Optimizing electric load forecasting with support vector regression/LSTM optimized by flexible Gorilla troops algorithm and neural networks a case study

This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective o...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 22092 - 20
Main Authors Zhang, Zhirong, Zhang, Qiqi, Liang, Haitao, Gorbani, Bizhan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 27.09.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-73893-9

Cover

Abstract This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand.
AbstractList This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand.
This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand.This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand.
Abstract This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand.
ArticleNumber 22092
Author Gorbani, Bizhan
Liang, Haitao
Zhang, Zhirong
Zhang, Qiqi
Author_xml – sequence: 1
  givenname: Zhirong
  surname: Zhang
  fullname: Zhang, Zhirong
  email: zhangzr090427@163.com
  organization: Medical Imaging Department, Shanxi Provincial General Hospital of the Chinese People’s Armed Police Force
– sequence: 2
  givenname: Qiqi
  surname: Zhang
  fullname: Zhang, Qiqi
  organization: Computing Center, Shanghai Publishing and Printing College
– sequence: 3
  givenname: Haitao
  surname: Liang
  fullname: Liang, Haitao
  organization: Information Center, Shanxi Provincial General Hospital of the Chinese People’s Armed Police Force
– sequence: 4
  givenname: Bizhan
  surname: Gorbani
  fullname: Gorbani, Bizhan
  email: bizhangorbani@gmail.com
  organization: Central Tehran Branch, Islamic Azad University, College of Technical Engineering, The Islamic University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39333276$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQjVARLaV_gAOyxIVLaPyRxD4hVJVSaVEPlLNlJ5OsF28cbKfL8kv4uXibpbQ9VPgy1sybN89v_DI7GNwAWfYaF-9xQflpYLgUPC8Iy2vKBc3Fs-yIFKzMCSXk4N79MDsJYVWkUxLBsHiRHVJBKSV1dZT9vhqjWZtfZugRWGiiNw2yTrWocx4aFeKusjFxicI0js5HdJNQziMPvYcQjBtOF1-vvyA3E0GL9BZ1Fn4abQFdOG-sVSh658aAlO1TIi7XSA0tGmDyyqYQN85_T1WUBgIKcWq3r7LnnbIBTvbxOPv26fz67HO-uLq4PPu4yJuS4ZgrzEugQitKBC-YKECwqupUrZM7bauo5rziBdWYY9JyRqgSutZCN6wuVQP0OLuceVunVnL0Zq38Vjpl5G3C-V4qH01jQaqOYd11vFJ1yRoKqkpkUJW15i3XYsdFZ65pGNV2o6y9I8SF3K1NzmuTaW3ydm1SpK4Pc9c46TW0DQwxufJAysPKYJaydzcSY0YrzncM7_YM3v2YIES5NqGB5PsAbgqSYlzUNI0nCfr2EXTlJj8kh29RZc0xqxLqzX1Jd1r-_psE4DOg8S4ED51sTFQxfYak0Ninn0setf6XR3tnQwIPPfh_sp_o-gNwy_uC
CitedBy_id crossref_primary_10_1038_s41598_025_88566_4
Cites_doi 10.1109/4235.985692
10.1016/j.ijepes.2022.108651
10.3390/en10081186
10.1016/j.ijepes.2022.108906
10.1016/j.ijepes.2022.108743
10.1016/j.egyr.2020.01.009
10.1049/gtd2.12773
10.1109/ACCESS.2019.2907739
10.1016/j.rser.2021.111295
10.1016/j.apenergy.2023.122087
10.1016/j.egypro.2019.01.952
10.1038/s41598-024-53602-2
10.3390/sym13010063
10.1049/iet-gtd.2019.1625
10.1016/j.jgsce.2023.205133
10.1016/j.knosys.2018.06.001
10.1109/TEVC.2008.919004
10.1016/j.apenergy.2017.03.034
10.1016/j.apenergy.2020.115503
10.1016/j.segan.2019.100274
10.3390/su132212771
10.1016/j.csite.2024.104005
10.1515/med-2020-0131
10.1016/j.enbuild.2022.112666
10.1016/j.swevo.2018.02.013
10.1016/j.heliyon.2023.e23394
10.1007/978-3-030-16339-6_5
10.1016/j.heliyon.2024.e24315
10.1016/j.heliyon.2023.e16827
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-73893-9
DatabaseName Springer Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic



PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 20
ExternalDocumentID oai_doaj_org_article_af41bff86a754c3ea63a9e657b8d8b9e
10.1038/s41598-024-73893-9
PMC11436889
39333276
10_1038_s41598_024_73893_9
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c541t-a185e39ba32980490e9466fa7b598dda3b886803b1812d8423a9b7b9bc475ace3
IEDL.DBID UNPAY
ISSN 2045-2322
IngestDate Fri Oct 03 12:40:26 EDT 2025
Sun Oct 26 04:11:30 EDT 2025
Tue Sep 30 17:07:24 EDT 2025
Thu Sep 04 19:22:17 EDT 2025
Tue Oct 07 08:08:23 EDT 2025
Mon Jul 21 05:56:43 EDT 2025
Wed Oct 01 04:02:08 EDT 2025
Thu Apr 24 23:08:40 EDT 2025
Fri Feb 21 02:38:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Long short-term memory
Electric load forecasting
Flexible gorilla troops optimization algorithm
Support Vector Regression
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-a185e39ba32980490e9466fa7b598dda3b886803b1812d8423a9b7b9bc475ace3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s41598-024-73893-9
PMID 39333276
PQID 3110578146
PQPubID 2041939
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_af41bff86a754c3ea63a9e657b8d8b9e
unpaywall_primary_10_1038_s41598_024_73893_9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436889
proquest_miscellaneous_3110730382
proquest_journals_3110578146
pubmed_primary_39333276
crossref_citationtrail_10_1038_s41598_024_73893_9
crossref_primary_10_1038_s41598_024_73893_9
springer_journals_10_1038_s41598_024_73893_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shen, Liang, Kang, Sun, Chen (CR24) 2020; 13
Wei (CR1) 2024; 353
Fan (CR14) 2020; 6
CR16
CR15
CR12
Guo, Xie, Qin, Jia, Wang (CR17) 2019; 7
Heydari (CR30) 2020; 277
Wei (CR2) 2023; 119
Huang (CR11) 2023; 145
Muzaffar, Afshari (CR29) 2019; 158
Dhiman, Kumar (CR25) 2018; 159
Xu, Sheykhahmad, Ghadimi, Razmjooy (CR8) 2020; 15
Li, Huang, Hu, Li (CR10) 2023; 279
Zambrano-Asanza, Morales, Montalvan, Franco (CR13) 2023; 148
Lin, Luo, Wang, Guo, Zhu (CR32) 2017; 10
Chang, Zhao, Niu, Zhang (CR31) 2023; 10
Yang (CR4) 2021; 148
Li, Tan, Zhang, Miao, He (CR9) 2023; 146
Ghadimi (CR27) 2023; 17
Yuan, Wang, Wang, Ghadimi (CR6) 2020; 14
Simon (CR22) 2008; 12
Clerc, Kennedy (CR18) 2002; 6
Nemati, Zandi, Agdas (CR19) 2024; 14
CR26
CR23
CR21
Jain, Singh, Rani (CR20) 2019; 44
Cao (CR3) 2019; 20
Chen (CR28) 2017; 195
Li (CR5) 2024; 54
Mahdinia, Rezaie, Elveny, Ghadimi, Razmjooy (CR7) 2021; 13
Z Xu (73893_CR8) 2020; 15
N Wei (73893_CR2) 2023; 119
M Jain (73893_CR20) 2019; 44
Z Yang (73893_CR4) 2021; 148
N Huang (73893_CR11) 2023; 145
S Zambrano-Asanza (73893_CR13) 2023; 148
D Simon (73893_CR22) 2008; 12
73893_CR26
73893_CR23
73893_CR21
N Wei (73893_CR1) 2024; 353
D Li (73893_CR9) 2023; 146
G Dhiman (73893_CR25) 2018; 159
Z Yuan (73893_CR6) 2020; 14
A Heydari (73893_CR30) 2020; 277
Y Chen (73893_CR28) 2017; 195
X Fan (73893_CR14) 2020; 6
M Nemati (73893_CR19) 2024; 14
Y Shen (73893_CR24) 2020; 13
P Chang (73893_CR31) 2023; 10
N Ghadimi (73893_CR27) 2023; 17
Y Lin (73893_CR32) 2017; 10
73893_CR16
73893_CR15
S Li (73893_CR5) 2024; 54
K Li (73893_CR10) 2023; 279
73893_CR12
J Guo (73893_CR17) 2019; 7
S Mahdinia (73893_CR7) 2021; 13
Y Cao (73893_CR3) 2019; 20
S Muzaffar (73893_CR29) 2019; 158
M Clerc (73893_CR18) 2002; 6
References_xml – volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: CR18
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 145
  start-page: 108651
  year: 2023
  ident: CR11
  article-title: Gated spatial-temporal graph neural network based short-term load forecasting for wide-area multiple buses
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108651
– ident: CR16
– volume: 10
  start-page: 1186
  year: 2017
  ident: CR32
  article-title: An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting
  publication-title: Energies
  doi: 10.3390/en10081186
– ident: CR12
– volume: 148
  start-page: 108906
  year: 2023
  ident: CR13
  article-title: Integrating artificial neural networks and cellular automata model for spatial-temporal load forecasting
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108906
– volume: 146
  start-page: 108743
  year: 2023
  ident: CR9
  article-title: Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108743
– volume: 6
  start-page: 325
  year: 2020
  end-page: 335
  ident: CR14
  article-title: Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.01.009
– volume: 17
  start-page: 4735
  issue: 21
  year: 2023
  end-page: 4749
  ident: CR27
  article-title: An innovative technique for optimization and sensitivity analysis of a PV/DG/BESS based on converged Henry gas solubility optimizer: a case study. IET Generation
  publication-title: Transmission Distribution
  doi: 10.1049/gtd2.12773
– volume: 7
  start-page: 42946
  year: 2019
  end-page: 42955
  ident: CR17
  article-title: Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2907739
– volume: 148
  start-page: 111295
  year: 2021
  ident: CR4
  article-title: Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111295
– volume: 353
  start-page: 122087
  year: 2024
  ident: CR1
  article-title: Short-term load forecasting based on WM algorithm and transfer learning model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122087
– volume: 158
  start-page: 2922
  year: 2019
  end-page: 2927
  ident: CR29
  article-title: Short-term load forecasts using LSTM networks
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.952
– volume: 14
  start-page: 3078
  year: 2024
  ident: CR19
  article-title: Application of a novel metaheuristic algorithm inspired by stadium spectators in global optimization problems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53602-2
– volume: 13
  start-page: 63
  year: 2020
  ident: CR24
  article-title: A modified jso algorithm for solving constrained engineering problems
  publication-title: Symmetry
  doi: 10.3390/sym13010063
– ident: CR23
– volume: 14
  start-page: 3478
  year: 2020
  end-page: 3487
  ident: CR6
  article-title: Probabilistic decomposition-based security constrained transmission expansion planning incorporating distributed series reactor
  publication-title: IET Generation Transmission Distribution
  doi: 10.1049/iet-gtd.2019.1625
– ident: CR21
– volume: 119
  start-page: 205133
  year: 2023
  ident: CR2
  article-title: Pseudo-correlation problem and its solution for the transfer forecasting of short-term natural gas loads
  publication-title: Gas Sci. Eng.
  doi: 10.1016/j.jgsce.2023.205133
– volume: 159
  start-page: 20
  year: 2018
  end-page: 50
  ident: CR25
  article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.06.001
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: CR22
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 195
  start-page: 659
  year: 2017
  end-page: 670
  ident: CR28
  article-title: Short-term electrical load forecasting using the support Vector Regression (SVR) model to calculate the demand response baseline for office buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.034
– volume: 277
  start-page: 115503
  year: 2020
  ident: CR30
  article-title: Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115503
– ident: CR15
– volume: 20
  start-page: 100274
  year: 2019
  ident: CR3
  article-title: Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: an epsilon constraint and fuzzy methods
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2019.100274
– volume: 13
  start-page: 12771
  year: 2021
  ident: CR7
  article-title: Optimization of PEMFC model parameters using meta-heuristics
  publication-title: Sustainability
  doi: 10.3390/su132212771
– volume: 10
  start-page: 21
  year: 2023
  end-page: 30
  ident: CR31
  article-title: Short-term load forecasting Method based on LSTM-SVR considering generalized demand-side resources
  publication-title: J. Appl. Sci. Eng. Innov.
– volume: 54
  start-page: 104005
  year: 2024
  ident: CR5
  article-title: Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: an optimal strategy based on improved mother optimization algorithm
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104005
– volume: 15
  start-page: 860
  year: 2020
  end-page: 871
  ident: CR8
  article-title: Computer-aided diagnosis of skin cancer based on soft computing techniques
  publication-title: Open Med.
  doi: 10.1515/med-2020-0131
– ident: CR26
– volume: 279
  start-page: 112666
  year: 2023
  ident: CR10
  article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112666
– volume: 44
  start-page: 148
  year: 2019
  end-page: 175
  ident: CR20
  article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.013
– volume: 6
  start-page: 58
  year: 2002
  ident: 73893_CR18
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 7
  start-page: 42946
  year: 2019
  ident: 73893_CR17
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2019.2907739
– ident: 73893_CR15
  doi: 10.1016/j.heliyon.2023.e23394
– volume: 14
  start-page: 3078
  year: 2024
  ident: 73893_CR19
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53602-2
– volume: 277
  start-page: 115503
  year: 2020
  ident: 73893_CR30
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2020.115503
– volume: 10
  start-page: 21
  year: 2023
  ident: 73893_CR31
  publication-title: J. Appl. Sci. Eng. Innov.
– volume: 159
  start-page: 20
  year: 2018
  ident: 73893_CR25
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2018.06.001
– volume: 12
  start-page: 702
  year: 2008
  ident: 73893_CR22
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 146
  start-page: 108743
  year: 2023
  ident: 73893_CR9
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108743
– volume: 195
  start-page: 659
  year: 2017
  ident: 73893_CR28
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.034
– volume: 148
  start-page: 108906
  year: 2023
  ident: 73893_CR13
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108906
– volume: 13
  start-page: 63
  year: 2020
  ident: 73893_CR24
  publication-title: Symmetry
  doi: 10.3390/sym13010063
– volume: 119
  start-page: 205133
  year: 2023
  ident: 73893_CR2
  publication-title: Gas Sci. Eng.
  doi: 10.1016/j.jgsce.2023.205133
– volume: 14
  start-page: 3478
  year: 2020
  ident: 73893_CR6
  publication-title: IET Generation Transmission Distribution
  doi: 10.1049/iet-gtd.2019.1625
– ident: 73893_CR23
  doi: 10.1007/978-3-030-16339-6_5
– volume: 10
  start-page: 1186
  year: 2017
  ident: 73893_CR32
  publication-title: Energies
  doi: 10.3390/en10081186
– volume: 148
  start-page: 111295
  year: 2021
  ident: 73893_CR4
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111295
– ident: 73893_CR12
– volume: 158
  start-page: 2922
  year: 2019
  ident: 73893_CR29
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2019.01.952
– volume: 20
  start-page: 100274
  year: 2019
  ident: 73893_CR3
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2019.100274
– volume: 353
  start-page: 122087
  year: 2024
  ident: 73893_CR1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.122087
– volume: 145
  start-page: 108651
  year: 2023
  ident: 73893_CR11
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108651
– volume: 6
  start-page: 325
  year: 2020
  ident: 73893_CR14
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2020.01.009
– volume: 54
  start-page: 104005
  year: 2024
  ident: 73893_CR5
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2024.104005
– volume: 17
  start-page: 4735
  issue: 21
  year: 2023
  ident: 73893_CR27
  publication-title: Transmission Distribution
  doi: 10.1049/gtd2.12773
– ident: 73893_CR21
– ident: 73893_CR16
  doi: 10.1016/j.heliyon.2024.e24315
– ident: 73893_CR26
  doi: 10.1016/j.heliyon.2023.e16827
– volume: 44
  start-page: 148
  year: 2019
  ident: 73893_CR20
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.02.013
– volume: 13
  start-page: 12771
  year: 2021
  ident: 73893_CR7
  publication-title: Sustainability
  doi: 10.3390/su132212771
– volume: 15
  start-page: 860
  year: 2020
  ident: 73893_CR8
  publication-title: Open Med.
  doi: 10.1515/med-2020-0131
– volume: 279
  start-page: 112666
  year: 2023
  ident: 73893_CR10
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112666
SSID ssj0000529419
Score 2.489493
Snippet This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term...
Abstract This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22092
SubjectTerms 639/166
639/166/987
Algorithms
Electric load forecasting
Energy demand
Flexible gorilla troops optimization algorithm
Forecasting
Forecasting techniques
Humanities and Social Sciences
Long short-term memory
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Support Vector Regression
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJQQcEN_dUpCRuNFo49iJ7SMgqgpRONBKvUVjx2lXSrOr7i7V8kv4uczE2bArUOHANXYSZ-bZM_ZM3jD2OgXroS4gkbWSiaqFShyATLyodRo0lamko4Hjz8XRqfp4lp9tlPqinLBIDxwFN4ZaCVfXpgCdKy8DFBJsKHLtTGWcDbT6psZubKYiq3dmlbD9XzKpNOM5Wir6myxTiSYjndgtS9QR9v_Jy_w9WXKImN5jd5btDFbX0DQbRunwAbvfe5P8bfyKh-xWaB-x27G-5Oox-_EFF4TLyXd8Do_1biaeN1OoOLqqwcOccp45HcXy-XJGnjj_1p3i86twHhNk2_GnryfHfBofFCruVrwmEk3XBE6k-ggjvkD3ezbn0JzjhcXFJYe24sSUiWNrY545tnJ8YeAdn-0Tdnr44eT9UdKXYkh8rsQiATTrQVoHMrOGgoWBeOlr0A6FWlUgnTGFSaUjh6Ey6KOBddpZ55XOwQf5lO200zbsMk7cqLbyuXDCo7dYO3BKaJdmoag0FGLExFotpe95yqlcRlN28XJpyqjKElVZdqos7Yi9Ge6ZRZaOG3u_I20PPYlhu7uAuCt73JV_w92I7a-xUvbTfl5KQWWT6VR1xF4NzThhKQoDbZguYx9cVqXJRuxZhNYwEmmllJnGu80W6LaGut3STi46UnDc18rCGPy4gzU-f43rJlkcDBj-B9Ht_Q_RPWd3M5qHFNvT-2xncbUML9C1W7iX3Sz-CYg4TPo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgg4IF6FhYKMxI1GG8dJbB8QoqhVheiCoJV6i8aPbFdKk2UfoOWX8HPx5FVWoBXX2E5sz3hmMjP-hpBXISgDeQoBz2MexDmLAw3AA8NyETqBZSrRNXA6Tk_O4w8XycUOGXd3YTCtspOJtaC2lUEf-YgzrEiLDqu3s28BVo3C6GpXQgPa0gr2TQ0xdoPsRoiMNSC7h0fjz196rwvGtWKm2tszIZejhddgeMssigOByjtQGxqqBvL_l_X5dxJlH0m9Q26tyhmsf0BR_KGsju-Ru62VSd81bHGf7LjyAbnZ1J1cPyS_PnlBcTX96d9Dmzo4U0OLCiz1JqwzsMBcaIouWrpYzdBCp99r7z6du0mTOFuOPn49O6VV8yJnqV7THME1deEogu179qJLb5bPFhSKiX-wvLyiUFqKCJp-bmWTf-5bqf-gozXO7SNyfnx09v4kaEs0BCaJ2TIAr-4dVxp4pCQGER3i1ecgtN9Ua4FrKVMZco2GhJXedgOlhVbaxCIB4_geGZRV6Z4QipipypqEaWa8FZlr0DETOoxcagWkbEhYR5bMtPjlWEajyOo4OpdZQ8rMkzKrSZmpIXndj5k16B1bex8itfueiLxdP6jmk6w9yBnkMdN5LlMQSWy4g9QvyaWJ0NJKrdyQ7He8krXiYJFdM--QvOyb_UHG6AyUrlo1fby45TIakscNa_Uz4YpzHgk_Wm4w3cZUN1vK6WUNFu7_d3kqpV_cQcef1_PathcHPQ__x9Y93b7qZ-R2hCcMo3linwyW85V77o25pX7RntDf0zJJkQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKEYIeEO8uFGQkbjR0HTuxfUAIEFWFWDjQlXqLxomzXSnNLvsAll_Cz2UmzgZWrCoOXGM7ceaR-eKxv2HsWR9sDmUKkSyVjFQpVOQAZJSLUve9pjKVtDQw-JieDNX7s-Rsh63LHbUCnG_9taN6UsNZ9eL7l9UrdPiX4ci4OZpjEKKDYrGKNMXfyF5hVzFSWSrlMGjhfuD6jq0Stj07s33oRnxqaPy3Yc-_t1B2edQ9dn1ZT2H1Darqj1B1fIvdbDEmfx2M4jbb8fUddi1UnVzdZT8_4WfiYvwD78NDFZxxzqsJFBwBrM9hTjuhOS3Q8vlySqLhX5u1fT7zo7Bttj768Pl0wCfhRr7gbsVLotZ0ledEtY_GxRcIyqdzDtUILyzOLzjUBSf-TJxbHXafYyvHB3resNzeY8Pjd6dvT6K2QEOUJ0osIsBg76V1IGNrKIXoia2-BO1QqEUB0hmTmr50BCMKg8gNrNPOulzpBHIv77PdelL7fcaJMdUWeSKcyBFDlg6cEtr1Y58WGlLRY2Ktlixv2cupiEaVNVl0abKgygxVmTWqzGyPPe_GTAN3x6W935C2u57Eu91cmMxGWevGGZRKuLI0KehE5dJDiq_k00Q7UxhnfY8drG0lW9tyJgUVU6a11h572jWjG1NuBmo_WYY--LGVJu6xB8G0uplIK6WMNY42G0a3MdXNlnp83lCF49-uTI3Blztc2-fveV0mi8POhv9BdA__h-gesRsx-SFl_PQB213Mlv4xAr6Fe9J48S9UeVQH
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ8IL4GhYGMxBuNVsdObD8WxDRVDB62SXuLzo6zVcrSamlB5S_hz-UuSQPV0ASv8Ucd3-96lzv7d4y9G4P1UKQQyULJSBVCRQ5ARl4Uehw0lamk0MDxl_ToTE3Pk_MdNtrchdnK3zfU3TWaGLoGFqtIk3WN7B22axCYZsB2J5PpybSPqVDWSgnb3Y3B4Qc3B2_Zn4am_2--5c0jkn2e9AG7t6oWsP4OZfmHKTp8xB52PiSftEJ_zHZC9YTdbatKrp-yn1_xb-Bq9gPn4W2Vm5nn5Rxyjg5q8FDTSWdOAVherxbkf_NvTeyeX4eL9lhsdfD55PSYz9uJQs7dmhdEnenKwIlKH8HDl-h0L2oO5QU-WF5ecahyTvyYuLaqPV2OrRx_MPCGxfYZOzv8dPrxKOoKMEQ-UWIZARrzIK0DGVtDKcJAbPQFaIebmucgnTGpGUtHbkJu0DMD67SzziudgA9yjw2qeRVeME6MqDb3iXDCo49YOHBKaDeOQ5prSMWQiY1YMt-xk1ORjDJrsuTSZK0oMxRl1ogys0P2vh-zaLk5bu39gaTd9yRe7eYBwi3r1DSDQglXFCYFnSgvA6T4SiFNtDO5cTYM2f4GK1mn7HUmBRVLpljqkL3tm1FNKfcCVZiv2j6IWWniIXveQqtfibRSyljjaLMFuq2lbrdUs8uGChy_ZmVqDL7caIPP3-u6bS9GPYb_Yete_t_sr9j9mDSOcnd6nw2W16vwGl23pXvTaewvDJM98g
  priority: 102
  providerName: Springer Nature
Title Optimizing electric load forecasting with support vector regression/LSTM optimized by flexible Gorilla troops algorithm and neural networks a case study
URI https://link.springer.com/article/10.1038/s41598-024-73893-9
https://www.ncbi.nlm.nih.gov/pubmed/39333276
https://www.proquest.com/docview/3110578146
https://www.proquest.com/docview/3110730382
https://pubmed.ncbi.nlm.nih.gov/PMC11436889
https://doi.org/10.1038/s41598-024-73893-9
https://doaj.org/article/af41bff86a754c3ea63a9e657b8d8b9e
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYKwQ88DmgMCoj8cayNbETO49dtWmqaJnYKpWnyHacrSJLqyUFdX8Jfy53SRooTNN4aSV_NOfL2f7Vd_4dIR96KjQqCZTDEs4cnrjc0Uoxx7iJ6FmBaSrxaGA0Do4nfDj1pzVNDt6F2fDfM7mfwwaDl8A87gjcW51wi7QDH3B3i7Qn45P-V8weB7jEAWjg1bdibu64sfOUBP03ocp_gyMbD-kj8mCZLdTqh0rTPzahoydVNqO85C7E2JNve8tC75nrv5gd7za-p-RxjUVpvzKeZ-SezZ6T-1V2ytUL8vMzLCeXs2uQilbZcmaGpnMVUwC61qgcI6YpHuTSfLlAHE-_lz4AemXPq_DabP_T6dmIzqsfsjHVK5ogBadOLUVKfjBCWgB4X-RUpedQUFxcUpXFFHk2QbasilKHWgoPtLRkw90mk6PDs8GxUydycIzP3cJRAAosC7ViXijR1WiR1T5RQsPY41gxLWUge0wj3IglIDwVaqFDbbjwlbHsJWll88y-JhSZVcPY-K52DWDNRCvNXaF7ng1ioQK3Q9z1S45MzXKOyTbSqPS2MxlVGo9A41Gp8SjskI9Nn0XF8XFr6wO0naYl8nOXBfBao3q6Ryrhrk4SGSjhc8OsCmBINvCFlrHUoe2QnbXlRfWikUfMxaTLeCbbIe-bapju6MNRmZ0vqzawKDPpdcirylAbSVjIGPME9JYbJrwh6mZNNrsoKcXhXzELpITB7a6t_bdct-lit5kRd1Ddm_9r_pY89HBioA9Q7JBWcbW07wACFrpLtsRUdEm73x-eDuH74HB88gVKB8GgWx6rwOeIy269RvwCUz5asA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwpDDASPLGoTewk9sOEGGzqWFsQdNLegu04XaUsKb0wlV_Cr-G3cU5uowJVvOw1dhw75_j43PwdQl52lDQqCZTDEs4cnrjc0Uoxx7hJ2LEhlqlE10B_EHRP-IdT_3SD_KrvwmBaZS0TC0Ed5wZ95G3mYkVadFi9mXxzsGoURlfrEhqqKq0Q7xUQY9XFjmO7vAATbrZ39B7o_crzDg-G77pOVWXAMT53546CE8syqRXzpMA4mEXI9USF2pcijhXTQgSiwzSehbEA9UNJHWqpDQ99ZSyDca-RLc64BONva_9g8Olz4-XBOBp3ZXVbp8NEewYnJt5q87gTorLgyJUTsSgc8C9t9--kzSZye5NsL7KJWl6oNP3jcDy8TW5VWi19W7LhHbJhs7vkelnncnmP_PwIgul8_APGoWXdnbGhaa5iCiqzNWqGudcUXcJ0tpigRUC_F9EEOrWjMlE3a_e-DPs0LweyMdVLmiCYp04tRXB_YGc6BzNgMqMqHcGD-dk5VVlMEbET5paV-e7QSuGDlha4uvfJyZUQ6wHZzPLMPiIUMVplbHxXuwa01kQrzd1QdzwbxKEK3BZxa7JEpsJLx7IdaVTE7ZmISlJGQMqoIGUkW-R1886kRAtZ23sfqd30RKTv4kE-HUWV4IhUwl2dJCJQoc8NsyqAJdnAD7WIhZa2RXZqXokq8TOLLjdLi7xomkFwYDRIZTZflH1AvDPhtcjDkrWamTDJGPNCeFusMN3KVFdbsvFZAU4O9jULhIDF7db8eTmvdf9it-Hh__h1j9ev-jnZ7g77vah3NDh-Qm54uNswkhjukM35dGGfgiI518-q3UrJ16sWEL8B5feFsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4s1CASPBiUa7iZ3YPiAElFVLHyDRSnsLtuNsV0qTZbNLtfwSfgu_jpm8ygpUcek1dhw7M54Zz4y_IeTFQCur00h7LOXM46nPPaM186yfioETWKYSXQP7B9H2Ef84Ckdr5Fd7FwbTKluZWAnqpLDoI-8zHyvSosOqnzZpEZ-3hm-m3zysIIWR1racRs0iu255Cse38vXOFtD6ZRAMPxy-3_aaCgOeDbk_9zRoK8eU0SxQEmNgDuHWUy1MqGSSaGakjOSAGdSDiQTTQysjjDKWi1Bbx2DcS-SyYExhOqEYic6_gxE07qvmns6AyX4JuhLvswXcE2gmeGpFF1YlA_5l5_6drtnFbG-Qa4t8qpenOsv-UIvDW-RmY8_StzUD3iZrLr9DrtQVLpd3yc9PIJJOJj9gHFpX3JlYmhU6oWAsO6tLzLqm6Aym5WKKZwH6vYoj0Jkb1ym6eX_vy-E-LeqBXELNkqYI42kyRxHWHxiZzuEAMC2pzsbwYH58QnWeUMTqhLnldaY7tFL4oKMVou49cnQhpLpP1vMidw8JRXRWldjQN74FezU12nBfmEHgokToyO8RvyVLbBukdCzYkcVVxJ7JuCZlDKSMK1LGqkdede9Ma5yQc3u_Q2p3PRHju3pQzMZxIzJinXLfpKmMtAi5ZU5HsCQXhcLIRBrlemSj5ZW4ETxlfLZNeuR51wwiA-NAOnfFou4Dgp3JoEce1KzVzYQpxlgg4G25wnQrU11tySfHFSw5nKxZJCUsbrPlz7N5nfcvNjse_o9f9-j8VT8jV0EsxHs7B7uPyfUANxuGEMUGWZ_PFu4JWJBz87TaqpR8vWjZ8Bs5b4NL
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagEwIe-M1WGMhIvLFsTZzEzuNATBNiA4lVGk_R2XG2iiytlgTU_SX8udzFaSAwTeM1ttvz5c7-4jt_x9jrCSQG8hg8kYfCC3M_9DSA8Iyfy4mVVKaSjgYODuP9afjhODruaHLoLswgfi_UToUbDF0CC0JP0t7qJTfZWhwh7h6xtenh592vVD0OcYmH0CDobsVcPnCw87QE_Zehyn-TI_sI6V12uykXsPwBRfHHJrR331UzqlruQso9-bbd1HrbXPzF7Hi9-T1g9zosyned8TxkN2z5iN1y1SmXj9nPT7icnM0uUCruquXMDC_mkHEEutZARRnTnA5yedUsCMfz720MgJ_bE5deW-58_HJ0wOfuh2zG9ZLnRMGpC8uJkh-NkNcI3hcVh-IEH9SnZxzKjBPPJspWuix1bOX4h5a3bLhP2HTv_dG7fa8r5OCZKPRrDxAUWJFoEEGiKNRoidU-B6lx7lkGQisVq4nQBDcyhQgPEi11ok0oIzBWPGWjcl7aDcaJWTXJTORr3yDWzDXo0Jd6Etg4kxD7Y-avXnJqOpZzKrZRpG20XajUaTxFjaetxtNkzN70YxaO4-PK3m_JdvqexM_dPsDXmnbunkIe-jrPVQwyCo2wEOOUbBxJrTKlEztmmyvLS7tFo0qFT0WX6Ux2zF71zejuFMOB0s4b1wcXZaGCMVt3htpLIhIhRCBxtBqY8EDUYUs5O20pxfGrWMRK4eS2Vtb-W66rdLHVe8Q1VPfs_7o_Z3cCcgyKAcpNNqrPG_sCIWCtX3a-_wu6FVP3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+electric+load+forecasting+with+support+vector+regression%2FLSTM+optimized+by+flexible+Gorilla+troops+algorithm+and+neural+networks+a+case+study&rft.jtitle=Scientific+reports&rft.au=Zhirong+Zhang&rft.au=Qiqi+Zhang&rft.au=Haitao+Liang&rft.au=Bizhan+Gorbani&rft.date=2024-09-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1038%2Fs41598-024-73893-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af41bff86a754c3ea63a9e657b8d8b9e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon