Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer

The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-o...

Full description

Saved in:
Bibliographic Details
Published inNPJ precision oncology Vol. 8; no. 1; pp. 146 - 8
Main Authors Jayakrishnan, Thejus T., Sangwan, Naseer, Barot, Shimoli V., Farha, Nicole, Mariam, Arshiya, Xiang, Shao, Aucejo, Federico, Conces, Madison, Nair, Kanika G., Krishnamurthi, Smitha S., Schmit, Stephanie L., Liska, David, Rotroff, Daniel M., Khorana, Alok A., Kamath, Suneel D.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.07.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2397-768X
2397-768X
DOI10.1038/s41698-024-00647-1

Cover

Abstract The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC ( n  = 64) were categorized as eoCRC (age ≤ 50, n  = 20) or aoCRC (age ≥ 60, n  = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella , and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium , and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia . We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
AbstractList The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC ( n  = 64) were categorized as eoCRC (age ≤ 50, n  = 20) or aoCRC (age ≥ 60, n  = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella , and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium , and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia . We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
Abstract The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.
ArticleNumber 146
Author Krishnamurthi, Smitha S.
Conces, Madison
Barot, Shimoli V.
Schmit, Stephanie L.
Xiang, Shao
Farha, Nicole
Aucejo, Federico
Nair, Kanika G.
Mariam, Arshiya
Rotroff, Daniel M.
Liska, David
Sangwan, Naseer
Jayakrishnan, Thejus T.
Khorana, Alok A.
Kamath, Suneel D.
Author_xml – sequence: 1
  givenname: Thejus T.
  orcidid: 0000-0002-3636-0353
  surname: Jayakrishnan
  fullname: Jayakrishnan, Thejus T.
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Department of Medical Oncology, Dana-Farber Cancer Institute
– sequence: 2
  givenname: Naseer
  surname: Sangwan
  fullname: Sangwan, Naseer
  organization: Microbial Sequencing & Analytics Resource (MSAAR), Lerner Research Institute, Cleveland Clinic
– sequence: 3
  givenname: Shimoli V.
  orcidid: 0000-0002-5313-9992
  surname: Barot
  fullname: Barot, Shimoli V.
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic
– sequence: 4
  givenname: Nicole
  surname: Farha
  fullname: Farha, Nicole
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic
– sequence: 5
  givenname: Arshiya
  surname: Mariam
  fullname: Mariam, Arshiya
  organization: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Center for Quantitative Metabolic Research, Cleveland Clinic
– sequence: 6
  givenname: Shao
  surname: Xiang
  fullname: Xiang, Shao
  organization: Department of Surgery, Cleveland Clinic
– sequence: 7
  givenname: Federico
  surname: Aucejo
  fullname: Aucejo, Federico
  organization: Department of Surgery, Cleveland Clinic
– sequence: 8
  givenname: Madison
  surname: Conces
  fullname: Conces, Madison
  organization: Case Comprehensive Cancer Center, Department of Hematology-Oncology, University Hospital Seidman Cancer Center
– sequence: 9
  givenname: Kanika G.
  surname: Nair
  fullname: Nair, Kanika G.
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic
– sequence: 10
  givenname: Smitha S.
  surname: Krishnamurthi
  fullname: Krishnamurthi, Smitha S.
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic
– sequence: 11
  givenname: Stephanie L.
  surname: Schmit
  fullname: Schmit, Stephanie L.
  organization: Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Population and Cancer Prevention Program, Case Comprehensive Cancer Center
– sequence: 12
  givenname: David
  surname: Liska
  fullname: Liska, David
  organization: Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic
– sequence: 13
  givenname: Daniel M.
  surname: Rotroff
  fullname: Rotroff, Daniel M.
  organization: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Center for Quantitative Metabolic Research, Cleveland Clinic
– sequence: 14
  givenname: Alok A.
  surname: Khorana
  fullname: Khorana, Alok A.
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic
– sequence: 15
  givenname: Suneel D.
  orcidid: 0000-0003-0432-2536
  surname: Kamath
  fullname: Kamath, Suneel D.
  email: kamaths@ccf.org
  organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39020083$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEgEkJ-gAMaiQuXAb_GY58QinhECuKSAzer19Oz65XHDrYn0v493mwCSQ6RD3bbVdUld71ujkIM2DRvKflICVefsqBSq44w0REixdDRF80J43roBql-Hz04HzdnOW8JIVT1lEn5qjnmmjBCFD9p7M_FF9fF2dnczmA3LmDrEVJwYd2W2OayjLt2E3PpKibFlYszti4UTGCLiyHXoq0Ev-tqgaW10ceEtoBvLQSL6U3zcgKf8exuP22uvn29Ov_RXf76fnH-5bKzvaClk2yQdQEdp4lPIzCrR61HrmCC6l0BKDkMdOCMA2oJQLhEJerLRJSW_LS5OMiOEbbmOrkZ0s5EcOb2Iqa1gVSc9WhoT4Ah04LASmgUWqsV1taCjcgnFFXr80HrelnNOFoMJYF_JPr4JbiNWccbQynre9YPVeHDnUKKfxbMxcwuW_QeAsYlG04U42SQYt_s_RPoNi4p1K-6RRHRS9VX1LuHlv55uZ9lBagDoE4p54STsa7AfkTVofOGErNPjjkkx9TkmNvkGFqp7An1Xv1ZEj-QcgWHNab_tp9h_QVacNZ0
CitedBy_id crossref_primary_10_1016_j_engappai_2024_109452
Cites_doi 10.1007/s11912-019-0756-8
10.1038/s41598-020-59529-8
10.3322/caac.21457
10.3390/cancers15082260
10.1136/gutjnl-2022-327156
10.1038/s41598-018-30591-7
10.1038/s41416-019-0650-z
10.1038/s41598-024-54560-5
10.1016/j.gendis.2016.03.004
10.1136/bmjopen-2021-052373
10.1038/s41467-023-37590-x
10.1093/clinchem/hvad186
10.3389/fphar.2019.01172
10.1038/s41587-019-0209-9
10.1038/s41572-023-00432-7
10.1016/j.cmet.2023.03.003
10.1016/j.xcrm.2023.101194
10.1038/s41591-023-02453-x
10.1093/bioinformatics/bty1054
10.1053/j.gastro.2021.08.041
10.3389/fgene.2019.00516
10.1002/cam4.6194
10.1038/nmeth.3869
10.1126/science.ade7114
10.3389/fonc.2021.729512
10.1002/cam4.4276
10.1016/j.cell.2024.02.009
10.1158/0008-5472.CAN-22-0455
10.4049/immunohorizons.2000096
10.1016/j.tim.2022.08.010
10.3389/fimmu.2022.1008975
10.1001/jamaoncol.2022.0494
10.1073/pnas.1912129116
10.3389/fimmu.2019.00925
10.1016/j.neo.2022.100868
10.1016/j.urolonc.2020.06.026
10.1016/j.isci.2022.103798
10.1016/S1470-2045(21)00588-X
10.3389/fmed.2022.888340
10.1111/j.2517-6161.1995.tb02031.x
10.3390/metabo5020192
10.3322/caac.21601
10.1158/1538-7445.AM2021-LB183
10.1109/TPAMI.2005.127
10.5281/zenodo.10401639
10.3390/metabo13020299
10.1371/journal.pone.0061217
10.1186/s12866-021-02095-4
10.3322/caac.21670
10.1186/s13104-022-05990-9
10.1016/j.ebiom.2024.104980
10.1002/0471142727.mb3004s114
10.3390/cancers12020484
10.1186/1471-2407-12-606
10.1007/s11302-012-9349-9
10.1002/jcla.23333
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PIMPY
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41698-024-00647-1
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2397-768X
EndPage 8
ExternalDocumentID oai_doaj_org_article_150a2e2940ab49e4998be67a42de3fe4
PMC11255257
39020083
10_1038_s41698_024_00647_1
Genre Journal Article
GrantInformation_xml – fundername: The Sondra and Stephen Hardis Chair in Oncology Research
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
AAKAB
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-6276767a1dff3fda2c9d99d38afa0188aa867717323ae96aa036e84188f08963
IEDL.DBID 7X7
ISSN 2397-768X
IngestDate Wed Aug 27 01:30:01 EDT 2025
Thu Aug 21 18:33:03 EDT 2025
Fri Sep 05 00:10:26 EDT 2025
Sat Jul 26 03:17:44 EDT 2025
Thu Apr 03 07:08:18 EDT 2025
Tue Jul 01 00:35:47 EDT 2025
Thu Apr 24 23:08:28 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-6276767a1dff3fda2c9d99d38afa0188aa867717323ae96aa036e84188f08963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0432-2536
0000-0002-3636-0353
0000-0002-5313-9992
OpenAccessLink https://www.proquest.com/docview/3082045685?pq-origsite=%requestingapplication%
PMID 39020083
PQID 3082045685
PQPubID 4669714
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_150a2e2940ab49e4998be67a42de3fe4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11255257
proquest_miscellaneous_3082307644
proquest_journals_3082045685
pubmed_primary_39020083
crossref_citationtrail_10_1038_s41698_024_00647_1
crossref_primary_10_1038_s41698_024_00647_1
springer_journals_10_1038_s41698_024_00647_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-17
PublicationDateYYYYMMDD 2024-07-17
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ precision oncology
PublicationTitleAbbrev npj Precis. Onc
PublicationTitleAlternate NPJ Precis Oncol
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References XuZDysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancerFront. Immunol.2022131:CAS:528:DC%2BB38XisFemt7nE36119074948128310.3389/fimmu.2022.1008975
LiuLShahKThe potential of the gut microbiome to reshape the cancer therapy paradigm: a reviewJAMA Oncol.2022810593548235510.1001/jamaoncol.2022.0494
XuCFADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancerNat. Commun.2023141:CAS:528:DC%2BB3sXnvVeiu7c%3D370411601009013510.1038/s41467-023-37590-x
SinghADIABLO: an integrative approach for identifying key molecular drivers from multi-omics assaysBioinformatics201935305530621:CAS:528:DC%2BB3cXhtVCjtL3I30657866673583110.1093/bioinformatics/bty1054
SiegelRLColorectal cancer statistics, 2020CA Cancer J. Clin.2020701451643213364510.3322/caac.21601
YoonGGaynanovaIMüllerCLMicrobial networks in SPRING—semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome dataFront. Genet.20191051631244881656387110.3389/fgene.2019.00516
ArtemevANaikSPougnoAHonnavarPShanbhagNMThe association of microbiome dysbiosis with colorectal cancerCureus202214e22156351740408840808
KoundourosNPoulogiannisGReprogramming of fatty acid metabolism in cancerBr. J. Cancer20201224221:CAS:528:DC%2BC1MXisVSlt7bM3181919210.1038/s41416-019-0650-z
West Coast Metabolomics Center—Metabolites. https://metabolomics.ucdavis.edu/core-services/metabolites.
BenjaminiYHochbergYControlling the false discovery Rate: a practical and powerful approach to multiple testingJ. R. Stat. Soc. Ser. B Methodol.19955728930010.1111/j.2517-6161.1995.tb02031.x
DeGuzmanALorensonMYWalkerAMBittersweet: relevant amounts of the common sweet food additive, glycerol, accelerate the growth of PC3 human prostate cancer xenograftsBMC Res. Notes2022151:CAS:528:DC%2BB38Xht1ygsL%2FM35272680890867710.1186/s13104-022-05990-9
SchmidtDRMetabolomics in cancer research and emerging applications in clinical oncologyCA Cancer J. Clin.20217133335833982817829808810.3322/caac.21670
GatesTJFecal microbiota restoration modulates the microbiome in inflammation-driven colorectal cancerCancers20231522601:CAS:528:DC%2BB3sXpslSnt7w%3D371901861013721610.3390/cancers15082260
KimDJColorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesiclesSci. Rep.2020101:CAS:528:DC%2BB3cXlvVKjtbs%3D32071370702903210.1038/s41598-020-59529-8
CallahanBJDADA2: high-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D27214047492737710.1038/nmeth.3869
StockertJAWeilRYadavKKKyprianouNTewariAKPseudouridine as a novel biomarker in prostate cancerUrol. Oncol.20213963711:CAS:528:DC%2BB3cXhsVCltLvL3271213810.1016/j.urolonc.2020.06.026
KrishnapuramBCarinLFigueiredoMATHarteminkAJSparse multinomial logistic regression: fast algorithms and generalization boundsIEEE Trans. Pattern Anal. Mach. Intell.2005279579681594342610.1109/TPAMI.2005.127
JayakrishnanTPlasma metabolomic differences in early-onset compared to average-onset colorectal cancerSci. Rep.2024141:CAS:528:DC%2BB2cXksVehsrs%3D383836341088195910.1038/s41598-024-54560-5
WangNFangJ-YFusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancerTrends Microbiol.2023311591721:CAS:528:DC%2BB38Xit1Wqt7jI3605878610.1016/j.tim.2022.08.010
KamathSDRacial disparities negatively impact outcomes in early‐onset colorectal cancer independent of socioeconomic statusCancer Med.2021107542755034647438855949510.1002/cam4.4276
SunJKatoIGut microbiota, inflammation and colorectal cancerGenes Dis.2016313014328078319522156110.1016/j.gendis.2016.03.004
WolfAMDColorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer SocietyCA Cancer J. Clin.2018682502812984694710.3322/caac.21457
IsmailITSugar alcohols have a key role in pathogenesis of chronic liver disease and hepatocellular carcinoma in whole blood and liver tissuesCancers2020124841:CAS:528:DC%2BB3cXht1KlsrfE32092943707216910.3390/cancers12020484
SakaiMArachidonic acid and cancer risk: a systematic review of observational studiesBMC Cancer2012121:CAS:528:DC%2BC3sXjs12mt7w%3D23249186357485610.1186/1471-2407-12-606
ChambersLMDisruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancerCancer Res.202282465446691:CAS:528:DC%2BB3sXhsFWrs7c%3D36206317977217810.1158/0008-5472.CAN-22-0455
AlexandrouCSensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymesSci. Rep.2018830108309609240910.1038/s41598-018-30591-7
ChhetriDRMyo-inositol and its derivatives: their emerging role in the treatment of human diseasesFront. Pharmacol.20191011721:CAS:528:DC%2BB3cXpvVeqt70%3D31680956679808710.3389/fphar.2019.01172
SwantonCEmbracing cancer complexity: hallmarks of systemic diseaseCell2024187158916161:CAS:528:DC%2BB2cXns1Kqsr0%3D3855260910.1016/j.cell.2024.02.009
AboudOApplication of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiationMetabolites2023132991:CAS:528:DC%2BB3sXktlCgs7s%3D36837918996185610.3390/metabo13020299
WeissKBarrier housing and gender effects on allergic airway disease in a murine house dust mite modelImmunohorizons2021533471:CAS:528:DC%2BB3MXosVSjs70%3D3347898210.4049/immunohorizons.2000096
ViganoSTargeting adenosine in cancer immunotherapy to enhance T-cell functionFront. Immunol.2019109251:CAS:528:DC%2BB3cXhs1aitr8%3D31244820656256510.3389/fimmu.2019.00925
R: The R Project for Statistical Computing. https://www.r-project.org/.
León-LetelierRAContributions of the microbiome-derived metabolome for risk assessment and prognostication of pancreatic cancerClin. Chem.2024701021153817557810.1093/clinchem/hvad186
SpaanderMCWYoung-onset colorectal cancerNat. Rev. Dis. Prim.20239213710598710.1038/s41572-023-00432-7
MiyamotoSSystemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometryMetabolites201551922101:CAS:528:DC%2BC2MXmsVGit70%3D25859693449536910.3390/metabo5020192
Sangwan, N. & Khorana, A. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10401639 (2023).
YangZTangHLuSSunXRaoBRelationship between serum lipid level and colorectal cancer: a systemic review and meta-analysisBMJ Open202212e05237335732386922693410.1136/bmjopen-2021-052373
WuJWuMWuQIdentification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomicsJ. Clin. Lab Anal.202034e233331:CAS:528:DC%2BB3cXhs1ylsLjF32281150743942110.1002/jcla.23333
Cancer of the colon and rectum—cancer stat facts. SEER. https://seer.cancer.gov/statfacts/html/colorect.html.
Zhang, H. et al. Disease‐associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med. cam4.6194. https://doi.org/10.1002/cam4.6194 (2023).
WeinbergBAMarshallJLColon cancer in young adults: trends and their implicationsCurr. Oncol. Rep.2019213065937510.1007/s11912-019-0756-8
BarotSVDistinct intratumoral microbiome of young-onset and average-onset colorectal cancereBioMedicine20241001049801:CAS:528:DC%2BB2cXivV2msLc%3D383068981085011610.1016/j.ebiom.2024.104980
Zwezerijnen-JiwaFHSivovHPaizsPZafeiropoulouKKinrossJA systematic review of microbiome-derived biomarkers for early colorectal cancer detectionNeoplasia20223610086836566591980413710.1016/j.neo.2022.100868
YangJHigh-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolitesGastroenterology2022162135149.e21:CAS:528:DC%2BB38XntFOgsLY%3D3446105210.1053/j.gastro.2021.08.041
IrajizadEA blood-based metabolomic signature predictive of risk for pancreatic cancerCell Rep. Med.202341:CAS:528:DC%2BB3sXhvFCrs7vP377298701051862110.1016/j.xcrm.2023.101194
McMurdiePJHolmesSphyloseq: an R package for reproducible interactive analysis and graphics of microbiome census dataPLoS ONE20138e612171:CAS:528:DC%2BC3sXntVWht7w%3D23630581363253010.1371/journal.pone.0061217
Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut gutjnl-2022-327156. https://doi.org/10.1136/gutjnl-2022-327156 (2022).
ChenQRubidium chloride modulated the fecal microbiota community in miceBMC Microbiol.20212133588762788523910.1186/s12866-021-02095-4
ZhuGUntargeted GC-MS-based metabolomics for early detection of colorectal cancerFront. Oncol.2021117295121:CAS:528:DC%2BB3sXhtlWrtLfO34804922859958910.3389/fonc.2021.729512
CaiZPoulosRCLiuJZhongQMachine learning for multi-omics data integration in canceriScience2022251037981:CAS:528:DC%2BB38Xht1WjsLfJ35169688882981210.1016/j.isci.2022.103798
HuaHIntestinal microbiota in colorectal adenoma-carcinoma sequenceFront. Med.2022910.3389/fmed.2022.888340
FiehnOMetabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profilingCurr. Protoc. Mol. Biol.201611430.4.130.4.322703838910.1002/0471142727.mb3004s114
West Coast Metabolomics Center—Assays and Services. https://metabolomics.ucdavis.edu/core-services/assays-and-services.
BolyenEReproducible, interactive, scalable and extensible microbiome data science using QIIME 2Nat. Biotechnol.2019378528571:CAS:528:DC%2BC1MXhsVeksr%2FO31341288701518010.1038/s41587-019-0209-9
Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med.https://doi.org/10.1038/s41591-023-02453-x (2023).
ChenHUrea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesisCell Metab.202335651666.e71:CAS:528:DC%2BB3sXmtVSisLw%3D3696339410.1016/j.cmet.2023.03.003
SobhaniIColorectal cancer-associated microbiota contributes to oncogenic epigenetic signaturesProc. Natl Acad. Sci. USA201911624285242951:CAS:528:DC%2BC1MXit1OktrbF317124
647_CR47
647_CR48
Z Xu (647_CR28) 2022; 13
MCW Spaander (647_CR7) 2023; 9
JA Stockert (647_CR14) 2021; 39
PJ McMurdie (647_CR58) 2013; 8
Q Chen (647_CR37) 2021; 21
A Artemev (647_CR36) 2022; 14
J Sun (647_CR35) 2016; 3
647_CR46
O Aboud (647_CR50) 2023; 13
DJ Kim (647_CR38) 2020; 10
G Yoon (647_CR13) 2019; 10
Z Yang (647_CR21) 2022; 12
I Sobhani (647_CR34) 2019; 116
H Hua (647_CR30) 2022; 9
M Sakai (647_CR18) 2012; 12
DR Chhetri (647_CR19) 2019; 10
C Eng (647_CR6) 2022; 23
BA Weinberg (647_CR8) 2019; 21
IT Ismail (647_CR51) 2020; 12
T Jayakrishnan (647_CR12) 2024; 14
AMD Wolf (647_CR2) 2018; 68
647_CR32
SV Barot (647_CR11) 2024; 100
RA León-Letelier (647_CR40) 2024; 70
S Vigano (647_CR24) 2019; 10
FH Zwezerijnen-Jiwa (647_CR29) 2022; 36
C Alexandrou (647_CR26) 2018; 8
L Liu (647_CR45) 2022; 8
N Koundouros (647_CR16) 2020; 122
647_CR61
R Nassani (647_CR22) 2021; 81
G Zhu (647_CR17) 2021; 11
V Kumar (647_CR23) 2013; 9
J Yang (647_CR27) 2022; 162
A Singh (647_CR42) 2019; 35
647_CR60
H Chen (647_CR25) 2023; 35
647_CR9
K Weiss (647_CR55) 2021; 5
DR Schmidt (647_CR44) 2021; 71
647_CR1
SD Kamath (647_CR3) 2021; 10
E Bolyen (647_CR56) 2019; 37
N Wang (647_CR33) 2023; 31
BJ Callahan (647_CR57) 2016; 13
RL Siegel (647_CR4) 2020; 70
C Swanton (647_CR41) 2024; 187
E Irajizad (647_CR10) 2023; 4
B Krishnapuram (647_CR53) 2005; 27
LM Chambers (647_CR54) 2022; 82
Y Benjamini (647_CR59) 1995; 57
J Wu (647_CR39) 2020; 34
M Giannakis (647_CR5) 2023; 379
C Xu (647_CR20) 2023; 14
S Miyamoto (647_CR52) 2015; 5
A DeGuzman (647_CR15) 2022; 15
TJ Gates (647_CR31) 2023; 15
Z Cai (647_CR43) 2022; 25
O Fiehn (647_CR49) 2016; 114
References_xml – reference: WeissKBarrier housing and gender effects on allergic airway disease in a murine house dust mite modelImmunohorizons2021533471:CAS:528:DC%2BB3MXosVSjs70%3D3347898210.4049/immunohorizons.2000096
– reference: GatesTJFecal microbiota restoration modulates the microbiome in inflammation-driven colorectal cancerCancers20231522601:CAS:528:DC%2BB3sXpslSnt7w%3D371901861013721610.3390/cancers15082260
– reference: FiehnOMetabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profilingCurr. Protoc. Mol. Biol.201611430.4.130.4.322703838910.1002/0471142727.mb3004s114
– reference: Cancer of the colon and rectum—cancer stat facts. SEER. https://seer.cancer.gov/statfacts/html/colorect.html.
– reference: SpaanderMCWYoung-onset colorectal cancerNat. Rev. Dis. Prim.20239213710598710.1038/s41572-023-00432-7
– reference: ChenQRubidium chloride modulated the fecal microbiota community in miceBMC Microbiol.20212133588762788523910.1186/s12866-021-02095-4
– reference: West Coast Metabolomics Center—Metabolites. https://metabolomics.ucdavis.edu/core-services/metabolites.
– reference: AlexandrouCSensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymesSci. Rep.2018830108309609240910.1038/s41598-018-30591-7
– reference: YangZTangHLuSSunXRaoBRelationship between serum lipid level and colorectal cancer: a systemic review and meta-analysisBMJ Open202212e05237335732386922693410.1136/bmjopen-2021-052373
– reference: SchmidtDRMetabolomics in cancer research and emerging applications in clinical oncologyCA Cancer J. Clin.20217133335833982817829808810.3322/caac.21670
– reference: ViganoSTargeting adenosine in cancer immunotherapy to enhance T-cell functionFront. Immunol.2019109251:CAS:528:DC%2BB3cXhs1aitr8%3D31244820656256510.3389/fimmu.2019.00925
– reference: LiuLShahKThe potential of the gut microbiome to reshape the cancer therapy paradigm: a reviewJAMA Oncol.2022810593548235510.1001/jamaoncol.2022.0494
– reference: SwantonCEmbracing cancer complexity: hallmarks of systemic diseaseCell2024187158916161:CAS:528:DC%2BB2cXns1Kqsr0%3D3855260910.1016/j.cell.2024.02.009
– reference: Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut gutjnl-2022-327156. https://doi.org/10.1136/gutjnl-2022-327156 (2022).
– reference: XuCFADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancerNat. Commun.2023141:CAS:528:DC%2BB3sXnvVeiu7c%3D370411601009013510.1038/s41467-023-37590-x
– reference: DeGuzmanALorensonMYWalkerAMBittersweet: relevant amounts of the common sweet food additive, glycerol, accelerate the growth of PC3 human prostate cancer xenograftsBMC Res. Notes2022151:CAS:528:DC%2BB38Xht1ygsL%2FM35272680890867710.1186/s13104-022-05990-9
– reference: YoonGGaynanovaIMüllerCLMicrobial networks in SPRING—semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome dataFront. Genet.20191051631244881656387110.3389/fgene.2019.00516
– reference: GiannakisMNgKA common cancer at an uncommon ageScience.2023379108810901:CAS:528:DC%2BB3sXls1ertr0%3D3692701610.1126/science.ade7114
– reference: AboudOApplication of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiationMetabolites2023132991:CAS:528:DC%2BB3sXktlCgs7s%3D36837918996185610.3390/metabo13020299
– reference: JayakrishnanTPlasma metabolomic differences in early-onset compared to average-onset colorectal cancerSci. Rep.2024141:CAS:528:DC%2BB2cXksVehsrs%3D383836341088195910.1038/s41598-024-54560-5
– reference: NassaniRAlAmriHAlrfaeiBMAbstract LB183: Erythritol acts as tumor enhancer and suppressor depending on concentrations in brain tumor cell linesCancer Res.202181LB18310.1158/1538-7445.AM2021-LB183
– reference: KoundourosNPoulogiannisGReprogramming of fatty acid metabolism in cancerBr. J. Cancer20201224221:CAS:528:DC%2BC1MXisVSlt7bM3181919210.1038/s41416-019-0650-z
– reference: CaiZPoulosRCLiuJZhongQMachine learning for multi-omics data integration in canceriScience2022251037981:CAS:528:DC%2BB38Xht1WjsLfJ35169688882981210.1016/j.isci.2022.103798
– reference: EngCA comprehensive framework for early-onset colorectal cancer researchLancet Oncol.202223e116e1283509067310.1016/S1470-2045(21)00588-X
– reference: León-LetelierRAContributions of the microbiome-derived metabolome for risk assessment and prognostication of pancreatic cancerClin. Chem.2024701021153817557810.1093/clinchem/hvad186
– reference: R: The R Project for Statistical Computing. https://www.r-project.org/.
– reference: IrajizadEA blood-based metabolomic signature predictive of risk for pancreatic cancerCell Rep. Med.202341:CAS:528:DC%2BB3sXhvFCrs7vP377298701051862110.1016/j.xcrm.2023.101194
– reference: BarotSVDistinct intratumoral microbiome of young-onset and average-onset colorectal cancereBioMedicine20241001049801:CAS:528:DC%2BB2cXivV2msLc%3D383068981085011610.1016/j.ebiom.2024.104980
– reference: KimDJColorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesiclesSci. Rep.2020101:CAS:528:DC%2BB3cXlvVKjtbs%3D32071370702903210.1038/s41598-020-59529-8
– reference: SobhaniIColorectal cancer-associated microbiota contributes to oncogenic epigenetic signaturesProc. Natl Acad. Sci. USA201911624285242951:CAS:528:DC%2BC1MXit1OktrbF31712445688380510.1073/pnas.1912129116
– reference: West Coast Metabolomics Center—Assays and Services. https://metabolomics.ucdavis.edu/core-services/assays-and-services.
– reference: MiyamotoSSystemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometryMetabolites201551922101:CAS:528:DC%2BC2MXmsVGit70%3D25859693449536910.3390/metabo5020192
– reference: CallahanBJDADA2: high-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D27214047492737710.1038/nmeth.3869
– reference: WangNFangJ-YFusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancerTrends Microbiol.2023311591721:CAS:528:DC%2BB38Xit1Wqt7jI3605878610.1016/j.tim.2022.08.010
– reference: KrishnapuramBCarinLFigueiredoMATHarteminkAJSparse multinomial logistic regression: fast algorithms and generalization boundsIEEE Trans. Pattern Anal. Mach. Intell.2005279579681594342610.1109/TPAMI.2005.127
– reference: XuZDysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancerFront. Immunol.2022131:CAS:528:DC%2BB38XisFemt7nE36119074948128310.3389/fimmu.2022.1008975
– reference: ChambersLMDisruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancerCancer Res.202282465446691:CAS:528:DC%2BB3sXhsFWrs7c%3D36206317977217810.1158/0008-5472.CAN-22-0455
– reference: BolyenEReproducible, interactive, scalable and extensible microbiome data science using QIIME 2Nat. Biotechnol.2019378528571:CAS:528:DC%2BC1MXhsVeksr%2FO31341288701518010.1038/s41587-019-0209-9
– reference: SakaiMArachidonic acid and cancer risk: a systematic review of observational studiesBMC Cancer2012121:CAS:528:DC%2BC3sXjs12mt7w%3D23249186357485610.1186/1471-2407-12-606
– reference: ArtemevANaikSPougnoAHonnavarPShanbhagNMThe association of microbiome dysbiosis with colorectal cancerCureus202214e22156351740408840808
– reference: McMurdiePJHolmesSphyloseq: an R package for reproducible interactive analysis and graphics of microbiome census dataPLoS ONE20138e612171:CAS:528:DC%2BC3sXntVWht7w%3D23630581363253010.1371/journal.pone.0061217
– reference: SiegelRLColorectal cancer statistics, 2020CA Cancer J. Clin.2020701451643213364510.3322/caac.21601
– reference: WolfAMDColorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer SocietyCA Cancer J. Clin.2018682502812984694710.3322/caac.21457
– reference: YangJHigh-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolitesGastroenterology2022162135149.e21:CAS:528:DC%2BB38XntFOgsLY%3D3446105210.1053/j.gastro.2021.08.041
– reference: SinghADIABLO: an integrative approach for identifying key molecular drivers from multi-omics assaysBioinformatics201935305530621:CAS:528:DC%2BB3cXhtVCjtL3I30657866673583110.1093/bioinformatics/bty1054
– reference: KumarVAdenosine as an endogenous immunoregulator in cancer pathogenesis: where to go?Purinergic Signal.201391451651:CAS:528:DC%2BC3sXntVGjsrs%3D2327156210.1007/s11302-012-9349-9
– reference: IsmailITSugar alcohols have a key role in pathogenesis of chronic liver disease and hepatocellular carcinoma in whole blood and liver tissuesCancers2020124841:CAS:528:DC%2BB3cXht1KlsrfE32092943707216910.3390/cancers12020484
– reference: ChhetriDRMyo-inositol and its derivatives: their emerging role in the treatment of human diseasesFront. Pharmacol.20191011721:CAS:528:DC%2BB3cXpvVeqt70%3D31680956679808710.3389/fphar.2019.01172
– reference: Sangwan, N. & Khorana, A. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10401639 (2023).
– reference: ChenHUrea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesisCell Metab.202335651666.e71:CAS:528:DC%2BB3sXmtVSisLw%3D3696339410.1016/j.cmet.2023.03.003
– reference: Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med.https://doi.org/10.1038/s41591-023-02453-x (2023).
– reference: HuaHIntestinal microbiota in colorectal adenoma-carcinoma sequenceFront. Med.2022910.3389/fmed.2022.888340
– reference: StockertJAWeilRYadavKKKyprianouNTewariAKPseudouridine as a novel biomarker in prostate cancerUrol. Oncol.20213963711:CAS:528:DC%2BB3cXhsVCltLvL3271213810.1016/j.urolonc.2020.06.026
– reference: Zwezerijnen-JiwaFHSivovHPaizsPZafeiropoulouKKinrossJA systematic review of microbiome-derived biomarkers for early colorectal cancer detectionNeoplasia20223610086836566591980413710.1016/j.neo.2022.100868
– reference: WuJWuMWuQIdentification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomicsJ. Clin. Lab Anal.202034e233331:CAS:528:DC%2BB3cXhs1ylsLjF32281150743942110.1002/jcla.23333
– reference: KamathSDRacial disparities negatively impact outcomes in early‐onset colorectal cancer independent of socioeconomic statusCancer Med.2021107542755034647438855949510.1002/cam4.4276
– reference: ZhuGUntargeted GC-MS-based metabolomics for early detection of colorectal cancerFront. Oncol.2021117295121:CAS:528:DC%2BB3sXhtlWrtLfO34804922859958910.3389/fonc.2021.729512
– reference: Zhang, H. et al. Disease‐associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med. cam4.6194. https://doi.org/10.1002/cam4.6194 (2023).
– reference: WeinbergBAMarshallJLColon cancer in young adults: trends and their implicationsCurr. Oncol. Rep.2019213065937510.1007/s11912-019-0756-8
– reference: BenjaminiYHochbergYControlling the false discovery Rate: a practical and powerful approach to multiple testingJ. R. Stat. Soc. Ser. B Methodol.19955728930010.1111/j.2517-6161.1995.tb02031.x
– reference: SunJKatoIGut microbiota, inflammation and colorectal cancerGenes Dis.2016313014328078319522156110.1016/j.gendis.2016.03.004
– volume: 21
  year: 2019
  ident: 647_CR8
  publication-title: Curr. Oncol. Rep.
  doi: 10.1007/s11912-019-0756-8
– volume: 10
  year: 2020
  ident: 647_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-59529-8
– volume: 68
  start-page: 250
  year: 2018
  ident: 647_CR2
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21457
– volume: 15
  start-page: 2260
  year: 2023
  ident: 647_CR31
  publication-title: Cancers
  doi: 10.3390/cancers15082260
– ident: 647_CR9
  doi: 10.1136/gutjnl-2022-327156
– volume: 8
  year: 2018
  ident: 647_CR26
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30591-7
– volume: 122
  start-page: 4
  year: 2020
  ident: 647_CR16
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0650-z
– volume: 14
  year: 2024
  ident: 647_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-54560-5
– volume: 3
  start-page: 130
  year: 2016
  ident: 647_CR35
  publication-title: Genes Dis.
  doi: 10.1016/j.gendis.2016.03.004
– volume: 12
  start-page: e052373
  year: 2022
  ident: 647_CR21
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2021-052373
– volume: 14
  year: 2023
  ident: 647_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37590-x
– volume: 70
  start-page: 102
  year: 2024
  ident: 647_CR40
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/hvad186
– volume: 10
  start-page: 1172
  year: 2019
  ident: 647_CR19
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01172
– volume: 37
  start-page: 852
  year: 2019
  ident: 647_CR56
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0209-9
– volume: 9
  start-page: 21
  year: 2023
  ident: 647_CR7
  publication-title: Nat. Rev. Dis. Prim.
  doi: 10.1038/s41572-023-00432-7
– volume: 14
  start-page: e22156
  year: 2022
  ident: 647_CR36
  publication-title: Cureus
– volume: 35
  start-page: 651
  year: 2023
  ident: 647_CR25
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2023.03.003
– volume: 4
  year: 2023
  ident: 647_CR10
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2023.101194
– ident: 647_CR46
  doi: 10.1038/s41591-023-02453-x
– volume: 35
  start-page: 3055
  year: 2019
  ident: 647_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1054
– volume: 162
  start-page: 135
  year: 2022
  ident: 647_CR27
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2021.08.041
– volume: 10
  start-page: 516
  year: 2019
  ident: 647_CR13
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2019.00516
– ident: 647_CR32
  doi: 10.1002/cam4.6194
– volume: 13
  start-page: 581
  year: 2016
  ident: 647_CR57
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 379
  start-page: 1088
  year: 2023
  ident: 647_CR5
  publication-title: Science.
  doi: 10.1126/science.ade7114
– volume: 11
  start-page: 729512
  year: 2021
  ident: 647_CR17
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.729512
– volume: 10
  start-page: 7542
  year: 2021
  ident: 647_CR3
  publication-title: Cancer Med.
  doi: 10.1002/cam4.4276
– volume: 187
  start-page: 1589
  year: 2024
  ident: 647_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2024.02.009
– volume: 82
  start-page: 4654
  year: 2022
  ident: 647_CR54
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-22-0455
– volume: 5
  start-page: 33
  year: 2021
  ident: 647_CR55
  publication-title: Immunohorizons
  doi: 10.4049/immunohorizons.2000096
– volume: 31
  start-page: 159
  year: 2023
  ident: 647_CR33
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2022.08.010
– volume: 13
  year: 2022
  ident: 647_CR28
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.1008975
– volume: 8
  start-page: 1059
  year: 2022
  ident: 647_CR45
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2022.0494
– volume: 116
  start-page: 24285
  year: 2019
  ident: 647_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1912129116
– volume: 10
  start-page: 925
  year: 2019
  ident: 647_CR24
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00925
– volume: 36
  start-page: 100868
  year: 2022
  ident: 647_CR29
  publication-title: Neoplasia
  doi: 10.1016/j.neo.2022.100868
– ident: 647_CR48
– volume: 39
  start-page: 63
  year: 2021
  ident: 647_CR14
  publication-title: Urol. Oncol.
  doi: 10.1016/j.urolonc.2020.06.026
– volume: 25
  start-page: 103798
  year: 2022
  ident: 647_CR43
  publication-title: iScience
  doi: 10.1016/j.isci.2022.103798
– ident: 647_CR1
– volume: 23
  start-page: e116
  year: 2022
  ident: 647_CR6
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(21)00588-X
– volume: 9
  year: 2022
  ident: 647_CR30
  publication-title: Front. Med.
  doi: 10.3389/fmed.2022.888340
– volume: 57
  start-page: 289
  year: 1995
  ident: 647_CR59
  publication-title: J. R. Stat. Soc. Ser. B Methodol.
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 5
  start-page: 192
  year: 2015
  ident: 647_CR52
  publication-title: Metabolites
  doi: 10.3390/metabo5020192
– volume: 70
  start-page: 145
  year: 2020
  ident: 647_CR4
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21601
– volume: 81
  start-page: LB183
  year: 2021
  ident: 647_CR22
  publication-title: Cancer Res.
  doi: 10.1158/1538-7445.AM2021-LB183
– volume: 27
  start-page: 957
  year: 2005
  ident: 647_CR53
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.127
– ident: 647_CR61
  doi: 10.5281/zenodo.10401639
– volume: 13
  start-page: 299
  year: 2023
  ident: 647_CR50
  publication-title: Metabolites
  doi: 10.3390/metabo13020299
– volume: 8
  start-page: e61217
  year: 2013
  ident: 647_CR58
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0061217
– volume: 21
  year: 2021
  ident: 647_CR37
  publication-title: BMC Microbiol.
  doi: 10.1186/s12866-021-02095-4
– volume: 71
  start-page: 333
  year: 2021
  ident: 647_CR44
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21670
– volume: 15
  year: 2022
  ident: 647_CR15
  publication-title: BMC Res. Notes
  doi: 10.1186/s13104-022-05990-9
– volume: 100
  start-page: 104980
  year: 2024
  ident: 647_CR11
  publication-title: eBioMedicine
  doi: 10.1016/j.ebiom.2024.104980
– volume: 114
  start-page: 30.4.1
  year: 2016
  ident: 647_CR49
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/0471142727.mb3004s114
– ident: 647_CR60
– ident: 647_CR47
– volume: 12
  start-page: 484
  year: 2020
  ident: 647_CR51
  publication-title: Cancers
  doi: 10.3390/cancers12020484
– volume: 12
  year: 2012
  ident: 647_CR18
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-12-606
– volume: 9
  start-page: 145
  year: 2013
  ident: 647_CR23
  publication-title: Purinergic Signal.
  doi: 10.1007/s11302-012-9349-9
– volume: 34
  start-page: e23333
  year: 2020
  ident: 647_CR39
  publication-title: J. Clin. Lab Anal.
  doi: 10.1002/jcla.23333
SSID ssj0001851266
Score 2.3401487
Snippet The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning...
Abstract The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 146
SubjectTerms 631/61/320
631/61/514
692/308/575
692/4028/67/1504/1885
692/53
Biomarkers
Cancer Research
Colorectal cancer
Gene Therapy
Human Genetics
Internal Medicine
Machine learning
Medicine
Medicine & Public Health
Metabolites
Oncology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnrggEBQCBRmJG1jd-CNxjoCoKiR6KlJvluOMoRKbRbvp_--MnV26QOmFYzKOYk1mPM_xzBuAN01MSrWWPC0oK01rnOz7aCXWjYsKaQttuMD5y1lz-tV8vrAXN1p9cU5YoQcuijsmwBIUqs4sQm86JIDuemzaYNSAOmFmAqUwdmMzlf-uEJCg0DNXySy0O94Q8uBqMmVkLrCU9V4kyoT9f0OZfyZL_nZimgPRyUN4MCNI8b7M_BHcw_ExxFxIK7nEeCOWOUESxdwR4puYViLTyAou6ZDLy0K-tETBZBHrUtqwoQuBTHcsOcF6EkxnzcshvSuyaayfwPnJp_OPp3LunyCjNfUkG9UyHVuoh5R0GoKK3dB1g3YhBdKQC4HJ7OpWKx2wa0KgaIbOkCQtHDnmIRyMqxGfgUgu0cKoU9S0idWuIemAQx8aa9XQ1qmCeqtKH2ducW5x8cPnM27tfFG_J_X7rH5fV_B298zPwqzxz9Ef-AvtRjIrdr5BtuJnW_F32UoFR9vv62dX3Xjm62Fc62wFr3dicjI-OQkjrq7KGFoMCTtW8LSYw24multwDomuwO0Zyt5U9yXj5fdM5E1Y1zIbbQXvtjb1a1636-L5_9DFC7ivsjMwR-gRHEzrK3xJ-GrqX2VXugaaXyCj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VRUJcEN-EFmQkbmCx8UfiHMuKqkIqpyL1ZjnOuFRis2g3_f_MOMlWCwWJY2JbsTwz9nM87xngXRWTUrWlSAvKSlMbJ9s2Woll5aJC2kIbJjiff63Ovpkvl_byANTMhclJ-1nSMk_Tc3bYxy0BByaDKSMzP1LSjueeq3XJaXzLann7X4UgBC06Ez9mod0dTffWoCzVfxe-_DNN8rez0rwEnT6ChxN2FCdjbx_DAfZP4P75dDr-FGJm00rmGW_FKmdJopiuhbgSw1pkLVnBvA65uh4VmFYoWDFiM_IbtvQgkDWPJWdZD4I1rXlOpM9G9o_NM7g4_XyxPJPTJQoyWlMOslI1a7KFsktJpy6o2HRN02kXUqDBciGwol1Za6UDNlUItKShM1SSFo6i8zkc9useX4JILtHsqFPUtJPVrqLSDrs2VNaqri5TAeU8qj5OAuN8z8UPnw-6tfOjJTxZwmdL-LKA97s2P0d5jX_W_sTG2tVkaez8Yr258pOreEK4QaFqzCK0pkHa0bkWaQCM6lAnNAUcz6b2U7xuPYv2MLh1toC3u2KKND4-CT2ub8Y6NCMSgCzgxegZu57oZsGJJLoAt-cze13dL-mvv2c1bwK8liVpC_gwu9dtv_4-Fq_-r_oRPFA5AlgS9BgOh80NviY4NbRvcvz8Aue1GQI
  priority: 102
  providerName: Springer Nature
Title Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer
URI https://link.springer.com/article/10.1038/s41698-024-00647-1
https://www.ncbi.nlm.nih.gov/pubmed/39020083
https://www.proquest.com/docview/3082045685
https://www.proquest.com/docview/3082307644
https://pubmed.ncbi.nlm.nih.gov/PMC11255257
https://doaj.org/article/150a2e2940ab49e4998be67a42de3fe4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: M~E
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: NAO
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: 7X7
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: AAJSJ
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2397-768X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001851266
  issn: 2397-768X
  databaseCode: C6C
  dateStart: 20171201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb-7KX0bEvb13QYG-baCzJsvw00tBSAitj6yBvQpalrrDYXez-_72TlYTso0_Blkzk893pJ-nud4R8UC5wXhZgaZYXTJZSs7p2BfO50o57WEJLTHD-cqkufsjFslimDbc-hVVufGJ01E3ncI_8BGlVEH7o4vPtb4ZVo_B0NZXQeEwOc4AqqNXlstztsQCc4GqsL1eVDJD1MuXNTIU-6QGLYH4ZlyymXLJ8b26KFP7_wp1_h0_-cYYap6bzI_I0YUo6G5XgGXnk2-fExdRahknHPV3FkElPU42Iazp0NBLLUkzyYKubkY5p5SnSR6zHZIceLqhHAmSGIdcDRYJrdJDwXw6VZf2CXJ2fXc0vWKqowFwh84EpXiJBm82bEERoLHdVU1WN0DZYkJa2Funt8lJwYX2lrIX5zWsJLWGqwVRfkoO2a_1rQoMO4CpFcAKWtUIraG18U1tVFLwp85CRfCNK4xLbOBa9-GXiqbfQZhS_AfGbKH6TZ-Tj9pnbkWvjwd6n-IW2PZEnO97o1tcmmZ0BuGu555Wc2lpWHpZ3uvYgAMkbL4KXGTnefF-TjLc3O1XLyPttM5gdnqXY1nd3Yx9wj4AmM_JqVIftSEQ1xagSkRG9pyh7Q91vaW9-RmpvQL8F8tNm5NNGp3bj-r8s3jz8Gm_JEx7VHPlAj8nBsL7z7wBLDfUkGsyEHM5mi-8L-D09u_z6De7O1XwS9yfuAYuOHwg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAvEKLWAkOIHVxHYS54AQr2pLH6dF2pvlJHapxCbtbirEj-I_MuMku1oevfWY2Emc8czkczzzDcDLrPJC5ClamhUpV7nSvCyrlLsk05VwuIRWlOB8fJJNvqovs3S2Bb_GXBgKqxx9YnDUdVvRP_I9olUh-KHTd-cXnKpG0e7qWEKjV4tD9_MHLtmWbw8-4fy-EmL_8_TjhA9VBXiVqqTjmciJpMwmtffS11ZURV0UtdTW2zjR2lqieEtyKaR1RWYt-ninFbb4WKO64m1vwE0lY0VU_fksX__SQfQisr6cXZFzBPKzIU0nlnpvidCH0tmE4iHDkycbn8JQMeBfMPfvaM0_tmzDl3D_LtwZICx73-vcPdhyzX2oQiYvpxznJZuHCE3HhpIUp6xrWeCxZZRTwudnPfvT3DFiq1j0uRVLPGCO-JY5RXh3jPi0yR_jsyrSzcUDmF6HqB_CdtM27jEwrz16ZukriatoqTNsrV1d2ixNRZ0nPoJkFKWpBnJzqrHx3YRNdqlNL36D4jdB_CaJ4PXqmvOe2uPK3h9ohlY9iZY7nGgXp2awcoPo2gonChXbUhUOV5O6dCgAJWonvVMR7I7zawZfsTRrzY7gxaoZrZy2bmzj2su-D3pjBK8RPOrVYTUSWcQUxCIj0BuKsjHUzZbm7FtgEkewnRIdbgRvRp1aj-v_snhy9Ws8h1uT6fGROTo4OdyB2yKoPFGR7sJ2t7h0TxHGdeWzYDwMzDUb628fUVVm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlVcEG8CBYzEDSw2fsU5QmFVHq04FKk3y3HsthKbRbvp_2fGSbZaKEgcE9uK5Xn4c2bmM8ArE5IQlUZL80JzVSnLmyZoHktjg4h4hFZU4Hx0bA6_q8-n-nQHzFQLk5P2M6VldtNTdtjbNQIHKgYTiuf6SI4epk034Kat0EQoSGsOrv6tIIzAjWeskZlJe83wrX0o0_VfhzH_TJX8LV6at6H5Hbg94kf2bpjxXdiJ3T3YOxoj5Pch5IpaTrXGa7bImZKRjVdDnLF-yTKfLKPaDr64GFiYFpERa8RqqHFY4wOLxHvMKdO6Z8RrTX4RPxtIR1YP4GT-8eTgkI8XKfCgVdlzIyriZfNlm5JMrRehbuu6ldYnj4tlvSdWu7KSQvpYG-9xW4tWYUuaWbTQh7DbLbv4GFiyCT2kTEHiaVZag61tbBtvtBZtVaYCymlVXRhJxumuix8uB7uldYMkHErCZUm4soDXmzE_B4qNf_Z-T8La9CR67PxiuTpzo7o4RLleRFGrmW9UHfFUZ5uIC6BEG2WKqoD9SdRutNm1I-IeArhWF_By04zWRiEU38Xl5dAHvSKCyAIeDZqxmYmsZ5RMIguwWzqzNdXtlu7iPDN6I-jVREtbwJtJva7m9fe1ePJ_3V_A3rcPc_f10_GXp3BLZGMghtB92O1Xl_EZoqu-eZ5N6RdjWh0D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+machine+learning+to+study+host-microbiome+interactions+in+early-onset+colorectal+cancer&rft.jtitle=NPJ+precision+oncology&rft.au=Jayakrishnan%2C+Thejus+T&rft.au=Sangwan%2C+Naseer&rft.au=Barot%2C+Shimoli+V&rft.au=Farha%2C+Nicole&rft.date=2024-07-17&rft.pub=Nature+Publishing+Group&rft.issn=2397-768X&rft.eissn=2397-768X&rft.volume=8&rft.issue=1&rft.spage=146&rft_id=info:doi/10.1038%2Fs41698-024-00647-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-768X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-768X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-768X&client=summon