Early diagnosis of Alzheimer’s disease and mild cognitive impairment using MRI analysis and machine learning algorithms

Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 1; pp. 27 - 13
Main Authors Givian, Helia, Calbimonte, Jean-Paul
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.01.2025
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN3004-9261
2523-3963
3004-9261
2523-3971
DOI10.1007/s42452-024-06440-w

Cover

Abstract Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. Article Highlights Cognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages. Machine learning models classify Alzheimer’s stages using optimized brain MRI features. MRI scans show how brain features change as Alzheimer’s progresses.
AbstractList Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.The online version contains supplementary material available at 10.1007/s42452-024-06440-w.Supplementary InformationThe online version contains supplementary material available at 10.1007/s42452-024-06440-w.
Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. The online version contains supplementary material available at 10.1007/s42452-024-06440-w.
Abstract Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.
Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. Article Highlights Cognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages. Machine learning models classify Alzheimer’s stages using optimized brain MRI features. MRI scans show how brain features change as Alzheimer’s progresses.
Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. Cognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages.Machine learning models classify Alzheimer’s stages using optimized brain MRI features.MRI scans show how brain features change as Alzheimer’s progresses.
Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.Article HighlightsCognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages.Machine learning models classify Alzheimer’s stages using optimized brain MRI features.MRI scans show how brain features change as Alzheimer’s progresses.
ArticleNumber 27
Author Calbimonte, Jean-Paul
Givian, Helia
Author_xml – sequence: 1
  givenname: Helia
  surname: Givian
  fullname: Givian, Helia
  email: helia.givian@hevs.ch
  organization: Institute of Informatics, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), The Sense Innovation and Research Center
– sequence: 2
  givenname: Jean-Paul
  surname: Calbimonte
  fullname: Calbimonte, Jean-Paul
  organization: Institute of Informatics, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), The Sense Innovation and Research Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39712291$$D View this record in MEDLINE/PubMed
BookMark eNqNUs1u1DAYtFARLUtfgAOKxKWXgB3bSXxCVdXCSkVICM7WF8fJeuXYi510tZx4jb4eT4L3h9L2UHGy5W9mPOPxS3TkvNMIvSb4HcG4eh9ZwXiR44LluGQM5-tn6IRizHJRlOTo3v4Ynca4xBhTiquKixfomIqKFIUgJ2hzCcFustZA73w0MfNddm5_LrQZdPj96zamUdQQdQauzQZj20z53pnR3OjMDCswYdBuzKZoXJ99_jpPOLCbrdKOAGphnM6shuC2CLC9D2ZcDPEVet6Bjfr0sM7Q96vLbxef8usvH-cX59e54oyMeV2QCosW16ymGFLSRmjctk3VEE50SxVtMBcFb-saoKoxqzssaAeq4w3raElnaL7XbT0s5SqYAcJGejByd-BDLyGMRlktFS0VbpnoiC5YyagodVk2XBVMMcqVSFp0rzW5FWzWYO2dIMFy24vc9yJTL3LXi1wn1oc9azU1g25Veq8A9oGVhxNnFrL3N5KQknNe8aRwdlAI_sek4ygHE5W2Fpz2U5SUsJqJmpQ4Qd8-gi79FFInO1SZBGlKNkNv7lu68_L3YyRAsQeo4GMMuvu_oPUjkjIjjMZvYxn7NPXwsjHd43od_tl-gvUHgGzvhg
CitedBy_id crossref_primary_10_1371_journal_pone_0318720
crossref_primary_10_3390_diagnostics15060789
Cites_doi 10.1002/hbm.20161
10.1016/j.neuroscience.2021.01.002
10.1016/j.neurobiolaging.2006.11.010
10.3390/make5020031
10.1016/j.asej.2020.09.003
10.1109/ICCMC.2017.8282683
10.1016/B978-0-12-821777-1.00023-9
10.1016/bs.host.2022.12.004
10.2174/1573405615666190404163233
10.1147/rd.33.0210
10.1007/s11604-018-0794-4
10.3389/fnagi.2019.00220
10.1016/B978-0-12-416602-8.00006-6
10.1016/j.neucom.2017.11.077
10.1533/9781908818416.59
10.1016/j.neuroimage.2008.10.031
10.1080/13803395.2023.2167942
10.1016/j.ndteint.2022.102752
10.1016/B978-0-444-52892-6.00003-9
10.2741/4285
10.1007/978-3-319-94878-2
10.1016/j.bspc.2022.103571
10.1016/B978-0-12-801966-5.00011-1
10.1016/j.eswa.2014.04.019
10.1109/RBME.2018.2796598
10.1016/bs.adcom.2019.09.007
10.1016/j.patcog.2016.10.031
10.1155/2021/4896853
10.1038/ki.2009.92
10.1016/j.bspc.2020.101903
10.1016/j.eswa.2021.115537
10.1007/978-3-030-17971-7_14
10.1097/00002093-200401000-00003
10.1007/s10916-019-1428-9
10.1038/s41598-022-14983-4
10.1016/j.neucom.2014.12.084
10.1016/B978-0-12-409545-8.00007-8
10.1037/tps0000124
10.1016/B978-0-12-815861-6.00010-9
10.34107/YHPN9422.04241
10.1016/j.patcog.2017.04.018
10.3390/ijms23116079
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
Copyright Springer Nature B.V. Jan 2025
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: Copyright Springer Nature B.V. Jan 2025
– notice: The Author(s) 2024 2024
CorporateAuthor and for the Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: and for the Alzheimer’s Disease Neuroimaging Initiative
DBID C6C
AAYXX
CITATION
NPM
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1007/s42452-024-06440-w
DatabaseName Springer Nature Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
EndPage 13
ExternalDocumentID oai_doaj_org_article_c36c0d49f1e2464396e66b5c24c435c9
10.1007/s42452-024-06440-w
PMC11655575
39712291
10_1007_s42452_024_06440_w
Genre Journal Article
GrantInformation_xml – fundername: Swiss Government Excellence Scholarships
  grantid: ESKAS-Nr:2023.0599
– fundername: National Institutes of Health
  grantid: U19 AG024904
GroupedDBID AAJSJ
ABEEZ
ADMLS
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
GROUPED_DOAJ
M4Y
NU0
RSV
SOJ
AASML
AAYXX
CITATION
EBLON
M~E
NPM
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
7X8
5PM
ABFSG
ADTOC
AEZWR
AFHIU
AHWEU
AIXLP
UNPAY
ID FETCH-LOGICAL-c541t-821709d084830a644b9e0ddb7b151ed3c3b05925d88aa78048f093facf5b4f363
IEDL.DBID DOA
ISSN 3004-9261
2523-3963
IngestDate Tue Oct 14 18:17:52 EDT 2025
Sun Oct 26 04:13:33 EDT 2025
Tue Sep 30 17:05:45 EDT 2025
Fri Sep 05 14:37:03 EDT 2025
Wed Oct 08 14:22:06 EDT 2025
Wed Feb 19 01:58:58 EST 2025
Wed Oct 01 01:55:10 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri Feb 21 02:36:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Magnetic resonance imaging (MRI)
Computer-aided diagnosis (CAD)
Machine learning (ML)
Alzheimer’s disease (AD)
Mild Cognitive impairment (MCI)
Language English
License The Author(s) 2024.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-821709d084830a644b9e0ddb7b151ed3c3b05925d88aa78048f093facf5b4f363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/c36c0d49f1e2464396e66b5c24c435c9
PMID 39712291
PQID 3146655364
PQPubID 5758472
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c36c0d49f1e2464396e66b5c24c435c9
unpaywall_primary_10_1007_s42452_024_06440_w
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655575
proquest_miscellaneous_3148498160
proquest_journals_3146655364
pubmed_primary_39712291
crossref_primary_10_1007_s42452_024_06440_w
crossref_citationtrail_10_1007_s42452_024_06440_w
springer_journals_10_1007_s42452_024_06440_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Switzerland
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationTitleAlternate Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 6440_CR31
A Shukla (6440_CR8) 2023; 5
RE Ready (6440_CR47) 2004; 18
W Jiang (6440_CR18) 2021; 184
C Davatzikos (6440_CR4) 2008; 29
B Richhariya (6440_CR7) 2020; 59
L Pei (6440_CR12) 2022; 12
J Cai (6440_CR20) 2018; 300
J Wang (6440_CR19) 2015; 156
S Leandrou (6440_CR35) 2018; 11
N Hoque (6440_CR46) 2014; 41
P Raghavaiah (6440_CR6) 2022; 75
C Fennema-Notestine (6440_CR13) 2006; 27
Q Cao (6440_CR15) 2021; 2021
KJ Van Stralen (6440_CR28) 2009; 75
6440_CR1
6440_CR2
J-H So (6440_CR10) 2019; 15
G Lv (6440_CR21) 2023; 133
R Srikanth (6440_CR14) 2021; 12
M Zortea (6440_CR16) 2017; 64
AL Samuel (6440_CR38) 1959; 3
K Sakai (6440_CR39) 2019; 37
6440_CR43
6440_CR42
A Mehmood (6440_CR11) 2021; 460
6440_CR41
6440_CR25
6440_CR24
6440_CR23
6440_CR45
C Misra (6440_CR5) 2009; 44
L He (6440_CR17) 2017; 70
6440_CR22
M Allgaier (6440_CR32) 2014; 19
6440_CR44
6440_CR29
6440_CR27
6440_CR26
I El Naqa (6440_CR37) 2015
A Clarke (6440_CR3) 2022; 44
SE Setti (6440_CR30) 2017; 3
ER Ranschaert (6440_CR34) 2019
T Jo (6440_CR40) 2019; 11
6440_CR9
UR Acharya (6440_CR36) 2019; 43
J Kim (6440_CR33) 2022; 23
References_xml – volume: 27
  start-page: 99
  issue: 2
  year: 2006
  ident: 6440_CR13
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.20161
– ident: 6440_CR1
– volume: 460
  start-page: 43
  year: 2021
  ident: 6440_CR11
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2021.01.002
– volume: 29
  start-page: 514
  issue: 4
  year: 2008
  ident: 6440_CR4
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.11.010
– volume: 5
  start-page: 512
  issue: 2
  year: 2023
  ident: 6440_CR8
  publication-title: Mach Learn Knowl Extr
  doi: 10.3390/make5020031
– ident: 6440_CR44
– volume-title: What Is Machine Learning?
  year: 2015
  ident: 6440_CR37
– volume: 12
  start-page: 1
  issue: 1
  year: 2021
  ident: 6440_CR14
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2020.09.003
– ident: 6440_CR2
  doi: 10.1109/ICCMC.2017.8282683
– ident: 6440_CR22
  doi: 10.1016/B978-0-12-821777-1.00023-9
– ident: 6440_CR42
  doi: 10.1016/bs.host.2022.12.004
– volume: 15
  start-page: 689
  issue: 7
  year: 2019
  ident: 6440_CR10
  publication-title: Curr Med Imaging
  doi: 10.2174/1573405615666190404163233
– volume: 3
  start-page: 210
  issue: 3
  year: 1959
  ident: 6440_CR38
  publication-title: IBM J Res Dev
  doi: 10.1147/rd.33.0210
– volume: 37
  start-page: 34
  issue: 1
  year: 2019
  ident: 6440_CR39
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-018-0794-4
– volume: 11
  start-page: 220
  year: 2019
  ident: 6440_CR40
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2019.00220
– ident: 6440_CR43
  doi: 10.1016/B978-0-12-416602-8.00006-6
– volume: 300
  start-page: 70
  year: 2018
  ident: 6440_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– ident: 6440_CR24
  doi: 10.1533/9781908818416.59
– volume: 44
  start-page: 1415
  issue: 4
  year: 2009
  ident: 6440_CR5
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2008.10.031
– volume: 44
  start-page: 703
  issue: 10
  year: 2022
  ident: 6440_CR3
  publication-title: J Clin Exp Neuropsychol
  doi: 10.1080/13803395.2023.2167942
– volume: 133
  start-page: 102752
  year: 2023
  ident: 6440_CR21
  publication-title: NDT E Int
  doi: 10.1016/j.ndteint.2022.102752
– ident: 6440_CR25
  doi: 10.1016/B978-0-444-52892-6.00003-9
– volume: 19
  start-page: 1345
  issue: 8
  year: 2014
  ident: 6440_CR32
  publication-title: Front Biosci-Landmark
  doi: 10.2741/4285
– volume-title: Artificial Intelligence in Medical Imaging: Opportunities. Applications and Risks.
  year: 2019
  ident: 6440_CR34
  doi: 10.1007/978-3-319-94878-2
– volume: 75
  year: 2022
  ident: 6440_CR6
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.103571
– ident: 6440_CR23
  doi: 10.1016/B978-0-12-801966-5.00011-1
– volume: 41
  start-page: 6371
  issue: 14
  year: 2014
  ident: 6440_CR46
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.04.019
– volume: 11
  start-page: 97
  year: 2018
  ident: 6440_CR35
  publication-title: IEEE Rev Biomed Eng
  doi: 10.1109/RBME.2018.2796598
– ident: 6440_CR26
  doi: 10.1016/bs.adcom.2019.09.007
– volume: 64
  start-page: 92
  year: 2017
  ident: 6440_CR16
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.10.031
– volume: 2021
  start-page: 1
  year: 2021
  ident: 6440_CR15
  publication-title: J Sens
  doi: 10.1155/2021/4896853
– volume: 75
  start-page: 1257
  issue: 12
  year: 2009
  ident: 6440_CR28
  publication-title: Kidney Int
  doi: 10.1038/ki.2009.92
– volume: 59
  start-page: 101903
  year: 2020
  ident: 6440_CR7
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2020.101903
– ident: 6440_CR45
– volume: 184
  start-page: 115537
  year: 2021
  ident: 6440_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115537
– ident: 6440_CR9
  doi: 10.1007/978-3-030-17971-7_14
– volume: 18
  start-page: 11
  issue: 1
  year: 2004
  ident: 6440_CR47
  publication-title: Alzheimer Dis Assoc Disord
  doi: 10.1097/00002093-200401000-00003
– volume: 43
  start-page: 1
  year: 2019
  ident: 6440_CR36
  publication-title: J Med Syst
  doi: 10.1007/s10916-019-1428-9
– volume: 12
  start-page: 10826
  issue: 1
  year: 2022
  ident: 6440_CR12
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-14983-4
– volume: 156
  start-page: 68
  year: 2015
  ident: 6440_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.12.084
– ident: 6440_CR29
– ident: 6440_CR27
  doi: 10.1016/B978-0-12-409545-8.00007-8
– volume: 3
  start-page: 348
  issue: 4
  year: 2017
  ident: 6440_CR30
  publication-title: Transl Issues Psychol Sci
  doi: 10.1037/tps0000124
– ident: 6440_CR41
  doi: 10.1016/B978-0-12-815861-6.00010-9
– ident: 6440_CR31
  doi: 10.34107/YHPN9422.04241
– volume: 70
  start-page: 25
  year: 2017
  ident: 6440_CR17
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2017.04.018
– volume: 23
  start-page: 6079
  issue: 11
  year: 2022
  ident: 6440_CR33
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23116079
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.3080957
Snippet Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the...
Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the...
Abstract Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27
SubjectTerms Accuracy
Algorithms
Alzheimer's disease
Alzheimer’s disease (AD)
Applied and Technical Physics
Artificial intelligence
Biomarkers
Brain
Brain research
Cerebrospinal fluid
Chemistry/Food Science
Classification
Clinical trials
Cognitive ability
Computer-aided diagnosis (CAD)
Datasets
Decision trees
Deep learning
Dementia
Diagnosis
Earth Sciences
Engineering
Environment
Homogeneity
Impairment
Kurtosis
Learning algorithms
Machine learning
Machine learning (ML)
Magnetic resonance imaging
Magnetic resonance imaging (MRI)
Materials Science
Methods
Mild Cognitive impairment (MCI)
Multilayers
Neurodegenerative diseases
Neuroimaging
Statistical analysis
Substantia alba
Substantia grisea
Support vector machines
Texture
Ventricles (cerebral)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wB7mLiOwEBG4o1ZOL4tfkBoQ5sG0io0MWlvkWM7bVGall5UbU_8Df4evwTbcbJVoIrXxpHc488-X3zO-Q4AbzPJDrFQClFDS8S4TJGSiiNrTJlqXBRU-Grk8744u2RfrvjVFui3tTA-rbI9E8NBbSba35G_p25LC86pYB-nP5DvGuWjq20LDRVbK5gPQWLsHtgmXhmrB7aPT_pfL1qE8dRXpUQH-D2E3SRlQauTuC8yRB0cY2VNqK_zYUGCnBtDznMzjFZr3iuI_P-Lmf6dYNlFWXfA_WU9VdcrVVV3HNnpQ7AbGSg8aiDzCGzZ-jHYuaNL-ARcB9ljaJo0vNEcTkp4VN0M7WhsZ79__prDGNeBqjZwPKoM7NKQoK-7HM38pSP0SfUDeH7x2Y1rtE-aF0ICp4WxY8UAqmrgTL0YjudPweXpybdPZyj2aECas3SBMvdJg6XxqvwUK2ekQlpsTHFYOCphDdXUWV0SbrJMKS92lJVY0lLpkhespII-A716UtvnAGJDrLZEWFw4UmRKpagxKSuMxNI6ECUgbW2f6yhg7vtoVHknvRzWK3frlYf1ylcJeNe9M23kOzaOPvZL2o300tvhh8lskMednGsqNDZMlqklzPM5YYUouCZMO-qpZQL2W0Dk8TyY57foTcCb7rHbyT48o2o7WYYxGZNZKnAC9hr8dDNxrDElxNsgW0PW2lTXn9SjYVAL9_pK3JHyBBy0ILyd1yZbHHRA_Q_Tvdj8r1-CB8Q3Tg53V_ugt5gt7SvH5hbF67hF_wAuz0Vw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature Open Access Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPiGcbaJGRuFELJ35sfCwVVUEqB0Sl3iK_shspm602u1q1J_4Gf49fgu1kQ7dUFVzjcWTNQ_PZM_4M8C6XbESEUphaWmLGZYqVVBw7a8vUEK2pCLeRT7-KkzP25Zyf9zQ54S7Mjfr9hzZU5jLsMwn2yZMRvLoPD3ySErEwK46G8xS_Lx-NuOzvxdw-dSP3RIr-23Dl3-2RQ410Gx4umwt1uVJ1fS0NHT-Bxz1-RIedwZ_CPdc8g-1rrILP4TKSFiPbNdFVLZqV6LC-mrhq6ua_fvxsUV-VQaqxaFrVFg1NRCjcmqzm4cgQhZb4MTr99tnLdcwl3YTYfulQ_97EGKl6PJtXi8m0fQFnx5--H53g_oUFbDhLFzj3GxIibeDUp0R5JWnpiLV6pD0QcJYaqj38yrjNc6UCVVFeEklLZUquWUkFfQlbzaxxu4CIzZxxmXBEe0hjS6WotSnTVhLpvAskkK51X5iefjy8glEXA3FytFfh7VVEexWrBN4Pcy468o07pT8Gkw6SgTg7fvD-VPRxWBgqDLFMlqnLWEBjwgmhucmY8cDRyAT21g5R9NHcFtSnE8E5FSyBt8Owj8NQXFGNmy2jTM5kngqSwE7nP8NKPOZLsyzoIN_wrI2lbo401SRyfQd2JO4hdQIHayf8s667dHEwOOo_qO7V__39NTzKwjPI8SRqD7YW86Xb99hsod_EoPwNpu0ywQ
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceIiXoaBF4kadrr2Peo_hURWkVggRqZysfTmxcJwocRS1J_4Gf49fwq5fEKgqEFfvrLQ7nvV865n5BuBFIugh5lKGxJAspExEoRSShdaYLNJYKcJ9NfLJKT8e0_dn7GwH3nS1MHW2exeSbGoaPEtTWR0sTHbQF775eF0cOv8SOpdKcbgZuuFrsMuZQ-QD2B2ffhh99g3KfJ6FcLeEtl7m8slbPqmm7r8Mb_6ZNtnHTm_C9XW5kOcbWRS_uKej22C7jTVZKV-G60oN9cVvnI__u_M7cKvFr2jUGNxd2LHlPTivaZKRadL28hWaZ2hUXExtPrPL71-_rVAbB0KyNGiWFwb1aUvI12nmS_-TEvkk_Ak6-fjOyTVcKc2EOuHTorbDxQTJYjJf5tV0troP46O3n14fh21Ph1AzGlVh4q5AWBjP4k-wdDtQwmJj1KFy0MMaoolygC9mJkmk9ORISYYFyaTOmKIZ4eQBDMp5aR8Bwia22sbcYuVAlMmkJMZEVBmBhXVGF0DUvdVUt4Tnvu9GkfZUzbUyU6fMtFZmugngZT9n0dB9XCn9yhtLL-mpuusH8-UkbU9-qgnX2FCRRTamHv9xy7liOqbaQVUtAtjrTC1tvx-rlDgHxhkjnAbwvB92J9-Hc2Rp5-taJqEiiTgO4GFjmf1KHMqM4tjrINmy2a2lbo-U-bRmF_d8TMyB-AD2O2v8ua6rdLHfH4G_UN3jfxN_Ajdi33i5_ve1B4NqubZPHRqs1LP2sP8AxbpaYQ
  priority: 102
  providerName: Unpaywall
Title Early diagnosis of Alzheimer’s disease and mild cognitive impairment using MRI analysis and machine learning algorithms
URI https://link.springer.com/article/10.1007/s42452-024-06440-w
https://www.ncbi.nlm.nih.gov/pubmed/39712291
https://www.proquest.com/docview/3146655364
https://www.proquest.com/docview/3148498160
https://pubmed.ncbi.nlm.nih.gov/PMC11655575
https://link.springer.com/content/pdf/10.1007/s42452-024-06440-w.pdf
https://doaj.org/article/c36c0d49f1e2464396e66b5c24c435c9
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003307759
  issn: 3004-9261
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003307759
  issn: 3004-9261
  databaseCode: ADMLS
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003307759
  issn: 3004-9261
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003307759
  issn: 3004-9261
  databaseCode: AAJSJ
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: C6C
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 3004-9261
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002793483
  issn: 3004-9261
  databaseCode: C24
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOQAHBOIVWCojcWMjnPhR-9gtWxZEq9VCpeUU-ZU2Upqu-lC1nPgb_D1-CbaThlaghQOnSM5YcsafM2N75hsAXnFBuohJGWOD85hQkcRSSBpbY_JEI6Uw89nIwxE7HZMPF_Rip9SXjwmr6YFrxb3RmGlkiMgTmxJvPpllTFGdEu0svQ6pe4iLnc2U_we7XXq3S0WTJRNy5fwVXxo7kxQ7K0xQvNmzRIGw_09e5u_Bku2N6V1we11dyquNLMsdozS4D-413iTs1V_xANyw1UNwFUiLoamD6IolnOewV36d2mJmFz--fV_C5lYGysrAWVEa2AYRQZ81WSz8kSH0IfETODx_7-Rq5pK6Qwi_tLCpNzGBspzMF8VqOls-AuPByef-adxUWIg1Jckq5m5DgoTxnPoYSacWJSwyRnWVcwSswRor536l1HAupacq4jkSOJc6p4rkmOHH4KCaV_YpgMikVtuUWaScS2NyKbExCVFGIGEdBCKQbLWd6YZ-3FfBKLOWODnMUOZmKAszlG0i8Lrtc1mTb1wrfewnsZX0xNmhwcEpa-CU_Q1OETjcQiBrVvMyw86cMEoxIxF42b5269BfrsjKztdBhhPBE4Yi8KRGTDsS5_Mlaep1wPewtDfU_TdVMQ1c354diTqXOgJHW9j9Gtd1ujhqofkPqnv2P1T3HNxJfXHkcD51CA5Wi7V94Ty2leqAm3zwrgNu9d4OP35yz-OT0dm5a-2zficsXNc2Hp31vvwEp-NDgg
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKeyg9IP4JFDASnKiFYztufKhQC612aXeFqlbqLTixs7som132R6vlxGvwMjwMT4LtOGlXoIpLrxsn8nrGM589M98A8DoWbBdzKRFVNEcsEiGSQkZIK5WHGU5Tym01cqfLW-fs00V0sQZ-1bUwNq2ytonOUKtRZu_I31GzpXkUUc7ej78h2zXKRlfrFhrSt1ZQe45izBd2HOvlwhzhpnvtj0bebwg5Ojz70EK-ywDKIhbOUGxAORbK8spTLA08SIXGSqW7qXGGWtGMpgaCkEjFsZSWrifOsaC5zPIoZTnl1Hz3FthglAlz-Ns4OOx-Pq01OgptFYx3uF9dmE9Q5rhBiTkBImrU31fyuHo-G4YkyLhNZJACw2ix4i1dU4F_IeG_EzqbqO4W2JyXY7lcyKK44jiP7oI7HvHC_UpF74E1Xd4HW1d4EB-ApaNZhqpK-xtM4SiH-8X3vh4M9eT3j59T6ONIUJYKDgeFgk3aE7R1noOJveSENom_BzunbTOu4lqpXnAJoxr6Dhk9KIueEe2sP5w-BOc3Iq1HYL0clfoJgFgRnWnCNU4NCFO5lFSpkKVKYKGN0gYgrNc-yTxhuu3bUSQN1bOTV2LklTh5JYsAvG3eGVd0IdeOPrAibUZaqm_3w2jSS7zlSDLKM6yYyENNmMWPXHOeRhlhmYG6mQjAdq0Qibc_0-RytwTgVfPYWA4bDpKlHs3dmJiJOOQ4AI8r_WlmYlBqSIhdg3hFs1amuvqkHPQdO7nlc4rMISAAO7USXs7rurXYaRT1P5bu6fX_-iXYbJ11TpKTdvf4GbhNbNNmd2-2DdZnk7l-bpDkLH3htysEX27aQvwBWWOBag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAeEP8EChgJTtSqYzve-IBQoSxdSiuEqNRbcGxnd1E2WfZHq-XEa_AqPA5Pgu38tCvQikuviRM5nvHMF8_MNwA8iwXrYC4loppmiEUiRFLICBmts1DhNKXcVSMfHfODE_b-NDrdAL-aWhiXVtnYRG-odancGfkutVuaRxHlbDer0yI-7ndfjb8h10HKRVqbdhqVihya5cL-vk1f9vatrJ8T0n37-c0BqjsMIBWxcIZiC8ix0I5TnmJpoUEqDNY67aTWERpNFU0t_CCRjmMpHVVPnGFBM6myKGUZ5dS-9xK43HEs7q5Kvfuu0eUodPUvtav96gN8gjLPCkrsvx-iVvHrGh5fyecCkARZh4ksRmAYLVb8pG8n8C8M_HcqZxvP3QJX58VYLhcyz8-5zO4NcL3GunCvUs6bYMMUt8DWOQbE22DpCZahrhL-hlNYZnAv_z4ww5GZ_P7xcwrrCBKUhYajYa5hm_AEXYXncOKON6FL3-_Do089O65iWake8KmiBta9MfpQ5n0ryNlgNL0DTi5EVnfBZlEW5j6AWBOjDOEGpxZ-6UxKqnXIUi2wMFZdAxA2a5-omirddezIk5bk2csrsfJKvLySRQBetM-MK6KQtaNfO5G2Ix3Jt79QTvpJbTMSRbnCmoksNIQ55MgN52mkCFMW5CoRgO1GIZLa8kyTs30SgKftbWszXCBIFqac-zExE3HIcQDuVfrTzsTi05AQtwbximatTHX1TjEceF5yx-QUWfgfgJ1GCc_mtW4tdlpF_Y-le7D-q5-AK9YuJB96x4cPwTXiujX7A7NtsDmbzM0jCyFn6WO_VyH4ctHG4Q-6CX8E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceIiXoaBF4kadrr2Peo_hURWkVggRqZysfTmxcJwocRS1J_4Gf49fwq5fEKgqEFfvrLQ7nvV865n5BuBFIugh5lKGxJAspExEoRSShdaYLNJYKcJ9NfLJKT8e0_dn7GwH3nS1MHW2exeSbGoaPEtTWR0sTHbQF775eF0cOv8SOpdKcbgZuuFrsMuZQ-QD2B2ffhh99g3KfJ6FcLeEtl7m8slbPqmm7r8Mb_6ZNtnHTm_C9XW5kOcbWRS_uKej22C7jTVZKV-G60oN9cVvnI__u_M7cKvFr2jUGNxd2LHlPTivaZKRadL28hWaZ2hUXExtPrPL71-_rVAbB0KyNGiWFwb1aUvI12nmS_-TEvkk_Ak6-fjOyTVcKc2EOuHTorbDxQTJYjJf5tV0troP46O3n14fh21Ph1AzGlVh4q5AWBjP4k-wdDtQwmJj1KFy0MMaoolygC9mJkmk9ORISYYFyaTOmKIZ4eQBDMp5aR8Bwia22sbcYuVAlMmkJMZEVBmBhXVGF0DUvdVUt4Tnvu9GkfZUzbUyU6fMtFZmugngZT9n0dB9XCn9yhtLL-mpuusH8-UkbU9-qgnX2FCRRTamHv9xy7liOqbaQVUtAtjrTC1tvx-rlDgHxhkjnAbwvB92J9-Hc2Rp5-taJqEiiTgO4GFjmf1KHMqM4tjrINmy2a2lbo-U-bRmF_d8TMyB-AD2O2v8ua6rdLHfH4G_UN3jfxN_Ajdi33i5_ve1B4NqubZPHRqs1LP2sP8AxbpaYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+diagnosis+of+Alzheimer%E2%80%99s+disease+and+mild+cognitive+impairment+using+MRI+analysis+and+machine+learning+algorithms&rft.jtitle=Discover+applied+sciences&rft.au=Helia+Givian&rft.au=Jean-Paul+Calbimonte&rft.au=and%C2%A0for%C2%A0the%C2%A0Alzheimer%E2%80%99s%C2%A0Disease%C2%A0Neuroimaging%C2%A0Initiative&rft.date=2025-01-01&rft.pub=Springer&rft.eissn=3004-9261&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1007%2Fs42452-024-06440-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c36c0d49f1e2464396e66b5c24c435c9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon