Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer
The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-o...
Saved in:
Published in | NPJ precision oncology Vol. 8; no. 1; pp. 146 - 8 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.07.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2397-768X 2397-768X |
DOI | 10.1038/s41698-024-00647-1 |
Cover
Abstract | The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC (
n
= 64) were categorized as eoCRC (age ≤ 50,
n
= 20) or aoCRC (age ≥ 60,
n
= 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with
Parasutterella
, and
Ruminococcaceae
(higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with
Erysipelatoclostridium
and
Eubacterium
, and showed a positive correlation with
Acidovorax
with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as
Akkermansia
. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions. |
---|---|
AbstractList | The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions.The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions. The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I-IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions. The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC ( n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella , and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium , and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia . We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions. Abstract The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning utilizing paired tissue microbiome and plasma metabolome features could uncover distinct host-microbiome associations between eoCRC and average-onset CRC (aoCRC). Individuals with stages I–IV CRC (n = 64) were categorized as eoCRC (age ≤ 50, n = 20) or aoCRC (age ≥ 60, n = 44). Untargeted plasma metabolomics and 16S rRNA amplicon sequencing (microbiome analysis) of tumor tissue were performed. We fit DIABLO (Data Integration Analysis for Biomarker Discovery using Latent variable approaches for Omics studies) to construct a supervised machine-learning classifier using paired multi-omics (microbiome and metabolomics) data and identify associations unique to eoCRC. A differential association network analysis was also performed. Distinct clustering patterns emerged in multi-omic dimension reduction analysis. The metabolomics classifier achieved an AUC of 0.98, compared to AUC 0.61 for microbiome-based classifier. Circular correlation technique highlighted several key associations. Metabolites glycerol and pseudouridine (higher abundance in individuals with aoCRC) had negative correlations with Parasutterella, and Ruminococcaceae (higher abundance in individuals with eoCRC). Cholesterol and xylitol correlated negatively with Erysipelatoclostridium and Eubacterium, and showed a positive correlation with Acidovorax with higher abundance in individuals with eoCRC. Network analysis revealed different clustering patterns and associations for several metabolites e.g.: urea cycle metabolites and microbes such as Akkermansia. We show that multi-omics analysis can be utilized to study host-microbiome correlations in eoCRC and demonstrates promising biomarker potential of a metabolomics classifier. The distinct host-microbiome correlations for urea cycle in eoCRC may offer opportunities for therapeutic interventions. |
ArticleNumber | 146 |
Author | Krishnamurthi, Smitha S. Conces, Madison Barot, Shimoli V. Schmit, Stephanie L. Xiang, Shao Farha, Nicole Aucejo, Federico Nair, Kanika G. Mariam, Arshiya Rotroff, Daniel M. Liska, David Sangwan, Naseer Jayakrishnan, Thejus T. Khorana, Alok A. Kamath, Suneel D. |
Author_xml | – sequence: 1 givenname: Thejus T. orcidid: 0000-0002-3636-0353 surname: Jayakrishnan fullname: Jayakrishnan, Thejus T. organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Department of Medical Oncology, Dana-Farber Cancer Institute – sequence: 2 givenname: Naseer surname: Sangwan fullname: Sangwan, Naseer organization: Microbial Sequencing & Analytics Resource (MSAAR), Lerner Research Institute, Cleveland Clinic – sequence: 3 givenname: Shimoli V. orcidid: 0000-0002-5313-9992 surname: Barot fullname: Barot, Shimoli V. organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic – sequence: 4 givenname: Nicole surname: Farha fullname: Farha, Nicole organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic – sequence: 5 givenname: Arshiya surname: Mariam fullname: Mariam, Arshiya organization: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Center for Quantitative Metabolic Research, Cleveland Clinic – sequence: 6 givenname: Shao surname: Xiang fullname: Xiang, Shao organization: Department of Surgery, Cleveland Clinic – sequence: 7 givenname: Federico surname: Aucejo fullname: Aucejo, Federico organization: Department of Surgery, Cleveland Clinic – sequence: 8 givenname: Madison surname: Conces fullname: Conces, Madison organization: Case Comprehensive Cancer Center, Department of Hematology-Oncology, University Hospital Seidman Cancer Center – sequence: 9 givenname: Kanika G. surname: Nair fullname: Nair, Kanika G. organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic – sequence: 10 givenname: Smitha S. surname: Krishnamurthi fullname: Krishnamurthi, Smitha S. organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic – sequence: 11 givenname: Stephanie L. surname: Schmit fullname: Schmit, Stephanie L. organization: Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Population and Cancer Prevention Program, Case Comprehensive Cancer Center – sequence: 12 givenname: David surname: Liska fullname: Liska, David organization: Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic, Department of Colorectal Surgery, Digestive Disease & Surgery Institute, Cleveland Clinic – sequence: 13 givenname: Daniel M. surname: Rotroff fullname: Rotroff, Daniel M. organization: Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Center for Quantitative Metabolic Research, Cleveland Clinic – sequence: 14 givenname: Alok A. surname: Khorana fullname: Khorana, Alok A. organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic – sequence: 15 givenname: Suneel D. orcidid: 0000-0003-0432-2536 surname: Kamath fullname: Kamath, Suneel D. email: kamaths@ccf.org organization: Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Case Comprehensive Cancer Center, Center for Young-Onset Colorectal Cancer, Cleveland Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39020083$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQHKEgEkJ-gAMaiQuXAb_GY58QinhECuKSAzer19Oz65XHDrYn0v493mwCSQ6RD3bbVdUld71ujkIM2DRvKflICVefsqBSq44w0REixdDRF80J43roBql-Hz04HzdnOW8JIVT1lEn5qjnmmjBCFD9p7M_FF9fF2dnczmA3LmDrEVJwYd2W2OayjLt2E3PpKibFlYszti4UTGCLiyHXoq0Ev-tqgaW10ceEtoBvLQSL6U3zcgKf8exuP22uvn29Ov_RXf76fnH-5bKzvaClk2yQdQEdp4lPIzCrR61HrmCC6l0BKDkMdOCMA2oJQLhEJerLRJSW_LS5OMiOEbbmOrkZ0s5EcOb2Iqa1gVSc9WhoT4Ah04LASmgUWqsV1taCjcgnFFXr80HrelnNOFoMJYF_JPr4JbiNWccbQynre9YPVeHDnUKKfxbMxcwuW_QeAsYlG04U42SQYt_s_RPoNi4p1K-6RRHRS9VX1LuHlv55uZ9lBagDoE4p54STsa7AfkTVofOGErNPjjkkx9TkmNvkGFqp7An1Xv1ZEj-QcgWHNab_tp9h_QVacNZ0 |
CitedBy_id | crossref_primary_10_1016_j_engappai_2024_109452 |
Cites_doi | 10.1007/s11912-019-0756-8 10.1038/s41598-020-59529-8 10.3322/caac.21457 10.3390/cancers15082260 10.1136/gutjnl-2022-327156 10.1038/s41598-018-30591-7 10.1038/s41416-019-0650-z 10.1038/s41598-024-54560-5 10.1016/j.gendis.2016.03.004 10.1136/bmjopen-2021-052373 10.1038/s41467-023-37590-x 10.1093/clinchem/hvad186 10.3389/fphar.2019.01172 10.1038/s41587-019-0209-9 10.1038/s41572-023-00432-7 10.1016/j.cmet.2023.03.003 10.1016/j.xcrm.2023.101194 10.1038/s41591-023-02453-x 10.1093/bioinformatics/bty1054 10.1053/j.gastro.2021.08.041 10.3389/fgene.2019.00516 10.1002/cam4.6194 10.1038/nmeth.3869 10.1126/science.ade7114 10.3389/fonc.2021.729512 10.1002/cam4.4276 10.1016/j.cell.2024.02.009 10.1158/0008-5472.CAN-22-0455 10.4049/immunohorizons.2000096 10.1016/j.tim.2022.08.010 10.3389/fimmu.2022.1008975 10.1001/jamaoncol.2022.0494 10.1073/pnas.1912129116 10.3389/fimmu.2019.00925 10.1016/j.neo.2022.100868 10.1016/j.urolonc.2020.06.026 10.1016/j.isci.2022.103798 10.1016/S1470-2045(21)00588-X 10.3389/fmed.2022.888340 10.1111/j.2517-6161.1995.tb02031.x 10.3390/metabo5020192 10.3322/caac.21601 10.1158/1538-7445.AM2021-LB183 10.1109/TPAMI.2005.127 10.5281/zenodo.10401639 10.3390/metabo13020299 10.1371/journal.pone.0061217 10.1186/s12866-021-02095-4 10.3322/caac.21670 10.1186/s13104-022-05990-9 10.1016/j.ebiom.2024.104980 10.1002/0471142727.mb3004s114 10.3390/cancers12020484 10.1186/1471-2407-12-606 10.1007/s11302-012-9349-9 10.1002/jcla.23333 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
DBID | C6C AAYXX CITATION NPM 3V. 7RV 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PIMPY PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41698-024-00647-1 |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2397-768X |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_150a2e2940ab49e4998be67a42de3fe4 PMC11255257 39020083 10_1038_s41698_024_00647_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: The Sondra and Stephen Hardis Chair in Oncology Research |
GroupedDBID | 0R~ 53G 7RV 7X7 8FI 8FJ AAJSJ AAKAB ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR C6C CCPQU EBLON EBS EMOBN FYUFA GROUPED_DOAJ HMCUK HYE M~E NAO NAPCQ NO~ OK1 PGMZT PIMPY RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-6276767a1dff3fda2c9d99d38afa0188aa867717323ae96aa036e84188f08963 |
IEDL.DBID | 7X7 |
ISSN | 2397-768X |
IngestDate | Wed Aug 27 01:30:01 EDT 2025 Thu Aug 21 18:33:03 EDT 2025 Fri Sep 05 00:10:26 EDT 2025 Sat Jul 26 03:17:44 EDT 2025 Thu Apr 03 07:08:18 EDT 2025 Tue Jul 01 00:35:47 EDT 2025 Thu Apr 24 23:08:28 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-6276767a1dff3fda2c9d99d38afa0188aa867717323ae96aa036e84188f08963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0432-2536 0000-0002-3636-0353 0000-0002-5313-9992 |
OpenAccessLink | https://www.proquest.com/docview/3082045685?pq-origsite=%requestingapplication% |
PMID | 39020083 |
PQID | 3082045685 |
PQPubID | 4669714 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_150a2e2940ab49e4998be67a42de3fe4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11255257 proquest_miscellaneous_3082307644 proquest_journals_3082045685 pubmed_primary_39020083 crossref_citationtrail_10_1038_s41698_024_00647_1 crossref_primary_10_1038_s41698_024_00647_1 springer_journals_10_1038_s41698_024_00647_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-07-17 |
PublicationDateYYYYMMDD | 2024-07-17 |
PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | NPJ precision oncology |
PublicationTitleAbbrev | npj Precis. Onc |
PublicationTitleAlternate | NPJ Precis Oncol |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | XuZDysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancerFront. Immunol.2022131:CAS:528:DC%2BB38XisFemt7nE36119074948128310.3389/fimmu.2022.1008975 LiuLShahKThe potential of the gut microbiome to reshape the cancer therapy paradigm: a reviewJAMA Oncol.2022810593548235510.1001/jamaoncol.2022.0494 XuCFADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancerNat. Commun.2023141:CAS:528:DC%2BB3sXnvVeiu7c%3D370411601009013510.1038/s41467-023-37590-x SinghADIABLO: an integrative approach for identifying key molecular drivers from multi-omics assaysBioinformatics201935305530621:CAS:528:DC%2BB3cXhtVCjtL3I30657866673583110.1093/bioinformatics/bty1054 SiegelRLColorectal cancer statistics, 2020CA Cancer J. Clin.2020701451643213364510.3322/caac.21601 YoonGGaynanovaIMüllerCLMicrobial networks in SPRING—semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome dataFront. Genet.20191051631244881656387110.3389/fgene.2019.00516 ArtemevANaikSPougnoAHonnavarPShanbhagNMThe association of microbiome dysbiosis with colorectal cancerCureus202214e22156351740408840808 KoundourosNPoulogiannisGReprogramming of fatty acid metabolism in cancerBr. J. Cancer20201224221:CAS:528:DC%2BC1MXisVSlt7bM3181919210.1038/s41416-019-0650-z West Coast Metabolomics Center—Metabolites. https://metabolomics.ucdavis.edu/core-services/metabolites. BenjaminiYHochbergYControlling the false discovery Rate: a practical and powerful approach to multiple testingJ. R. Stat. Soc. Ser. B Methodol.19955728930010.1111/j.2517-6161.1995.tb02031.x DeGuzmanALorensonMYWalkerAMBittersweet: relevant amounts of the common sweet food additive, glycerol, accelerate the growth of PC3 human prostate cancer xenograftsBMC Res. Notes2022151:CAS:528:DC%2BB38Xht1ygsL%2FM35272680890867710.1186/s13104-022-05990-9 SchmidtDRMetabolomics in cancer research and emerging applications in clinical oncologyCA Cancer J. Clin.20217133335833982817829808810.3322/caac.21670 GatesTJFecal microbiota restoration modulates the microbiome in inflammation-driven colorectal cancerCancers20231522601:CAS:528:DC%2BB3sXpslSnt7w%3D371901861013721610.3390/cancers15082260 KimDJColorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesiclesSci. Rep.2020101:CAS:528:DC%2BB3cXlvVKjtbs%3D32071370702903210.1038/s41598-020-59529-8 CallahanBJDADA2: high-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D27214047492737710.1038/nmeth.3869 StockertJAWeilRYadavKKKyprianouNTewariAKPseudouridine as a novel biomarker in prostate cancerUrol. Oncol.20213963711:CAS:528:DC%2BB3cXhsVCltLvL3271213810.1016/j.urolonc.2020.06.026 KrishnapuramBCarinLFigueiredoMATHarteminkAJSparse multinomial logistic regression: fast algorithms and generalization boundsIEEE Trans. Pattern Anal. Mach. Intell.2005279579681594342610.1109/TPAMI.2005.127 JayakrishnanTPlasma metabolomic differences in early-onset compared to average-onset colorectal cancerSci. Rep.2024141:CAS:528:DC%2BB2cXksVehsrs%3D383836341088195910.1038/s41598-024-54560-5 WangNFangJ-YFusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancerTrends Microbiol.2023311591721:CAS:528:DC%2BB38Xit1Wqt7jI3605878610.1016/j.tim.2022.08.010 KamathSDRacial disparities negatively impact outcomes in early‐onset colorectal cancer independent of socioeconomic statusCancer Med.2021107542755034647438855949510.1002/cam4.4276 SunJKatoIGut microbiota, inflammation and colorectal cancerGenes Dis.2016313014328078319522156110.1016/j.gendis.2016.03.004 WolfAMDColorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer SocietyCA Cancer J. Clin.2018682502812984694710.3322/caac.21457 IsmailITSugar alcohols have a key role in pathogenesis of chronic liver disease and hepatocellular carcinoma in whole blood and liver tissuesCancers2020124841:CAS:528:DC%2BB3cXht1KlsrfE32092943707216910.3390/cancers12020484 SakaiMArachidonic acid and cancer risk: a systematic review of observational studiesBMC Cancer2012121:CAS:528:DC%2BC3sXjs12mt7w%3D23249186357485610.1186/1471-2407-12-606 ChambersLMDisruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancerCancer Res.202282465446691:CAS:528:DC%2BB3sXhsFWrs7c%3D36206317977217810.1158/0008-5472.CAN-22-0455 AlexandrouCSensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymesSci. Rep.2018830108309609240910.1038/s41598-018-30591-7 ChhetriDRMyo-inositol and its derivatives: their emerging role in the treatment of human diseasesFront. Pharmacol.20191011721:CAS:528:DC%2BB3cXpvVeqt70%3D31680956679808710.3389/fphar.2019.01172 SwantonCEmbracing cancer complexity: hallmarks of systemic diseaseCell2024187158916161:CAS:528:DC%2BB2cXns1Kqsr0%3D3855260910.1016/j.cell.2024.02.009 AboudOApplication of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiationMetabolites2023132991:CAS:528:DC%2BB3sXktlCgs7s%3D36837918996185610.3390/metabo13020299 WeissKBarrier housing and gender effects on allergic airway disease in a murine house dust mite modelImmunohorizons2021533471:CAS:528:DC%2BB3MXosVSjs70%3D3347898210.4049/immunohorizons.2000096 ViganoSTargeting adenosine in cancer immunotherapy to enhance T-cell functionFront. Immunol.2019109251:CAS:528:DC%2BB3cXhs1aitr8%3D31244820656256510.3389/fimmu.2019.00925 R: The R Project for Statistical Computing. https://www.r-project.org/. León-LetelierRAContributions of the microbiome-derived metabolome for risk assessment and prognostication of pancreatic cancerClin. Chem.2024701021153817557810.1093/clinchem/hvad186 SpaanderMCWYoung-onset colorectal cancerNat. Rev. Dis. Prim.20239213710598710.1038/s41572-023-00432-7 MiyamotoSSystemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometryMetabolites201551922101:CAS:528:DC%2BC2MXmsVGit70%3D25859693449536910.3390/metabo5020192 Sangwan, N. & Khorana, A. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10401639 (2023). YangZTangHLuSSunXRaoBRelationship between serum lipid level and colorectal cancer: a systemic review and meta-analysisBMJ Open202212e05237335732386922693410.1136/bmjopen-2021-052373 WuJWuMWuQIdentification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomicsJ. Clin. Lab Anal.202034e233331:CAS:528:DC%2BB3cXhs1ylsLjF32281150743942110.1002/jcla.23333 Cancer of the colon and rectum—cancer stat facts. SEER. https://seer.cancer.gov/statfacts/html/colorect.html. Zhang, H. et al. Disease‐associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med. cam4.6194. https://doi.org/10.1002/cam4.6194 (2023). WeinbergBAMarshallJLColon cancer in young adults: trends and their implicationsCurr. Oncol. Rep.2019213065937510.1007/s11912-019-0756-8 BarotSVDistinct intratumoral microbiome of young-onset and average-onset colorectal cancereBioMedicine20241001049801:CAS:528:DC%2BB2cXivV2msLc%3D383068981085011610.1016/j.ebiom.2024.104980 Zwezerijnen-JiwaFHSivovHPaizsPZafeiropoulouKKinrossJA systematic review of microbiome-derived biomarkers for early colorectal cancer detectionNeoplasia20223610086836566591980413710.1016/j.neo.2022.100868 YangJHigh-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolitesGastroenterology2022162135149.e21:CAS:528:DC%2BB38XntFOgsLY%3D3446105210.1053/j.gastro.2021.08.041 IrajizadEA blood-based metabolomic signature predictive of risk for pancreatic cancerCell Rep. Med.202341:CAS:528:DC%2BB3sXhvFCrs7vP377298701051862110.1016/j.xcrm.2023.101194 McMurdiePJHolmesSphyloseq: an R package for reproducible interactive analysis and graphics of microbiome census dataPLoS ONE20138e612171:CAS:528:DC%2BC3sXntVWht7w%3D23630581363253010.1371/journal.pone.0061217 Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut gutjnl-2022-327156. https://doi.org/10.1136/gutjnl-2022-327156 (2022). ChenQRubidium chloride modulated the fecal microbiota community in miceBMC Microbiol.20212133588762788523910.1186/s12866-021-02095-4 ZhuGUntargeted GC-MS-based metabolomics for early detection of colorectal cancerFront. Oncol.2021117295121:CAS:528:DC%2BB3sXhtlWrtLfO34804922859958910.3389/fonc.2021.729512 CaiZPoulosRCLiuJZhongQMachine learning for multi-omics data integration in canceriScience2022251037981:CAS:528:DC%2BB38Xht1WjsLfJ35169688882981210.1016/j.isci.2022.103798 HuaHIntestinal microbiota in colorectal adenoma-carcinoma sequenceFront. Med.2022910.3389/fmed.2022.888340 FiehnOMetabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profilingCurr. Protoc. Mol. Biol.201611430.4.130.4.322703838910.1002/0471142727.mb3004s114 West Coast Metabolomics Center—Assays and Services. https://metabolomics.ucdavis.edu/core-services/assays-and-services. BolyenEReproducible, interactive, scalable and extensible microbiome data science using QIIME 2Nat. Biotechnol.2019378528571:CAS:528:DC%2BC1MXhsVeksr%2FO31341288701518010.1038/s41587-019-0209-9 Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med.https://doi.org/10.1038/s41591-023-02453-x (2023). ChenHUrea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesisCell Metab.202335651666.e71:CAS:528:DC%2BB3sXmtVSisLw%3D3696339410.1016/j.cmet.2023.03.003 SobhaniIColorectal cancer-associated microbiota contributes to oncogenic epigenetic signaturesProc. Natl Acad. Sci. USA201911624285242951:CAS:528:DC%2BC1MXit1OktrbF317124 647_CR47 647_CR48 Z Xu (647_CR28) 2022; 13 MCW Spaander (647_CR7) 2023; 9 JA Stockert (647_CR14) 2021; 39 PJ McMurdie (647_CR58) 2013; 8 Q Chen (647_CR37) 2021; 21 A Artemev (647_CR36) 2022; 14 J Sun (647_CR35) 2016; 3 647_CR46 O Aboud (647_CR50) 2023; 13 DJ Kim (647_CR38) 2020; 10 G Yoon (647_CR13) 2019; 10 Z Yang (647_CR21) 2022; 12 I Sobhani (647_CR34) 2019; 116 H Hua (647_CR30) 2022; 9 M Sakai (647_CR18) 2012; 12 DR Chhetri (647_CR19) 2019; 10 C Eng (647_CR6) 2022; 23 BA Weinberg (647_CR8) 2019; 21 IT Ismail (647_CR51) 2020; 12 T Jayakrishnan (647_CR12) 2024; 14 AMD Wolf (647_CR2) 2018; 68 647_CR32 SV Barot (647_CR11) 2024; 100 RA León-Letelier (647_CR40) 2024; 70 S Vigano (647_CR24) 2019; 10 FH Zwezerijnen-Jiwa (647_CR29) 2022; 36 C Alexandrou (647_CR26) 2018; 8 L Liu (647_CR45) 2022; 8 N Koundouros (647_CR16) 2020; 122 647_CR61 R Nassani (647_CR22) 2021; 81 G Zhu (647_CR17) 2021; 11 V Kumar (647_CR23) 2013; 9 J Yang (647_CR27) 2022; 162 A Singh (647_CR42) 2019; 35 647_CR60 H Chen (647_CR25) 2023; 35 647_CR9 K Weiss (647_CR55) 2021; 5 DR Schmidt (647_CR44) 2021; 71 647_CR1 SD Kamath (647_CR3) 2021; 10 E Bolyen (647_CR56) 2019; 37 N Wang (647_CR33) 2023; 31 BJ Callahan (647_CR57) 2016; 13 RL Siegel (647_CR4) 2020; 70 C Swanton (647_CR41) 2024; 187 E Irajizad (647_CR10) 2023; 4 B Krishnapuram (647_CR53) 2005; 27 LM Chambers (647_CR54) 2022; 82 Y Benjamini (647_CR59) 1995; 57 J Wu (647_CR39) 2020; 34 M Giannakis (647_CR5) 2023; 379 C Xu (647_CR20) 2023; 14 S Miyamoto (647_CR52) 2015; 5 A DeGuzman (647_CR15) 2022; 15 TJ Gates (647_CR31) 2023; 15 Z Cai (647_CR43) 2022; 25 O Fiehn (647_CR49) 2016; 114 |
References_xml | – reference: WeissKBarrier housing and gender effects on allergic airway disease in a murine house dust mite modelImmunohorizons2021533471:CAS:528:DC%2BB3MXosVSjs70%3D3347898210.4049/immunohorizons.2000096 – reference: GatesTJFecal microbiota restoration modulates the microbiome in inflammation-driven colorectal cancerCancers20231522601:CAS:528:DC%2BB3sXpslSnt7w%3D371901861013721610.3390/cancers15082260 – reference: FiehnOMetabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profilingCurr. Protoc. Mol. Biol.201611430.4.130.4.322703838910.1002/0471142727.mb3004s114 – reference: Cancer of the colon and rectum—cancer stat facts. SEER. https://seer.cancer.gov/statfacts/html/colorect.html. – reference: SpaanderMCWYoung-onset colorectal cancerNat. Rev. Dis. Prim.20239213710598710.1038/s41572-023-00432-7 – reference: ChenQRubidium chloride modulated the fecal microbiota community in miceBMC Microbiol.20212133588762788523910.1186/s12866-021-02095-4 – reference: West Coast Metabolomics Center—Metabolites. https://metabolomics.ucdavis.edu/core-services/metabolites. – reference: AlexandrouCSensitivity of colorectal cancer to arginine deprivation therapy is shaped by differential expression of urea cycle enzymesSci. Rep.2018830108309609240910.1038/s41598-018-30591-7 – reference: YangZTangHLuSSunXRaoBRelationship between serum lipid level and colorectal cancer: a systemic review and meta-analysisBMJ Open202212e05237335732386922693410.1136/bmjopen-2021-052373 – reference: SchmidtDRMetabolomics in cancer research and emerging applications in clinical oncologyCA Cancer J. Clin.20217133335833982817829808810.3322/caac.21670 – reference: ViganoSTargeting adenosine in cancer immunotherapy to enhance T-cell functionFront. Immunol.2019109251:CAS:528:DC%2BB3cXhs1aitr8%3D31244820656256510.3389/fimmu.2019.00925 – reference: LiuLShahKThe potential of the gut microbiome to reshape the cancer therapy paradigm: a reviewJAMA Oncol.2022810593548235510.1001/jamaoncol.2022.0494 – reference: SwantonCEmbracing cancer complexity: hallmarks of systemic diseaseCell2024187158916161:CAS:528:DC%2BB2cXns1Kqsr0%3D3855260910.1016/j.cell.2024.02.009 – reference: Kong, C. et al. Integrated metagenomic and metabolomic analysis reveals distinct gut-microbiome-derived phenotypes in early-onset colorectal cancer. Gut gutjnl-2022-327156. https://doi.org/10.1136/gutjnl-2022-327156 (2022). – reference: XuCFADS1-arachidonic acid axis enhances arachidonic acid metabolism by altering intestinal microecology in colorectal cancerNat. Commun.2023141:CAS:528:DC%2BB3sXnvVeiu7c%3D370411601009013510.1038/s41467-023-37590-x – reference: DeGuzmanALorensonMYWalkerAMBittersweet: relevant amounts of the common sweet food additive, glycerol, accelerate the growth of PC3 human prostate cancer xenograftsBMC Res. Notes2022151:CAS:528:DC%2BB38Xht1ygsL%2FM35272680890867710.1186/s13104-022-05990-9 – reference: YoonGGaynanovaIMüllerCLMicrobial networks in SPRING—semi-parametric rank-based correlation and partial correlation estimation for quantitative microbiome dataFront. Genet.20191051631244881656387110.3389/fgene.2019.00516 – reference: GiannakisMNgKA common cancer at an uncommon ageScience.2023379108810901:CAS:528:DC%2BB3sXls1ertr0%3D3692701610.1126/science.ade7114 – reference: AboudOApplication of machine learning to metabolomic profile characterization in glioblastoma patients undergoing concurrent chemoradiationMetabolites2023132991:CAS:528:DC%2BB3sXktlCgs7s%3D36837918996185610.3390/metabo13020299 – reference: JayakrishnanTPlasma metabolomic differences in early-onset compared to average-onset colorectal cancerSci. Rep.2024141:CAS:528:DC%2BB2cXksVehsrs%3D383836341088195910.1038/s41598-024-54560-5 – reference: NassaniRAlAmriHAlrfaeiBMAbstract LB183: Erythritol acts as tumor enhancer and suppressor depending on concentrations in brain tumor cell linesCancer Res.202181LB18310.1158/1538-7445.AM2021-LB183 – reference: KoundourosNPoulogiannisGReprogramming of fatty acid metabolism in cancerBr. J. Cancer20201224221:CAS:528:DC%2BC1MXisVSlt7bM3181919210.1038/s41416-019-0650-z – reference: CaiZPoulosRCLiuJZhongQMachine learning for multi-omics data integration in canceriScience2022251037981:CAS:528:DC%2BB38Xht1WjsLfJ35169688882981210.1016/j.isci.2022.103798 – reference: EngCA comprehensive framework for early-onset colorectal cancer researchLancet Oncol.202223e116e1283509067310.1016/S1470-2045(21)00588-X – reference: León-LetelierRAContributions of the microbiome-derived metabolome for risk assessment and prognostication of pancreatic cancerClin. Chem.2024701021153817557810.1093/clinchem/hvad186 – reference: R: The R Project for Statistical Computing. https://www.r-project.org/. – reference: IrajizadEA blood-based metabolomic signature predictive of risk for pancreatic cancerCell Rep. Med.202341:CAS:528:DC%2BB3sXhvFCrs7vP377298701051862110.1016/j.xcrm.2023.101194 – reference: BarotSVDistinct intratumoral microbiome of young-onset and average-onset colorectal cancereBioMedicine20241001049801:CAS:528:DC%2BB2cXivV2msLc%3D383068981085011610.1016/j.ebiom.2024.104980 – reference: KimDJColorectal cancer diagnostic model utilizing metagenomic and metabolomic data of stool microbial extracellular vesiclesSci. Rep.2020101:CAS:528:DC%2BB3cXlvVKjtbs%3D32071370702903210.1038/s41598-020-59529-8 – reference: SobhaniIColorectal cancer-associated microbiota contributes to oncogenic epigenetic signaturesProc. Natl Acad. Sci. USA201911624285242951:CAS:528:DC%2BC1MXit1OktrbF31712445688380510.1073/pnas.1912129116 – reference: West Coast Metabolomics Center—Assays and Services. https://metabolomics.ucdavis.edu/core-services/assays-and-services. – reference: MiyamotoSSystemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometryMetabolites201551922101:CAS:528:DC%2BC2MXmsVGit70%3D25859693449536910.3390/metabo5020192 – reference: CallahanBJDADA2: high-resolution sample inference from Illumina amplicon dataNat. Methods2016135815831:CAS:528:DC%2BC28XosVWitb4%3D27214047492737710.1038/nmeth.3869 – reference: WangNFangJ-YFusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancerTrends Microbiol.2023311591721:CAS:528:DC%2BB38Xit1Wqt7jI3605878610.1016/j.tim.2022.08.010 – reference: KrishnapuramBCarinLFigueiredoMATHarteminkAJSparse multinomial logistic regression: fast algorithms and generalization boundsIEEE Trans. Pattern Anal. Mach. Intell.2005279579681594342610.1109/TPAMI.2005.127 – reference: XuZDysbiosis of human tumor microbiome and aberrant residence of actinomyces in tumor-associated fibroblasts in young-onset colorectal cancerFront. Immunol.2022131:CAS:528:DC%2BB38XisFemt7nE36119074948128310.3389/fimmu.2022.1008975 – reference: ChambersLMDisruption of the gut microbiota confers cisplatin resistance in epithelial ovarian cancerCancer Res.202282465446691:CAS:528:DC%2BB3sXhsFWrs7c%3D36206317977217810.1158/0008-5472.CAN-22-0455 – reference: BolyenEReproducible, interactive, scalable and extensible microbiome data science using QIIME 2Nat. Biotechnol.2019378528571:CAS:528:DC%2BC1MXhsVeksr%2FO31341288701518010.1038/s41587-019-0209-9 – reference: SakaiMArachidonic acid and cancer risk: a systematic review of observational studiesBMC Cancer2012121:CAS:528:DC%2BC3sXjs12mt7w%3D23249186357485610.1186/1471-2407-12-606 – reference: ArtemevANaikSPougnoAHonnavarPShanbhagNMThe association of microbiome dysbiosis with colorectal cancerCureus202214e22156351740408840808 – reference: McMurdiePJHolmesSphyloseq: an R package for reproducible interactive analysis and graphics of microbiome census dataPLoS ONE20138e612171:CAS:528:DC%2BC3sXntVWht7w%3D23630581363253010.1371/journal.pone.0061217 – reference: SiegelRLColorectal cancer statistics, 2020CA Cancer J. Clin.2020701451643213364510.3322/caac.21601 – reference: WolfAMDColorectal cancer screening for average-risk adults: 2018 guideline update from the American Cancer SocietyCA Cancer J. Clin.2018682502812984694710.3322/caac.21457 – reference: YangJHigh-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolitesGastroenterology2022162135149.e21:CAS:528:DC%2BB38XntFOgsLY%3D3446105210.1053/j.gastro.2021.08.041 – reference: SinghADIABLO: an integrative approach for identifying key molecular drivers from multi-omics assaysBioinformatics201935305530621:CAS:528:DC%2BB3cXhtVCjtL3I30657866673583110.1093/bioinformatics/bty1054 – reference: KumarVAdenosine as an endogenous immunoregulator in cancer pathogenesis: where to go?Purinergic Signal.201391451651:CAS:528:DC%2BC3sXntVGjsrs%3D2327156210.1007/s11302-012-9349-9 – reference: IsmailITSugar alcohols have a key role in pathogenesis of chronic liver disease and hepatocellular carcinoma in whole blood and liver tissuesCancers2020124841:CAS:528:DC%2BB3cXht1KlsrfE32092943707216910.3390/cancers12020484 – reference: ChhetriDRMyo-inositol and its derivatives: their emerging role in the treatment of human diseasesFront. Pharmacol.20191011721:CAS:528:DC%2BB3cXpvVeqt70%3D31680956679808710.3389/fphar.2019.01172 – reference: Sangwan, N. & Khorana, A. Distinct intratumoral microbiome of young-onset and average-onset colorectal cancer [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10401639 (2023). – reference: ChenHUrea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesisCell Metab.202335651666.e71:CAS:528:DC%2BB3sXmtVSisLw%3D3696339410.1016/j.cmet.2023.03.003 – reference: Routy, B. et al. Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial. Nat. Med.https://doi.org/10.1038/s41591-023-02453-x (2023). – reference: HuaHIntestinal microbiota in colorectal adenoma-carcinoma sequenceFront. Med.2022910.3389/fmed.2022.888340 – reference: StockertJAWeilRYadavKKKyprianouNTewariAKPseudouridine as a novel biomarker in prostate cancerUrol. Oncol.20213963711:CAS:528:DC%2BB3cXhsVCltLvL3271213810.1016/j.urolonc.2020.06.026 – reference: Zwezerijnen-JiwaFHSivovHPaizsPZafeiropoulouKKinrossJA systematic review of microbiome-derived biomarkers for early colorectal cancer detectionNeoplasia20223610086836566591980413710.1016/j.neo.2022.100868 – reference: WuJWuMWuQIdentification of potential metabolite markers for colon cancer and rectal cancer using serum metabolomicsJ. Clin. Lab Anal.202034e233331:CAS:528:DC%2BB3cXhs1ylsLjF32281150743942110.1002/jcla.23333 – reference: KamathSDRacial disparities negatively impact outcomes in early‐onset colorectal cancer independent of socioeconomic statusCancer Med.2021107542755034647438855949510.1002/cam4.4276 – reference: ZhuGUntargeted GC-MS-based metabolomics for early detection of colorectal cancerFront. Oncol.2021117295121:CAS:528:DC%2BB3sXhtlWrtLfO34804922859958910.3389/fonc.2021.729512 – reference: Zhang, H. et al. Disease‐associated gut microbiome and critical metabolomic alterations in patients with colorectal cancer. Cancer Med. cam4.6194. https://doi.org/10.1002/cam4.6194 (2023). – reference: WeinbergBAMarshallJLColon cancer in young adults: trends and their implicationsCurr. Oncol. Rep.2019213065937510.1007/s11912-019-0756-8 – reference: BenjaminiYHochbergYControlling the false discovery Rate: a practical and powerful approach to multiple testingJ. R. Stat. Soc. Ser. B Methodol.19955728930010.1111/j.2517-6161.1995.tb02031.x – reference: SunJKatoIGut microbiota, inflammation and colorectal cancerGenes Dis.2016313014328078319522156110.1016/j.gendis.2016.03.004 – volume: 21 year: 2019 ident: 647_CR8 publication-title: Curr. Oncol. Rep. doi: 10.1007/s11912-019-0756-8 – volume: 10 year: 2020 ident: 647_CR38 publication-title: Sci. Rep. doi: 10.1038/s41598-020-59529-8 – volume: 68 start-page: 250 year: 2018 ident: 647_CR2 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21457 – volume: 15 start-page: 2260 year: 2023 ident: 647_CR31 publication-title: Cancers doi: 10.3390/cancers15082260 – ident: 647_CR9 doi: 10.1136/gutjnl-2022-327156 – volume: 8 year: 2018 ident: 647_CR26 publication-title: Sci. Rep. doi: 10.1038/s41598-018-30591-7 – volume: 122 start-page: 4 year: 2020 ident: 647_CR16 publication-title: Br. J. Cancer doi: 10.1038/s41416-019-0650-z – volume: 14 year: 2024 ident: 647_CR12 publication-title: Sci. Rep. doi: 10.1038/s41598-024-54560-5 – volume: 3 start-page: 130 year: 2016 ident: 647_CR35 publication-title: Genes Dis. doi: 10.1016/j.gendis.2016.03.004 – volume: 12 start-page: e052373 year: 2022 ident: 647_CR21 publication-title: BMJ Open doi: 10.1136/bmjopen-2021-052373 – volume: 14 year: 2023 ident: 647_CR20 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37590-x – volume: 70 start-page: 102 year: 2024 ident: 647_CR40 publication-title: Clin. Chem. doi: 10.1093/clinchem/hvad186 – volume: 10 start-page: 1172 year: 2019 ident: 647_CR19 publication-title: Front. Pharmacol. doi: 10.3389/fphar.2019.01172 – volume: 37 start-page: 852 year: 2019 ident: 647_CR56 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0209-9 – volume: 9 start-page: 21 year: 2023 ident: 647_CR7 publication-title: Nat. Rev. Dis. Prim. doi: 10.1038/s41572-023-00432-7 – volume: 14 start-page: e22156 year: 2022 ident: 647_CR36 publication-title: Cureus – volume: 35 start-page: 651 year: 2023 ident: 647_CR25 publication-title: Cell Metab. doi: 10.1016/j.cmet.2023.03.003 – volume: 4 year: 2023 ident: 647_CR10 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2023.101194 – ident: 647_CR46 doi: 10.1038/s41591-023-02453-x – volume: 35 start-page: 3055 year: 2019 ident: 647_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1054 – volume: 162 start-page: 135 year: 2022 ident: 647_CR27 publication-title: Gastroenterology doi: 10.1053/j.gastro.2021.08.041 – volume: 10 start-page: 516 year: 2019 ident: 647_CR13 publication-title: Front. Genet. doi: 10.3389/fgene.2019.00516 – ident: 647_CR32 doi: 10.1002/cam4.6194 – volume: 13 start-page: 581 year: 2016 ident: 647_CR57 publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 379 start-page: 1088 year: 2023 ident: 647_CR5 publication-title: Science. doi: 10.1126/science.ade7114 – volume: 11 start-page: 729512 year: 2021 ident: 647_CR17 publication-title: Front. Oncol. doi: 10.3389/fonc.2021.729512 – volume: 10 start-page: 7542 year: 2021 ident: 647_CR3 publication-title: Cancer Med. doi: 10.1002/cam4.4276 – volume: 187 start-page: 1589 year: 2024 ident: 647_CR41 publication-title: Cell doi: 10.1016/j.cell.2024.02.009 – volume: 82 start-page: 4654 year: 2022 ident: 647_CR54 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-22-0455 – volume: 5 start-page: 33 year: 2021 ident: 647_CR55 publication-title: Immunohorizons doi: 10.4049/immunohorizons.2000096 – volume: 31 start-page: 159 year: 2023 ident: 647_CR33 publication-title: Trends Microbiol. doi: 10.1016/j.tim.2022.08.010 – volume: 13 year: 2022 ident: 647_CR28 publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1008975 – volume: 8 start-page: 1059 year: 2022 ident: 647_CR45 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2022.0494 – volume: 116 start-page: 24285 year: 2019 ident: 647_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1912129116 – volume: 10 start-page: 925 year: 2019 ident: 647_CR24 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00925 – volume: 36 start-page: 100868 year: 2022 ident: 647_CR29 publication-title: Neoplasia doi: 10.1016/j.neo.2022.100868 – ident: 647_CR48 – volume: 39 start-page: 63 year: 2021 ident: 647_CR14 publication-title: Urol. Oncol. doi: 10.1016/j.urolonc.2020.06.026 – volume: 25 start-page: 103798 year: 2022 ident: 647_CR43 publication-title: iScience doi: 10.1016/j.isci.2022.103798 – ident: 647_CR1 – volume: 23 start-page: e116 year: 2022 ident: 647_CR6 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(21)00588-X – volume: 9 year: 2022 ident: 647_CR30 publication-title: Front. Med. doi: 10.3389/fmed.2022.888340 – volume: 57 start-page: 289 year: 1995 ident: 647_CR59 publication-title: J. R. Stat. Soc. Ser. B Methodol. doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 5 start-page: 192 year: 2015 ident: 647_CR52 publication-title: Metabolites doi: 10.3390/metabo5020192 – volume: 70 start-page: 145 year: 2020 ident: 647_CR4 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21601 – volume: 81 start-page: LB183 year: 2021 ident: 647_CR22 publication-title: Cancer Res. doi: 10.1158/1538-7445.AM2021-LB183 – volume: 27 start-page: 957 year: 2005 ident: 647_CR53 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.127 – ident: 647_CR61 doi: 10.5281/zenodo.10401639 – volume: 13 start-page: 299 year: 2023 ident: 647_CR50 publication-title: Metabolites doi: 10.3390/metabo13020299 – volume: 8 start-page: e61217 year: 2013 ident: 647_CR58 publication-title: PLoS ONE doi: 10.1371/journal.pone.0061217 – volume: 21 year: 2021 ident: 647_CR37 publication-title: BMC Microbiol. doi: 10.1186/s12866-021-02095-4 – volume: 71 start-page: 333 year: 2021 ident: 647_CR44 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21670 – volume: 15 year: 2022 ident: 647_CR15 publication-title: BMC Res. Notes doi: 10.1186/s13104-022-05990-9 – volume: 100 start-page: 104980 year: 2024 ident: 647_CR11 publication-title: eBioMedicine doi: 10.1016/j.ebiom.2024.104980 – volume: 114 start-page: 30.4.1 year: 2016 ident: 647_CR49 publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/0471142727.mb3004s114 – ident: 647_CR60 – ident: 647_CR47 – volume: 12 start-page: 484 year: 2020 ident: 647_CR51 publication-title: Cancers doi: 10.3390/cancers12020484 – volume: 12 year: 2012 ident: 647_CR18 publication-title: BMC Cancer doi: 10.1186/1471-2407-12-606 – volume: 9 start-page: 145 year: 2013 ident: 647_CR23 publication-title: Purinergic Signal. doi: 10.1007/s11302-012-9349-9 – volume: 34 start-page: e23333 year: 2020 ident: 647_CR39 publication-title: J. Clin. Lab Anal. doi: 10.1002/jcla.23333 |
SSID | ssj0001851266 |
Score | 2.3401487 |
Snippet | The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine learning... Abstract The incidence of early-onset colorectal cancer (eoCRC) is rising, and its pathogenesis is not completely understood. We hypothesized that machine... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 146 |
SubjectTerms | 631/61/320 631/61/514 692/308/575 692/4028/67/1504/1885 692/53 Biomarkers Cancer Research Colorectal cancer Gene Therapy Human Genetics Internal Medicine Machine learning Medicine Medicine & Public Health Metabolites Oncology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hnrggEBQCBRmJG1jd-CNxjoCoKiR6KlJvluOMoRKbRbvp_--MnV26QOmFYzKOYk1mPM_xzBuAN01MSrWWPC0oK01rnOz7aCXWjYsKaQttuMD5y1lz-tV8vrAXN1p9cU5YoQcuijsmwBIUqs4sQm86JIDuemzaYNSAOmFmAqUwdmMzlf-uEJCg0DNXySy0O94Q8uBqMmVkLrCU9V4kyoT9f0OZfyZL_nZimgPRyUN4MCNI8b7M_BHcw_ExxFxIK7nEeCOWOUESxdwR4puYViLTyAou6ZDLy0K-tETBZBHrUtqwoQuBTHcsOcF6EkxnzcshvSuyaayfwPnJp_OPp3LunyCjNfUkG9UyHVuoh5R0GoKK3dB1g3YhBdKQC4HJ7OpWKx2wa0KgaIbOkCQtHDnmIRyMqxGfgUgu0cKoU9S0idWuIemAQx8aa9XQ1qmCeqtKH2ducW5x8cPnM27tfFG_J_X7rH5fV_B298zPwqzxz9Ef-AvtRjIrdr5BtuJnW_F32UoFR9vv62dX3Xjm62Fc62wFr3dicjI-OQkjrq7KGFoMCTtW8LSYw24multwDomuwO0Zyt5U9yXj5fdM5E1Y1zIbbQXvtjb1a1636-L5_9DFC7ivsjMwR-gRHEzrK3xJ-GrqX2VXugaaXyCj priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals (Selected full-text) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1VRUJcEN-EFmQkbmCx8UfiHMuKqkIqpyL1ZjnOuFRis2g3_f_MOMlWCwWJY2JbsTwz9nM87xngXRWTUrWlSAvKSlMbJ9s2Woll5aJC2kIbJjiff63Ovpkvl_byANTMhclJ-1nSMk_Tc3bYxy0BByaDKSMzP1LSjueeq3XJaXzLann7X4UgBC06Ez9mod0dTffWoCzVfxe-_DNN8rez0rwEnT6ChxN2FCdjbx_DAfZP4P75dDr-FGJm00rmGW_FKmdJopiuhbgSw1pkLVnBvA65uh4VmFYoWDFiM_IbtvQgkDWPJWdZD4I1rXlOpM9G9o_NM7g4_XyxPJPTJQoyWlMOslI1a7KFsktJpy6o2HRN02kXUqDBciGwol1Za6UDNlUItKShM1SSFo6i8zkc9useX4JILtHsqFPUtJPVrqLSDrs2VNaqri5TAeU8qj5OAuN8z8UPnw-6tfOjJTxZwmdL-LKA97s2P0d5jX_W_sTG2tVkaez8Yr258pOreEK4QaFqzCK0pkHa0bkWaQCM6lAnNAUcz6b2U7xuPYv2MLh1toC3u2KKND4-CT2ub8Y6NCMSgCzgxegZu57oZsGJJLoAt-cze13dL-mvv2c1bwK8liVpC_gwu9dtv_4-Fq_-r_oRPFA5AlgS9BgOh80NviY4NbRvcvz8Aue1GQI priority: 102 providerName: Springer Nature |
Title | Multi-omics machine learning to study host-microbiome interactions in early-onset colorectal cancer |
URI | https://link.springer.com/article/10.1038/s41698-024-00647-1 https://www.ncbi.nlm.nih.gov/pubmed/39020083 https://www.proquest.com/docview/3082045685 https://www.proquest.com/docview/3082307644 https://pubmed.ncbi.nlm.nih.gov/PMC11255257 https://doaj.org/article/150a2e2940ab49e4998be67a42de3fe4 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: M~E dateStart: 20170101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: NAO dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: 7X7 dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: AAJSJ dateStart: 20171201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2397-768X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001851266 issn: 2397-768X databaseCode: C6C dateStart: 20171201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdb-7KX0bEvb13QYG-baCzJsvw00tBSAitj6yBvQpalrrDYXez-_72TlYTso0_Blkzk893pJ-nud4R8UC5wXhZgaZYXTJZSs7p2BfO50o57WEJLTHD-cqkufsjFslimDbc-hVVufGJ01E3ncI_8BGlVEH7o4vPtb4ZVo_B0NZXQeEwOc4AqqNXlstztsQCc4GqsL1eVDJD1MuXNTIU-6QGLYH4ZlyymXLJ8b26KFP7_wp1_h0_-cYYap6bzI_I0YUo6G5XgGXnk2-fExdRahknHPV3FkElPU42Iazp0NBLLUkzyYKubkY5p5SnSR6zHZIceLqhHAmSGIdcDRYJrdJDwXw6VZf2CXJ2fXc0vWKqowFwh84EpXiJBm82bEERoLHdVU1WN0DZYkJa2Funt8lJwYX2lrIX5zWsJLWGqwVRfkoO2a_1rQoMO4CpFcAKWtUIraG18U1tVFLwp85CRfCNK4xLbOBa9-GXiqbfQZhS_AfGbKH6TZ-Tj9pnbkWvjwd6n-IW2PZEnO97o1tcmmZ0BuGu555Wc2lpWHpZ3uvYgAMkbL4KXGTnefF-TjLc3O1XLyPttM5gdnqXY1nd3Yx9wj4AmM_JqVIftSEQ1xagSkRG9pyh7Q91vaW9-RmpvQL8F8tNm5NNGp3bj-r8s3jz8Gm_JEx7VHPlAj8nBsL7z7wBLDfUkGsyEHM5mi-8L-D09u_z6De7O1XwS9yfuAYuOHwg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoALAvEKLWAkOIHVxHYS54AQr2pLH6dF2pvlJHapxCbtbirEj-I_MuMku1oevfWY2Emc8czkczzzDcDLrPJC5ClamhUpV7nSvCyrlLsk05VwuIRWlOB8fJJNvqovs3S2Bb_GXBgKqxx9YnDUdVvRP_I9olUh-KHTd-cXnKpG0e7qWEKjV4tD9_MHLtmWbw8-4fy-EmL_8_TjhA9VBXiVqqTjmciJpMwmtffS11ZURV0UtdTW2zjR2lqieEtyKaR1RWYt-ninFbb4WKO64m1vwE0lY0VU_fksX__SQfQisr6cXZFzBPKzIU0nlnpvidCH0tmE4iHDkycbn8JQMeBfMPfvaM0_tmzDl3D_LtwZICx73-vcPdhyzX2oQiYvpxznJZuHCE3HhpIUp6xrWeCxZZRTwudnPfvT3DFiq1j0uRVLPGCO-JY5RXh3jPi0yR_jsyrSzcUDmF6HqB_CdtM27jEwrz16ZukriatoqTNsrV1d2ixNRZ0nPoJkFKWpBnJzqrHx3YRNdqlNL36D4jdB_CaJ4PXqmvOe2uPK3h9ohlY9iZY7nGgXp2awcoPo2gonChXbUhUOV5O6dCgAJWonvVMR7I7zawZfsTRrzY7gxaoZrZy2bmzj2su-D3pjBK8RPOrVYTUSWcQUxCIj0BuKsjHUzZbm7FtgEkewnRIdbgRvRp1aj-v_snhy9Ws8h1uT6fGROTo4OdyB2yKoPFGR7sJ2t7h0TxHGdeWzYDwMzDUb628fUVVm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIlVcEG8CBYzEDSw2fsU5QmFVHq04FKk3y3HsthKbRbvp_2fGSbZaKEgcE9uK5Xn4c2bmM8ArE5IQlUZL80JzVSnLmyZoHktjg4h4hFZU4Hx0bA6_q8-n-nQHzFQLk5P2M6VldtNTdtjbNQIHKgYTiuf6SI4epk034Kat0EQoSGsOrv6tIIzAjWeskZlJe83wrX0o0_VfhzH_TJX8LV6at6H5Hbg94kf2bpjxXdiJ3T3YOxoj5Pch5IpaTrXGa7bImZKRjVdDnLF-yTKfLKPaDr64GFiYFpERa8RqqHFY4wOLxHvMKdO6Z8RrTX4RPxtIR1YP4GT-8eTgkI8XKfCgVdlzIyriZfNlm5JMrRehbuu6ldYnj4tlvSdWu7KSQvpYG-9xW4tWYUuaWbTQh7DbLbv4GFiyCT2kTEHiaVZag61tbBtvtBZtVaYCymlVXRhJxumuix8uB7uldYMkHErCZUm4soDXmzE_B4qNf_Z-T8La9CR67PxiuTpzo7o4RLleRFGrmW9UHfFUZ5uIC6BEG2WKqoD9SdRutNm1I-IeArhWF_By04zWRiEU38Xl5dAHvSKCyAIeDZqxmYmsZ5RMIguwWzqzNdXtlu7iPDN6I-jVREtbwJtJva7m9fe1ePJ_3V_A3rcPc_f10_GXp3BLZGMghtB92O1Xl_EZoqu-eZ5N6RdjWh0D |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-omics+machine+learning+to+study+host-microbiome+interactions+in+early-onset+colorectal+cancer&rft.jtitle=NPJ+precision+oncology&rft.au=Jayakrishnan%2C+Thejus+T&rft.au=Sangwan%2C+Naseer&rft.au=Barot%2C+Shimoli+V&rft.au=Farha%2C+Nicole&rft.date=2024-07-17&rft.pub=Nature+Publishing+Group&rft.issn=2397-768X&rft.eissn=2397-768X&rft.volume=8&rft.issue=1&rft.spage=146&rft_id=info:doi/10.1038%2Fs41698-024-00647-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-768X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-768X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-768X&client=summon |