Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae
Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from spe...
Saved in:
Published in | Microbiome Vol. 11; no. 1; pp. 126 - 22 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
BioMed Central
01.06.2023
BMC |
Subjects | |
Online Access | Get full text |
ISSN | 2049-2618 2049-2618 |
DOI | 10.1186/s40168-023-01559-1 |
Cover
Abstract | Background
Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.
Results
We sampled epiphytic bacteria from specimens of
Ulva
sp. (green algae),
Saccharina
sp. (brown algae),
Grateloupia
sp. and
Gelidium
sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.
Conclusions
Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome.
DnRc39z963CYrL7RdN5UNd
Video Abstract |
---|---|
AbstractList | Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.
We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.
Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract. Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. Conclusions Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. DnRc39z963CYrL7RdN5UNd Video Abstract Abstract Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. Conclusions Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.BACKGROUNDMacroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.RESULTSWe sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract.CONCLUSIONSOur metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract. BackgroundMacroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.ResultsWe sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.ConclusionsOur metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome.Video Abstract |
ArticleNumber | 126 |
Author | Amann, Rudolf I. Teeling, Hanno Lu, De-Chen Wang, Feng-Qing Du, Zong-Jun |
Author_xml | – sequence: 1 givenname: De-Chen surname: Lu fullname: Lu, De-Chen organization: Marine College, Shandong University, Max Planck Institute for Marine Microbiology, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University – sequence: 2 givenname: Feng-Qing surname: Wang fullname: Wang, Feng-Qing organization: Max Planck Institute for Marine Microbiology – sequence: 3 givenname: Rudolf I. surname: Amann fullname: Amann, Rudolf I. organization: Max Planck Institute for Marine Microbiology – sequence: 4 givenname: Hanno surname: Teeling fullname: Teeling, Hanno email: hteeling@mpi-bremen.de organization: Max Planck Institute for Marine Microbiology – sequence: 5 givenname: Zong-Jun surname: Du fullname: Du, Zong-Jun email: duzongjun@sdu.edu.cn organization: Marine College, Shandong University, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37264413$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxGVXaiB2nMQ-VagqS6VKHKBna-KPXa8ce7GTov4G_jTepoW2h85l_PHem-fxvC0OfPC6KN7j6hPGrP2caIVbVlakLivcNLzEr4ojUlFekhazg0frw-IkpW2Vg2PaUfamOKw70lKK66Piz8XO7ja3o5VIhmEIPqeoUQ9y1NECsh6NG40GK2PobRh0QsFkTOmChFErtI5ae7S4djewPEV9DL_z7gdIuYFoPSwReIViBi5WMRNcmHYWTtFKO6vsNCzRAFka3Br0u-K1AZf0yX0-Lq6_Xvw8_1ZefV9dnn-5KmVD8Vj2FaH5xbg1PSYamlbqTjFiuGlazKGhkhglAVecKQqq7ZnGhJmurqlpFevq4-Jy1lUBtmIX7QDxVgSw4u4gxLWAmDvitAAjFWtNo0zHaE863kjMGyUN4zQXb7LW2ay1m_pBK6n9GME9EX164-1GrMONwPnnal7xrLC4V4jh16TTKAabpHYOvA5TEoQRUnd1R_fFPj6DbsMUfe7VHtXhHBXNqA-PLf3z8vDpGcBmQG58SlEbIe0Iow17h9Zla2I_YmIeMZGNirsREzhTyTPqg_qLpHompQz2ax3_236B9Rc3POMe |
CitedBy_id | crossref_primary_10_1007_s00227_024_04587_z crossref_primary_10_1016_j_syapm_2024_126562 crossref_primary_10_1002_lol2_10424 crossref_primary_10_1111_nph_20018 crossref_primary_10_1080_19490976_2024_2426623 crossref_primary_10_1128_mbio_00305_25 crossref_primary_10_3389_fmicb_2024_1507660 crossref_primary_10_1016_j_biortech_2025_132450 crossref_primary_10_1016_j_envexpbot_2025_106093 crossref_primary_10_1038_s41598_024_74787_6 crossref_primary_10_1111_1758_2229_70077 crossref_primary_10_1016_j_envpol_2024_124429 crossref_primary_10_1038_s41598_024_69538_6 crossref_primary_10_1038_s42003_024_06663_y crossref_primary_10_1007_s00284_025_04065_9 crossref_primary_10_1016_j_isci_2024_109176 crossref_primary_10_1016_j_scitotenv_2024_174528 crossref_primary_10_1093_ismejo_wrad005 crossref_primary_10_1016_j_aquaculture_2024_741162 crossref_primary_10_1073_pnas_2414434122 crossref_primary_10_1099_ijsem_0_006490 crossref_primary_10_1038_s41598_024_69362_y crossref_primary_10_1016_j_margen_2023_101074 crossref_primary_10_1186_s40168_024_01757_5 crossref_primary_10_1016_j_watres_2024_122676 crossref_primary_10_1111_1751_7915_70058 crossref_primary_10_1093_femsec_fiaf006 crossref_primary_10_1016_j_greenca_2024_11_001 crossref_primary_10_1016_j_mib_2024_102564 crossref_primary_10_1093_femsec_fiae059 crossref_primary_10_3390_biology13090725 crossref_primary_10_1016_j_algal_2024_103476 crossref_primary_10_51753_flsrt_1541036 crossref_primary_10_1111_1751_7915_14533 crossref_primary_10_1093_femsec_fiae160 crossref_primary_10_1093_ismejo_wrae083 crossref_primary_10_1099_ijsem_0_006545 crossref_primary_10_3389_fmicb_2024_1393588 crossref_primary_10_1007_s00248_024_02346_7 crossref_primary_10_1093_femsec_fiae045 crossref_primary_10_1128_msystems_00782_24 crossref_primary_10_1007_s00344_024_11507_4 crossref_primary_10_1111_1462_2920_16611 |
Cites_doi | 10.1038/s41579-019-0158-9 10.1002/bip.21195 10.1073/pnas.1422108112 10.3354/ame013085 10.1186/s12864-020-06971-7 10.1093/bioinformatics/btz848 10.1038/s41467-019-10068-5 10.1073/pnas.2210561119 10.1038/s41586-019-0965-1 10.1093/gigascience/giy026 10.1126/science.aaw6732 10.1111/j.1462-2920.2010.02356.x 10.1016/j.biortech.2013.06.114 10.1098/rstb.2007.2047 10.1038/s41467-021-21009-6 10.1038/ismej.2015.104 10.1093/molbev/mst010 10.1111/j.1462-2920.2012.02751.x 10.1038/s41586-022-04862-3 10.1093/nutrit/nuy066 10.1038/s41564-020-0720-2 10.1038/s41396-021-00928-8 10.1089/cmb.2012.0021 10.1038/s41396-023-01357-5 10.1093/glycob/cwn085 10.1038/ismej.2014.225 10.1073/pnas.1002551107 10.1093/molbev/msx148 10.1093/nar/gky418 10.1371/journal.pone.0146307 10.1021/ci400128m 10.1186/s40168-018-0613-2 10.1038/ismej.2009.107 10.1038/s41587-019-0036-z 10.1093/bioinformatics/btv033 10.1038/nature04056 10.3354/meps339001 10.1038/s41396-018-0242-6 10.1093/nar/gkaa1018 10.1038/ngeo2790 10.1016/j.watres.2015.12.021 10.1371/journal.pone.0164846 10.1371/journal.pone.0105592 10.1080/09670262.2013.767944 10.1093/bioinformatics/bts252 10.7717/peerj.1165 10.1007/s00248-006-9060-x 10.1007/s00248-010-9647-0 10.1038/ismej.2010.164 10.1007/s10126-011-9413-4 10.1371/journal.pbio.2000735 10.1073/pnas.0605127103 10.1128/msystems.01422-21 10.1038/ismej.2014.4 10.1016/j.rser.2018.03.100 10.1093/bioinformatics/btm098 10.1093/bioinformatics/btu033 10.1099/ijsem.0.003276 10.1093/nar/gkt1178 10.1038/nmeth.3869 10.1038/ismej.2017.126 10.1099/ijsem.0.001755 10.1093/nar/gkv1344 10.1038/s41467-018-07882-8 10.1093/nar/gks1219 10.1038/nrmicro2746 10.1101/gr.186072.114 10.1093/nar/gky1085 10.1073/pnas.1101591108 10.1046/j.1462-2920.2003.00382.x 10.1038/s41396-020-00856-z 10.3389/fmicb.2015.01487 10.1038/s41467-017-01832-6 10.1111/1574-6976.12011 10.1038/s41396-019-0476-y 10.7717/peerj.1319 10.1093/bioinformatics/btv638 10.1038/s41396-022-01251-6 10.1128/AEM.01543-07 10.1371/journal.pone.0009490 10.1111/j.1462-2920.2010.02371.x 10.1111/1462-2920.13758 10.3354/ame048217 10.1038/s41564-018-0171-1 10.1038/s41564-019-0588-1 10.1093/bioinformatics/btu153 10.1093/nar/gkv1118 10.1186/1471-2105-11-119 10.1038/nmeth.3103 10.3390/molecules25194411 10.1038/nbt.3893 10.1093/nar/gkw290 10.1111/j.1574-6941.2010.01011.x 10.1038/s41396-020-00815-8 10.1093/nar/gkz310 10.1371/journal.pcbi.1002195 10.1371/journal.pbio.1001221 10.1038/nmeth.3176 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1186/s40168-023-01559-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2049-2618 |
EndPage | 22 |
ExternalDocumentID | oai_doaj_org_article_afcd86f5df784b2795c195dcf89412e5 PMC10233909 37264413 10_1186_s40168_023_01559_1 |
Genre | Video-Audio Media Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 32070002; 32070002 – fundername: Science & Technology Fundamental Resources Investigation Program grantid: 2019FY100700; 2019FY100700 – fundername: ; grantid: 2019FY100700; 2019FY100700 – fundername: ; grantid: 32070002; 32070002 |
GroupedDBID | 0R~ 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAJSJ AASML ABUWG ACGFS ADBBV ADRAZ ADUKV AENEX AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS ASPBG BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU DIK EBLON EBS FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAG IAO IEP IHR INH INR ISR ITC KQ8 LK8 M1P M48 M7P M~E OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RBZ ROL RPM RSV SOJ UKHRP AAYXX ALIPV CITATION -A0 3V. ACRMQ ADINQ C24 CGR CUY CVF ECM EIF NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c541t-b02415516fb12ea56ce7d82f9f5619a54c2fdca1098d4ad6b8e128f7334f6d873 |
IEDL.DBID | 7X7 |
ISSN | 2049-2618 |
IngestDate | Wed Aug 27 01:32:09 EDT 2025 Thu Aug 21 18:36:58 EDT 2025 Fri Sep 05 04:00:22 EDT 2025 Fri Jul 25 10:32:43 EDT 2025 Thu Jan 02 22:29:04 EST 2025 Tue Jul 01 04:16:44 EDT 2025 Thu Apr 24 22:51:24 EDT 2025 Sat Sep 06 07:26:09 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Polysaccharide utilization locus Marine Algae Macroalgae Biofilm Bacteria Biosynthetic gene cluster Phycosphere Microbiome Ulva Saccharina Grateloupia Gelidium |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-b02415516fb12ea56ce7d82f9f5619a54c2fdca1098d4ad6b8e128f7334f6d873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2827111104?pq-origsite=%requestingapplication% |
PMID | 37264413 |
PQID | 2827111104 |
PQPubID | 2040205 |
PageCount | 22 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_afcd86f5df784b2795c195dcf89412e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10233909 proquest_miscellaneous_2822373745 proquest_journals_2827111104 pubmed_primary_37264413 crossref_citationtrail_10_1186_s40168_023_01559_1 crossref_primary_10_1186_s40168_023_01559_1 springer_journals_10_1186_s40168_023_01559_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microbiome |
PublicationTitleAbbrev | Microbiome |
PublicationTitleAlternate | Microbiome |
PublicationYear | 2023 |
Publisher | BioMed Central BMC |
Publisher_xml | – name: BioMed Central – name: BMC |
References | G Jard (1559_CR1) 2013; 144 E Pruesse (1559_CR66) 2012; 28 Y Yamada (1559_CR63) 2015; 112 DT Hughes (1559_CR61) 2010; 107 S Egan (1559_CR24) 2013; 37 J Grueneberg (1559_CR58) 2016; 11 DS Mu (1559_CR64) 2018; 6 RD Finn (1559_CR90) 2016; 44 T Barbeyron (1559_CR38) 2016; 11 T Ben Francis (1559_CR98) 2021; 15 E Zozaya-Valdés (1559_CR43) 2017; 19 S Takahashi (1559_CR69) 2014; 9 E Ficko-Blean (1559_CR31) 2017; 8 P Cherry (1559_CR14) 2019; 77 MB Hengst (1559_CR20) 2010; 60 MM Ismail (1559_CR15) 2020; 25 RM Bowers (1559_CR35) 2017; 35 VH Pomin (1559_CR55) 2008; 18 D Rao (1559_CR57) 2007; 73 T Lachnit (1559_CR21) 2011; 13 EC Martens (1559_CR26) 2011; 9 A Almeida (1559_CR36) 2019; 568 PA Chaumeil (1559_CR81) 2020; 36 M Brunet (1559_CR19) 2022; 16 JJ Almagro Armenteros (1559_CR95) 2019; 37 SM Dittami (1559_CR8) 2016; 10 Y Matsuo (1559_CR45) 2003; 5 V Lombard (1559_CR97) 2014; 42 A Gavriilidou (1559_CR42) 2020; 21 MR Olm (1559_CR84) 2017; 11 C Burke (1559_CR4) 2011; 5 J Zan (1559_CR44) 2019; 364 MY Galperin (1559_CR88) 2021; 49 H Buck-Wiese (1559_CR18) 2023; 120 K Katoh (1559_CR99) 2013; 30 MN Price (1559_CR82) 2010; 5 BE Suzek (1559_CR87) 2007; 23 CMK Sieber (1559_CR78) 2018; 3 C Burke (1559_CR23) 2011; 108 F Thomas (1559_CR28) 2012; 14 BJ Callahan (1559_CR71) 2016; 13 1559_CR59 L Wu (1559_CR34) 2018; 7 MA Lemay (1559_CR3) 2020; 15 NA Tujula (1559_CR22) 2010; 4 K Krüger (1559_CR37) 2019; 13 DR Schiel (1559_CR13) 2007; 339 P Xing (1559_CR30) 2015; 9 W Song (1559_CR54) 2021; 15 ST Prokka (1559_CR80) 2014; 30 D Krause-Jensen (1559_CR17) 2016; 9 A Kabisch (1559_CR29) 2014; 8 ND Rawlings (1559_CR93) 2016; 44 J Huerta-Cepas (1559_CR91) 2019; 47 RJ Case (1559_CR11) 2011; 13 M Martin (1559_CR12) 2015; 6 A Stamatakis (1559_CR100) 2014; 30 AV Skriptsova (1559_CR25) 2012; 14 S Vidal-Melgosa (1559_CR51) 2021; 12 C Quast (1559_CR72) 2013; 41 NM Koropatkin (1559_CR53) 2012; 10 A Bankevich (1559_CR68) 2012; 19 BL Weigel (1559_CR10) 2022; 7 NK Kim (1559_CR47) 2016; 90 E Chiang (1559_CR50) 2018; 13 D Li (1559_CR73) 2015; 31 W Zhang (1559_CR33) 2019; 10 AM Eren (1559_CR74) 2015; 3 K Marshall (1559_CR6) 2006; 52 ML Sogin (1559_CR52) 2006; 103 I Letunic (1559_CR83) 2016; 44 H Zhang (1559_CR96) 2018; 46 K Blin (1559_CR94) 2019; 47 DH Parks (1559_CR79) 2015; 25 K Sudhakar (1559_CR16) 2018; 91 S Wiegand (1559_CR48) 2020; 5 L Paoli (1559_CR32) 2022; 607 SR Eddy (1559_CR89) 2011; 7 A Sichert (1559_CR49) 2020; 5 D Hyatt (1559_CR85) 2010; 11 J Huerta-Cepas (1559_CR92) 2017; 34 I Joint (1559_CR9) 2007; 362 P Lapébie (1559_CR39) 2019; 10 S Bengtson (1559_CR2) 2017; 15 L Wu (1559_CR67) 2019; 69 B Buchfink (1559_CR86) 2014; 12 M Martin (1559_CR70) 2011; 18 B Wayne (1559_CR5) 2013; 53 HC Flemming (1559_CR41) 2019; 17 DD Kang (1559_CR77) 2015; 3 SR Longford (1559_CR46) 2007; 48 M Romero (1559_CR62) 2011; 75 F Goecke (1559_CR56) 2013; 48 J Alneberg (1559_CR75) 2014; 11 L Kappelmann (1559_CR40) 2019; 13 A Robic (1559_CR27) 2009; 91 S Kjelleberg (1559_CR60) 1997; 13 MT Croft (1559_CR7) 2005; 438 YW Wu (1559_CR76) 2016; 32 SH Yoon (1559_CR65) 2017; 67 |
References_xml | – volume: 17 start-page: 247 year: 2019 ident: 1559_CR41 publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0158-9 – volume: 91 start-page: 652 year: 2009 ident: 1559_CR27 publication-title: Biopolymers doi: 10.1002/bip.21195 – volume: 112 start-page: 857 year: 2015 ident: 1559_CR63 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1422108112 – volume: 13 start-page: 1 year: 2018 ident: 1559_CR50 publication-title: PLoS One – volume: 13 start-page: 85 year: 1997 ident: 1559_CR60 publication-title: Aquat Microb Ecol doi: 10.3354/ame013085 – volume: 21 start-page: 1 year: 2020 ident: 1559_CR42 publication-title: BMC Genomics doi: 10.1186/s12864-020-06971-7 – volume: 36 start-page: 1925 year: 2020 ident: 1559_CR81 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz848 – volume: 10 start-page: 2043 year: 2019 ident: 1559_CR39 publication-title: Nat Commun doi: 10.1038/s41467-019-10068-5 – volume: 120 start-page: e2210561119 year: 2023 ident: 1559_CR18 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2210561119 – volume: 568 start-page: 499 year: 2019 ident: 1559_CR36 publication-title: Nature doi: 10.1038/s41586-019-0965-1 – volume: 7 start-page: 1 year: 2018 ident: 1559_CR34 publication-title: Gigascience doi: 10.1093/gigascience/giy026 – volume: 364 start-page: 6732 year: 2019 ident: 1559_CR44 publication-title: Science doi: 10.1126/science.aaw6732 – volume: 13 start-page: 529 year: 2011 ident: 1559_CR11 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02356.x – volume: 144 start-page: 492 year: 2013 ident: 1559_CR1 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2013.06.114 – volume: 362 start-page: 1223 year: 2007 ident: 1559_CR9 publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2007.2047 – volume: 12 start-page: 1 year: 2021 ident: 1559_CR51 publication-title: Nat Commun doi: 10.1038/s41467-021-21009-6 – volume: 10 start-page: 51 year: 2016 ident: 1559_CR8 publication-title: ISME J doi: 10.1038/ismej.2015.104 – volume: 30 start-page: 772 year: 2013 ident: 1559_CR99 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst010 – volume: 14 start-page: 2379 year: 2012 ident: 1559_CR28 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2012.02751.x – volume: 607 start-page: 111 year: 2022 ident: 1559_CR32 publication-title: Nature doi: 10.1038/s41586-022-04862-3 – volume: 77 start-page: 307 year: 2019 ident: 1559_CR14 publication-title: Nutr Rev doi: 10.1093/nutrit/nuy066 – volume: 5 start-page: 1026 year: 2020 ident: 1559_CR49 publication-title: Nat Microbiol doi: 10.1038/s41564-020-0720-2 – volume: 15 start-page: 2336 year: 2021 ident: 1559_CR98 publication-title: ISME J doi: 10.1038/s41396-021-00928-8 – volume: 19 start-page: 455 year: 2012 ident: 1559_CR68 publication-title: J Comput Biol doi: 10.1089/cmb.2012.0021 – ident: 1559_CR59 doi: 10.1038/s41396-023-01357-5 – volume: 18 start-page: 1016 year: 2008 ident: 1559_CR55 publication-title: Glycobiology doi: 10.1093/glycob/cwn085 – volume: 9 start-page: 1410 year: 2015 ident: 1559_CR30 publication-title: ISME J doi: 10.1038/ismej.2014.225 – volume: 107 start-page: 9831 year: 2010 ident: 1559_CR61 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1002551107 – volume: 34 start-page: 2115 year: 2017 ident: 1559_CR92 publication-title: Mol Biol Evol doi: 10.1093/molbev/msx148 – volume: 46 start-page: W95 year: 2018 ident: 1559_CR96 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky418 – volume: 11 start-page: 1 year: 2016 ident: 1559_CR58 publication-title: PLoS One doi: 10.1371/journal.pone.0146307 – volume: 53 start-page: 1689 year: 2013 ident: 1559_CR5 publication-title: J Chem Inf Model doi: 10.1021/ci400128m – volume: 6 start-page: 1 year: 2018 ident: 1559_CR64 publication-title: Microbiome doi: 10.1186/s40168-018-0613-2 – volume: 18 start-page: 6 year: 2011 ident: 1559_CR70 publication-title: EMBnet J – volume: 4 start-page: 301 year: 2010 ident: 1559_CR22 publication-title: ISME J doi: 10.1038/ismej.2009.107 – volume: 37 start-page: 420 year: 2019 ident: 1559_CR95 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0036-z – volume: 31 start-page: 1674 year: 2015 ident: 1559_CR73 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv033 – volume: 438 start-page: 90 year: 2005 ident: 1559_CR7 publication-title: Nature doi: 10.1038/nature04056 – volume: 339 start-page: 1 year: 2007 ident: 1559_CR13 publication-title: Mar Ecol Prog Ser doi: 10.3354/meps339001 – volume: 13 start-page: 76 year: 2019 ident: 1559_CR40 publication-title: ISME J doi: 10.1038/s41396-018-0242-6 – volume: 49 start-page: D274 year: 2021 ident: 1559_CR88 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1018 – volume: 9 start-page: 737 year: 2016 ident: 1559_CR17 publication-title: Nat Geosci doi: 10.1038/ngeo2790 – volume: 90 start-page: 395 year: 2016 ident: 1559_CR47 publication-title: Water Res doi: 10.1016/j.watres.2015.12.021 – volume: 11 start-page: 1 year: 2016 ident: 1559_CR38 publication-title: PLoS One doi: 10.1371/journal.pone.0164846 – volume: 9 start-page: e105592 year: 2014 ident: 1559_CR69 publication-title: PLoS One doi: 10.1371/journal.pone.0105592 – volume: 48 start-page: 47 year: 2013 ident: 1559_CR56 publication-title: Eur J Phycol doi: 10.1080/09670262.2013.767944 – volume: 28 start-page: 1823 year: 2012 ident: 1559_CR66 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts252 – volume: 3 start-page: 1 year: 2015 ident: 1559_CR77 publication-title: PeerJ doi: 10.7717/peerj.1165 – volume: 52 start-page: 302 year: 2006 ident: 1559_CR6 publication-title: Microb Ecol doi: 10.1007/s00248-006-9060-x – volume: 60 start-page: 282 year: 2010 ident: 1559_CR20 publication-title: Microb Ecol doi: 10.1007/s00248-010-9647-0 – volume: 5 start-page: 590 year: 2011 ident: 1559_CR4 publication-title: ISME J doi: 10.1038/ismej.2010.164 – volume: 14 start-page: 304 year: 2012 ident: 1559_CR25 publication-title: Mar Biotechnol doi: 10.1007/s10126-011-9413-4 – volume: 15 start-page: e2000735 year: 2017 ident: 1559_CR2 publication-title: PLoS Biol doi: 10.1371/journal.pbio.2000735 – volume: 103 start-page: 12115 year: 2006 ident: 1559_CR52 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0605127103 – volume: 7 start-page: e01422 year: 2022 ident: 1559_CR10 publication-title: mSystems doi: 10.1128/msystems.01422-21 – volume: 8 start-page: 1492 year: 2014 ident: 1559_CR29 publication-title: ISME J doi: 10.1038/ismej.2014.4 – volume: 91 start-page: 165 year: 2018 ident: 1559_CR16 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.100 – volume: 23 start-page: 1282 year: 2007 ident: 1559_CR87 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm098 – volume: 30 start-page: 1312 year: 2014 ident: 1559_CR100 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – volume: 69 start-page: 895 year: 2019 ident: 1559_CR67 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.003276 – volume: 42 start-page: 490 year: 2014 ident: 1559_CR97 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1178 – volume: 13 start-page: 581 year: 2016 ident: 1559_CR71 publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 11 start-page: 2864 year: 2017 ident: 1559_CR84 publication-title: ISME J doi: 10.1038/ismej.2017.126 – volume: 67 start-page: 1613 year: 2017 ident: 1559_CR65 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.001755 – volume: 44 start-page: D279 year: 2016 ident: 1559_CR90 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1344 – volume: 10 start-page: 1 year: 2019 ident: 1559_CR33 publication-title: Nat Commun doi: 10.1038/s41467-018-07882-8 – volume: 41 start-page: 590 year: 2013 ident: 1559_CR72 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 10 start-page: 323 year: 2012 ident: 1559_CR53 publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2746 – volume: 25 start-page: 1043 year: 2015 ident: 1559_CR79 publication-title: Genome Res doi: 10.1101/gr.186072.114 – volume: 47 start-page: 309 year: 2019 ident: 1559_CR91 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1085 – volume: 108 start-page: 14288 year: 2011 ident: 1559_CR23 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1101591108 – volume: 5 start-page: 25 year: 2003 ident: 1559_CR45 publication-title: Environ Microbiol doi: 10.1046/j.1462-2920.2003.00382.x – volume: 15 start-page: 1372 year: 2020 ident: 1559_CR3 publication-title: ISME J doi: 10.1038/s41396-020-00856-z – volume: 6 start-page: 1 year: 2015 ident: 1559_CR12 publication-title: Front Microbiol doi: 10.3389/fmicb.2015.01487 – volume: 8 start-page: 1685 year: 2017 ident: 1559_CR31 publication-title: Nat Commun doi: 10.1038/s41467-017-01832-6 – volume: 37 start-page: 462 year: 2013 ident: 1559_CR24 publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12011 – volume: 13 start-page: 2800 year: 2019 ident: 1559_CR37 publication-title: ISME J doi: 10.1038/s41396-019-0476-y – volume: 3 start-page: 1 year: 2015 ident: 1559_CR74 publication-title: PeerJ doi: 10.7717/peerj.1319 – volume: 32 start-page: 605 year: 2016 ident: 1559_CR76 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv638 – volume: 16 start-page: 2027 year: 2022 ident: 1559_CR19 publication-title: ISME J doi: 10.1038/s41396-022-01251-6 – volume: 73 start-page: 7844 year: 2007 ident: 1559_CR57 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01543-07 – volume: 5 start-page: e9490 year: 2010 ident: 1559_CR82 publication-title: PLoS One doi: 10.1371/journal.pone.0009490 – volume: 13 start-page: 655 year: 2011 ident: 1559_CR21 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02371.x – volume: 19 start-page: 3012 year: 2017 ident: 1559_CR43 publication-title: Environ Microbiol doi: 10.1111/1462-2920.13758 – volume: 48 start-page: 217 year: 2007 ident: 1559_CR46 publication-title: Aquat Microb Ecol doi: 10.3354/ame048217 – volume: 3 start-page: 836 year: 2018 ident: 1559_CR78 publication-title: Nat Microbiol doi: 10.1038/s41564-018-0171-1 – volume: 5 start-page: 126 year: 2020 ident: 1559_CR48 publication-title: Nat Microbiol doi: 10.1038/s41564-019-0588-1 – volume: 30 start-page: 2068 year: 2014 ident: 1559_CR80 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu153 – volume: 44 start-page: D343 year: 2016 ident: 1559_CR93 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1118 – volume: 11 start-page: 1 year: 2010 ident: 1559_CR85 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-119 – volume: 11 start-page: 1144 year: 2014 ident: 1559_CR75 publication-title: Nat Methods doi: 10.1038/nmeth.3103 – volume: 25 start-page: 1 year: 2020 ident: 1559_CR15 publication-title: Molecules doi: 10.3390/molecules25194411 – volume: 35 start-page: 725 year: 2017 ident: 1559_CR35 publication-title: Nat Biotechnol doi: 10.1038/nbt.3893 – volume: 44 start-page: W242 year: 2016 ident: 1559_CR83 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw290 – volume: 75 start-page: 205 year: 2011 ident: 1559_CR62 publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.01011.x – volume: 15 start-page: 807 year: 2021 ident: 1559_CR54 publication-title: ISME J doi: 10.1038/s41396-020-00815-8 – volume: 47 start-page: W81 year: 2019 ident: 1559_CR94 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz310 – volume: 7 start-page: e1002195 year: 2011 ident: 1559_CR89 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002195 – volume: 9 start-page: e1001221 year: 2011 ident: 1559_CR26 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001221 – volume: 12 start-page: 59 year: 2014 ident: 1559_CR86 publication-title: Nat Methods doi: 10.1038/nmeth.3176 |
SSID | ssj0000914748 |
Score | 2.507188 |
Snippet | Background
Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on... Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based... BackgroundMacroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on... Abstract Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 126 |
SubjectTerms | Algae Bacteria Biodiversity Biofilm Bioinformatics Biomass Biomedical and Life Sciences Biomedicine Biosynthetic gene cluster Cellulose Gelidium Gene clusters Genomes Grateloupia Laminaria - genetics Medical Microbiology Metabolites Microbial Ecology Microbial Genetics and Genomics Microbiology Microbiomes Microbiota - genetics Polysaccharides Rhodophyta - genetics RNA, Ribosomal, 16S - genetics rRNA 16S Saccharina Seasonal variations Seawater Seaweed - microbiology Seaweeds Secondary metabolites Sediments Strains (organisms) Ulva - genetics Ulva - microbiology Virology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG-yLMhIHFpRa-PE8eMIaB9CggtU2pvlJ0Rq02rbIvEb9k_v2EnLlueFazyxRjOfPTOJ_Q1Cr3xpLAR2S0RpFWGVg32Qm5rUsXLWOuG4TZeTP3zk51P2_qK5uNHqK50J6-mBe8Mdm-i85LHxUUhmK6EaR1XjXZSK0Spk9tJSlTeKqbwHK8oEk9tbMpIfr6CQ4JJAiCIpTVCE7kWiTNj_uyzz18OSP_0xzYHo9B66O2SQ-E2v-X10K3QP0O2-p-T3h-jqZNmC6WAQA5gAZDgRVWLbszIb3HYYcj48b3sGpnlY4UUEGZKiGqSf-Es6iYNH09k3M55gm8p0PPpkXLqf1XZmjE3n8SUIjs4SzcRssVm2ZoLPwqz17WY-xnMDU6crIuERmp6efH53ToaOC8Q1jK6JLVNAbyiPFmxrGu6C8LKKKkKapUzDXBW9M7RU0jPjuZUB4lsUdc0i91LUj9FBt-jCU4RDVZoItVCM1jJjlVTeOuUozM0DbGoFolvrazfQkaeuGDOdyxLJde8xDR7T2WOaFuj17p1lT8bxV-m3yak7yUSknR8AvPQAL_0veBXoaAsJPazulYYyVaRQU7ICvdwNw7pMP1tMFxabLFPVohYMpnjSI2inSS1yGgo2kHvY2lN1f6Rrv2bu78S0UatSFWiyheEPvf5si8P_YYtn6E6V10_6BnWEDtaXm_AcUrK1fZFX3zVj6TKt priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zj9MwELZWi5B4QdwEFmQkHlrRQA7HxwNCgPYQErxApX2zfO5GStPSA7G_gT_N2EmKCmVf44nljGc838T2Nwi9tJnSENh1yjItUlIYWAepKtPSF0ZrwwzV4XLy5y_0bEo-nVfnB2god9QrcLU3tQv1pKbL5vXP71fvwOHfRofn9M0KcgTKU4g-aUAAIoVs6EbcLwpH-Xq4H1dmkRNG-HB3Zu-rO_Ep0vjvw57_HqH8ax81hqeTO-h2jyvx-84Q7qID195DN7tKk1f30a_jRQ0KhUYMJgamhwN9JdYdV7PCdYsBCeJZ3fEyzdwKzz3IpCHWASjFF-F8Dh5Nmx9qPME6JO949FWZcGurbtUYq9biJQiOTgP5RDPfLGo1waeuqW29mY3xTEHX4eKIe4CmJ8ffPp6lfR2G1FQkX6c6C2G-yqnXeeFURY1jlhdeeABfQlXEFN4alWeCW6Is1dxB1POsLImnlrPyITps5617jLArMuUhQ_Jea6K04MJqI0wOfVMHS12C8kH70vQk5aFWRiNjssKp7GZMwozJOGMyT9Cr7TuLjqLjWukPYVK3koFeOz6YLy9k761SeWM59ZX1jBNdMFGZXFTWeC4IqKBK0NFgEnIwWQnJKwsBKCMJerFtBm8NWzCqdfNNlClKVjICXTzqLGg7kpJFcAo64Du2tTPU3Za2voyM4IF_oxSZSNBkMMM_4_q_Lp5c_xlP0a0iekb453SEDtfLjXsGEGytn0e_-g172iyU priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFA6yIvgi3p11lQg-tNjgXHJ91LIXBH3Rwr6FXHWgnZZtK_gb_NOeZKbV6ir4OjkTwrnkO2cy5wtCL31pLAC7JaK0itDawT7ITUOaWDtrnXDcpubk9x_4xYy-u2SXA01O6oX59fy-kvz1GvJ_LgkgC0norghUOjcZbLzJm6d8uv-eArhHBZW7vphrXz3AnkzRf11e-efvkb-dkWboObuL7gw5I37TG_keuhG6--hWf4vktwfo--mqBWXBIAb3AbfCiZoS256H2eC2w5Dl4UXbcy4twhovI8iQhGOQcOLP6d8bPJrNv5rxBNtUmOPRR-NSR1bbmTE2ncdXIDg6T8QS8-V21ZoJPg_z1rfbxRgvDEydmkLCQzQ7O_00vSDDHQvEMVptiC0ThLOKR1vVwTDugvCyjipCYqUMo66O3pmqVNJT47mVARAtiqahkXspmkfoqFt24QnCoS5NhOonRmupsUoqb51yFczNA2xjBap22tduICBP92DMdS5EJNe9xTRYTGeL6apAr_bvrHr6jX9Kv01G3Usm6uz8ADxKD5GoTXRe8sh8FJLaWijmKsW8i1JRUAEr0MnOJfQQz2sNhalI4FLSAr3YD0MkpuMV04XlNsvUjWgEhSke9x60X0kjcuIJOpAHvnWw1MORrv2S2b4Tt0ajSlWgyc4Nf67r77o4_j_xp-h2nSMlfV86QUebq214BunWxj7PcfYD_DQiVA priority: 102 providerName: Springer Nature |
Title | Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae |
URI | https://link.springer.com/article/10.1186/s40168-023-01559-1 https://www.ncbi.nlm.nih.gov/pubmed/37264413 https://www.proquest.com/docview/2827111104 https://www.proquest.com/docview/2822373745 https://pubmed.ncbi.nlm.nih.gov/PMC10233909 https://doaj.org/article/afcd86f5df784b2795c195dcf89412e5 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZaxsxEBZtQqEvpXfdpkaFPtg0S_bQ6ngqjnESDAmlqcFvi85kwd51fRT6G_qnO9KuHdwjL15YjYV2Ds2Mjm8Q-mhiqcCxq4jFSkQk1TAPUplFmUu1Upppqvzl5MsrejEh42k-bRfcVu2xyu2cGCZqU2u_Rn4CqQHz5h2Tz4vvka8a5XdX2xIaD9FhApGIL93Apmy3xgK-kDDCt3dlOD1ZQTpBeQSOKvLBgoiSPX8UYPv_FWv-fWTyj33T4I7OnqInbRyJB43gn6EHtnqOHjWVJX--QL9GixIYCI0YPg_Gjj1cJVYNNrPEZYUh8sPzssFhmtsVrh3QRN63QRCKb_x5HNybzH7I_jFWPlnHvWup_S2tspJ9LCuDl0DYO_dgE7N6syjlMT63s9KUm3kfzyV07S-K2Jdocjb6NryI2roLkc5Jso5U7N16nlCnktTKnGrLDE-dcBBsCZkTnTqjZRILbog0VHELXs6xLCOOGs6yV-igqiv7BmGbxtJBRuScUkQqwYVRWugE-qYWprYOSrbcL3QLSu5rY8yKkJxwWjQSK0BiRZBYkXTQp91_Fg0kx73Up16oO0oPpx1e1MuborXOQjptOHW5cYwTlTKR60TkRjsuCLAg76CjrUoUrY2vijuN7KAPu2awTr_lIitbbwJNmrGMEejidaNBu5FkLASjwAO-p1t7Q91vqcrbgADu8TYyEYsOOt6q4d24_s-Lt_d_xjv0OA2W4deYjtDBermx7yHkWqtusKsuOhwMxtdjeJ6Orr58hbdDOuyGZQz4vST8N7RxLys |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMx0CqpELwgzhIoYCSQEpFV9_B67YcKUUgP2kYIGqlvi892pWQ35AD1G_gnvo3xHqnC0be-xrOWM_eMPTMIvdK-kGDYpZf4knskVKAHqYi8yIZKSpUoKl1x8vGA7g_Jx9P4dA39amph3LPKRieWiloXyuXItyA0SJx4--Tt5Jvnpka529VmhIaoRyvo7bLFWF3YcWgufkAIN9s--AD0fh2Gu_2T9_tePWXAUzEJ5p70nRGLA2plEBoRU2USzULLLbgWXMREhVYrEficaSI0lcyATrdJFBFLNUsi2PcGWicugdJC6zv9wafPyywPWGOSENZU6zC6NYOAhjIPTKXn3BXuBSsWsRwc8C9v9-9Hm3_c3JYGcfcuulN7svhdxXr30JrJ76Ob1WzLiwfoZ3-SAQlhEQOCAXvYNczEsuoOLXCWY_A98TirOkGNzQwXFmA8Z13BDcZn7kUQ7gxH30W3h6VLF-DOFyDBOYT3uehikWs8BcDOnmt3MSoWk0z08J4ZZTpbjLt4LGBrV6piHqLhtdDkEWrlRW4eI2xCX1iIyayVkgjJGddScRXA3tSAcm2joMF-quq26G46xygtwyNG04piKVAsLSmWBm30ZvnNpGoKciX0jiPqEtI19C5_KKZnaa0fUmGVZtTG2iaMyDDhsQp4rJVlnAAK4jbabFgirbXMLL2UiTZ6uVwG_eAufURuikUJE0ZJlBDYYqPioOVJoqR0hwEHbIW3Vo66upJn52UPctfxI-I-b6New4aX5_o_Lp5c_TdeoFv7J8dH6dHB4PApuh2WUuIyXpuoNZ8uzDNwAOfyeS1lGH29bsH-DVRybKs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZQKxAvqNyhBYzEQyKy6h5eH48BmpYAFVKJ1DfLZ1kp2UQ5kPgN_GnGe0GgIPEaz1rOHPvNrD2fEXppY6UB2HXEYi0ikhp4D1KVRZlPjdaGGapDc_LHc3o2JZPL_PKXLv7qtHu7JVn3NASWpnJzvLS-DnFOj9dQFVAeAd5EAfNFBPXPPs-FgPJrfzSaXEy67yyAh4QR3vbLXPvwDiZV1P3X5Zt_Hpv8be-0gqTxAbrT5JJ4VBv_LrrhynvoZn275Lf76PvJsgAlwiCGfwjuhgNlJdY1P7PCRYkh-8PzouZimrs1XniQiQK-QSKKr8KZHNyfzr6qwRDrULDj_oUyoVOrKNUAq9LiFQj2TwPhxGyxXRZqiE_drLDFdj7AcwVTh2YR9wBNxyef35xFzd0LkclJsol0HKA9T6jXSepUTo1jlqdeeEi4hMqJSb01KokFt0RZqrkDpPMsy4inlrPsIdorF6V7jLBLY-WhKvJea6K04MJqI0wCc1MHr7ceSlrtS9MQk4f7MWayKlA4lbXFJFhMVhaTSQ-96p5Z1rQc_5R-HYzaSQZK7eqHxepKNhEqlTeWU59bzzjRKRO5SURujeeCgAryHjpqXUI2cb6WULCyADox6aEX3TBEaNh2UaVbbCuZNGMZIzDFo9qDupVkrEpIQQd8x7d2lro7UhZfKhbwwLmRiVj00LB1w5_r-rsunvyf-HN069Pbsfzw7vz9IbqdVkETPkEdob3NauueQka20c-aoPsBKXcvAQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epiphytic+common+core+bacteria+in+the+microbiomes+of+co-located+green+%28Ulva%29%2C+brown+%28Saccharina%29+and+red+%28Grateloupia%2C+Gelidium%29+macroalgae&rft.jtitle=Microbiome&rft.au=De-Chen%2C+Lu&rft.au=Feng-Qing%2C+Wang&rft.au=Amann%2C+Rudolf+I&rft.au=Teeling%2C+Hanno&rft.date=2023-06-01&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=11&rft.spage=1&rft_id=info:doi/10.1186%2Fs40168-023-01559-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon |