Optimizing electric load forecasting with support vector regression/LSTM optimized by flexible Gorilla troops algorithm and neural networks a case study
This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective o...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 22092 - 20 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
27.09.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-73893-9 |
Cover
| Abstract | This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand. |
|---|---|
| AbstractList | This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand. This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand.This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand. Abstract This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term Memory (SVR/LSTM) methodology. The model has been modified by a flexible version of the Gorilla Troops optimization algorithm. The objective of this study is to enhance the precision and effectiveness of load forecasting models by integrating the adaptive functionalities of the Gorilla Troops algorithm within the SVR/LSTM framework. To assess the efficacy of the proposed methodology, a comprehensive series of experiments and evaluations have been undertaken, utilizing authentic data obtained from 200 residential properties located in Texas, United States of America. The dataset comprises historical records of electricity consumption, meteorological data, and other pertinent variables that exert an impact on energy demand. The presence of this general dataset enhances the dependability and inclusiveness of the empirical findings. The proposed methodology was evaluated against various contemporary load forecasting techniques that are widely employed in the industry. The results of a comprehensive evaluation and performance analysis indicate that the modified SVR/LSTM model exhibits superior performance compared to the existing methods in terms of accuracy and robustness. The comparison results unequivocally demonstrate the superiority of the proposed method in accurately forecasting electric load demand. |
| ArticleNumber | 22092 |
| Author | Gorbani, Bizhan Liang, Haitao Zhang, Zhirong Zhang, Qiqi |
| Author_xml | – sequence: 1 givenname: Zhirong surname: Zhang fullname: Zhang, Zhirong email: zhangzr090427@163.com organization: Medical Imaging Department, Shanxi Provincial General Hospital of the Chinese People’s Armed Police Force – sequence: 2 givenname: Qiqi surname: Zhang fullname: Zhang, Qiqi organization: Computing Center, Shanghai Publishing and Printing College – sequence: 3 givenname: Haitao surname: Liang fullname: Liang, Haitao organization: Information Center, Shanxi Provincial General Hospital of the Chinese People’s Armed Police Force – sequence: 4 givenname: Bizhan surname: Gorbani fullname: Gorbani, Bizhan email: bizhangorbani@gmail.com organization: Central Tehran Branch, Islamic Azad University, College of Technical Engineering, The Islamic University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39333276$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v1DAQjVARLaV_gAOyxIVLaPyRxD4hVJVSaVEPlLNlJ5OsF28cbKfL8kv4uXibpbQ9VPgy1sybN89v_DI7GNwAWfYaF-9xQflpYLgUPC8Iy2vKBc3Fs-yIFKzMCSXk4N79MDsJYVWkUxLBsHiRHVJBKSV1dZT9vhqjWZtfZugRWGiiNw2yTrWocx4aFeKusjFxicI0js5HdJNQziMPvYcQjBtOF1-vvyA3E0GL9BZ1Fn4abQFdOG-sVSh658aAlO1TIi7XSA0tGmDyyqYQN85_T1WUBgIKcWq3r7LnnbIBTvbxOPv26fz67HO-uLq4PPu4yJuS4ZgrzEugQitKBC-YKECwqupUrZM7bauo5rziBdWYY9JyRqgSutZCN6wuVQP0OLuceVunVnL0Zq38Vjpl5G3C-V4qH01jQaqOYd11vFJ1yRoKqkpkUJW15i3XYsdFZ65pGNV2o6y9I8SF3K1NzmuTaW3ydm1SpK4Pc9c46TW0DQwxufJAysPKYJaydzcSY0YrzncM7_YM3v2YIES5NqGB5PsAbgqSYlzUNI0nCfr2EXTlJj8kh29RZc0xqxLqzX1Jd1r-_psE4DOg8S4ED51sTFQxfYak0Ninn0setf6XR3tnQwIPPfh_sp_o-gNwy_uC |
| CitedBy_id | crossref_primary_10_1038_s41598_025_88566_4 |
| Cites_doi | 10.1109/4235.985692 10.1016/j.ijepes.2022.108651 10.3390/en10081186 10.1016/j.ijepes.2022.108906 10.1016/j.ijepes.2022.108743 10.1016/j.egyr.2020.01.009 10.1049/gtd2.12773 10.1109/ACCESS.2019.2907739 10.1016/j.rser.2021.111295 10.1016/j.apenergy.2023.122087 10.1016/j.egypro.2019.01.952 10.1038/s41598-024-53602-2 10.3390/sym13010063 10.1049/iet-gtd.2019.1625 10.1016/j.jgsce.2023.205133 10.1016/j.knosys.2018.06.001 10.1109/TEVC.2008.919004 10.1016/j.apenergy.2017.03.034 10.1016/j.apenergy.2020.115503 10.1016/j.segan.2019.100274 10.3390/su132212771 10.1016/j.csite.2024.104005 10.1515/med-2020-0131 10.1016/j.enbuild.2022.112666 10.1016/j.swevo.2018.02.013 10.1016/j.heliyon.2023.e23394 10.1007/978-3-030-16339-6_5 10.1016/j.heliyon.2024.e24315 10.1016/j.heliyon.2023.e16827 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-73893-9 |
| DatabaseName | Springer Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database (Proquest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 20 |
| ExternalDocumentID | oai_doaj_org_article_af41bff86a754c3ea63a9e657b8d8b9e 10.1038/s41598-024-73893-9 PMC11436889 39333276 10_1038_s41598_024_73893_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c541t-a185e39ba32980490e9466fa7b598dda3b886803b1812d8423a9b7b9bc475ace3 |
| IEDL.DBID | UNPAY |
| ISSN | 2045-2322 |
| IngestDate | Fri Oct 03 12:40:26 EDT 2025 Sun Oct 26 04:11:30 EDT 2025 Tue Sep 30 17:07:24 EDT 2025 Thu Sep 04 19:22:17 EDT 2025 Tue Oct 07 08:08:23 EDT 2025 Mon Jul 21 05:56:43 EDT 2025 Wed Oct 01 04:02:08 EDT 2025 Thu Apr 24 23:08:40 EDT 2025 Fri Feb 21 02:38:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Long short-term memory Electric load forecasting Flexible gorilla troops optimization algorithm Support Vector Regression |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-a185e39ba32980490e9466fa7b598dda3b886803b1812d8423a9b7b9bc475ace3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1038/s41598-024-73893-9 |
| PMID | 39333276 |
| PQID | 3110578146 |
| PQPubID | 2041939 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_af41bff86a754c3ea63a9e657b8d8b9e unpaywall_primary_10_1038_s41598_024_73893_9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11436889 proquest_miscellaneous_3110730382 proquest_journals_3110578146 pubmed_primary_39333276 crossref_citationtrail_10_1038_s41598_024_73893_9 crossref_primary_10_1038_s41598_024_73893_9 springer_journals_10_1038_s41598_024_73893_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-27 |
| PublicationDateYYYYMMDD | 2024-09-27 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | Shen, Liang, Kang, Sun, Chen (CR24) 2020; 13 Wei (CR1) 2024; 353 Fan (CR14) 2020; 6 CR16 CR15 CR12 Guo, Xie, Qin, Jia, Wang (CR17) 2019; 7 Heydari (CR30) 2020; 277 Wei (CR2) 2023; 119 Huang (CR11) 2023; 145 Muzaffar, Afshari (CR29) 2019; 158 Dhiman, Kumar (CR25) 2018; 159 Xu, Sheykhahmad, Ghadimi, Razmjooy (CR8) 2020; 15 Li, Huang, Hu, Li (CR10) 2023; 279 Zambrano-Asanza, Morales, Montalvan, Franco (CR13) 2023; 148 Lin, Luo, Wang, Guo, Zhu (CR32) 2017; 10 Chang, Zhao, Niu, Zhang (CR31) 2023; 10 Yang (CR4) 2021; 148 Li, Tan, Zhang, Miao, He (CR9) 2023; 146 Ghadimi (CR27) 2023; 17 Yuan, Wang, Wang, Ghadimi (CR6) 2020; 14 Simon (CR22) 2008; 12 Clerc, Kennedy (CR18) 2002; 6 Nemati, Zandi, Agdas (CR19) 2024; 14 CR26 CR23 CR21 Jain, Singh, Rani (CR20) 2019; 44 Cao (CR3) 2019; 20 Chen (CR28) 2017; 195 Li (CR5) 2024; 54 Mahdinia, Rezaie, Elveny, Ghadimi, Razmjooy (CR7) 2021; 13 Z Xu (73893_CR8) 2020; 15 N Wei (73893_CR2) 2023; 119 M Jain (73893_CR20) 2019; 44 Z Yang (73893_CR4) 2021; 148 N Huang (73893_CR11) 2023; 145 S Zambrano-Asanza (73893_CR13) 2023; 148 D Simon (73893_CR22) 2008; 12 73893_CR26 73893_CR23 73893_CR21 N Wei (73893_CR1) 2024; 353 D Li (73893_CR9) 2023; 146 G Dhiman (73893_CR25) 2018; 159 Z Yuan (73893_CR6) 2020; 14 A Heydari (73893_CR30) 2020; 277 Y Chen (73893_CR28) 2017; 195 X Fan (73893_CR14) 2020; 6 M Nemati (73893_CR19) 2024; 14 Y Shen (73893_CR24) 2020; 13 P Chang (73893_CR31) 2023; 10 N Ghadimi (73893_CR27) 2023; 17 Y Lin (73893_CR32) 2017; 10 73893_CR16 73893_CR15 S Li (73893_CR5) 2024; 54 K Li (73893_CR10) 2023; 279 73893_CR12 J Guo (73893_CR17) 2019; 7 S Mahdinia (73893_CR7) 2021; 13 Y Cao (73893_CR3) 2019; 20 S Muzaffar (73893_CR29) 2019; 158 M Clerc (73893_CR18) 2002; 6 |
| References_xml | – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: CR18 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 145 start-page: 108651 year: 2023 ident: CR11 article-title: Gated spatial-temporal graph neural network based short-term load forecasting for wide-area multiple buses publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108651 – ident: CR16 – volume: 10 start-page: 1186 year: 2017 ident: CR32 article-title: An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting publication-title: Energies doi: 10.3390/en10081186 – ident: CR12 – volume: 148 start-page: 108906 year: 2023 ident: CR13 article-title: Integrating artificial neural networks and cellular automata model for spatial-temporal load forecasting publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108906 – volume: 146 start-page: 108743 year: 2023 ident: CR9 article-title: Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108743 – volume: 6 start-page: 325 year: 2020 end-page: 335 ident: CR14 article-title: Multi-objective optimization for the proper selection of the best heat pump technology in a fuel cell-heat pump micro-CHP system publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.01.009 – volume: 17 start-page: 4735 issue: 21 year: 2023 end-page: 4749 ident: CR27 article-title: An innovative technique for optimization and sensitivity analysis of a PV/DG/BESS based on converged Henry gas solubility optimizer: a case study. IET Generation publication-title: Transmission Distribution doi: 10.1049/gtd2.12773 – volume: 7 start-page: 42946 year: 2019 end-page: 42955 ident: CR17 article-title: Short-term abnormal passenger flow prediction based on the fusion of SVR and LSTM publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2907739 – volume: 148 start-page: 111295 year: 2021 ident: CR4 article-title: Robust multi-objective optimal design of islanded hybrid system with renewable and diesel sources/stationary and mobile energy storage systems publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111295 – volume: 353 start-page: 122087 year: 2024 ident: CR1 article-title: Short-term load forecasting based on WM algorithm and transfer learning model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122087 – volume: 158 start-page: 2922 year: 2019 end-page: 2927 ident: CR29 article-title: Short-term load forecasts using LSTM networks publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.952 – volume: 14 start-page: 3078 year: 2024 ident: CR19 article-title: Application of a novel metaheuristic algorithm inspired by stadium spectators in global optimization problems publication-title: Sci. Rep. doi: 10.1038/s41598-024-53602-2 – volume: 13 start-page: 63 year: 2020 ident: CR24 article-title: A modified jso algorithm for solving constrained engineering problems publication-title: Symmetry doi: 10.3390/sym13010063 – ident: CR23 – volume: 14 start-page: 3478 year: 2020 end-page: 3487 ident: CR6 article-title: Probabilistic decomposition-based security constrained transmission expansion planning incorporating distributed series reactor publication-title: IET Generation Transmission Distribution doi: 10.1049/iet-gtd.2019.1625 – ident: CR21 – volume: 119 start-page: 205133 year: 2023 ident: CR2 article-title: Pseudo-correlation problem and its solution for the transfer forecasting of short-term natural gas loads publication-title: Gas Sci. Eng. doi: 10.1016/j.jgsce.2023.205133 – volume: 159 start-page: 20 year: 2018 end-page: 50 ident: CR25 article-title: Emperor penguin optimizer: a bio-inspired algorithm for engineering problems publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.06.001 – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: CR22 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 195 start-page: 659 year: 2017 end-page: 670 ident: CR28 article-title: Short-term electrical load forecasting using the support Vector Regression (SVR) model to calculate the demand response baseline for office buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.034 – volume: 277 start-page: 115503 year: 2020 ident: CR30 article-title: Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115503 – ident: CR15 – volume: 20 start-page: 100274 year: 2019 ident: CR3 article-title: Optimal operation of CCHP and renewable generation-based energy hub considering environmental perspective: an epsilon constraint and fuzzy methods publication-title: Sustainable Energy Grids Networks doi: 10.1016/j.segan.2019.100274 – volume: 13 start-page: 12771 year: 2021 ident: CR7 article-title: Optimization of PEMFC model parameters using meta-heuristics publication-title: Sustainability doi: 10.3390/su132212771 – volume: 10 start-page: 21 year: 2023 end-page: 30 ident: CR31 article-title: Short-term load forecasting Method based on LSTM-SVR considering generalized demand-side resources publication-title: J. Appl. Sci. Eng. Innov. – volume: 54 start-page: 104005 year: 2024 ident: CR5 article-title: Evaluating the efficiency of CCHP systems in Xinjiang Uygur Autonomous Region: an optimal strategy based on improved mother optimization algorithm publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.104005 – volume: 15 start-page: 860 year: 2020 end-page: 871 ident: CR8 article-title: Computer-aided diagnosis of skin cancer based on soft computing techniques publication-title: Open Med. doi: 10.1515/med-2020-0131 – ident: CR26 – volume: 279 start-page: 112666 year: 2023 ident: CR10 article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112666 – volume: 44 start-page: 148 year: 2019 end-page: 175 ident: CR20 article-title: A novel nature-inspired algorithm for optimization: Squirrel search algorithm publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.013 – volume: 6 start-page: 58 year: 2002 ident: 73893_CR18 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 7 start-page: 42946 year: 2019 ident: 73893_CR17 publication-title: IEEE Access. doi: 10.1109/ACCESS.2019.2907739 – ident: 73893_CR15 doi: 10.1016/j.heliyon.2023.e23394 – volume: 14 start-page: 3078 year: 2024 ident: 73893_CR19 publication-title: Sci. Rep. doi: 10.1038/s41598-024-53602-2 – volume: 277 start-page: 115503 year: 2020 ident: 73893_CR30 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2020.115503 – volume: 10 start-page: 21 year: 2023 ident: 73893_CR31 publication-title: J. Appl. Sci. Eng. Innov. – volume: 159 start-page: 20 year: 2018 ident: 73893_CR25 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2018.06.001 – volume: 12 start-page: 702 year: 2008 ident: 73893_CR22 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 146 start-page: 108743 year: 2023 ident: 73893_CR9 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108743 – volume: 195 start-page: 659 year: 2017 ident: 73893_CR28 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.034 – volume: 148 start-page: 108906 year: 2023 ident: 73893_CR13 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108906 – volume: 13 start-page: 63 year: 2020 ident: 73893_CR24 publication-title: Symmetry doi: 10.3390/sym13010063 – volume: 119 start-page: 205133 year: 2023 ident: 73893_CR2 publication-title: Gas Sci. Eng. doi: 10.1016/j.jgsce.2023.205133 – volume: 14 start-page: 3478 year: 2020 ident: 73893_CR6 publication-title: IET Generation Transmission Distribution doi: 10.1049/iet-gtd.2019.1625 – ident: 73893_CR23 doi: 10.1007/978-3-030-16339-6_5 – volume: 10 start-page: 1186 year: 2017 ident: 73893_CR32 publication-title: Energies doi: 10.3390/en10081186 – volume: 148 start-page: 111295 year: 2021 ident: 73893_CR4 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111295 – ident: 73893_CR12 – volume: 158 start-page: 2922 year: 2019 ident: 73893_CR29 publication-title: Energy Procedia doi: 10.1016/j.egypro.2019.01.952 – volume: 20 start-page: 100274 year: 2019 ident: 73893_CR3 publication-title: Sustainable Energy Grids Networks doi: 10.1016/j.segan.2019.100274 – volume: 353 start-page: 122087 year: 2024 ident: 73893_CR1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.122087 – volume: 145 start-page: 108651 year: 2023 ident: 73893_CR11 publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2022.108651 – volume: 6 start-page: 325 year: 2020 ident: 73893_CR14 publication-title: Energy Rep. doi: 10.1016/j.egyr.2020.01.009 – volume: 54 start-page: 104005 year: 2024 ident: 73893_CR5 publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2024.104005 – volume: 17 start-page: 4735 issue: 21 year: 2023 ident: 73893_CR27 publication-title: Transmission Distribution doi: 10.1049/gtd2.12773 – ident: 73893_CR21 – ident: 73893_CR16 doi: 10.1016/j.heliyon.2024.e24315 – ident: 73893_CR26 doi: 10.1016/j.heliyon.2023.e16827 – volume: 44 start-page: 148 year: 2019 ident: 73893_CR20 publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.02.013 – volume: 13 start-page: 12771 year: 2021 ident: 73893_CR7 publication-title: Sustainability doi: 10.3390/su132212771 – volume: 15 start-page: 860 year: 2020 ident: 73893_CR8 publication-title: Open Med. doi: 10.1515/med-2020-0131 – volume: 279 start-page: 112666 year: 2023 ident: 73893_CR10 publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112666 |
| SSID | ssj0000529419 |
| Score | 2.489493 |
| Snippet | This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long Short-Term... Abstract This research work focuses on addressing the challenges of electric load forecasting through the combination of Support Vector Regression and Long... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 22092 |
| SubjectTerms | 639/166 639/166/987 Algorithms Electric load forecasting Energy demand Flexible gorilla troops optimization algorithm Forecasting Forecasting techniques Humanities and Social Sciences Long short-term memory multidisciplinary Neural networks Science Science (multidisciplinary) Support Vector Regression |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQJQQcEN_dUpCRuNFo49iJ7SMgqgpRONBKvUVjx2lXSrOr7i7V8kv4uczE2bArUOHANXYSZ-bZM_ZM3jD2OgXroS4gkbWSiaqFShyATLyodRo0lamko4Hjz8XRqfp4lp9tlPqinLBIDxwFN4ZaCVfXpgCdKy8DFBJsKHLtTGWcDbT6psZubKYiq3dmlbD9XzKpNOM5Wir6myxTiSYjndgtS9QR9v_Jy_w9WXKImN5jd5btDFbX0DQbRunwAbvfe5P8bfyKh-xWaB-x27G-5Oox-_EFF4TLyXd8Do_1biaeN1OoOLqqwcOccp45HcXy-XJGnjj_1p3i86twHhNk2_GnryfHfBofFCruVrwmEk3XBE6k-ggjvkD3ezbn0JzjhcXFJYe24sSUiWNrY545tnJ8YeAdn-0Tdnr44eT9UdKXYkh8rsQiATTrQVoHMrOGgoWBeOlr0A6FWlUgnTGFSaUjh6Ey6KOBddpZ55XOwQf5lO200zbsMk7cqLbyuXDCo7dYO3BKaJdmoag0FGLExFotpe95yqlcRlN28XJpyqjKElVZdqos7Yi9Ge6ZRZaOG3u_I20PPYlhu7uAuCt73JV_w92I7a-xUvbTfl5KQWWT6VR1xF4NzThhKQoDbZguYx9cVqXJRuxZhNYwEmmllJnGu80W6LaGut3STi46UnDc18rCGPy4gzU-f43rJlkcDBj-B9Ht_Q_RPWd3M5qHFNvT-2xncbUML9C1W7iX3Sz-CYg4TPo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVgg4IF6FhYKMxI1GG8dJbB8QoqhVheiCoJV6i8aPbFdKk2UfoOWX8HPx5FVWoBXX2E5sz3hmMjP-hpBXISgDeQoBz2MexDmLAw3AA8NyETqBZSrRNXA6Tk_O4w8XycUOGXd3YTCtspOJtaC2lUEf-YgzrEiLDqu3s28BVo3C6GpXQgPa0gr2TQ0xdoPsRoiMNSC7h0fjz196rwvGtWKm2tszIZejhddgeMssigOByjtQGxqqBvL_l_X5dxJlH0m9Q26tyhmsf0BR_KGsju-Ru62VSd81bHGf7LjyAbnZ1J1cPyS_PnlBcTX96d9Dmzo4U0OLCiz1JqwzsMBcaIouWrpYzdBCp99r7z6du0mTOFuOPn49O6VV8yJnqV7THME1deEogu179qJLb5bPFhSKiX-wvLyiUFqKCJp-bmWTf-5bqf-gozXO7SNyfnx09v4kaEs0BCaJ2TIAr-4dVxp4pCQGER3i1ecgtN9Ua4FrKVMZco2GhJXedgOlhVbaxCIB4_geGZRV6Z4QipipypqEaWa8FZlr0DETOoxcagWkbEhYR5bMtPjlWEajyOo4OpdZQ8rMkzKrSZmpIXndj5k16B1bex8itfueiLxdP6jmk6w9yBnkMdN5LlMQSWy4g9QvyaWJ0NJKrdyQ7He8krXiYJFdM--QvOyb_UHG6AyUrlo1fby45TIakscNa_Uz4YpzHgk_Wm4w3cZUN1vK6WUNFu7_d3kqpV_cQcef1_PathcHPQ__x9Y93b7qZ-R2hCcMo3linwyW85V77o25pX7RntDf0zJJkQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKEYIeEO8uFGQkbjR0HTuxfUAIEFWFWDjQlXqLxomzXSnNLvsAll_Cz2UmzgZWrCoOXGM7ceaR-eKxv2HsWR9sDmUKkSyVjFQpVOQAZJSLUve9pjKVtDQw-JieDNX7s-Rsh63LHbUCnG_9taN6UsNZ9eL7l9UrdPiX4ci4OZpjEKKDYrGKNMXfyF5hVzFSWSrlMGjhfuD6jq0Stj07s33oRnxqaPy3Yc-_t1B2edQ9dn1ZT2H1Darqj1B1fIvdbDEmfx2M4jbb8fUddi1UnVzdZT8_4WfiYvwD78NDFZxxzqsJFBwBrM9hTjuhOS3Q8vlySqLhX5u1fT7zo7Bttj768Pl0wCfhRr7gbsVLotZ0ledEtY_GxRcIyqdzDtUILyzOLzjUBSf-TJxbHXafYyvHB3resNzeY8Pjd6dvT6K2QEOUJ0osIsBg76V1IGNrKIXoia2-BO1QqEUB0hmTmr50BCMKg8gNrNPOulzpBHIv77PdelL7fcaJMdUWeSKcyBFDlg6cEtr1Y58WGlLRY2Ktlixv2cupiEaVNVl0abKgygxVmTWqzGyPPe_GTAN3x6W935C2u57Eu91cmMxGWevGGZRKuLI0KehE5dJDiq_k00Q7UxhnfY8drG0lW9tyJgUVU6a11h572jWjG1NuBmo_WYY--LGVJu6xB8G0uplIK6WMNY42G0a3MdXNlnp83lCF49-uTI3Blztc2-fveV0mi8POhv9BdA__h-gesRsx-SFl_PQB213Mlv4xAr6Fe9J48S9UeVQH priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJwQ8IL4GhYGMxBuNVsdObD8WxDRVDB62SXuLzo6zVcrSamlB5S_hz-UuSQPV0ASv8Ucd3-96lzv7d4y9G4P1UKQQyULJSBVCRQ5ARl4Uehw0lamk0MDxl_ToTE3Pk_MdNtrchdnK3zfU3TWaGLoGFqtIk3WN7B22axCYZsB2J5PpybSPqVDWSgnb3Y3B4Qc3B2_Zn4am_2--5c0jkn2e9AG7t6oWsP4OZfmHKTp8xB52PiSftEJ_zHZC9YTdbatKrp-yn1_xb-Bq9gPn4W2Vm5nn5Rxyjg5q8FDTSWdOAVherxbkf_NvTeyeX4eL9lhsdfD55PSYz9uJQs7dmhdEnenKwIlKH8HDl-h0L2oO5QU-WF5ecahyTvyYuLaqPV2OrRx_MPCGxfYZOzv8dPrxKOoKMEQ-UWIZARrzIK0DGVtDKcJAbPQFaIebmucgnTGpGUtHbkJu0DMD67SzziudgA9yjw2qeRVeME6MqDb3iXDCo49YOHBKaDeOQ5prSMWQiY1YMt-xk1ORjDJrsuTSZK0oMxRl1ogys0P2vh-zaLk5bu39gaTd9yRe7eYBwi3r1DSDQglXFCYFnSgvA6T4SiFNtDO5cTYM2f4GK1mn7HUmBRVLpljqkL3tm1FNKfcCVZiv2j6IWWniIXveQqtfibRSyljjaLMFuq2lbrdUs8uGChy_ZmVqDL7caIPP3-u6bS9GPYb_Yete_t_sr9j9mDSOcnd6nw2W16vwGl23pXvTaewvDJM98g priority: 102 providerName: Springer Nature |
| Title | Optimizing electric load forecasting with support vector regression/LSTM optimized by flexible Gorilla troops algorithm and neural networks a case study |
| URI | https://link.springer.com/article/10.1038/s41598-024-73893-9 https://www.ncbi.nlm.nih.gov/pubmed/39333276 https://www.proquest.com/docview/3110578146 https://www.proquest.com/docview/3110730382 https://pubmed.ncbi.nlm.nih.gov/PMC11436889 https://doi.org/10.1038/s41598-024-73893-9 https://doaj.org/article/af41bff86a754c3ea63a9e657b8d8b9e |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdYKwQ88DmgMCoj8cayNbETO49dtWmqaJnYKpWnyHacrSJLqyUFdX8Jfy53SRooTNN4aSV_NOfL2f7Vd_4dIR96KjQqCZTDEs4cnrjc0Uoxx7iJ6FmBaSrxaGA0Do4nfDj1pzVNDt6F2fDfM7mfwwaDl8A87gjcW51wi7QDH3B3i7Qn45P-V8weB7jEAWjg1bdibu64sfOUBP03ocp_gyMbD-kj8mCZLdTqh0rTPzahoydVNqO85C7E2JNve8tC75nrv5gd7za-p-RxjUVpvzKeZ-SezZ6T-1V2ytUL8vMzLCeXs2uQilbZcmaGpnMVUwC61qgcI6YpHuTSfLlAHE-_lz4AemXPq_DabP_T6dmIzqsfsjHVK5ogBadOLUVKfjBCWgB4X-RUpedQUFxcUpXFFHk2QbasilKHWgoPtLRkw90mk6PDs8GxUydycIzP3cJRAAosC7ViXijR1WiR1T5RQsPY41gxLWUge0wj3IglIDwVaqFDbbjwlbHsJWll88y-JhSZVcPY-K52DWDNRCvNXaF7ng1ioQK3Q9z1S45MzXKOyTbSqPS2MxlVGo9A41Gp8SjskI9Nn0XF8XFr6wO0naYl8nOXBfBao3q6Ryrhrk4SGSjhc8OsCmBINvCFlrHUoe2QnbXlRfWikUfMxaTLeCbbIe-bapju6MNRmZ0vqzawKDPpdcirylAbSVjIGPME9JYbJrwh6mZNNrsoKcXhXzELpITB7a6t_bdct-lit5kRd1Ddm_9r_pY89HBioA9Q7JBWcbW07wACFrpLtsRUdEm73x-eDuH74HB88gVKB8GgWx6rwOeIy269RvwCUz5asA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwpDDASPLGoTewk9sOEGGzqWFsQdNLegu04XaUsKb0wlV_Cr-G3cU5uowJVvOw1dhw75_j43PwdQl52lDQqCZTDEs4cnrjc0Uoxx7hJ2LEhlqlE10B_EHRP-IdT_3SD_KrvwmBaZS0TC0Ed5wZ95G3mYkVadFi9mXxzsGoURlfrEhqqKq0Q7xUQY9XFjmO7vAATbrZ39B7o_crzDg-G77pOVWXAMT53546CE8syqRXzpMA4mEXI9USF2pcijhXTQgSiwzSehbEA9UNJHWqpDQ99ZSyDca-RLc64BONva_9g8Olz4-XBOBp3ZXVbp8NEewYnJt5q87gTorLgyJUTsSgc8C9t9--kzSZye5NsL7KJWl6oNP3jcDy8TW5VWi19W7LhHbJhs7vkelnncnmP_PwIgul8_APGoWXdnbGhaa5iCiqzNWqGudcUXcJ0tpigRUC_F9EEOrWjMlE3a_e-DPs0LweyMdVLmiCYp04tRXB_YGc6BzNgMqMqHcGD-dk5VVlMEbET5paV-e7QSuGDlha4uvfJyZUQ6wHZzPLMPiIUMVplbHxXuwa01kQrzd1QdzwbxKEK3BZxa7JEpsJLx7IdaVTE7ZmISlJGQMqoIGUkW-R1886kRAtZ23sfqd30RKTv4kE-HUWV4IhUwl2dJCJQoc8NsyqAJdnAD7WIhZa2RXZqXokq8TOLLjdLi7xomkFwYDRIZTZflH1AvDPhtcjDkrWamTDJGPNCeFusMN3KVFdbsvFZAU4O9jULhIDF7db8eTmvdf9it-Hh__h1j9ev-jnZ7g77vah3NDh-Qm54uNswkhjukM35dGGfgiI518-q3UrJ16sWEL8B5feFsQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEa8D4s1CASPBiUa7iZ3YPiAElFVLHyDRSnsLtuNsV0qTZbNLtfwSfgu_jpm8ygpUcek1dhw7M54Zz4y_IeTFQCur00h7LOXM46nPPaM186yfioETWKYSXQP7B9H2Ef84Ckdr5Fd7FwbTKluZWAnqpLDoI-8zHyvSosOqnzZpEZ-3hm-m3zysIIWR1racRs0iu255Cse38vXOFtD6ZRAMPxy-3_aaCgOeDbk_9zRoK8eU0SxQEmNgDuHWUy1MqGSSaGakjOSAGdSDiQTTQysjjDKWi1Bbx2DcS-SyYExhOqEYic6_gxE07qvmns6AyX4JuhLvswXcE2gmeGpFF1YlA_5l5_6drtnFbG-Qa4t8qpenOsv-UIvDW-RmY8_StzUD3iZrLr9DrtQVLpd3yc9PIJJOJj9gHFpX3JlYmhU6oWAsO6tLzLqm6Aym5WKKZwH6vYoj0Jkb1ym6eX_vy-E-LeqBXELNkqYI42kyRxHWHxiZzuEAMC2pzsbwYH58QnWeUMTqhLnldaY7tFL4oKMVou49cnQhpLpP1vMidw8JRXRWldjQN74FezU12nBfmEHgokToyO8RvyVLbBukdCzYkcVVxJ7JuCZlDKSMK1LGqkdede9Ma5yQc3u_Q2p3PRHju3pQzMZxIzJinXLfpKmMtAi5ZU5HsCQXhcLIRBrlemSj5ZW4ETxlfLZNeuR51wwiA-NAOnfFou4Dgp3JoEce1KzVzYQpxlgg4G25wnQrU11tySfHFSw5nKxZJCUsbrPlz7N5nfcvNjse_o9f9-j8VT8jV0EsxHs7B7uPyfUANxuGEMUGWZ_PFu4JWJBz87TaqpR8vWjZ8Bs5b4NL |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELagEwIe-M1WGMhIvLFsTZzEzuNATBNiA4lVGk_R2XG2iiytlgTU_SX8udzFaSAwTeM1ttvz5c7-4jt_x9jrCSQG8hg8kYfCC3M_9DSA8Iyfy4mVVKaSjgYODuP9afjhODruaHLoLswgfi_UToUbDF0CC0JP0t7qJTfZWhwh7h6xtenh592vVD0OcYmH0CDobsVcPnCw87QE_Zehyn-TI_sI6V12uykXsPwBRfHHJrR331UzqlruQso9-bbd1HrbXPzF7Hi9-T1g9zosyned8TxkN2z5iN1y1SmXj9nPT7icnM0uUCruquXMDC_mkHEEutZARRnTnA5yedUsCMfz720MgJ_bE5deW-58_HJ0wOfuh2zG9ZLnRMGpC8uJkh-NkNcI3hcVh-IEH9SnZxzKjBPPJspWuix1bOX4h5a3bLhP2HTv_dG7fa8r5OCZKPRrDxAUWJFoEEGiKNRoidU-B6lx7lkGQisVq4nQBDcyhQgPEi11ok0oIzBWPGWjcl7aDcaJWTXJTORr3yDWzDXo0Jd6Etg4kxD7Y-avXnJqOpZzKrZRpG20XajUaTxFjaetxtNkzN70YxaO4-PK3m_JdvqexM_dPsDXmnbunkIe-jrPVQwyCo2wEOOUbBxJrTKlEztmmyvLS7tFo0qFT0WX6Ux2zF71zejuFMOB0s4b1wcXZaGCMVt3htpLIhIhRCBxtBqY8EDUYUs5O20pxfGrWMRK4eS2Vtb-W66rdLHVe8Q1VPfs_7o_Z3cCcgyKAcpNNqrPG_sCIWCtX3a-_wu6FVP3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+electric+load+forecasting+with+support+vector+regression%2FLSTM+optimized+by+flexible+Gorilla+troops+algorithm+and+neural+networks+a+case+study&rft.jtitle=Scientific+reports&rft.au=Zhirong+Zhang&rft.au=Qiqi+Zhang&rft.au=Haitao+Liang&rft.au=Bizhan+Gorbani&rft.date=2024-09-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=20&rft_id=info:doi/10.1038%2Fs41598-024-73893-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_af41bff86a754c3ea63a9e657b8d8b9e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |