Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae

Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from spe...

Full description

Saved in:
Bibliographic Details
Published inMicrobiome Vol. 11; no. 1; pp. 126 - 22
Main Authors Lu, De-Chen, Wang, Feng-Qing, Amann, Rudolf I., Teeling, Hanno, Du, Zong-Jun
Format Journal Article
LanguageEnglish
Published London BioMed Central 01.06.2023
BMC
Subjects
Online AccessGet full text
ISSN2049-2618
2049-2618
DOI10.1186/s40168-023-01559-1

Cover

Abstract Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. Conclusions Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. DnRc39z963CYrL7RdN5UNd Video Abstract
AbstractList Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract.
Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. Conclusions Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. DnRc39z963CYrL7RdN5UNd Video Abstract
Abstract Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species. Results We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera. Conclusions Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract
Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.BACKGROUNDMacroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.We sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.RESULTSWe sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.Our metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract.CONCLUSIONSOur metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome. Video Abstract.
BackgroundMacroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based microbial diversity analyses or limited metagenome sequencing of single macroalgal species.ResultsWe sampled epiphytic bacteria from specimens of Ulva sp. (green algae), Saccharina sp. (brown algae), Grateloupia sp. and Gelidium sp. (both red algae) together with seawater and sediment controls from a coastal reef in Weihai, China, during all seasons. Using 16S rRNA amplicon sequencing, we identified 14 core genera (consistently present on all macroalgae), and 14 dominant genera (consistently present on three of the macroalgae). Core genera represented ~ 0.7% of all genera, yet accounted for on average 51.1% of the bacterial abundances. Plate cultivation from all samples yielded 5,527 strains (macroalgae: 4,426) representing 1,235 species (685 potentially novel). Sequencing of selected strains yielded 820 non-redundant draft genomes (506 potentially novel), and sequencing of 23 sampled metagenomes yielded 1,619 metagenome-assembled genomes (MAGs), representing further 1,183 non-redundant genomes. 230 isolates and 153 genomes were obtained from the 28 core/dominant genera. We analyzed the genomic potential of phycosphere bacteria to degrade algal polysaccharides and to produce bioactive secondary metabolites. We predicted 4,451 polysaccharide utilization loci (PULs) and 8,810 biosynthetic gene clusters (BGCs). These were particularly prevalent in core/dominant genera.ConclusionsOur metabolic annotations and analyses of MAGs and genomes provide new insights into novel species of phycosphere bacteria and their ecological niches for an improved understanding of the macroalgal phycosphere microbiome.Video Abstract
ArticleNumber 126
Author Amann, Rudolf I.
Teeling, Hanno
Lu, De-Chen
Wang, Feng-Qing
Du, Zong-Jun
Author_xml – sequence: 1
  givenname: De-Chen
  surname: Lu
  fullname: Lu, De-Chen
  organization: Marine College, Shandong University, Max Planck Institute for Marine Microbiology, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University
– sequence: 2
  givenname: Feng-Qing
  surname: Wang
  fullname: Wang, Feng-Qing
  organization: Max Planck Institute for Marine Microbiology
– sequence: 3
  givenname: Rudolf I.
  surname: Amann
  fullname: Amann, Rudolf I.
  organization: Max Planck Institute for Marine Microbiology
– sequence: 4
  givenname: Hanno
  surname: Teeling
  fullname: Teeling, Hanno
  email: hteeling@mpi-bremen.de
  organization: Max Planck Institute for Marine Microbiology
– sequence: 5
  givenname: Zong-Jun
  surname: Du
  fullname: Du, Zong-Jun
  email: duzongjun@sdu.edu.cn
  organization: Marine College, Shandong University, State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37264413$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOyxGVXaiB2nMQ-VagqS6VKHKBna-KPXa8ce7GTov4G_jTepoW2h85l_PHem-fxvC0OfPC6KN7j6hPGrP2caIVbVlakLivcNLzEr4ojUlFekhazg0frw-IkpW2Vg2PaUfamOKw70lKK66Piz8XO7ja3o5VIhmEIPqeoUQ9y1NECsh6NG40GK2PobRh0QsFkTOmChFErtI5ae7S4djewPEV9DL_z7gdIuYFoPSwReIViBi5WMRNcmHYWTtFKO6vsNCzRAFka3Br0u-K1AZf0yX0-Lq6_Xvw8_1ZefV9dnn-5KmVD8Vj2FaH5xbg1PSYamlbqTjFiuGlazKGhkhglAVecKQqq7ZnGhJmurqlpFevq4-Jy1lUBtmIX7QDxVgSw4u4gxLWAmDvitAAjFWtNo0zHaE863kjMGyUN4zQXb7LW2ay1m_pBK6n9GME9EX164-1GrMONwPnnal7xrLC4V4jh16TTKAabpHYOvA5TEoQRUnd1R_fFPj6DbsMUfe7VHtXhHBXNqA-PLf3z8vDpGcBmQG58SlEbIe0Iow17h9Zla2I_YmIeMZGNirsREzhTyTPqg_qLpHompQz2ax3_236B9Rc3POMe
CitedBy_id crossref_primary_10_1007_s00227_024_04587_z
crossref_primary_10_1016_j_syapm_2024_126562
crossref_primary_10_1002_lol2_10424
crossref_primary_10_1111_nph_20018
crossref_primary_10_1080_19490976_2024_2426623
crossref_primary_10_1128_mbio_00305_25
crossref_primary_10_3389_fmicb_2024_1507660
crossref_primary_10_1016_j_biortech_2025_132450
crossref_primary_10_1016_j_envexpbot_2025_106093
crossref_primary_10_1038_s41598_024_74787_6
crossref_primary_10_1111_1758_2229_70077
crossref_primary_10_1016_j_envpol_2024_124429
crossref_primary_10_1038_s41598_024_69538_6
crossref_primary_10_1038_s42003_024_06663_y
crossref_primary_10_1007_s00284_025_04065_9
crossref_primary_10_1016_j_isci_2024_109176
crossref_primary_10_1016_j_scitotenv_2024_174528
crossref_primary_10_1093_ismejo_wrad005
crossref_primary_10_1016_j_aquaculture_2024_741162
crossref_primary_10_1073_pnas_2414434122
crossref_primary_10_1099_ijsem_0_006490
crossref_primary_10_1038_s41598_024_69362_y
crossref_primary_10_1016_j_margen_2023_101074
crossref_primary_10_1186_s40168_024_01757_5
crossref_primary_10_1016_j_watres_2024_122676
crossref_primary_10_1111_1751_7915_70058
crossref_primary_10_1093_femsec_fiaf006
crossref_primary_10_1016_j_greenca_2024_11_001
crossref_primary_10_1016_j_mib_2024_102564
crossref_primary_10_1093_femsec_fiae059
crossref_primary_10_3390_biology13090725
crossref_primary_10_1016_j_algal_2024_103476
crossref_primary_10_51753_flsrt_1541036
crossref_primary_10_1111_1751_7915_14533
crossref_primary_10_1093_femsec_fiae160
crossref_primary_10_1093_ismejo_wrae083
crossref_primary_10_1099_ijsem_0_006545
crossref_primary_10_3389_fmicb_2024_1393588
crossref_primary_10_1007_s00248_024_02346_7
crossref_primary_10_1093_femsec_fiae045
crossref_primary_10_1128_msystems_00782_24
crossref_primary_10_1007_s00344_024_11507_4
crossref_primary_10_1111_1462_2920_16611
Cites_doi 10.1038/s41579-019-0158-9
10.1002/bip.21195
10.1073/pnas.1422108112
10.3354/ame013085
10.1186/s12864-020-06971-7
10.1093/bioinformatics/btz848
10.1038/s41467-019-10068-5
10.1073/pnas.2210561119
10.1038/s41586-019-0965-1
10.1093/gigascience/giy026
10.1126/science.aaw6732
10.1111/j.1462-2920.2010.02356.x
10.1016/j.biortech.2013.06.114
10.1098/rstb.2007.2047
10.1038/s41467-021-21009-6
10.1038/ismej.2015.104
10.1093/molbev/mst010
10.1111/j.1462-2920.2012.02751.x
10.1038/s41586-022-04862-3
10.1093/nutrit/nuy066
10.1038/s41564-020-0720-2
10.1038/s41396-021-00928-8
10.1089/cmb.2012.0021
10.1038/s41396-023-01357-5
10.1093/glycob/cwn085
10.1038/ismej.2014.225
10.1073/pnas.1002551107
10.1093/molbev/msx148
10.1093/nar/gky418
10.1371/journal.pone.0146307
10.1021/ci400128m
10.1186/s40168-018-0613-2
10.1038/ismej.2009.107
10.1038/s41587-019-0036-z
10.1093/bioinformatics/btv033
10.1038/nature04056
10.3354/meps339001
10.1038/s41396-018-0242-6
10.1093/nar/gkaa1018
10.1038/ngeo2790
10.1016/j.watres.2015.12.021
10.1371/journal.pone.0164846
10.1371/journal.pone.0105592
10.1080/09670262.2013.767944
10.1093/bioinformatics/bts252
10.7717/peerj.1165
10.1007/s00248-006-9060-x
10.1007/s00248-010-9647-0
10.1038/ismej.2010.164
10.1007/s10126-011-9413-4
10.1371/journal.pbio.2000735
10.1073/pnas.0605127103
10.1128/msystems.01422-21
10.1038/ismej.2014.4
10.1016/j.rser.2018.03.100
10.1093/bioinformatics/btm098
10.1093/bioinformatics/btu033
10.1099/ijsem.0.003276
10.1093/nar/gkt1178
10.1038/nmeth.3869
10.1038/ismej.2017.126
10.1099/ijsem.0.001755
10.1093/nar/gkv1344
10.1038/s41467-018-07882-8
10.1093/nar/gks1219
10.1038/nrmicro2746
10.1101/gr.186072.114
10.1093/nar/gky1085
10.1073/pnas.1101591108
10.1046/j.1462-2920.2003.00382.x
10.1038/s41396-020-00856-z
10.3389/fmicb.2015.01487
10.1038/s41467-017-01832-6
10.1111/1574-6976.12011
10.1038/s41396-019-0476-y
10.7717/peerj.1319
10.1093/bioinformatics/btv638
10.1038/s41396-022-01251-6
10.1128/AEM.01543-07
10.1371/journal.pone.0009490
10.1111/j.1462-2920.2010.02371.x
10.1111/1462-2920.13758
10.3354/ame048217
10.1038/s41564-018-0171-1
10.1038/s41564-019-0588-1
10.1093/bioinformatics/btu153
10.1093/nar/gkv1118
10.1186/1471-2105-11-119
10.1038/nmeth.3103
10.3390/molecules25194411
10.1038/nbt.3893
10.1093/nar/gkw290
10.1111/j.1574-6941.2010.01011.x
10.1038/s41396-020-00815-8
10.1093/nar/gkz310
10.1371/journal.pcbi.1002195
10.1371/journal.pbio.1001221
10.1038/nmeth.3176
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40168-023-01559-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2049-2618
EndPage 22
ExternalDocumentID oai_doaj_org_article_afcd86f5df784b2795c195dcf89412e5
PMC10233909
37264413
10_1186_s40168_023_01559_1
Genre Video-Audio Media
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 32070002; 32070002
– fundername: Science & Technology Fundamental Resources Investigation Program
  grantid: 2019FY100700; 2019FY100700
– fundername: ;
  grantid: 2019FY100700; 2019FY100700
– fundername: ;
  grantid: 32070002; 32070002
GroupedDBID 0R~
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
ASPBG
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAG
IAO
IEP
IHR
INH
INR
ISR
ITC
KQ8
LK8
M1P
M48
M7P
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
AAYXX
ALIPV
CITATION
-A0
3V.
ACRMQ
ADINQ
C24
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c541t-b02415516fb12ea56ce7d82f9f5619a54c2fdca1098d4ad6b8e128f7334f6d873
IEDL.DBID 7X7
ISSN 2049-2618
IngestDate Wed Aug 27 01:32:09 EDT 2025
Thu Aug 21 18:36:58 EDT 2025
Fri Sep 05 04:00:22 EDT 2025
Fri Jul 25 10:32:43 EDT 2025
Thu Jan 02 22:29:04 EST 2025
Tue Jul 01 04:16:44 EDT 2025
Thu Apr 24 22:51:24 EDT 2025
Sat Sep 06 07:26:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Polysaccharide utilization locus
Marine
Algae
Macroalgae
Biofilm
Bacteria
Biosynthetic gene cluster
Phycosphere
Microbiome
Ulva
Saccharina
Grateloupia
Gelidium
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-b02415516fb12ea56ce7d82f9f5619a54c2fdca1098d4ad6b8e128f7334f6d873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.proquest.com/docview/2827111104?pq-origsite=%requestingapplication%
PMID 37264413
PQID 2827111104
PQPubID 2040205
PageCount 22
ParticipantIDs doaj_primary_oai_doaj_org_article_afcd86f5df784b2795c195dcf89412e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10233909
proquest_miscellaneous_2822373745
proquest_journals_2827111104
pubmed_primary_37264413
crossref_citationtrail_10_1186_s40168_023_01559_1
crossref_primary_10_1186_s40168_023_01559_1
springer_journals_10_1186_s40168_023_01559_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microbiome
PublicationTitleAbbrev Microbiome
PublicationTitleAlternate Microbiome
PublicationYear 2023
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References G Jard (1559_CR1) 2013; 144
E Pruesse (1559_CR66) 2012; 28
Y Yamada (1559_CR63) 2015; 112
DT Hughes (1559_CR61) 2010; 107
S Egan (1559_CR24) 2013; 37
J Grueneberg (1559_CR58) 2016; 11
DS Mu (1559_CR64) 2018; 6
RD Finn (1559_CR90) 2016; 44
T Barbeyron (1559_CR38) 2016; 11
T Ben Francis (1559_CR98) 2021; 15
E Zozaya-Valdés (1559_CR43) 2017; 19
S Takahashi (1559_CR69) 2014; 9
E Ficko-Blean (1559_CR31) 2017; 8
P Cherry (1559_CR14) 2019; 77
MB Hengst (1559_CR20) 2010; 60
MM Ismail (1559_CR15) 2020; 25
RM Bowers (1559_CR35) 2017; 35
VH Pomin (1559_CR55) 2008; 18
D Rao (1559_CR57) 2007; 73
T Lachnit (1559_CR21) 2011; 13
EC Martens (1559_CR26) 2011; 9
A Almeida (1559_CR36) 2019; 568
PA Chaumeil (1559_CR81) 2020; 36
M Brunet (1559_CR19) 2022; 16
JJ Almagro Armenteros (1559_CR95) 2019; 37
SM Dittami (1559_CR8) 2016; 10
Y Matsuo (1559_CR45) 2003; 5
V Lombard (1559_CR97) 2014; 42
A Gavriilidou (1559_CR42) 2020; 21
MR Olm (1559_CR84) 2017; 11
C Burke (1559_CR4) 2011; 5
J Zan (1559_CR44) 2019; 364
MY Galperin (1559_CR88) 2021; 49
H Buck-Wiese (1559_CR18) 2023; 120
K Katoh (1559_CR99) 2013; 30
MN Price (1559_CR82) 2010; 5
BE Suzek (1559_CR87) 2007; 23
CMK Sieber (1559_CR78) 2018; 3
C Burke (1559_CR23) 2011; 108
F Thomas (1559_CR28) 2012; 14
BJ Callahan (1559_CR71) 2016; 13
1559_CR59
L Wu (1559_CR34) 2018; 7
MA Lemay (1559_CR3) 2020; 15
NA Tujula (1559_CR22) 2010; 4
K Krüger (1559_CR37) 2019; 13
DR Schiel (1559_CR13) 2007; 339
P Xing (1559_CR30) 2015; 9
W Song (1559_CR54) 2021; 15
ST Prokka (1559_CR80) 2014; 30
D Krause-Jensen (1559_CR17) 2016; 9
A Kabisch (1559_CR29) 2014; 8
ND Rawlings (1559_CR93) 2016; 44
J Huerta-Cepas (1559_CR91) 2019; 47
RJ Case (1559_CR11) 2011; 13
M Martin (1559_CR12) 2015; 6
A Stamatakis (1559_CR100) 2014; 30
AV Skriptsova (1559_CR25) 2012; 14
S Vidal-Melgosa (1559_CR51) 2021; 12
C Quast (1559_CR72) 2013; 41
NM Koropatkin (1559_CR53) 2012; 10
A Bankevich (1559_CR68) 2012; 19
BL Weigel (1559_CR10) 2022; 7
NK Kim (1559_CR47) 2016; 90
E Chiang (1559_CR50) 2018; 13
D Li (1559_CR73) 2015; 31
W Zhang (1559_CR33) 2019; 10
AM Eren (1559_CR74) 2015; 3
K Marshall (1559_CR6) 2006; 52
ML Sogin (1559_CR52) 2006; 103
I Letunic (1559_CR83) 2016; 44
H Zhang (1559_CR96) 2018; 46
K Blin (1559_CR94) 2019; 47
DH Parks (1559_CR79) 2015; 25
K Sudhakar (1559_CR16) 2018; 91
S Wiegand (1559_CR48) 2020; 5
L Paoli (1559_CR32) 2022; 607
SR Eddy (1559_CR89) 2011; 7
A Sichert (1559_CR49) 2020; 5
D Hyatt (1559_CR85) 2010; 11
J Huerta-Cepas (1559_CR92) 2017; 34
I Joint (1559_CR9) 2007; 362
P Lapébie (1559_CR39) 2019; 10
S Bengtson (1559_CR2) 2017; 15
L Wu (1559_CR67) 2019; 69
B Buchfink (1559_CR86) 2014; 12
M Martin (1559_CR70) 2011; 18
B Wayne (1559_CR5) 2013; 53
HC Flemming (1559_CR41) 2019; 17
DD Kang (1559_CR77) 2015; 3
SR Longford (1559_CR46) 2007; 48
M Romero (1559_CR62) 2011; 75
F Goecke (1559_CR56) 2013; 48
J Alneberg (1559_CR75) 2014; 11
L Kappelmann (1559_CR40) 2019; 13
A Robic (1559_CR27) 2009; 91
S Kjelleberg (1559_CR60) 1997; 13
MT Croft (1559_CR7) 2005; 438
YW Wu (1559_CR76) 2016; 32
SH Yoon (1559_CR65) 2017; 67
References_xml – volume: 17
  start-page: 247
  year: 2019
  ident: 1559_CR41
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-019-0158-9
– volume: 91
  start-page: 652
  year: 2009
  ident: 1559_CR27
  publication-title: Biopolymers
  doi: 10.1002/bip.21195
– volume: 112
  start-page: 857
  year: 2015
  ident: 1559_CR63
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1422108112
– volume: 13
  start-page: 1
  year: 2018
  ident: 1559_CR50
  publication-title: PLoS One
– volume: 13
  start-page: 85
  year: 1997
  ident: 1559_CR60
  publication-title: Aquat Microb Ecol
  doi: 10.3354/ame013085
– volume: 21
  start-page: 1
  year: 2020
  ident: 1559_CR42
  publication-title: BMC Genomics
  doi: 10.1186/s12864-020-06971-7
– volume: 36
  start-page: 1925
  year: 2020
  ident: 1559_CR81
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz848
– volume: 10
  start-page: 2043
  year: 2019
  ident: 1559_CR39
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10068-5
– volume: 120
  start-page: e2210561119
  year: 2023
  ident: 1559_CR18
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2210561119
– volume: 568
  start-page: 499
  year: 2019
  ident: 1559_CR36
  publication-title: Nature
  doi: 10.1038/s41586-019-0965-1
– volume: 7
  start-page: 1
  year: 2018
  ident: 1559_CR34
  publication-title: Gigascience
  doi: 10.1093/gigascience/giy026
– volume: 364
  start-page: 6732
  year: 2019
  ident: 1559_CR44
  publication-title: Science
  doi: 10.1126/science.aaw6732
– volume: 13
  start-page: 529
  year: 2011
  ident: 1559_CR11
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02356.x
– volume: 144
  start-page: 492
  year: 2013
  ident: 1559_CR1
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2013.06.114
– volume: 362
  start-page: 1223
  year: 2007
  ident: 1559_CR9
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2007.2047
– volume: 12
  start-page: 1
  year: 2021
  ident: 1559_CR51
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21009-6
– volume: 10
  start-page: 51
  year: 2016
  ident: 1559_CR8
  publication-title: ISME J
  doi: 10.1038/ismej.2015.104
– volume: 30
  start-page: 772
  year: 2013
  ident: 1559_CR99
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mst010
– volume: 14
  start-page: 2379
  year: 2012
  ident: 1559_CR28
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2012.02751.x
– volume: 607
  start-page: 111
  year: 2022
  ident: 1559_CR32
  publication-title: Nature
  doi: 10.1038/s41586-022-04862-3
– volume: 77
  start-page: 307
  year: 2019
  ident: 1559_CR14
  publication-title: Nutr Rev
  doi: 10.1093/nutrit/nuy066
– volume: 5
  start-page: 1026
  year: 2020
  ident: 1559_CR49
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0720-2
– volume: 15
  start-page: 2336
  year: 2021
  ident: 1559_CR98
  publication-title: ISME J
  doi: 10.1038/s41396-021-00928-8
– volume: 19
  start-page: 455
  year: 2012
  ident: 1559_CR68
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2012.0021
– ident: 1559_CR59
  doi: 10.1038/s41396-023-01357-5
– volume: 18
  start-page: 1016
  year: 2008
  ident: 1559_CR55
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwn085
– volume: 9
  start-page: 1410
  year: 2015
  ident: 1559_CR30
  publication-title: ISME J
  doi: 10.1038/ismej.2014.225
– volume: 107
  start-page: 9831
  year: 2010
  ident: 1559_CR61
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1002551107
– volume: 34
  start-page: 2115
  year: 2017
  ident: 1559_CR92
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msx148
– volume: 46
  start-page: W95
  year: 2018
  ident: 1559_CR96
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky418
– volume: 11
  start-page: 1
  year: 2016
  ident: 1559_CR58
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0146307
– volume: 53
  start-page: 1689
  year: 2013
  ident: 1559_CR5
  publication-title: J Chem Inf Model
  doi: 10.1021/ci400128m
– volume: 6
  start-page: 1
  year: 2018
  ident: 1559_CR64
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0613-2
– volume: 18
  start-page: 6
  year: 2011
  ident: 1559_CR70
  publication-title: EMBnet J
– volume: 4
  start-page: 301
  year: 2010
  ident: 1559_CR22
  publication-title: ISME J
  doi: 10.1038/ismej.2009.107
– volume: 37
  start-page: 420
  year: 2019
  ident: 1559_CR95
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-019-0036-z
– volume: 31
  start-page: 1674
  year: 2015
  ident: 1559_CR73
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv033
– volume: 438
  start-page: 90
  year: 2005
  ident: 1559_CR7
  publication-title: Nature
  doi: 10.1038/nature04056
– volume: 339
  start-page: 1
  year: 2007
  ident: 1559_CR13
  publication-title: Mar Ecol Prog Ser
  doi: 10.3354/meps339001
– volume: 13
  start-page: 76
  year: 2019
  ident: 1559_CR40
  publication-title: ISME J
  doi: 10.1038/s41396-018-0242-6
– volume: 49
  start-page: D274
  year: 2021
  ident: 1559_CR88
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkaa1018
– volume: 9
  start-page: 737
  year: 2016
  ident: 1559_CR17
  publication-title: Nat Geosci
  doi: 10.1038/ngeo2790
– volume: 90
  start-page: 395
  year: 2016
  ident: 1559_CR47
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.12.021
– volume: 11
  start-page: 1
  year: 2016
  ident: 1559_CR38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0164846
– volume: 9
  start-page: e105592
  year: 2014
  ident: 1559_CR69
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105592
– volume: 48
  start-page: 47
  year: 2013
  ident: 1559_CR56
  publication-title: Eur J Phycol
  doi: 10.1080/09670262.2013.767944
– volume: 28
  start-page: 1823
  year: 2012
  ident: 1559_CR66
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts252
– volume: 3
  start-page: 1
  year: 2015
  ident: 1559_CR77
  publication-title: PeerJ
  doi: 10.7717/peerj.1165
– volume: 52
  start-page: 302
  year: 2006
  ident: 1559_CR6
  publication-title: Microb Ecol
  doi: 10.1007/s00248-006-9060-x
– volume: 60
  start-page: 282
  year: 2010
  ident: 1559_CR20
  publication-title: Microb Ecol
  doi: 10.1007/s00248-010-9647-0
– volume: 5
  start-page: 590
  year: 2011
  ident: 1559_CR4
  publication-title: ISME J
  doi: 10.1038/ismej.2010.164
– volume: 14
  start-page: 304
  year: 2012
  ident: 1559_CR25
  publication-title: Mar Biotechnol
  doi: 10.1007/s10126-011-9413-4
– volume: 15
  start-page: e2000735
  year: 2017
  ident: 1559_CR2
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.2000735
– volume: 103
  start-page: 12115
  year: 2006
  ident: 1559_CR52
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0605127103
– volume: 7
  start-page: e01422
  year: 2022
  ident: 1559_CR10
  publication-title: mSystems
  doi: 10.1128/msystems.01422-21
– volume: 8
  start-page: 1492
  year: 2014
  ident: 1559_CR29
  publication-title: ISME J
  doi: 10.1038/ismej.2014.4
– volume: 91
  start-page: 165
  year: 2018
  ident: 1559_CR16
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.100
– volume: 23
  start-page: 1282
  year: 2007
  ident: 1559_CR87
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm098
– volume: 30
  start-page: 1312
  year: 2014
  ident: 1559_CR100
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu033
– volume: 69
  start-page: 895
  year: 2019
  ident: 1559_CR67
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.003276
– volume: 42
  start-page: 490
  year: 2014
  ident: 1559_CR97
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1178
– volume: 13
  start-page: 581
  year: 2016
  ident: 1559_CR71
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3869
– volume: 11
  start-page: 2864
  year: 2017
  ident: 1559_CR84
  publication-title: ISME J
  doi: 10.1038/ismej.2017.126
– volume: 67
  start-page: 1613
  year: 2017
  ident: 1559_CR65
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.001755
– volume: 44
  start-page: D279
  year: 2016
  ident: 1559_CR90
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1344
– volume: 10
  start-page: 1
  year: 2019
  ident: 1559_CR33
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07882-8
– volume: 41
  start-page: 590
  year: 2013
  ident: 1559_CR72
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
– volume: 10
  start-page: 323
  year: 2012
  ident: 1559_CR53
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2746
– volume: 25
  start-page: 1043
  year: 2015
  ident: 1559_CR79
  publication-title: Genome Res
  doi: 10.1101/gr.186072.114
– volume: 47
  start-page: 309
  year: 2019
  ident: 1559_CR91
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1085
– volume: 108
  start-page: 14288
  year: 2011
  ident: 1559_CR23
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1101591108
– volume: 5
  start-page: 25
  year: 2003
  ident: 1559_CR45
  publication-title: Environ Microbiol
  doi: 10.1046/j.1462-2920.2003.00382.x
– volume: 15
  start-page: 1372
  year: 2020
  ident: 1559_CR3
  publication-title: ISME J
  doi: 10.1038/s41396-020-00856-z
– volume: 6
  start-page: 1
  year: 2015
  ident: 1559_CR12
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.01487
– volume: 8
  start-page: 1685
  year: 2017
  ident: 1559_CR31
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01832-6
– volume: 37
  start-page: 462
  year: 2013
  ident: 1559_CR24
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12011
– volume: 13
  start-page: 2800
  year: 2019
  ident: 1559_CR37
  publication-title: ISME J
  doi: 10.1038/s41396-019-0476-y
– volume: 3
  start-page: 1
  year: 2015
  ident: 1559_CR74
  publication-title: PeerJ
  doi: 10.7717/peerj.1319
– volume: 32
  start-page: 605
  year: 2016
  ident: 1559_CR76
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv638
– volume: 16
  start-page: 2027
  year: 2022
  ident: 1559_CR19
  publication-title: ISME J
  doi: 10.1038/s41396-022-01251-6
– volume: 73
  start-page: 7844
  year: 2007
  ident: 1559_CR57
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01543-07
– volume: 5
  start-page: e9490
  year: 2010
  ident: 1559_CR82
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009490
– volume: 13
  start-page: 655
  year: 2011
  ident: 1559_CR21
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02371.x
– volume: 19
  start-page: 3012
  year: 2017
  ident: 1559_CR43
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13758
– volume: 48
  start-page: 217
  year: 2007
  ident: 1559_CR46
  publication-title: Aquat Microb Ecol
  doi: 10.3354/ame048217
– volume: 3
  start-page: 836
  year: 2018
  ident: 1559_CR78
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-018-0171-1
– volume: 5
  start-page: 126
  year: 2020
  ident: 1559_CR48
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0588-1
– volume: 30
  start-page: 2068
  year: 2014
  ident: 1559_CR80
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu153
– volume: 44
  start-page: D343
  year: 2016
  ident: 1559_CR93
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1118
– volume: 11
  start-page: 1
  year: 2010
  ident: 1559_CR85
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-119
– volume: 11
  start-page: 1144
  year: 2014
  ident: 1559_CR75
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3103
– volume: 25
  start-page: 1
  year: 2020
  ident: 1559_CR15
  publication-title: Molecules
  doi: 10.3390/molecules25194411
– volume: 35
  start-page: 725
  year: 2017
  ident: 1559_CR35
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3893
– volume: 44
  start-page: W242
  year: 2016
  ident: 1559_CR83
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw290
– volume: 75
  start-page: 205
  year: 2011
  ident: 1559_CR62
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.01011.x
– volume: 15
  start-page: 807
  year: 2021
  ident: 1559_CR54
  publication-title: ISME J
  doi: 10.1038/s41396-020-00815-8
– volume: 47
  start-page: W81
  year: 2019
  ident: 1559_CR94
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz310
– volume: 7
  start-page: e1002195
  year: 2011
  ident: 1559_CR89
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002195
– volume: 9
  start-page: e1001221
  year: 2011
  ident: 1559_CR26
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001221
– volume: 12
  start-page: 59
  year: 2014
  ident: 1559_CR86
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3176
SSID ssj0000914748
Score 2.507188
Snippet Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on...
Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on tag-based...
BackgroundMacroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused on...
Abstract Background Macroalgal epiphytic microbial communities constitute a rich resource for novel enzymes and compounds, but studies so far largely focused...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 126
SubjectTerms Algae
Bacteria
Biodiversity
Biofilm
Bioinformatics
Biomass
Biomedical and Life Sciences
Biomedicine
Biosynthetic gene cluster
Cellulose
Gelidium
Gene clusters
Genomes
Grateloupia
Laminaria - genetics
Medical Microbiology
Metabolites
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiomes
Microbiota - genetics
Polysaccharides
Rhodophyta - genetics
RNA, Ribosomal, 16S - genetics
rRNA 16S
Saccharina
Seasonal variations
Seawater
Seaweed - microbiology
Seaweeds
Secondary metabolites
Sediments
Strains (organisms)
Ulva - genetics
Ulva - microbiology
Virology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSkhcEG-yLMhIHFpRa-PE8eMIaB9CggtU2pvlJ0Rq02rbIvEb9k_v2EnLlueFazyxRjOfPTOJ_Q1Cr3xpLAR2S0RpFWGVg32Qm5rUsXLWOuG4TZeTP3zk51P2_qK5uNHqK50J6-mBe8Mdm-i85LHxUUhmK6EaR1XjXZSK0Spk9tJSlTeKqbwHK8oEk9tbMpIfr6CQ4JJAiCIpTVCE7kWiTNj_uyzz18OSP_0xzYHo9B66O2SQ-E2v-X10K3QP0O2-p-T3h-jqZNmC6WAQA5gAZDgRVWLbszIb3HYYcj48b3sGpnlY4UUEGZKiGqSf-Es6iYNH09k3M55gm8p0PPpkXLqf1XZmjE3n8SUIjs4SzcRssVm2ZoLPwqz17WY-xnMDU6crIuERmp6efH53ToaOC8Q1jK6JLVNAbyiPFmxrGu6C8LKKKkKapUzDXBW9M7RU0jPjuZUB4lsUdc0i91LUj9FBt-jCU4RDVZoItVCM1jJjlVTeOuUozM0DbGoFolvrazfQkaeuGDOdyxLJde8xDR7T2WOaFuj17p1lT8bxV-m3yak7yUSknR8AvPQAL_0veBXoaAsJPazulYYyVaRQU7ICvdwNw7pMP1tMFxabLFPVohYMpnjSI2inSS1yGgo2kHvY2lN1f6Rrv2bu78S0UatSFWiyheEPvf5si8P_YYtn6E6V10_6BnWEDtaXm_AcUrK1fZFX3zVj6TKt
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zj9MwELZWi5B4QdwEFmQkHlrRQA7HxwNCgPYQErxApX2zfO5GStPSA7G_gT_N2EmKCmVf44nljGc838T2Nwi9tJnSENh1yjItUlIYWAepKtPSF0ZrwwzV4XLy5y_0bEo-nVfnB2god9QrcLU3tQv1pKbL5vXP71fvwOHfRofn9M0KcgTKU4g-aUAAIoVs6EbcLwpH-Xq4H1dmkRNG-HB3Zu-rO_Ep0vjvw57_HqH8ax81hqeTO-h2jyvx-84Q7qID195DN7tKk1f30a_jRQ0KhUYMJgamhwN9JdYdV7PCdYsBCeJZ3fEyzdwKzz3IpCHWASjFF-F8Dh5Nmx9qPME6JO949FWZcGurbtUYq9biJQiOTgP5RDPfLGo1waeuqW29mY3xTEHX4eKIe4CmJ8ffPp6lfR2G1FQkX6c6C2G-yqnXeeFURY1jlhdeeABfQlXEFN4alWeCW6Is1dxB1POsLImnlrPyITps5617jLArMuUhQ_Jea6K04MJqI0wOfVMHS12C8kH70vQk5aFWRiNjssKp7GZMwozJOGMyT9Cr7TuLjqLjWukPYVK3koFeOz6YLy9k761SeWM59ZX1jBNdMFGZXFTWeC4IqKBK0NFgEnIwWQnJKwsBKCMJerFtBm8NWzCqdfNNlClKVjICXTzqLGg7kpJFcAo64Du2tTPU3Za2voyM4IF_oxSZSNBkMMM_4_q_Lp5c_xlP0a0iekb453SEDtfLjXsGEGytn0e_-g172iyU
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFA6yIvgi3p11lQg-tNjgXHJ91LIXBH3Rwr6FXHWgnZZtK_gb_NOeZKbV6ir4OjkTwrnkO2cy5wtCL31pLAC7JaK0itDawT7ITUOaWDtrnXDcpubk9x_4xYy-u2SXA01O6oX59fy-kvz1GvJ_LgkgC0norghUOjcZbLzJm6d8uv-eArhHBZW7vphrXz3AnkzRf11e-efvkb-dkWboObuL7gw5I37TG_keuhG6--hWf4vktwfo--mqBWXBIAb3AbfCiZoS256H2eC2w5Dl4UXbcy4twhovI8iQhGOQcOLP6d8bPJrNv5rxBNtUmOPRR-NSR1bbmTE2ncdXIDg6T8QS8-V21ZoJPg_z1rfbxRgvDEydmkLCQzQ7O_00vSDDHQvEMVptiC0ThLOKR1vVwTDugvCyjipCYqUMo66O3pmqVNJT47mVARAtiqahkXspmkfoqFt24QnCoS5NhOonRmupsUoqb51yFczNA2xjBap22tduICBP92DMdS5EJNe9xTRYTGeL6apAr_bvrHr6jX9Kv01G3Usm6uz8ADxKD5GoTXRe8sh8FJLaWijmKsW8i1JRUAEr0MnOJfQQz2sNhalI4FLSAr3YD0MkpuMV04XlNsvUjWgEhSke9x60X0kjcuIJOpAHvnWw1MORrv2S2b4Tt0ajSlWgyc4Nf67r77o4_j_xp-h2nSMlfV86QUebq214BunWxj7PcfYD_DQiVA
  priority: 102
  providerName: Springer Nature
Title Epiphytic common core bacteria in the microbiomes of co-located green (Ulva), brown (Saccharina) and red (Grateloupia, Gelidium) macroalgae
URI https://link.springer.com/article/10.1186/s40168-023-01559-1
https://www.ncbi.nlm.nih.gov/pubmed/37264413
https://www.proquest.com/docview/2827111104
https://www.proquest.com/docview/2822373745
https://pubmed.ncbi.nlm.nih.gov/PMC10233909
https://doaj.org/article/afcd86f5df784b2795c195dcf89412e5
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZaxsxEBZtQqEvpXfdpkaFPtg0S_bQ6ngqjnESDAmlqcFvi85kwd51fRT6G_qnO9KuHdwjL15YjYV2Ds2Mjm8Q-mhiqcCxq4jFSkQk1TAPUplFmUu1Upppqvzl5MsrejEh42k-bRfcVu2xyu2cGCZqU2u_Rn4CqQHz5h2Tz4vvka8a5XdX2xIaD9FhApGIL93Apmy3xgK-kDDCt3dlOD1ZQTpBeQSOKvLBgoiSPX8UYPv_FWv-fWTyj33T4I7OnqInbRyJB43gn6EHtnqOHjWVJX--QL9GixIYCI0YPg_Gjj1cJVYNNrPEZYUh8sPzssFhmtsVrh3QRN63QRCKb_x5HNybzH7I_jFWPlnHvWup_S2tspJ9LCuDl0DYO_dgE7N6syjlMT63s9KUm3kfzyV07S-K2Jdocjb6NryI2roLkc5Jso5U7N16nlCnktTKnGrLDE-dcBBsCZkTnTqjZRILbog0VHELXs6xLCOOGs6yV-igqiv7BmGbxtJBRuScUkQqwYVRWugE-qYWprYOSrbcL3QLSu5rY8yKkJxwWjQSK0BiRZBYkXTQp91_Fg0kx73Up16oO0oPpx1e1MuborXOQjptOHW5cYwTlTKR60TkRjsuCLAg76CjrUoUrY2vijuN7KAPu2awTr_lIitbbwJNmrGMEejidaNBu5FkLASjwAO-p1t7Q91vqcrbgADu8TYyEYsOOt6q4d24_s-Lt_d_xjv0OA2W4deYjtDBermx7yHkWqtusKsuOhwMxtdjeJ6Orr58hbdDOuyGZQz4vST8N7RxLys
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbhMx0CqpELwgzhIoYCSQEpFV9_B67YcKUUgP2kYIGqlvi892pWQ35AD1G_gnvo3xHqnC0be-xrOWM_eMPTMIvdK-kGDYpZf4knskVKAHqYi8yIZKSpUoKl1x8vGA7g_Jx9P4dA39amph3LPKRieWiloXyuXItyA0SJx4--Tt5Jvnpka529VmhIaoRyvo7bLFWF3YcWgufkAIN9s--AD0fh2Gu_2T9_tePWXAUzEJ5p70nRGLA2plEBoRU2USzULLLbgWXMREhVYrEficaSI0lcyATrdJFBFLNUsi2PcGWicugdJC6zv9wafPyywPWGOSENZU6zC6NYOAhjIPTKXn3BXuBSsWsRwc8C9v9-9Hm3_c3JYGcfcuulN7svhdxXr30JrJ76Ob1WzLiwfoZ3-SAQlhEQOCAXvYNczEsuoOLXCWY_A98TirOkGNzQwXFmA8Z13BDcZn7kUQ7gxH30W3h6VLF-DOFyDBOYT3uehikWs8BcDOnmt3MSoWk0z08J4ZZTpbjLt4LGBrV6piHqLhtdDkEWrlRW4eI2xCX1iIyayVkgjJGddScRXA3tSAcm2joMF-quq26G46xygtwyNG04piKVAsLSmWBm30ZvnNpGoKciX0jiPqEtI19C5_KKZnaa0fUmGVZtTG2iaMyDDhsQp4rJVlnAAK4jbabFgirbXMLL2UiTZ6uVwG_eAufURuikUJE0ZJlBDYYqPioOVJoqR0hwEHbIW3Vo66upJn52UPctfxI-I-b6New4aX5_o_Lp5c_TdeoFv7J8dH6dHB4PApuh2WUuIyXpuoNZ8uzDNwAOfyeS1lGH29bsH-DVRybKs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZbxMxELZQKxAvqNyhBYzEQyKy6h5eH48BmpYAFVKJ1DfLZ1kp2UQ5kPgN_GnGe0GgIPEaz1rOHPvNrD2fEXppY6UB2HXEYi0ikhp4D1KVRZlPjdaGGapDc_LHc3o2JZPL_PKXLv7qtHu7JVn3NASWpnJzvLS-DnFOj9dQFVAeAd5EAfNFBPXPPs-FgPJrfzSaXEy67yyAh4QR3vbLXPvwDiZV1P3X5Zt_Hpv8be-0gqTxAbrT5JJ4VBv_LrrhynvoZn275Lf76PvJsgAlwiCGfwjuhgNlJdY1P7PCRYkh-8PzouZimrs1XniQiQK-QSKKr8KZHNyfzr6qwRDrULDj_oUyoVOrKNUAq9LiFQj2TwPhxGyxXRZqiE_drLDFdj7AcwVTh2YR9wBNxyef35xFzd0LkclJsol0HKA9T6jXSepUTo1jlqdeeEi4hMqJSb01KokFt0RZqrkDpPMsy4inlrPsIdorF6V7jLBLY-WhKvJea6K04MJqI0wCc1MHr7ceSlrtS9MQk4f7MWayKlA4lbXFJFhMVhaTSQ-96p5Z1rQc_5R-HYzaSQZK7eqHxepKNhEqlTeWU59bzzjRKRO5SURujeeCgAryHjpqXUI2cb6WULCyADox6aEX3TBEaNh2UaVbbCuZNGMZIzDFo9qDupVkrEpIQQd8x7d2lro7UhZfKhbwwLmRiVj00LB1w5_r-rsunvyf-HN069Pbsfzw7vz9IbqdVkETPkEdob3NauueQka20c-aoPsBKXcvAQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Epiphytic+common+core+bacteria+in+the+microbiomes+of+co-located+green+%28Ulva%29%2C+brown+%28Saccharina%29+and+red+%28Grateloupia%2C+Gelidium%29+macroalgae&rft.jtitle=Microbiome&rft.au=De-Chen%2C+Lu&rft.au=Feng-Qing%2C+Wang&rft.au=Amann%2C+Rudolf+I&rft.au=Teeling%2C+Hanno&rft.date=2023-06-01&rft.pub=BioMed+Central&rft.eissn=2049-2618&rft.volume=11&rft.spage=1&rft_id=info:doi/10.1186%2Fs40168-023-01559-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-2618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-2618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-2618&client=summon