.007 10.1021/acsmedchemlett.2c00355 10.1038/s41586-021-03819-2 10.15252/embr.201847102 10.7554/eLife.21347 10.1038/nmeth.1322 10.1371/journal.ppat.1002075 10.1038/nature13715 10.1016/j.bpj.2014.05.024 10.1016/j.cell.2007.10.049 10.1128/IAI.00278-08 10.1128/IAI.70.10.5751-5758.2002 10.1021/pr101065j 10.1016/S0006-291X(67)80055-X 10.1111/cmi.12868 10.1074/jbc.M305252200 10.1038/s41467-022-32271-7 10.1016/j.chom.2017.07.003 10.1111/mmi.14904 10.1371/journal.ppat.1003344 10.1016/j.cub.2005.07.067 10.1126/science.aaf8675 10.1111/cmi.12844 10.1038/s41564-022-01261-2 10.1371/journal.ppat.1004670 10.1073/pnas.0709999104 10.7554/eLife.04187 10.1371/journal.ppat.1003213 10.1016/j.cell.2016.07.055 10.1016/j.ijpara.2008.10.006 10.1242/jcs.00665 10.1093/nar/gky1106 10.1093/protein/14.9.691 10.1038/ncomms14333 10.1074/jbc.M112.400820 10.1074/mcp.O113.028357 10.1073/pnas.1619441114 10.1128/EC.00186-09 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-37890-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_26c55b01bd7d4a168188f7b3c4ab9d70 PMC10113190 37072430 10_1038_s41467_023_37890_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Health | National Health and Medical Research Council (NHMRC) grantid: GNT1011453; GNT1057960 funderid: https://doi.org/10.13039/501100000925 – fundername: Australian Government NHMRC IRIISS. Victorian State Government Operational Infrastructure Support. – fundername: Wellcome Trust (Wellcome) grantid: 109662/Z/15/Z; 202749/Z/16/Z funderid: https://doi.org/10.13039/100004440 – fundername: Wellcome Trust grantid: 202749/Z/16/Z – fundername: Wellcome Trust grantid: 109662/Z/15/Z – fundername: Wellcome Trust grantid: 206515/Z/17/Z – fundername: ; – fundername: ; grantid: GNT1011453; GNT1057960 – fundername: ; grantid: 109662/Z/15/Z; 202749/Z/16/Z |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-b34e9d904ad9b26956fee7303be4d04851a3633953d8b62517f25dd976796bf43 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:45:12 EDT 2025 Thu Aug 21 18:37:40 EDT 2025 Fri Sep 05 11:23:23 EDT 2025 Wed Aug 13 08:43:56 EDT 2025 Mon Jul 21 06:06:59 EDT 2025 Tue Jul 01 00:58:49 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Fri Feb 21 02:39:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-b34e9d904ad9b26956fee7303be4d04851a3633953d8b62517f25dd976796bf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4264-7772 0000-0003-4171-3712 0000-0001-5145-9004 |
OpenAccessLink | https://www.proquest.com/docview/2802687495?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 37072430 |
PQID | 2802687495 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_26c55b01bd7d4a168188f7b3c4ab9d70 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10113190 proquest_miscellaneous_2803330284 proquest_journals_2802687495 pubmed_primary_37072430 crossref_citationtrail_10_1038_s41467_023_37890_2 crossref_primary_10_1038_s41467_023_37890_2 springer_journals_10_1038_s41467_023_37890_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-19 |
PublicationDateYYYYMMDD | 2023-04-19 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | YeohSSubcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytesCell2007131107210831:CAS:528:DC%2BD1cXksFGgtg%3D%3D1808309810.1016/j.cell.2007.10.049 RueckerAProteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyteJ. Biol. Chem.201228737949379631:CAS:528:DC%2BC38Xhs1WjtLbM22984267348806610.1074/jbc.M112.400820 CowmanAFHealerJMarapanaDMarshKMalaria: biology and diseaseCell20161676106241:CAS:528:DC%2BC28XhslCrsrnF2776888610.1016/j.cell.2016.07.055 BannisterLHPlasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite developmentJ. Cell Sci.2003116382538341:CAS:528:DC%2BD3sXnvVWgsro%3D1290240010.1242/jcs.00665 Perez-RiverolYThe PRIDE database and related tools and resources in 2019: improving support for quantification dataNucleic Acids Res.201947D442D4501:CAS:528:DC%2BC1MXhs1GqtrzK3039528910.1093/nar/gky1106 FavuzzaPDual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycleCell Host Microbe202027642658.e6121:CAS:528:DC%2BB3cXktlarsrc%3D32109369714654410.1016/j.chom.2020.02.005 de Lera RuizMThe invention of WM382, a highly potent PMIX/X dual inhibitor toward the treatment of malariaACS Med. Chem. Lett.202213174517543638592410.1021/acsmedchemlett.2c00355 SchechterIBergerAOn the size of the active site in proteases. I. PapainBiochem. Biophys. Res. Commun.1967271571621:CAS:528:DyaF2sXktVyhsrg%3D603548310.1016/S0006-291X(67)80055-X JumperJHighly accurate protein structure prediction with AlphaFoldNature20215965835892021Natur.596..583J1:CAS:528:DC%2BB3MXhvVaktrrL34265844837160510.1038/s41586-021-03819-2 KnuepferENapiorkowskaMvan OoijCHolderAAGenerating conditional gene knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9Sci. Rep.201772017NatSR...7.3881K28634346547859610.1038/s41598-017-03984-3 AbsalonSCalcium-dependent protein kinase 5 is required for release of egress-specific organelles in Plasmodium falciparummBio20189e00130181:CAS:528:DC%2BC1cXisVKgt77L29487234582982210.1128/mBio.00130-18 ScallySWPCRCR complex is essential for invasion of human erythrocytes by Plasmodium falciparumNat. Microbiol.20227203920531:CAS:528:DC%2BB38XivFajurvM36396942971210610.1038/s41564-022-01261-2 WongWStructure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complexNature20195651181212019Natur.565..118W1:CAS:528:DC%2BC1cXisFSmsb3F3054215610.1038/s41586-018-0779-6 ColeyAMRapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptidesProtein Eng.2001146916981:CAS:528:DC%2BD3MXovVOgsbc%3D1170761610.1093/protein/14.9.691 EbrahimzadehZA pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosisEMBO Rep.201920e4710231097469654902710.15252/embr.201847102 CollinsCRMalaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egressPLoS Pathog.20139e10033441:CAS:528:DC%2BC3sXpslOhtbc%3D23675297364997310.1371/journal.ppat.1003344 CrosnierCBasigin is a receptor essential for erythrocyte invasion by Plasmodium falciparumNature20114805345372011Natur.480..534C1:CAS:528:DC%2BC3MXhsVKjsbjK22080952324577910.1038/nature10606 WrightKEStructure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodiesNature20145154274302014Natur.515..427W1:CAS:528:DC%2BC2cXhvVemtrvI25132548424073010.1038/nature13715 WeissGERevealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytesPLoS Pathog.201511e10046701:CAS:528:DC%2BC2MXjvFGmu7c%3D25723550434424610.1371/journal.ppat.1004670 FairlieWDInhibition of malaria parasite development by a cyclic peptide that targets the vital parasite protein SERA5Infect. Immun.200876433243441:CAS:528:DC%2BD1cXhtVyrsb3P18591232251940410.1128/IAI.00278-08 TrigliaTPlasmodium falciparum merozoite invasion is inhibited by antibodies that target the PfRh2a and b binding domainsPLoS Pathog.20117e10020751:CAS:528:DC%2BC3MXotVWgs70%3D21698217311681210.1371/journal.ppat.1002075 CrosnierCA library of functional recombinant cell-surface and secreted P. falciparum merozoite proteinsMol. Cell. Proteomics201312397639861:CAS:528:DC%2BC3sXhvFWrsLfI24043421386173810.1074/mcp.O113.028357 WickhamMCulvenorJCowmanASelective inhibition of a two-step egress of malaria parasites from the host erythrocyteJ. Biol. Chem.200327837658376631:CAS:528:DC%2BD3sXnsV2lsbc%3D1285773110.1074/jbc.M305252200 KudybaHMThe endoplasmic reticulum chaperone PfGRP170 is essential for asexual development and is linked to stress response in malaria parasitesCell Microbiol.201921e1304231087747669989910.1111/cmi.13042 HalleeSCounihanNAMatthewsKde Koning-WardTFRichardDThe malaria parasite Plasmodium falciparum Sortilin is essential for merozoite formation and apical complex biogenesisCell Microbiol.201820e128442958254610.1111/cmi.12844 HealerJCrawfordSRalphSMcFaddenGCowmanAIndependent translocation of two micronemal proteins in developing Plasmodium falciparum merozoitesInfect. Immun.200270575157581:CAS:528:DC%2BD38XnsV2ltrs%3D1222830512830710.1128/IAI.70.10.5751-5758.2002 WHO. World Malaria Report 2021 (2021). BaumJReticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparumInt. J. Parasitol.2009393713731:CAS:528:DC%2BD1MXhtFertLg%3D1900069010.1016/j.ijpara.2008.10.006 ChenLCrystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocyteseLife20143e0418725296023435614110.7554/eLife.04187 NasamuASPlasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasionScience20173585185222017Sci...358..518N1:CAS:528:DC%2BC2sXhslSgsb7J29074774592841410.1126/science.aan1478 ThamWHPlasmodium falciparum adhesins play an essential role in signalling and activation of invasion into human erythrocytesPLoS Pathog.201511e100534326694741468792910.1371/journal.ppat.1005343 MukherjeeSNguyenSSharmaEGoldbergDEMaturation and substrate processing topography of the Plasmodium falciparum invasion/egress protease plasmepsin XNat. Commun.2022132022NatCo..13.4537M1:CAS:528:DC%2BB38XitFWmurnI35927261935275510.1038/s41467-022-32271-7 CoxJAndromeda: a peptide search engine integrated into the MaxQuant environmentJ. Proteome Res.201110179418052011beat.book.....C1:CAS:528:DC%2BC3MXit1Gis74%3D2125476010.1021/pr101065j BullenHEThe Plasmodium falciparum parasitophorous vacuole protein P113 interacts with the parasite protein export machinery and maintains normal vacuole architectureMol. Microbiol.2022117124512621:CAS:528:DC%2BB38XhtFWitbnN35403274954467110.1111/mmi.14904 ChenLStructural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPAeLife20176e2134728195530534984810.7554/eLife.21347 GlushakovaSRounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytesCell Microbiol.201820e1286829900649636806310.1111/cmi.12868 GalawayFP113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5Nat. Commun.201782017NatCo...814333G1:CAS:528:DC%2BC2sXisVyqtb4%3D28186186530979910.1038/ncomms14333 XuJA fixation method for the optimisation of western blottingSci. Rep.201992019NatSR...9.6649X31040299649154610.1038/s41598-019-43039-3 GilsonPRCrabbBSMorphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoitesInt. J. Parasitol.20093991961:CAS:528:DC%2BD1cXhsFahurvN1895209110.1016/j.ijpara.2008.09.007 KremerKAn overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemesPLoS Pathog.20139e10032131:CAS:528:DC%2BC3sXmtVejtLs%3D23505371359130210.1371/journal.ppat.1003213 HaleVLParasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egressProc. Natl Acad. Sci. USA2017114343934442017PNAS..114.3439H1:CAS:528:DC%2BC2sXktFylsb4%3D28292906538009110.1073/pnas.1619441114 AbkarianMMassieraGBerryLRoquesMBraun-BretonCA novel mechanism for egress of malarial parasites from red blood cellsBlood2011117411841241:CAS:528:DC%2BC3MXls1GhsLc%3D2129700210.1182/blood-2010-08-299883 CowmanAFTonkinCJThamWHDuraisinghMTThe molecular basis of erythrocyte invasion by malaria parasitesCell Host Microbe2017222322451:CAS:528:DC%2BC2sXhtlSgsLrP2879990810.1016/j.chom.2017.07.003 CollinsCRThe malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasioneLife20209e611211:CAS:528:DC%2BB3MXovVeks7s%3D33287958772340910.7554/eLife.61121 PinoPA multistage antimalarial targets the plasmepsins IX and X essential for invasion and egressScience20173585225282017Sci...358..522P1:CAS:528:DC%2BC2sXhslSgsb7K29074775573004710.1126/science.aaf8675 TaylorHMThe malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogonyEukaryot. Cell2010937451:CAS:528:DC%2BC3cXht1ejtrw%3D1991507710.1128/EC.00186-09 VolzJCEssential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of ErythrocytesCell Host Microbe20162060711:CAS:528:DC%2BC28XhtFSqtbvF2737440610.1016/j.chom.2016.06.004 GlushakovaSYinDLiTZimmerbergJMembrane transformation during malaria parasite release from human red blood cellsCurr. Biol.200515164516501:CAS:528:DC%2BD2MXhtVWnsLvE1616948610.1016/j.cub.2005.07.067 DasguptaSMembrane-wrapping contributions to malaria parasite invasion of the human erythrocyteBiophys. J.201410743542014BpJ...107...43D1:CAS:528:DC%2BC2cXhtFSmu77I24988340418479810.1016/j.bpj.2014.05.024 SinghSPlassmeyerMGaurDMillerLHMononeme: a new secretory organelle in Plasmodium falciparum merozoites identified by localization of rhomboid-1 proteaseProc. Natl Acad. HM Kudyba (37890_CR27) 2019; 21 VL Hale (37890_CR8) 2017; 114 P Pino (37890_CR10) 2017; 358 M Fairhead (37890_CR49) 2015; 1266 PR Gilson (37890_CR5) 2009; 39 WD Fairlie (37890_CR45) 2008; 76 S Singh (37890_CR35) 2007; 104 WH Tham (37890_CR21) 2015; 11 C Crosnier (37890_CR37) 2013; 12 AF Cowman (37890_CR2) 2016; 167 I Schechter (37890_CR51) 1967; 27 J Baum (37890_CR24) 2009; 39 F Galaway (37890_CR25) 2017; 8 W Wong (37890_CR30) 2019; 565 L Chen (37890_CR44) 2017; 6 S Glushakova (37890_CR7) 2018; 20 SW Scally (37890_CR23) 2022; 7 CR Collins (37890_CR14) 2013; 9 S Yeoh (37890_CR15) 2007; 131 S Dasgupta (37890_CR4) 2014; 107 AM Coley (37890_CR46) 2001; 14 HE Bullen (37890_CR26) 2022; 117 Y Perez-Riverol (37890_CR50) 2019; 47 S Hallee (37890_CR41) 2018; 20 37890_CR1 M Wickham (37890_CR18) 2003; 278 T Triglia (37890_CR29) 2011; 7 J Jumper (37890_CR52) 2021; 596 AF Cowman (37890_CR3) 2017; 22 K Kremer (37890_CR34) 2013; 9 E Knuepfer (37890_CR42) 2017; 7 L Chen (37890_CR38) 2014; 3 KE Wright (37890_CR39) 2014; 515 HM Taylor (37890_CR13) 2010; 9 JR Wisniewski (37890_CR47) 2009; 6 P Favuzza (37890_CR11) 2020; 27 CR Collins (37890_CR31) 2020; 9 AS Nasamu (37890_CR9) 2017; 358 J Cox (37890_CR48) 2011; 10 S Absalon (37890_CR16) 2018; 9 A Ruecker (37890_CR17) 2012; 287 Z Ebrahimzadeh (37890_CR33) 2019; 20 C Crosnier (37890_CR22) 2011; 480 GE Weiss (37890_CR6) 2015; 11 S Glushakova (37890_CR19) 2005; 15 J Xu (37890_CR43) 2019; 9 J Healer (37890_CR32) 2002; 70 JC Volz (37890_CR28) 2016; 20 M de Lera Ruiz (37890_CR12) 2022; 13 M Abkarian (37890_CR20) 2011; 117 S Mukherjee (37890_CR36) 2022; 13 LH Bannister (37890_CR40) 2003; 116 |
References_xml | – reference: NasamuASPlasmepsins IX and X are essential and druggable mediators of malaria parasite egress and invasionScience20173585185222017Sci...358..518N1:CAS:528:DC%2BC2sXhslSgsb7J29074774592841410.1126/science.aan1478 – reference: KremerKAn overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemesPLoS Pathog.20139e10032131:CAS:528:DC%2BC3sXmtVejtLs%3D23505371359130210.1371/journal.ppat.1003213 – reference: AbkarianMMassieraGBerryLRoquesMBraun-BretonCA novel mechanism for egress of malarial parasites from red blood cellsBlood2011117411841241:CAS:528:DC%2BC3MXls1GhsLc%3D2129700210.1182/blood-2010-08-299883 – reference: CrosnierCBasigin is a receptor essential for erythrocyte invasion by Plasmodium falciparumNature20114805345372011Natur.480..534C1:CAS:528:DC%2BC3MXhsVKjsbjK22080952324577910.1038/nature10606 – reference: CowmanAFHealerJMarapanaDMarshKMalaria: biology and diseaseCell20161676106241:CAS:528:DC%2BC28XhslCrsrnF2776888610.1016/j.cell.2016.07.055 – reference: BullenHEThe Plasmodium falciparum parasitophorous vacuole protein P113 interacts with the parasite protein export machinery and maintains normal vacuole architectureMol. Microbiol.2022117124512621:CAS:528:DC%2BB38XhtFWitbnN35403274954467110.1111/mmi.14904 – reference: GlushakovaSRounding precedes rupture and breakdown of vacuolar membranes minutes before malaria parasite egress from erythrocytesCell Microbiol.201820e1286829900649636806310.1111/cmi.12868 – reference: HaleVLParasitophorous vacuole poration precedes its rupture and rapid host erythrocyte cytoskeleton collapse in Plasmodium falciparum egressProc. Natl Acad. Sci. USA2017114343934442017PNAS..114.3439H1:CAS:528:DC%2BC2sXktFylsb4%3D28292906538009110.1073/pnas.1619441114 – reference: WongWStructure of Plasmodium falciparum Rh5-CyRPA-Ripr invasion complexNature20195651181212019Natur.565..118W1:CAS:528:DC%2BC1cXisFSmsb3F3054215610.1038/s41586-018-0779-6 – reference: MukherjeeSNguyenSSharmaEGoldbergDEMaturation and substrate processing topography of the Plasmodium falciparum invasion/egress protease plasmepsin XNat. Commun.2022132022NatCo..13.4537M1:CAS:528:DC%2BB38XitFWmurnI35927261935275510.1038/s41467-022-32271-7 – reference: CrosnierCA library of functional recombinant cell-surface and secreted P. falciparum merozoite proteinsMol. Cell. Proteomics201312397639861:CAS:528:DC%2BC3sXhvFWrsLfI24043421386173810.1074/mcp.O113.028357 – reference: CowmanAFTonkinCJThamWHDuraisinghMTThe molecular basis of erythrocyte invasion by malaria parasitesCell Host Microbe2017222322451:CAS:528:DC%2BC2sXhtlSgsLrP2879990810.1016/j.chom.2017.07.003 – reference: TrigliaTPlasmodium falciparum merozoite invasion is inhibited by antibodies that target the PfRh2a and b binding domainsPLoS Pathog.20117e10020751:CAS:528:DC%2BC3MXotVWgs70%3D21698217311681210.1371/journal.ppat.1002075 – reference: CollinsCRThe malaria parasite sheddase SUB2 governs host red blood cell membrane sealing at invasioneLife20209e611211:CAS:528:DC%2BB3MXovVeks7s%3D33287958772340910.7554/eLife.61121 – reference: WeissGERevealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytesPLoS Pathog.201511e10046701:CAS:528:DC%2BC2MXjvFGmu7c%3D25723550434424610.1371/journal.ppat.1004670 – reference: CollinsCRMalaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egressPLoS Pathog.20139e10033441:CAS:528:DC%2BC3sXpslOhtbc%3D23675297364997310.1371/journal.ppat.1003344 – reference: ScallySWPCRCR complex is essential for invasion of human erythrocytes by Plasmodium falciparumNat. Microbiol.20227203920531:CAS:528:DC%2BB38XivFajurvM36396942971210610.1038/s41564-022-01261-2 – reference: KnuepferENapiorkowskaMvan OoijCHolderAAGenerating conditional gene knockouts in Plasmodium - a toolkit to produce stable DiCre recombinase-expressing parasite lines using CRISPR/Cas9Sci. Rep.201772017NatSR...7.3881K28634346547859610.1038/s41598-017-03984-3 – reference: JumperJHighly accurate protein structure prediction with AlphaFoldNature20215965835892021Natur.596..583J1:CAS:528:DC%2BB3MXhvVaktrrL34265844837160510.1038/s41586-021-03819-2 – reference: HealerJCrawfordSRalphSMcFaddenGCowmanAIndependent translocation of two micronemal proteins in developing Plasmodium falciparum merozoitesInfect. Immun.200270575157581:CAS:528:DC%2BD38XnsV2ltrs%3D1222830512830710.1128/IAI.70.10.5751-5758.2002 – reference: RueckerAProteolytic activation of the essential parasitophorous vacuole cysteine protease SERA6 accompanies malaria parasite egress from its host erythrocyteJ. Biol. Chem.201228737949379631:CAS:528:DC%2BC38Xhs1WjtLbM22984267348806610.1074/jbc.M112.400820 – reference: SinghSPlassmeyerMGaurDMillerLHMononeme: a new secretory organelle in Plasmodium falciparum merozoites identified by localization of rhomboid-1 proteaseProc. Natl Acad. Sci. USA200710420043200482007PNAS..10420043S1:CAS:528:DC%2BD1cXhs1Krsg%3D%3D18048320214841910.1073/pnas.0709999104 – reference: XuJA fixation method for the optimisation of western blottingSci. Rep.201992019NatSR...9.6649X31040299649154610.1038/s41598-019-43039-3 – reference: SchechterIBergerAOn the size of the active site in proteases. I. PapainBiochem. Biophys. Res. Commun.1967271571621:CAS:528:DyaF2sXktVyhsrg%3D603548310.1016/S0006-291X(67)80055-X – reference: WHO. World Malaria Report 2021 (2021). – reference: BaumJReticulocyte-binding protein homologue 5 - an essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparumInt. J. Parasitol.2009393713731:CAS:528:DC%2BD1MXhtFertLg%3D1900069010.1016/j.ijpara.2008.10.006 – reference: FairlieWDInhibition of malaria parasite development by a cyclic peptide that targets the vital parasite protein SERA5Infect. Immun.200876433243441:CAS:528:DC%2BD1cXhtVyrsb3P18591232251940410.1128/IAI.00278-08 – reference: WickhamMCulvenorJCowmanASelective inhibition of a two-step egress of malaria parasites from the host erythrocyteJ. Biol. Chem.200327837658376631:CAS:528:DC%2BD3sXnsV2lsbc%3D1285773110.1074/jbc.M305252200 – reference: PinoPA multistage antimalarial targets the plasmepsins IX and X essential for invasion and egressScience20173585225282017Sci...358..522P1:CAS:528:DC%2BC2sXhslSgsb7K29074775573004710.1126/science.aaf8675 – reference: CoxJAndromeda: a peptide search engine integrated into the MaxQuant environmentJ. Proteome Res.201110179418052011beat.book.....C1:CAS:528:DC%2BC3MXit1Gis74%3D2125476010.1021/pr101065j – reference: KudybaHMThe endoplasmic reticulum chaperone PfGRP170 is essential for asexual development and is linked to stress response in malaria parasitesCell Microbiol.201921e1304231087747669989910.1111/cmi.13042 – reference: de Lera RuizMThe invention of WM382, a highly potent PMIX/X dual inhibitor toward the treatment of malariaACS Med. Chem. Lett.202213174517543638592410.1021/acsmedchemlett.2c00355 – reference: FairheadMHowarthMSite-specific biotinylation of purified proteins using BirAMethods Mol. Biol.201512661711841:CAS:528:DC%2BC28Xls1Sitbg%3D25560075430467310.1007/978-1-4939-2272-7_12 – reference: Perez-RiverolYThe PRIDE database and related tools and resources in 2019: improving support for quantification dataNucleic Acids Res.201947D442D4501:CAS:528:DC%2BC1MXhs1GqtrzK3039528910.1093/nar/gky1106 – reference: DasguptaSMembrane-wrapping contributions to malaria parasite invasion of the human erythrocyteBiophys. J.201410743542014BpJ...107...43D1:CAS:528:DC%2BC2cXhtFSmu77I24988340418479810.1016/j.bpj.2014.05.024 – reference: FavuzzaPDual plasmepsin-targeting antimalarial agents disrupt multiple stages of the malaria parasite life cycleCell Host Microbe202027642658.e6121:CAS:528:DC%2BB3cXktlarsrc%3D32109369714654410.1016/j.chom.2020.02.005 – reference: YeohSSubcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytesCell2007131107210831:CAS:528:DC%2BD1cXksFGgtg%3D%3D1808309810.1016/j.cell.2007.10.049 – reference: ThamWHPlasmodium falciparum adhesins play an essential role in signalling and activation of invasion into human erythrocytesPLoS Pathog.201511e100534326694741468792910.1371/journal.ppat.1005343 – reference: GlushakovaSYinDLiTZimmerbergJMembrane transformation during malaria parasite release from human red blood cellsCurr. Biol.200515164516501:CAS:528:DC%2BD2MXhtVWnsLvE1616948610.1016/j.cub.2005.07.067 – reference: HalleeSCounihanNAMatthewsKde Koning-WardTFRichardDThe malaria parasite Plasmodium falciparum Sortilin is essential for merozoite formation and apical complex biogenesisCell Microbiol.201820e128442958254610.1111/cmi.12844 – reference: GilsonPRCrabbBSMorphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoitesInt. J. Parasitol.20093991961:CAS:528:DC%2BD1cXhsFahurvN1895209110.1016/j.ijpara.2008.09.007 – reference: ChenLCrystal structure of PfRh5, an essential P. falciparum ligand for invasion of human erythrocyteseLife20143e0418725296023435614110.7554/eLife.04187 – reference: AbsalonSCalcium-dependent protein kinase 5 is required for release of egress-specific organelles in Plasmodium falciparummBio20189e00130181:CAS:528:DC%2BC1cXisVKgt77L29487234582982210.1128/mBio.00130-18 – reference: WisniewskiJRZougmanANagarajNMannMUniversal sample preparation method for proteome analysisNat. Methods200963593621:CAS:528:DC%2BD1MXks12ksb0%3D1937748510.1038/nmeth.1322 – reference: TaylorHMThe malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogonyEukaryot. Cell2010937451:CAS:528:DC%2BC3cXht1ejtrw%3D1991507710.1128/EC.00186-09 – reference: GalawayFP113 is a merozoite surface protein that binds the N terminus of Plasmodium falciparum RH5Nat. Commun.201782017NatCo...814333G1:CAS:528:DC%2BC2sXisVyqtb4%3D28186186530979910.1038/ncomms14333 – reference: EbrahimzadehZA pan-apicomplexan phosphoinositide-binding protein acts in malarial microneme exocytosisEMBO Rep.201920e4710231097469654902710.15252/embr.201847102 – reference: WrightKEStructure of malaria invasion protein RH5 with erythrocyte basigin and blocking antibodiesNature20145154274302014Natur.515..427W1:CAS:528:DC%2BC2cXhvVemtrvI25132548424073010.1038/nature13715 – reference: ChenLStructural basis for inhibition of erythrocyte invasion by antibodies to Plasmodium falciparum protein CyRPAeLife20176e2134728195530534984810.7554/eLife.21347 – reference: VolzJCEssential Role of the PfRh5/PfRipr/CyRPA Complex during Plasmodium falciparum Invasion of ErythrocytesCell Host Microbe20162060711:CAS:528:DC%2BC28XhtFSqtbvF2737440610.1016/j.chom.2016.06.004 – reference: BannisterLHPlasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite developmentJ. Cell Sci.2003116382538341:CAS:528:DC%2BD3sXnvVWgsro%3D1290240010.1242/jcs.00665 – reference: ColeyAMRapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptidesProtein Eng.2001146916981:CAS:528:DC%2BD3MXovVOgsbc%3D1170761610.1093/protein/14.9.691 – volume: 117 start-page: 4118 year: 2011 ident: 37890_CR20 publication-title: Blood doi: 10.1182/blood-2010-08-299883 – volume: 565 start-page: 118 year: 2019 ident: 37890_CR30 publication-title: Nature doi: 10.1038/s41586-018-0779-6 – volume: 9 start-page: e00130 year: 2018 ident: 37890_CR16 publication-title: mBio doi: 10.1128/mBio.00130-18 – volume: 20 start-page: 60 year: 2016 ident: 37890_CR28 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.06.004 – volume: 27 start-page: 642 year: 2020 ident: 37890_CR11 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.02.005 – volume: 9 start-page: e61121 year: 2020 ident: 37890_CR31 publication-title: eLife doi: 10.7554/eLife.61121 – volume: 358 start-page: 518 year: 2017 ident: 37890_CR9 publication-title: Science doi: 10.1126/science.aan1478 – volume: 1266 start-page: 171 year: 2015 ident: 37890_CR49 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2272-7_12 – volume: 7 year: 2017 ident: 37890_CR42 publication-title: Sci. Rep. doi: 10.1038/s41598-017-03984-3 – volume: 9 year: 2019 ident: 37890_CR43 publication-title: Sci. Rep. doi: 10.1038/s41598-019-43039-3 – volume: 480 start-page: 534 year: 2011 ident: 37890_CR22 publication-title: Nature doi: 10.1038/nature10606 – ident: 37890_CR1 – volume: 11 start-page: e1005343 year: 2015 ident: 37890_CR21 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1005343 – volume: 21 start-page: e13042 year: 2019 ident: 37890_CR27 publication-title: Cell Microbiol. doi: 10.1111/cmi.13042 – volume: 39 start-page: 91 year: 2009 ident: 37890_CR5 publication-title: Int. J. Parasitol. doi: 10.1016/j.ijpara.2008.09.007 – volume: 13 start-page: 1745 year: 2022 ident: 37890_CR12 publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.2c00355 – volume: 596 start-page: 583 year: 2021 ident: 37890_CR52 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 20 start-page: e47102 year: 2019 ident: 37890_CR33 publication-title: EMBO Rep. doi: 10.15252/embr.201847102 – volume: 6 start-page: e21347 year: 2017 ident: 37890_CR44 publication-title: eLife doi: 10.7554/eLife.21347 – volume: 6 start-page: 359 year: 2009 ident: 37890_CR47 publication-title: Nat. Methods doi: 10.1038/nmeth.1322 – volume: 7 start-page: e1002075 year: 2011 ident: 37890_CR29 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1002075 – volume: 515 start-page: 427 year: 2014 ident: 37890_CR39 publication-title: Nature doi: 10.1038/nature13715 – volume: 107 start-page: 43 year: 2014 ident: 37890_CR4 publication-title: Biophys. J. doi: 10.1016/j.bpj.2014.05.024 – volume: 131 start-page: 1072 year: 2007 ident: 37890_CR15 publication-title: Cell doi: 10.1016/j.cell.2007.10.049 – volume: 76 start-page: 4332 year: 2008 ident: 37890_CR45 publication-title: Infect. Immun. doi: 10.1128/IAI.00278-08 – volume: 70 start-page: 5751 year: 2002 ident: 37890_CR32 publication-title: Infect. Immun. doi: 10.1128/IAI.70.10.5751-5758.2002 – volume: 10 start-page: 1794 year: 2011 ident: 37890_CR48 publication-title: J. Proteome Res. doi: 10.1021/pr101065j – volume: 27 start-page: 157 year: 1967 ident: 37890_CR51 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(67)80055-X – volume: 20 start-page: e12868 year: 2018 ident: 37890_CR7 publication-title: Cell Microbiol. doi: 10.1111/cmi.12868 – volume: 278 start-page: 37658 year: 2003 ident: 37890_CR18 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305252200 – volume: 13 year: 2022 ident: 37890_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-022-32271-7 – volume: 22 start-page: 232 year: 2017 ident: 37890_CR3 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.07.003 – volume: 117 start-page: 1245 year: 2022 ident: 37890_CR26 publication-title: Mol. Microbiol. doi: 10.1111/mmi.14904 – volume: 9 start-page: e1003344 year: 2013 ident: 37890_CR14 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003344 – volume: 15 start-page: 1645 year: 2005 ident: 37890_CR19 publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.07.067 – volume: 358 start-page: 522 year: 2017 ident: 37890_CR10 publication-title: Science doi: 10.1126/science.aaf8675 – volume: 20 start-page: e12844 year: 2018 ident: 37890_CR41 publication-title: Cell Microbiol. doi: 10.1111/cmi.12844 – volume: 7 start-page: 2039 year: 2022 ident: 37890_CR23 publication-title: Nat. Microbiol. doi: 10.1038/s41564-022-01261-2 – volume: 11 start-page: e1004670 year: 2015 ident: 37890_CR6 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004670 – volume: 104 start-page: 20043 year: 2007 ident: 37890_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0709999104 – volume: 3 start-page: e04187 year: 2014 ident: 37890_CR38 publication-title: eLife doi: 10.7554/eLife.04187 – volume: 9 start-page: e1003213 year: 2013 ident: 37890_CR34 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003213 – volume: 167 start-page: 610 year: 2016 ident: 37890_CR2 publication-title: Cell doi: 10.1016/j.cell.2016.07.055 – volume: 39 start-page: 371 year: 2009 ident: 37890_CR24 publication-title: Int. J. Parasitol. doi: 10.1016/j.ijpara.2008.10.006 – volume: 116 start-page: 3825 year: 2003 ident: 37890_CR40 publication-title: J. Cell Sci. doi: 10.1242/jcs.00665 – volume: 47 start-page: D442 year: 2019 ident: 37890_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1106 – volume: 14 start-page: 691 year: 2001 ident: 37890_CR46 publication-title: Protein Eng. doi: 10.1093/protein/14.9.691 – volume: 8 year: 2017 ident: 37890_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms14333 – volume: 287 start-page: 37949 year: 2012 ident: 37890_CR17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.400820 – volume: 12 start-page: 3976 year: 2013 ident: 37890_CR37 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.O113.028357 – volume: 114 start-page: 3439 year: 2017 ident: 37890_CR8 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1619441114 – volume: 9 start-page: 37 year: 2010 ident: 37890_CR13 publication-title: Eukaryot. Cell doi: 10.1128/EC.00186-09 |
SSID | ssj0000391844 |
Score | 2.4586341 |
Snippet | Plasmodium falciparum
causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain... Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that contain... Abstract Plasmodium falciparum causes the most severe form of malaria in humans. The protozoan parasite develops within erythrocytes to mature schizonts, that... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2219 |
SubjectTerms | 14 14/63 631/326/417/1716 692/308/1426 692/699/255/1629 82/1 82/58 82/83 96 96/106 96/109 96/44 96/63 Animals Antigens Antigens, Protozoan Aspartic endopeptidase CD147 antigen Cysteine Cysteine - metabolism Egress Erythrocytes Erythrocytes - parasitology Humanities and Social Sciences Humans Malaria Malaria, Falciparum - parasitology Merozoites Merozoites - metabolism Micronemes multidisciplinary Parasites Plasmodium falciparum Plasmodium falciparum - metabolism Protease Protective antigen Proteins Protozoan Proteins - metabolism Schizonts Science Science (multidisciplinary) Thrombospondin Vaccines Vector-borne diseases |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Li9swEBZlodBL6bvebosKvbVmZY2sx7ENXZZCSwhdyE1IlswGdp2Qx9L8-45kJ930eenNWJIZNDOabyzpG0LeNCZE54Uvpee-FC5CiVEQSuci08GHWOX7FZ-_yPML8WlaT2-V-kpnwnp64H7iTrls6tqzygcVhKskBhjdKg-NcN4ElbN1ZtitZCqvwWAwdRHDLRkG-nQl8pqAIQp9ShtW8oNIlAn7f4cyfz0s-dOOaQ5EZw_I_QFB0ve95A_Jndg9Inf7mpLbx6QbIx6-jovVrKNTmq4t3CQ4SRHo0fFoMprQfIo8fqPzlua-8zDbXNPWXaXj1Ut89Fu66O8PoAB03E4ua4rYlsblNlVVaLbrSGfdjUs_2p6Qi7OPX0fn5VBUoWxqUa1LDyKaYJhwwXguMT1qY0Q3Bx9FQHeuKwcSwNQQtJeJ0KzldQiIWpSRvhXwlBx18y4-JxSc1yZKpbxJDEnGOQWJ4I4HzZqoVEGq3QTbZmAcT4Uvrmze-QZte6VYVIrNSrG8IG_3YxY938Zfe39Ietv3TFzZ-QVakB0syP7LggpystO6HRx4ZbnG5FQrTB8L8nrfjK6X9lNcF-eb3AcAEKCJgjzrjWQvCSimuAD8uD4wnwNRD1u62WWm98ZFssKFEYe-21naD7n-PBfH_2MuXpB7PLlIIrM0J-RovdzEl4i61v5VdrDvhOsneg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ja9wwFBbphEIvpXvdpkWF3loTW5K1HEpphoRQ6DAMDcxNSJbcDCT2dJbQ-fd9kpcwXXIzlmRkvUWflvc9hN6XynljmU25JTZlxtMUZkGaGuMz6azzeYyv-Dbh5xfs67yYH6BJHwsTrlX2PjE6ateUYY_8mEhYLUgBeP7z8mcaskaF09U-hYbpUiu4T5Fi7B46BJdcZCN0eHI6mc6GXZfAhy4Z66JnMiqP1yz6Cpi6wNakylKyN0NFIv9_oc-_L1H-cZIaJ6izR-hhhyzxl1YVHqMDXz9B99tck7unqJ4CTr72y_WixnMcwhluAszEAADxdDwbz3C8Xe5_4abCsW7jFttrXJmrcO16BY92h5dtXAF0AE-r2WWBAfNiv9qFbAvlbuPxor4xYQPuGbo4O_0-Pk-7ZAtpWbB8k1rKvHIqY8YpSzgsmyrvwfyp9cyBmRe5oZxSVVAnLQ9EZxUpnAM0IxS3FaPP0ahuav8SYWqsVJ4LYVVgTlLGCBqI74iTWemFSFDeD7AuOybykBDjSscTcSp1KxQNQtFRKJok6MPQZtnycNxZ-yTIbagZOLTji2b1Q3cmqQkvi8JmuXXCMZNzgC6yEpaWzFjlRJago17qujPstb5VwwS9G4rBJMM5i6l9s411KKUA3FiCXrRKMvSEikwQRuHjck999rq6X1IvLiPtNzjPHBwmNP3Ya9ptv_4_Fq_u_o3X6AEJyh_oK9URGm1WW_8GcNbGvu2M5zf1ayWJ priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HieCL-G3vTongmxbbTJqPRy0eh6Asiwf7VpIm9Rbu2mVv93D_-5ukH7J6Cr6VdlKGzEzySzLzCyFva-28sdymwjKbcuMhxVkQUmN8ppx1Po_1FV-_ibNz_mVRLA4IG2thYtJ-pLSMw_SYHfbhmseQxhkGQ0LpLMVh956SUASvLkU57asExnPF-VAfk4G6o-neHBSp-u_Cl3-mSf52VhqnoNNH5OGAHenHXtvH5MC3T8j9_jbJ3VPSzhAJX_kVrv7pgoaChZsAJClCPDor5-Wcxvxx_5N2DY2ynVtur2hjLkNi9Rof7Y6u-soBVIDOmvlFQRHVUr_ehfsU6t3G02V7Y8IW2zNyfvr5e3mWDtcppHXB801qgXvtdMaN05YJXBg13mOAg_XcYSAXuQEBoAtwyopAZdawwjnEK1IL23B4Tg7brvUvCQVjlfZCSqsDN5I2RkKgtmNOZbWXMiH52MFVPXCNhysvLqt45g2q6o1SoVGqaJSKJeTd1GbVM238U_pTsNskGViy44tu_aMavKZioi4Km-XWScdNLhCcqEZaqLmx2sksISej1ashdK8rpnBZqiQuHBPyZvqMQRdOUkzru22UAQCEZjwhL3onmTQBmUnGAX-u9txnT9X9L-3yIhJ74_CY45CITd-PnvZLr7_3xdH_iR-TBywEQyCs1CfkcLPe-leIrDb2dQylW88dHL4 priority: 102 providerName: Springer Nature |
Title | Plasmepsin X activates the PCRCR complex of Plasmodium falciparum by processing PfRh5 for erythrocyte invasion |
URI | https://link.springer.com/article/10.1038/s41467-023-37890-2 https://www.ncbi.nlm.nih.gov/pubmed/37072430 https://www.proquest.com/docview/2802687495 https://www.proquest.com/docview/2803330284 https://pubmed.ncbi.nlm.nih.gov/PMC10113190 https://doaj.org/article/26c55b01bd7d4a168188f7b3c4ab9d70 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLbGJtBeEHcCozISbxBIYie2HxDqqpWpElNVqNS3yI6drVKXlLSdln_PsZMUCh0vSZTY0pHPxd-JzwWhd5nQRiqq_ERFyqfSEB92QeJLaQKulTahy6_4dpGcT-loFs8OUNfuqF3A1V7XzvaTmlaLj7c_6y-g8J-blHH-aUWdusPuA-rCReCDST5y50U2lK-F-84yEwEODW1zZ_ZPPUYPCAtYRG1c9B9blavovw-G_htN-deRqtupho_QwxZi4n4jE4_RgSmeoPtN08n6KSrGAJivzXI1L_AM27yGG4s3MSBBPB5MBhPswszNLS5z7MaWer65xrlc2PjrCh5VjZdNggEQgMf55CrGAH6xqWrbdiGr1wbPixtp_8Q9Q9Ph2Y_Bud92XfCzmIZrXxFqhBYBlVqoKAH_KTcG7ABRhmrQ9ziUJCFExERzldiKZ3kUaw2wholE5ZQ8R4dFWZiXCBOpuDAJY0rYEkpCSkZsBbxI8yAzjHko7BY4zdqS5LYzxiJ1R-OEpw1_UuBP6viTRh56v52zbApy_Hf0qeXbdqQtpu1elNVl2upmGiVZHKsgVJppKsMEMAzPmSIZlUpoFnjopON62gloGnHwXjkD_9JDb7efQTftgYssTLlxYwghgOCoh140QrKlpBMyD_Ed8dkhdfdLMb9y9b_BioZgOWHqh07SftN191q8upOG1-g4sipgS1iKE3S4rjbmDWCtteqhe2zG4MqHX3voqN8ffR_B_fTsYjyBt4Nk0HN_MXpO0X4B-VEoow |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDcLBYwEJ4ia2E5sHypEl1Zb2q5Wq1baW7Bjh67UJss-Cvlz_DbGTrLV8uittyixLccznvn8mG8QeptJY5VmOkg00QFTlgbgBWmglA2F0cZGPr7ieJD0T9mXcTzeQL_aWBh3rbK1id5QmzJze-TbRMBqQXDA8x-n3wOXNcqdrrYpNFSTWsHseIqxJrDj0FY_YAk33zn4DPJ-R8j-3kmvHzRZBoIsZtEi0JRZaWTIlJGaJLBeyK0FvafaMgP6HUeKJpTKmBqhE8fwlZPYGHDjXCY6ZxTavYU2mdtA6aDN3b3BcLTa5XH864KxJlonpGJ7zrxtAlcJc1vIMCBrHtEnDvgX2v370uYfJ7feIe7fR_caJIs_1ar3AG3Y4iG6Xee2rB6hYgi4_MJO55MCj7ELn7h0sBYD4MTD3qg3wv42u_2Jyxz7sqWZLC9wrs7dNe8ZPOoKT-s4BugAHuajsxgDxsZ2VrnsDlm1sHhSXCq34fcYnd7IsD9BnaIs7DOEqdJC2oRzLR1Tk1SKU0e0R4wIM8t5F0XtAKdZw3zuEnCcp_4Enoq0FkoKQkm9UFLSRe9XdaY178e1pXed3FYlHWe3f1HOvqWNCUhJksWxDiNtuGEqSgAqiZxrmjGlpeFhF221Uk8bQzJPr9S-i96sPoMJcOc6qrDl0pehlAJQZF30tFaSVU8oDzlhFBoXa-qz1tX1L8XkzNOMg7GOwEBD1Q-tpl316_9j8fz633iN7vRPjo_So4PB4Qt0l7iJ4Kgz5RbqLGZL-xIw3kK_aiYSRl9veu7-BuJnYPA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE0RNbCe2HxCCjmpjMFUVk_pm7Nhhlbak9DLoX-PXcewkncplb3uLEttyfG6f7XNB6EUhrdOGmTg3xMRMOxqDFaSx1i4R1liXhviKz4f53hH7OM7GW-hXFwvj3So7nRgUta0Lf0beIwJ2C4IDnu-VrVvEcHfwdvo99hWk_E1rV06jYZEDt_oB27f5m_1doPVLQgYfvvT34rbCQFxkLF3EhjInrUyYttKQHPYKpXPA89Q4ZoG3s1TTnFKZUStM7rN7lSSzFkw4l7kpGYVxr6CrnDLmy0bwMV-f7_jM64KxNk4noaI3Z0ErgZEEqRYyicmGLQwlA_6Fc_921_zjzjaYwsEtdLPFsPhdw3S30Zar7qBrTVXL1V1UDQGRn7rpfFLhMfaBE2ce0GKAmnjYH_VHOPixu5-4LnFoW9vJ8hSX-sQ7eM_g0azwtIlggAngYTk6zjCga-xmK1_XoVgtHJ5UZ9of9d1DR5ey6PfRdlVX7iHCVBshXc65kT5Hk9SaU59ij1iRFI7zCKXdAquizXnuS2-cqHD3ToVqiKKAKCoQRZEIvVr3mTYZPy5s_d7Tbd3SZ-sOL-rZN9UKvyJ5kWUmSY3lluk0B5AkSm5owbSRlicR2umorloVMlfnDB-h5-vPIPz-RkdXrl6GNpRSgIgsQg8aJlnPhPKEE0ZhcLHBPhtT3fxSTY5DgnFQ0ymoZuj6uuO083n9fy0eXfwbz9B1kFj1af_w4DG6Qbwc-JyZcgdtL2ZL9wTA3cI8DVKE0dfLFtvfLZZejA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmepsin+X+activates+the+PCRCR+complex+of+Plasmodium+falciparum+by+processing+PfRh5+for+erythrocyte+invasion&rft.jtitle=Nature+communications&rft.au=Triglia%2C+Tony&rft.au=Scally%2C+Stephen+W&rft.au=Seager%2C+Benjamin+A&rft.au=Pasternak%2C+Micha%C5%82&rft.date=2023-04-19&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=2219&rft_id=info:doi/10.1038%2Fs41467-023-37890-2&rft_id=info%3Apmid%2F37072430&rft.externalDocID=37072430 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |