Early diagnosis of Alzheimer’s disease and mild cognitive impairment using MRI analysis and machine learning algorithms
Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (...
Saved in:
| Published in | Discover applied sciences Vol. 7; no. 1; pp. 27 - 13 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.01.2025
Springer Nature B.V Springer |
| Subjects | |
| Online Access | Get full text |
| ISSN | 3004-9261 2523-3963 3004-9261 2523-3971 |
| DOI | 10.1007/s42452-024-06440-w |
Cover
| Abstract | Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.
Article Highlights
Cognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages.
Machine learning models classify Alzheimer’s stages using optimized brain MRI features.
MRI scans show how brain features change as Alzheimer’s progresses. |
|---|---|
| AbstractList | Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.The online version contains supplementary material available at 10.1007/s42452-024-06440-w.Supplementary InformationThe online version contains supplementary material available at 10.1007/s42452-024-06440-w. Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. The online version contains supplementary material available at 10.1007/s42452-024-06440-w. Abstract Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. Article Highlights Cognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages. Machine learning models classify Alzheimer’s stages using optimized brain MRI features. MRI scans show how brain features change as Alzheimer’s progresses. Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD. Cognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages.Machine learning models classify Alzheimer’s stages using optimized brain MRI features.MRI scans show how brain features change as Alzheimer’s progresses. Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the analysis of magnetic resonance imaging (MRI) based on features including; hippocampus (HC) area size, HC grayscale statistics and texture features (mean, standard deviation, skewness, kurtosis, contrast, correlation, energy, homogeneity, entropy), lateral ventricle (LV) area size, gray matter area size, white matter area size, cerebrospinal fluid area size, patient age, weight, and cognitive score. Five machine learning classifiers; K-nearest neighborhood (KNN), support vector machine (SVM), random forest (RF), decision tree (DT), and multi-layer perception (MLP) were used to distinguish between groups: cognitively normal (CN) vs AD, early MCI (EMCI) vs late MCI (LMCI), CN vs EMCI, CN vs LMCI, AD vs EMCI, and AD vs LMCI. Additionally, the correlation and dependence were calculated to examine the strength and direction of association between each extracted feature and each classification of the group. The average classification accuracies in 20 trials were 95% (SVM), 71.50% (RF), 82.58% (RF), 84.91% (SVM), 85.83% (RF), and 85.08% (RF), respectively, with the best accuracies being 100% (SVM, RF, and MLP), 83.33% (RF), 91.66% (RF), 95% (SVM, and MLP), 96.66% (RF), and 93.33% (DT). Cognitive scores, HC and LV area sizes, and HC texture features demonstrated significant potential for diagnosing AD and its subtypes for all groups. RF and SVM showed better performance in distinguishing between groups. These findings highlight the importance of using 2D-MRI to identify key features containing critical information for early diagnosis of AD.Article HighlightsCognitive scores, brain structure sizes, and tissue features can assist in diagnosing Alzheimer’s and its early stages.Machine learning models classify Alzheimer’s stages using optimized brain MRI features.MRI scans show how brain features change as Alzheimer’s progresses. |
| ArticleNumber | 27 |
| Author | Calbimonte, Jean-Paul Givian, Helia |
| Author_xml | – sequence: 1 givenname: Helia surname: Givian fullname: Givian, Helia email: helia.givian@hevs.ch organization: Institute of Informatics, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), The Sense Innovation and Research Center – sequence: 2 givenname: Jean-Paul surname: Calbimonte fullname: Calbimonte, Jean-Paul organization: Institute of Informatics, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), The Sense Innovation and Research Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39712291$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUs1u1DAYtFARLUtfgAOKxKWXgB3bSXxCVdXCSkVICM7WF8fJeuXYi510tZx4jb4eT4L3h9L2UHGy5W9mPOPxS3TkvNMIvSb4HcG4eh9ZwXiR44LluGQM5-tn6IRizHJRlOTo3v4Ynca4xBhTiquKixfomIqKFIUgJ2hzCcFustZA73w0MfNddm5_LrQZdPj96zamUdQQdQauzQZj20z53pnR3OjMDCswYdBuzKZoXJ99_jpPOLCbrdKOAGphnM6shuC2CLC9D2ZcDPEVet6Bjfr0sM7Q96vLbxef8usvH-cX59e54oyMeV2QCosW16ymGFLSRmjctk3VEE50SxVtMBcFb-saoKoxqzssaAeq4w3raElnaL7XbT0s5SqYAcJGejByd-BDLyGMRlktFS0VbpnoiC5YyagodVk2XBVMMcqVSFp0rzW5FWzWYO2dIMFy24vc9yJTL3LXi1wn1oc9azU1g25Veq8A9oGVhxNnFrL3N5KQknNe8aRwdlAI_sek4ygHE5W2Fpz2U5SUsJqJmpQ4Qd8-gi79FFInO1SZBGlKNkNv7lu68_L3YyRAsQeo4GMMuvu_oPUjkjIjjMZvYxn7NPXwsjHd43od_tl-gvUHgGzvhg |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0318720 crossref_primary_10_3390_diagnostics15060789 |
| Cites_doi | 10.1002/hbm.20161 10.1016/j.neuroscience.2021.01.002 10.1016/j.neurobiolaging.2006.11.010 10.3390/make5020031 10.1016/j.asej.2020.09.003 10.1109/ICCMC.2017.8282683 10.1016/B978-0-12-821777-1.00023-9 10.1016/bs.host.2022.12.004 10.2174/1573405615666190404163233 10.1147/rd.33.0210 10.1007/s11604-018-0794-4 10.3389/fnagi.2019.00220 10.1016/B978-0-12-416602-8.00006-6 10.1016/j.neucom.2017.11.077 10.1533/9781908818416.59 10.1016/j.neuroimage.2008.10.031 10.1080/13803395.2023.2167942 10.1016/j.ndteint.2022.102752 10.1016/B978-0-444-52892-6.00003-9 10.2741/4285 10.1007/978-3-319-94878-2 10.1016/j.bspc.2022.103571 10.1016/B978-0-12-801966-5.00011-1 10.1016/j.eswa.2014.04.019 10.1109/RBME.2018.2796598 10.1016/bs.adcom.2019.09.007 10.1016/j.patcog.2016.10.031 10.1155/2021/4896853 10.1038/ki.2009.92 10.1016/j.bspc.2020.101903 10.1016/j.eswa.2021.115537 10.1007/978-3-030-17971-7_14 10.1097/00002093-200401000-00003 10.1007/s10916-019-1428-9 10.1038/s41598-022-14983-4 10.1016/j.neucom.2014.12.084 10.1016/B978-0-12-409545-8.00007-8 10.1037/tps0000124 10.1016/B978-0-12-815861-6.00010-9 10.34107/YHPN9422.04241 10.1016/j.patcog.2017.04.018 10.3390/ijms23116079 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. Copyright Springer Nature B.V. Jan 2025 The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. – notice: Copyright Springer Nature B.V. Jan 2025 – notice: The Author(s) 2024 2024 |
| CorporateAuthor | and for the Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: and for the Alzheimer’s Disease Neuroimaging Initiative |
| DBID | C6C AAYXX CITATION NPM 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1007/s42452-024-06440-w |
| DatabaseName | Springer Nature Open Access Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 3004-9261 2523-3971 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_c36c0d49f1e2464396e66b5c24c435c9 10.1007/s42452-024-06440-w PMC11655575 39712291 10_1007_s42452_024_06440_w |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Swiss Government Excellence Scholarships grantid: ESKAS-Nr:2023.0599 – fundername: National Institutes of Health grantid: U19 AG024904 |
| GroupedDBID | AAJSJ ABEEZ ADMLS ALMA_UNASSIGNED_HOLDINGS BGNMA C6C GROUPED_DOAJ M4Y NU0 RSV SOJ AASML AAYXX CITATION EBLON M~E NPM 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR 7X8 5PM ABFSG ADTOC AEZWR AFHIU AHWEU AIXLP UNPAY |
| ID | FETCH-LOGICAL-c541t-821709d084830a644b9e0ddb7b151ed3c3b05925d88aa78048f093facf5b4f363 |
| IEDL.DBID | DOA |
| ISSN | 3004-9261 2523-3963 |
| IngestDate | Tue Oct 14 18:17:52 EDT 2025 Sun Oct 26 04:13:33 EDT 2025 Tue Sep 30 17:05:45 EDT 2025 Fri Sep 05 14:37:03 EDT 2025 Wed Oct 08 14:22:06 EDT 2025 Wed Feb 19 01:58:58 EST 2025 Wed Oct 01 01:55:10 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri Feb 21 02:36:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Magnetic resonance imaging (MRI) Computer-aided diagnosis (CAD) Machine learning (ML) Alzheimer’s disease (AD) Mild Cognitive impairment (MCI) |
| Language | English |
| License | The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-821709d084830a644b9e0ddb7b151ed3c3b05925d88aa78048f093facf5b4f363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/c36c0d49f1e2464396e66b5c24c435c9 |
| PMID | 39712291 |
| PQID | 3146655364 |
| PQPubID | 5758472 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c36c0d49f1e2464396e66b5c24c435c9 unpaywall_primary_10_1007_s42452_024_06440_w pubmedcentral_primary_oai_pubmedcentral_nih_gov_11655575 proquest_miscellaneous_3148498160 proquest_journals_3146655364 pubmed_primary_39712291 crossref_primary_10_1007_s42452_024_06440_w crossref_citationtrail_10_1007_s42452_024_06440_w springer_journals_10_1007_s42452_024_06440_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Switzerland – name: London |
| PublicationTitle | Discover applied sciences |
| PublicationTitleAbbrev | Discov Appl Sci |
| PublicationTitleAlternate | Discov Appl Sci |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V Springer |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer |
| References | 6440_CR31 A Shukla (6440_CR8) 2023; 5 RE Ready (6440_CR47) 2004; 18 W Jiang (6440_CR18) 2021; 184 C Davatzikos (6440_CR4) 2008; 29 B Richhariya (6440_CR7) 2020; 59 L Pei (6440_CR12) 2022; 12 J Cai (6440_CR20) 2018; 300 J Wang (6440_CR19) 2015; 156 S Leandrou (6440_CR35) 2018; 11 N Hoque (6440_CR46) 2014; 41 P Raghavaiah (6440_CR6) 2022; 75 C Fennema-Notestine (6440_CR13) 2006; 27 Q Cao (6440_CR15) 2021; 2021 KJ Van Stralen (6440_CR28) 2009; 75 6440_CR1 6440_CR2 J-H So (6440_CR10) 2019; 15 G Lv (6440_CR21) 2023; 133 R Srikanth (6440_CR14) 2021; 12 M Zortea (6440_CR16) 2017; 64 AL Samuel (6440_CR38) 1959; 3 K Sakai (6440_CR39) 2019; 37 6440_CR43 6440_CR42 A Mehmood (6440_CR11) 2021; 460 6440_CR41 6440_CR25 6440_CR24 6440_CR23 6440_CR45 C Misra (6440_CR5) 2009; 44 L He (6440_CR17) 2017; 70 6440_CR22 M Allgaier (6440_CR32) 2014; 19 6440_CR44 6440_CR29 6440_CR27 6440_CR26 I El Naqa (6440_CR37) 2015 A Clarke (6440_CR3) 2022; 44 SE Setti (6440_CR30) 2017; 3 ER Ranschaert (6440_CR34) 2019 T Jo (6440_CR40) 2019; 11 6440_CR9 UR Acharya (6440_CR36) 2019; 43 J Kim (6440_CR33) 2022; 23 |
| References_xml | – volume: 27 start-page: 99 issue: 2 year: 2006 ident: 6440_CR13 publication-title: Hum Brain Mapp doi: 10.1002/hbm.20161 – ident: 6440_CR1 – volume: 460 start-page: 43 year: 2021 ident: 6440_CR11 publication-title: Neuroscience doi: 10.1016/j.neuroscience.2021.01.002 – volume: 29 start-page: 514 issue: 4 year: 2008 ident: 6440_CR4 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.11.010 – volume: 5 start-page: 512 issue: 2 year: 2023 ident: 6440_CR8 publication-title: Mach Learn Knowl Extr doi: 10.3390/make5020031 – ident: 6440_CR44 – volume-title: What Is Machine Learning? year: 2015 ident: 6440_CR37 – volume: 12 start-page: 1 issue: 1 year: 2021 ident: 6440_CR14 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2020.09.003 – ident: 6440_CR2 doi: 10.1109/ICCMC.2017.8282683 – ident: 6440_CR22 doi: 10.1016/B978-0-12-821777-1.00023-9 – ident: 6440_CR42 doi: 10.1016/bs.host.2022.12.004 – volume: 15 start-page: 689 issue: 7 year: 2019 ident: 6440_CR10 publication-title: Curr Med Imaging doi: 10.2174/1573405615666190404163233 – volume: 3 start-page: 210 issue: 3 year: 1959 ident: 6440_CR38 publication-title: IBM J Res Dev doi: 10.1147/rd.33.0210 – volume: 37 start-page: 34 issue: 1 year: 2019 ident: 6440_CR39 publication-title: Jpn J Radiol doi: 10.1007/s11604-018-0794-4 – volume: 11 start-page: 220 year: 2019 ident: 6440_CR40 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2019.00220 – ident: 6440_CR43 doi: 10.1016/B978-0-12-416602-8.00006-6 – volume: 300 start-page: 70 year: 2018 ident: 6440_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.11.077 – ident: 6440_CR24 doi: 10.1533/9781908818416.59 – volume: 44 start-page: 1415 issue: 4 year: 2009 ident: 6440_CR5 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2008.10.031 – volume: 44 start-page: 703 issue: 10 year: 2022 ident: 6440_CR3 publication-title: J Clin Exp Neuropsychol doi: 10.1080/13803395.2023.2167942 – volume: 133 start-page: 102752 year: 2023 ident: 6440_CR21 publication-title: NDT E Int doi: 10.1016/j.ndteint.2022.102752 – ident: 6440_CR25 doi: 10.1016/B978-0-444-52892-6.00003-9 – volume: 19 start-page: 1345 issue: 8 year: 2014 ident: 6440_CR32 publication-title: Front Biosci-Landmark doi: 10.2741/4285 – volume-title: Artificial Intelligence in Medical Imaging: Opportunities. Applications and Risks. year: 2019 ident: 6440_CR34 doi: 10.1007/978-3-319-94878-2 – volume: 75 year: 2022 ident: 6440_CR6 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.103571 – ident: 6440_CR23 doi: 10.1016/B978-0-12-801966-5.00011-1 – volume: 41 start-page: 6371 issue: 14 year: 2014 ident: 6440_CR46 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.04.019 – volume: 11 start-page: 97 year: 2018 ident: 6440_CR35 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2018.2796598 – ident: 6440_CR26 doi: 10.1016/bs.adcom.2019.09.007 – volume: 64 start-page: 92 year: 2017 ident: 6440_CR16 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.10.031 – volume: 2021 start-page: 1 year: 2021 ident: 6440_CR15 publication-title: J Sens doi: 10.1155/2021/4896853 – volume: 75 start-page: 1257 issue: 12 year: 2009 ident: 6440_CR28 publication-title: Kidney Int doi: 10.1038/ki.2009.92 – volume: 59 start-page: 101903 year: 2020 ident: 6440_CR7 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2020.101903 – ident: 6440_CR45 – volume: 184 start-page: 115537 year: 2021 ident: 6440_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115537 – ident: 6440_CR9 doi: 10.1007/978-3-030-17971-7_14 – volume: 18 start-page: 11 issue: 1 year: 2004 ident: 6440_CR47 publication-title: Alzheimer Dis Assoc Disord doi: 10.1097/00002093-200401000-00003 – volume: 43 start-page: 1 year: 2019 ident: 6440_CR36 publication-title: J Med Syst doi: 10.1007/s10916-019-1428-9 – volume: 12 start-page: 10826 issue: 1 year: 2022 ident: 6440_CR12 publication-title: Sci Rep doi: 10.1038/s41598-022-14983-4 – volume: 156 start-page: 68 year: 2015 ident: 6440_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.12.084 – ident: 6440_CR29 – ident: 6440_CR27 doi: 10.1016/B978-0-12-409545-8.00007-8 – volume: 3 start-page: 348 issue: 4 year: 2017 ident: 6440_CR30 publication-title: Transl Issues Psychol Sci doi: 10.1037/tps0000124 – ident: 6440_CR41 doi: 10.1016/B978-0-12-815861-6.00010-9 – ident: 6440_CR31 doi: 10.34107/YHPN9422.04241 – volume: 70 start-page: 25 year: 2017 ident: 6440_CR17 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2017.04.018 – volume: 23 start-page: 6079 issue: 11 year: 2022 ident: 6440_CR33 publication-title: Int J Mol Sci doi: 10.3390/ijms23116079 |
| SSID | ssj0003307759 ssj0002793483 ssib051670015 |
| Score | 2.3080957 |
| Snippet | Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the... Early diagnosis of Alzheimer's disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed the... Abstract Early diagnosis of Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is crucial to prevent their progression. In this study, we proposed... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 27 |
| SubjectTerms | Accuracy Algorithms Alzheimer's disease Alzheimer’s disease (AD) Applied and Technical Physics Artificial intelligence Biomarkers Brain Brain research Cerebrospinal fluid Chemistry/Food Science Classification Clinical trials Cognitive ability Computer-aided diagnosis (CAD) Datasets Decision trees Deep learning Dementia Diagnosis Earth Sciences Engineering Environment Homogeneity Impairment Kurtosis Learning algorithms Machine learning Machine learning (ML) Magnetic resonance imaging Magnetic resonance imaging (MRI) Materials Science Methods Mild Cognitive impairment (MCI) Multilayers Neurodegenerative diseases Neuroimaging Statistical analysis Substantia alba Substantia grisea Support vector machines Texture Ventricles (cerebral) |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZG9wB7mLiOwEBG4o1ZOL4tfkBoQ5sG0io0MWlvkWM7bVGall5UbU_8Df4evwTbcbJVoIrXxpHc488-X3zO-Q4AbzPJDrFQClFDS8S4TJGSiiNrTJlqXBRU-Grk8744u2RfrvjVFui3tTA-rbI9E8NBbSba35G_p25LC86pYB-nP5DvGuWjq20LDRVbK5gPQWLsHtgmXhmrB7aPT_pfL1qE8dRXpUQH-D2E3SRlQauTuC8yRB0cY2VNqK_zYUGCnBtDznMzjFZr3iuI_P-Lmf6dYNlFWXfA_WU9VdcrVVV3HNnpQ7AbGSg8aiDzCGzZ-jHYuaNL-ARcB9ljaJo0vNEcTkp4VN0M7WhsZ79__prDGNeBqjZwPKoM7NKQoK-7HM38pSP0SfUDeH7x2Y1rtE-aF0ICp4WxY8UAqmrgTL0YjudPweXpybdPZyj2aECas3SBMvdJg6XxqvwUK2ekQlpsTHFYOCphDdXUWV0SbrJMKS92lJVY0lLpkhespII-A716UtvnAGJDrLZEWFw4UmRKpagxKSuMxNI6ECUgbW2f6yhg7vtoVHknvRzWK3frlYf1ylcJeNe9M23kOzaOPvZL2o300tvhh8lskMednGsqNDZMlqklzPM5YYUouCZMO-qpZQL2W0Dk8TyY57foTcCb7rHbyT48o2o7WYYxGZNZKnAC9hr8dDNxrDElxNsgW0PW2lTXn9SjYVAL9_pK3JHyBBy0ILyd1yZbHHRA_Q_Tvdj8r1-CB8Q3Tg53V_ugt5gt7SvH5hbF67hF_wAuz0Vw priority: 102 providerName: ProQuest – databaseName: Springer Nature Open Access Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BOUAPiGcbaJGRuFELJ35sfCwVVUEqB0Sl3iK_shspm602u1q1J_4Gf49fgu1kQ7dUFVzjcWTNQ_PZM_4M8C6XbESEUphaWmLGZYqVVBw7a8vUEK2pCLeRT7-KkzP25Zyf9zQ54S7Mjfr9hzZU5jLsMwn2yZMRvLoPD3ySErEwK46G8xS_Lx-NuOzvxdw-dSP3RIr-23Dl3-2RQ410Gx4umwt1uVJ1fS0NHT-Bxz1-RIedwZ_CPdc8g-1rrILP4TKSFiPbNdFVLZqV6LC-mrhq6ua_fvxsUV-VQaqxaFrVFg1NRCjcmqzm4cgQhZb4MTr99tnLdcwl3YTYfulQ_97EGKl6PJtXi8m0fQFnx5--H53g_oUFbDhLFzj3GxIibeDUp0R5JWnpiLV6pD0QcJYaqj38yrjNc6UCVVFeEklLZUquWUkFfQlbzaxxu4CIzZxxmXBEe0hjS6WotSnTVhLpvAskkK51X5iefjy8glEXA3FytFfh7VVEexWrBN4Pcy468o07pT8Gkw6SgTg7fvD-VPRxWBgqDLFMlqnLWEBjwgmhucmY8cDRyAT21g5R9NHcFtSnE8E5FSyBt8Owj8NQXFGNmy2jTM5kngqSwE7nP8NKPOZLsyzoIN_wrI2lbo401SRyfQd2JO4hdQIHayf8s667dHEwOOo_qO7V__39NTzKwjPI8SRqD7YW86Xb99hsod_EoPwNpu0ywQ priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceIiXoaBF4kadrr2Peo_hURWkVggRqZysfTmxcJwocRS1J_4Gf49fwq5fEKgqEFfvrLQ7nvV865n5BuBFIugh5lKGxJAspExEoRSShdaYLNJYKcJ9NfLJKT8e0_dn7GwH3nS1MHW2exeSbGoaPEtTWR0sTHbQF775eF0cOv8SOpdKcbgZuuFrsMuZQ-QD2B2ffhh99g3KfJ6FcLeEtl7m8slbPqmm7r8Mb_6ZNtnHTm_C9XW5kOcbWRS_uKej22C7jTVZKV-G60oN9cVvnI__u_M7cKvFr2jUGNxd2LHlPTivaZKRadL28hWaZ2hUXExtPrPL71-_rVAbB0KyNGiWFwb1aUvI12nmS_-TEvkk_Ak6-fjOyTVcKc2EOuHTorbDxQTJYjJf5tV0troP46O3n14fh21Ph1AzGlVh4q5AWBjP4k-wdDtQwmJj1KFy0MMaoolygC9mJkmk9ORISYYFyaTOmKIZ4eQBDMp5aR8Bwia22sbcYuVAlMmkJMZEVBmBhXVGF0DUvdVUt4Tnvu9GkfZUzbUyU6fMtFZmugngZT9n0dB9XCn9yhtLL-mpuusH8-UkbU9-qgnX2FCRRTamHv9xy7liOqbaQVUtAtjrTC1tvx-rlDgHxhkjnAbwvB92J9-Hc2Rp5-taJqEiiTgO4GFjmf1KHMqM4tjrINmy2a2lbo-U-bRmF_d8TMyB-AD2O2v8ua6rdLHfH4G_UN3jfxN_Ajdi33i5_ve1B4NqubZPHRqs1LP2sP8AxbpaYQ priority: 102 providerName: Unpaywall |
| Title | Early diagnosis of Alzheimer’s disease and mild cognitive impairment using MRI analysis and machine learning algorithms |
| URI | https://link.springer.com/article/10.1007/s42452-024-06440-w https://www.ncbi.nlm.nih.gov/pubmed/39712291 https://www.proquest.com/docview/3146655364 https://www.proquest.com/docview/3148498160 https://pubmed.ncbi.nlm.nih.gov/PMC11655575 https://link.springer.com/content/pdf/10.1007/s42452-024-06440-w.pdf https://doaj.org/article/c36c0d49f1e2464396e66b5c24c435c9 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: ADMLS dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 3004-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003307759 issn: 3004-9261 databaseCode: AAJSJ dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: C6C dateStart: 20210101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 3004-9261 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002793483 issn: 3004-9261 databaseCode: C24 dateStart: 20210101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOQAHBOIVWCojcWMjnPhR-9gtWxZEq9VCpeUU-ZU2Upqu-lC1nPgb_D1-CbaThlaghQOnSM5YcsafM2N75hsAXnFBuohJGWOD85hQkcRSSBpbY_JEI6Uw89nIwxE7HZMPF_Rip9SXjwmr6YFrxb3RmGlkiMgTmxJvPpllTFGdEu0svQ6pe4iLnc2U_we7XXq3S0WTJRNy5fwVXxo7kxQ7K0xQvNmzRIGw_09e5u_Bku2N6V1we11dyquNLMsdozS4D-413iTs1V_xANyw1UNwFUiLoamD6IolnOewV36d2mJmFz--fV_C5lYGysrAWVEa2AYRQZ81WSz8kSH0IfETODx_7-Rq5pK6Qwi_tLCpNzGBspzMF8VqOls-AuPByef-adxUWIg1Jckq5m5DgoTxnPoYSacWJSwyRnWVcwSswRor536l1HAupacq4jkSOJc6p4rkmOHH4KCaV_YpgMikVtuUWaScS2NyKbExCVFGIGEdBCKQbLWd6YZ-3FfBKLOWODnMUOZmKAszlG0i8Lrtc1mTb1wrfewnsZX0xNmhwcEpa-CU_Q1OETjcQiBrVvMyw86cMEoxIxF42b5269BfrsjKztdBhhPBE4Yi8KRGTDsS5_Mlaep1wPewtDfU_TdVMQ1c354diTqXOgJHW9j9Gtd1ujhqofkPqnv2P1T3HNxJfXHkcD51CA5Wi7V94Ty2leqAm3zwrgNu9d4OP35yz-OT0dm5a-2zficsXNc2Hp31vvwEp-NDgg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKeyg9IP4JFDASnKiFYztufKhQC612aXeFqlbqLTixs7som132R6vlxGvwMjwMT4LtOGlXoIpLrxsn8nrGM589M98A8DoWbBdzKRFVNEcsEiGSQkZIK5WHGU5Tym01cqfLW-fs00V0sQZ-1bUwNq2ytonOUKtRZu_I31GzpXkUUc7ej78h2zXKRlfrFhrSt1ZQe45izBd2HOvlwhzhpnvtj0bebwg5Ojz70EK-ywDKIhbOUGxAORbK8spTLA08SIXGSqW7qXGGWtGMpgaCkEjFsZSWrifOsaC5zPIoZTnl1Hz3FthglAlz-Ns4OOx-Pq01OgptFYx3uF9dmE9Q5rhBiTkBImrU31fyuHo-G4YkyLhNZJACw2ix4i1dU4F_IeG_EzqbqO4W2JyXY7lcyKK44jiP7oI7HvHC_UpF74E1Xd4HW1d4EB-ApaNZhqpK-xtM4SiH-8X3vh4M9eT3j59T6ONIUJYKDgeFgk3aE7R1noOJveSENom_BzunbTOu4lqpXnAJoxr6Dhk9KIueEe2sP5w-BOc3Iq1HYL0clfoJgFgRnWnCNU4NCFO5lFSpkKVKYKGN0gYgrNc-yTxhuu3bUSQN1bOTV2LklTh5JYsAvG3eGVd0IdeOPrAibUZaqm_3w2jSS7zlSDLKM6yYyENNmMWPXHOeRhlhmYG6mQjAdq0Qibc_0-RytwTgVfPYWA4bDpKlHs3dmJiJOOQ4AI8r_WlmYlBqSIhdg3hFs1amuvqkHPQdO7nlc4rMISAAO7USXs7rurXYaRT1P5bu6fX_-iXYbJ11TpKTdvf4GbhNbNNmd2-2DdZnk7l-bpDkLH3htysEX27aQvwBWWOBag |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKkYAeEP8EChgJTtSqYzve-IBQoSxdSiuEqNRbcGxnd1E2WfZHq-XEa_AqPA5Pgu38tCvQikuviRM5nvHMF8_MNwA8iwXrYC4loppmiEUiRFLICBmts1DhNKXcVSMfHfODE_b-NDrdAL-aWhiXVtnYRG-odancGfkutVuaRxHlbDer0yI-7ndfjb8h10HKRVqbdhqVihya5cL-vk1f9vatrJ8T0n37-c0BqjsMIBWxcIZiC8ix0I5TnmJpoUEqDNY67aTWERpNFU0t_CCRjmMpHVVPnGFBM6myKGUZ5dS-9xK43HEs7q5Kvfuu0eUodPUvtav96gN8gjLPCkrsvx-iVvHrGh5fyecCkARZh4ksRmAYLVb8pG8n8C8M_HcqZxvP3QJX58VYLhcyz8-5zO4NcL3GunCvUs6bYMMUt8DWOQbE22DpCZahrhL-hlNYZnAv_z4ww5GZ_P7xcwrrCBKUhYajYa5hm_AEXYXncOKON6FL3-_Do089O65iWake8KmiBta9MfpQ5n0ryNlgNL0DTi5EVnfBZlEW5j6AWBOjDOEGpxZ-6UxKqnXIUi2wMFZdAxA2a5-omirddezIk5bk2csrsfJKvLySRQBetM-MK6KQtaNfO5G2Ix3Jt79QTvpJbTMSRbnCmoksNIQ55MgN52mkCFMW5CoRgO1GIZLa8kyTs30SgKftbWszXCBIFqac-zExE3HIcQDuVfrTzsTi05AQtwbximatTHX1TjEceF5yx-QUWfgfgJ1GCc_mtW4tdlpF_Y-le7D-q5-AK9YuJB96x4cPwTXiujX7A7NtsDmbzM0jCyFn6WO_VyH4ctHG4Q-6CX8E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceIiXoaBF4kadrr2Peo_hURWkVggRqZysfTmxcJwocRS1J_4Gf49fwq5fEKgqEFfvrLQ7nvV865n5BuBFIugh5lKGxJAspExEoRSShdaYLNJYKcJ9NfLJKT8e0_dn7GwH3nS1MHW2exeSbGoaPEtTWR0sTHbQF775eF0cOv8SOpdKcbgZuuFrsMuZQ-QD2B2ffhh99g3KfJ6FcLeEtl7m8slbPqmm7r8Mb_6ZNtnHTm_C9XW5kOcbWRS_uKej22C7jTVZKV-G60oN9cVvnI__u_M7cKvFr2jUGNxd2LHlPTivaZKRadL28hWaZ2hUXExtPrPL71-_rVAbB0KyNGiWFwb1aUvI12nmS_-TEvkk_Ak6-fjOyTVcKc2EOuHTorbDxQTJYjJf5tV0troP46O3n14fh21Ph1AzGlVh4q5AWBjP4k-wdDtQwmJj1KFy0MMaoolygC9mJkmk9ORISYYFyaTOmKIZ4eQBDMp5aR8Bwia22sbcYuVAlMmkJMZEVBmBhXVGF0DUvdVUt4Tnvu9GkfZUzbUyU6fMtFZmugngZT9n0dB9XCn9yhtLL-mpuusH8-UkbU9-qgnX2FCRRTamHv9xy7liOqbaQVUtAtjrTC1tvx-rlDgHxhkjnAbwvB92J9-Hc2Rp5-taJqEiiTgO4GFjmf1KHMqM4tjrINmy2a2lbo-U-bRmF_d8TMyB-AD2O2v8ua6rdLHfH4G_UN3jfxN_Ajdi33i5_ve1B4NqubZPHRqs1LP2sP8AxbpaYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Early+diagnosis+of+Alzheimer%E2%80%99s+disease+and+mild+cognitive+impairment+using+MRI+analysis+and+machine+learning+algorithms&rft.jtitle=Discover+applied+sciences&rft.au=Helia+Givian&rft.au=Jean-Paul+Calbimonte&rft.au=and%C2%A0for%C2%A0the%C2%A0Alzheimer%E2%80%99s%C2%A0Disease%C2%A0Neuroimaging%C2%A0Initiative&rft.date=2025-01-01&rft.pub=Springer&rft.eissn=3004-9261&rft.volume=7&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1007%2Fs42452-024-06440-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c36c0d49f1e2464396e66b5c24c435c9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |