Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output
Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it...
Saved in:
| Published in | Light, science & applications Vol. 13; no. 1; pp. 179 - 13 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
01.08.2024
Springer Nature B.V Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2047-7538 2095-5545 2047-7538 |
| DOI | 10.1038/s41377-024-01516-z |
Cover
| Abstract | Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.
This manuscript proposes a photoelectric dual-output mixed physical node reservoir system. It achieves higher handwriting digit recognition accuracy and use the photoelectric output characteristics to achieve multichannel image recognition. |
|---|---|
| AbstractList | Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.This manuscript proposes a photoelectric dual-output mixed physical node reservoir system. It achieves higher handwriting digit recognition accuracy and use the photoelectric output characteristics to achieve multichannel image recognition. Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design. Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design. Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design. This manuscript proposes a photoelectric dual-output mixed physical node reservoir system. It achieves higher handwriting digit recognition accuracy and use the photoelectric output characteristics to achieve multichannel image recognition. Abstract Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design. |
| ArticleNumber | 179 |
| Author | Liu, Changfei Chen, Wei Lin, Zhenyuan Shan, Liuting Lian, Minrui Gao, Changsong Chen, Huipeng Zou, Yi Chen, Cong Cheng, Enping Guo, Tailiang |
| Author_xml | – sequence: 1 givenname: Minrui surname: Lian fullname: Lian, Minrui organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University – sequence: 2 givenname: Changsong surname: Gao fullname: Gao, Changsong organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 3 givenname: Zhenyuan surname: Lin fullname: Lin, Zhenyuan organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University – sequence: 4 givenname: Liuting surname: Shan fullname: Shan, Liuting organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 5 givenname: Cong surname: Chen fullname: Chen, Cong organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 6 givenname: Yi surname: Zou fullname: Zou, Yi organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 7 givenname: Enping surname: Cheng fullname: Cheng, Enping organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 8 givenname: Changfei surname: Liu fullname: Liu, Changfei organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University – sequence: 9 givenname: Tailiang orcidid: 0009-0006-7868-7756 surname: Guo fullname: Guo, Tailiang organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China – sequence: 10 givenname: Wei surname: Chen fullname: Chen, Wei organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Department of Chemistry, National University of Singapore, Department of Physics, National University of Singapore – sequence: 11 givenname: Huipeng orcidid: 0000-0003-1706-3174 surname: Chen fullname: Chen, Huipeng email: hpchen@fzu.edu.cn organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39085198$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNUk1v3CAURFWqJt3mD_RQWeqlF7dgzBp6qaKoH5Ei9ZKeEQvPu6ywcQFns_n1xbvbdJNDVHMwHzPDvHm8Rie97wGhtwR_JJjyT7EmtGlKXNUlJozMy_sX6KzCdVM2jPKTo_kpOo9xjfMnaoJ58wqdUoE5I4Kfobsbv1HBxKKzd2CKYbWNVitX9N5AESBCuPU2FNp3w5hsv_xcOLtcpRI6m6Z1Ebe9GpLVR-C4jQm6YmPTqjBjFhtWPnlwoFPIQD-mrPUGvWyVi3B--M_Qr29fby5_lNc_v19dXlyXmtUklfNcK6u1oQ1hGlSFiVBVLagwCwIK5oLzFgvVNpXRdY4EMo1R3FSqNbRqMZ2hq72u8Woth2A7FbbSKyt3Gz4spQrZvwOpGQPKK24EUzVWRi0oWeR7qOGKLgjJWnSvNfaD2m6Ucw-CBMupLXLfFpnbIndtkfeZ9WXPGsZFB0ZDn4Jyj6w8PuntSi79rSSkEoTTqYYPB4Xgf48Qk-xs1OCc6sGPUVLM54KxKZcZev8EuvZj6HPCO1SdB2cZ9e7Y0oOXv-8iA_geoIOPMUArtU0qWT85tO75cqsn1P_K6JBszOB-CeGf7WdYfwACj_Du |
| CitedBy_id | crossref_primary_10_1016_j_mtelec_2025_100148 crossref_primary_10_1002_adfm_202502211 crossref_primary_10_1039_D4TC05233A crossref_primary_10_1002_adfm_202424382 |
| Cites_doi | 10.1021/acs.jpcc.6b00989 10.1038/s41467-022-34230-8 10.1002/advs.202205654 10.1186/s11671-020-3249-7 10.1002/aenm.201903534 10.1002/adfm.202306149 10.1002/adma.202003610 10.3390/mi10080546 10.3390/mi10060384 10.1038/s41928-022-00876-x 10.1038/s41928-019-0313-3 10.1002/aenm.201600256 10.35848/1347-4065/ab8d4f 10.1038/s41928-022-00872-1 10.1007/s40843-021-2029-y 10.3390/electronics12071654 10.1088/0957-4484/24/38/384004 10.1016/j.mtphys.2021.100392 10.1002/smll.202201111 10.1002/adma.202201364 10.1063/1.116442 10.1038/s41467-017-02337-y 10.1002/aelm.202300108 10.1038/s41467-022-30539-6 10.1126/sciadv.abg1455 10.1039/D2NR05012A 10.1016/j.cosrev.2009.03.005 10.1038/ncomms4541 10.1038/s41578-019-0159-3 10.1021/ic060495e 10.1063/5.0158076 10.1002/adfm.202302929 10.1039/C8NA00206A 10.1038/s41467-022-30527-w 10.1002/aenm.201800866 10.1109/LED.2017.2722463 10.1109/TCOM.1984.1095992 10.1038/s41467-023-39207-9 10.1038/s41928-020-0422-z 10.1016/j.nanoen.2021.106118 10.1021/acsami.9b04901 10.1002/adma.202211598 10.1073/pnas.79.8.2554 10.1103/PhysRevE.87.042808 10.1038/nature14539 10.1038/nature23011 10.1109/ISCAS45731.2020.9180800 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41377-024-01516-z |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection (ProQuest) ProQuest One Community College ProQuest Central Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database Biological Science Database Proquest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Selected full-text) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2047-7538 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_c55e3828d95a40adab31bdb13d8a3b11 10.1038/s41377-024-01516-z PMC11291830 39085198 10_1038_s41377_024_01516_z |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PUEGO NPM 7XB 8FK K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM ADTOC EJD UNPAY |
| ID | FETCH-LOGICAL-c541t-603854cd3715cea2019a24939db1eae6988f09af72dc4413ec5453072afd32f03 |
| IEDL.DBID | DOA |
| ISSN | 2047-7538 2095-5545 |
| IngestDate | Fri Oct 03 12:41:38 EDT 2025 Sun Oct 26 03:56:56 EDT 2025 Tue Sep 30 17:08:22 EDT 2025 Thu Sep 04 18:02:17 EDT 2025 Tue Oct 07 06:46:02 EDT 2025 Mon Jul 21 06:03:39 EDT 2025 Wed Oct 01 04:24:41 EDT 2025 Thu Apr 24 22:50:23 EDT 2025 Fri Feb 21 02:38:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-603854cd3715cea2019a24939db1eae6988f09af72dc4413ec5453072afd32f03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0006-7868-7756 0000-0003-1706-3174 |
| OpenAccessLink | https://doaj.org/article/c55e3828d95a40adab31bdb13d8a3b11 |
| PMID | 39085198 |
| PQID | 3086464685 |
| PQPubID | 2041947 |
| PageCount | 13 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c55e3828d95a40adab31bdb13d8a3b11 unpaywall_primary_10_1038_s41377_024_01516_z pubmedcentral_primary_oai_pubmedcentral_nih_gov_11291830 proquest_miscellaneous_3086955249 proquest_journals_3086464685 pubmed_primary_39085198 crossref_citationtrail_10_1038_s41377_024_01516_z crossref_primary_10_1038_s41377_024_01516_z springer_journals_10_1038_s41377_024_01516_z |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Light, science & applications |
| PublicationTitleAbbrev | Light Sci Appl |
| PublicationTitleAlternate | Light Sci Appl |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
| References | Zhang (CR15) 2022; 13 Torrejon (CR11) 2017; 547 Chee (CR25) 2016; 120 Tang (CR33) 2018; 8 Park (CR13) 2022; 13 Sillin (CR9) 2013; 24 Qi (CR7) 2023; 33 Nakajima (CR6) 2020; 59 Li (CR29) 2022; 13 Wang (CR41) 2020; 5 Ilyas (CR14) 2020; 15 Wang (CR47) 2023; 123 Wang (CR17) 2020; 3 Shi (CR30) 2020; 10 Cao (CR28) 1996; 68 Yang (CR3) 2020; 32 Sun (CR5) 2023; 14 Leng (CR42) 2023; 9 Jaafar (CR20) 2022; 14 Ghosh (CR37) 2023; 12 Nazeeruddin (CR23) 2006; 45 Pan (CR32) 2019; 1 Snyder, Goudarzi, Teuscher (CR43) 2013; 87 Zhang (CR19) 2023; 33 Zhu, Yuan, Ni (CR24) 2019; 10 Lukoševičius, Jaeger (CR46) 2009; 3 LeCun, Bengio, Hinton (CR2) 2015; 521 Moon (CR18) 2019; 2 Zha (CR16) 2023; 35 Rao (CR39) 2021; 18 Sun (CR12) 2021; 7 Wei (CR4) 2022; 5 CR45 Liang (CR34) 2022; 5 Wang (CR35) 2019; 11 Liu (CR31) 2021; 86 Kim (CR36) 2023; 10 Zhu (CR26) 2022; 34 Zhang (CR40) 2017; 38 Vandoorne (CR10) 2014; 5 Du (CR8) 2017; 8 Yamaguchi (CR21) 1984; 32 Hopfield (CR1) 1982; 79 Jo (CR38) 2019; 10 Liu (CR22) 2016; 6 Zeng (CR27) 2022; 65 Dale (CR44) 2019; 475 Wang (CR48) 2022; 18 YB Leng (1516_CR42) 2023; 9 Y LeCun (1516_CR2) 2015; 521 MP Zhu (1516_CR24) 2019; 10 JQ Yang (1516_CR3) 2020; 32 EL Li (1516_CR29) 2022; 13 K Nakajima (1516_CR6) 2020; 59 S Jo (1516_CR38) 2019; 10 M Wang (1516_CR17) 2020; 3 D Snyder (1516_CR43) 2013; 87 PK Ghosh (1516_CR37) 2023; 12 ZY Qi (1516_CR7) 2023; 33 MK Nazeeruddin (1516_CR23) 2006; 45 KJ Chee (1516_CR25) 2016; 120 R Wang (1516_CR47) 2023; 123 HO Sillin (1516_CR9) 2013; 24 YZ Shi (1516_CR30) 2020; 10 J Rao (1516_CR39) 2021; 18 R Wang (1516_CR48) 2022; 18 JJ Zha (1516_CR16) 2023; 35 LF Sun (1516_CR12) 2021; 7 SO Park (1516_CR13) 2022; 13 K Vandoorne (1516_CR10) 2014; 5 ZF Zhang (1516_CR15) 2022; 13 M Dale (1516_CR44) 2019; 475 Y Cao (1516_CR28) 1996; 68 J Moon (1516_CR18) 2019; 2 J Liu (1516_CR22) 2016; 6 1516_CR45 QW Pan (1516_CR32) 2019; 1 XM Zhang (1516_CR40) 2017; 38 XC Liang (1516_CR34) 2022; 5 JJ Hopfield (1516_CR1) 1982; 79 YM Sun (1516_CR5) 2023; 14 GH Zhang (1516_CR19) 2023; 33 ZM Wei (1516_CR4) 2022; 5 N Ilyas (1516_CR14) 2020; 15 AH Jaafar (1516_CR20) 2022; 14 XT Zhu (1516_CR26) 2022; 34 H Yamaguchi (1516_CR21) 1984; 32 G Kim (1516_CR36) 2023; 10 C Du (1516_CR8) 2017; 8 YQ Liu (1516_CR31) 2021; 86 WJ Tang (1516_CR33) 2018; 8 ZR Wang (1516_CR41) 2020; 5 HA Zeng (1516_CR27) 2022; 65 YY Wang (1516_CR35) 2019; 11 J Torrejon (1516_CR11) 2017; 547 M Lukoševičius (1516_CR46) 2009; 3 |
| References_xml | – ident: CR45 – volume: 120 start-page: 11324 year: 2016 end-page: 11330 ident: CR25 article-title: Polymer light-emitting electrochemical cell blends based on selection of lithium salts, LiX [X = trifluoromethanesulfonate, hexafluorophosphate, and bis(trifluoromethylsulfonyl)imide] with low turn-on voltage publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00989 – volume: 13 year: 2022 ident: CR15 article-title: In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array publication-title: Nat. Commun. doi: 10.1038/s41467-022-34230-8 – volume: 10 year: 2023 ident: CR36 article-title: Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware publication-title: Adv. Sci. doi: 10.1002/advs.202205654 – volume: 15 year: 2020 ident: CR14 article-title: Analog switching and artificial synaptic behavior of Ag/SiO :Ag/TiO /p -Si memristor device publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-020-3249-7 – volume: 10 year: 2020 ident: CR30 article-title: MXene-based mesoporous nanosheets toward superior lithium ion conductors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903534 – volume: 33 year: 2023 ident: CR7 article-title: Physical reservoir computing based on nanoscale materials and devices publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306149 – volume: 32 year: 2020 ident: CR3 article-title: Neuromorphic engineering: from biological to spike-based hardware nervous systems publication-title: Adv. Mater. doi: 10.1002/adma.202003610 – volume: 10 start-page: 546 year: 2019 ident: CR24 article-title: Magneto-electroluminescence in ITO/MEH-PPV:PEO:LiCF SO /Al polymer light-emitting electrochemical cells publication-title: Micromachines doi: 10.3390/mi10080546 – volume: 10 start-page: 384 year: 2019 ident: CR38 article-title: Memristor neural network training with clock synchronous neuromorphic system publication-title: Micromachines doi: 10.3390/mi10060384 – volume: 5 start-page: 859 year: 2022 end-page: 869 ident: CR34 article-title: Multimode transistors and neural networks based on ion-dynamic capacitance publication-title: Nat. Electron. doi: 10.1038/s41928-022-00876-x – volume: 475 start-page: 20180723 year: 2019 ident: CR44 article-title: A substrate-independent framework to characterize reservoir computers publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 2 start-page: 480 year: 2019 end-page: 487 ident: CR18 article-title: Temporal data classification and forecasting using a memristor-based reservoir computing system publication-title: Nat. Electron. doi: 10.1038/s41928-019-0313-3 – volume: 6 start-page: 1600256 year: 2016 ident: CR22 article-title: Lithium ion batteries: uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600256 – volume: 59 start-page: 060501 year: 2020 ident: CR6 article-title: Physical reservoir computing—an introductory perspective publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ab8d4f – volume: 5 start-page: 715 year: 2022 end-page: 716 ident: CR4 article-title: Reservoir computing with 2D materials publication-title: Nat. Electron. doi: 10.1038/s41928-022-00872-1 – volume: 65 start-page: 2511 year: 2022 end-page: 2520 ident: CR27 article-title: A light-emitting electrochemical artificial synapse with dual output of photoelectric signals publication-title: Sci. China Mater. doi: 10.1007/s40843-021-2029-y – volume: 12 start-page: 1654 year: 2023 ident: CR37 article-title: CMOS-based memristor emulator circuits for low-power edge-computing applications publication-title: Electronics doi: 10.3390/electronics12071654 – volume: 24 start-page: 384004 year: 2013 ident: CR9 article-title: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/384004 – volume: 18 year: 2021 ident: CR39 article-title: An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2021.100392 – volume: 18 year: 2022 ident: CR48 article-title: Bio-inspired in-sensor compression and computing based on phototransistors publication-title: Small doi: 10.1002/smll.202201111 – volume: 34 year: 2022 ident: CR26 article-title: Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p–n heterojunctions and their application in light encoders publication-title: Adv. Mater. doi: 10.1002/adma.202201364 – volume: 68 start-page: 3218 year: 1996 end-page: 3220 ident: CR28 article-title: Efficient, fast response light-emitting electrochemical cells: electroluminescent and solid electrolyte polymers with interpenetrating network morphology publication-title: Appl. Phys. Lett. doi: 10.1063/1.116442 – volume: 8 year: 2017 ident: CR8 article-title: Reservoir computing using dynamic memristors for temporal information processing publication-title: Nat. Commun. doi: 10.1038/s41467-017-02337-y – volume: 9 year: 2023 ident: CR42 article-title: Recent progress in multiterminal memristors for neuromorphic applications publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202300108 – volume: 13 year: 2022 ident: CR13 article-title: Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing publication-title: Nat. Commun. doi: 10.1038/s41467-022-30539-6 – volume: 7 year: 2021 ident: CR12 article-title: In-sensor reservoir computing for language learning via two-dimensional memristors publication-title: Sci. Adv. doi: 10.1126/sciadv.abg1455 – volume: 14 start-page: 17170 year: 2022 end-page: 17181 ident: CR20 article-title: 3D-structured mesoporous silica memristors for neuromorphic switching and reservoir computing publication-title: Nanoscale doi: 10.1039/D2NR05012A – volume: 3 start-page: 127 year: 2009 end-page: 149 ident: CR46 article-title: Reservoir computing approaches to recurrent neural network training publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – volume: 5 year: 2014 ident: CR10 article-title: Experimental demonstration of reservoir computing on a silicon photonics chip publication-title: Nat. Commun. doi: 10.1038/ncomms4541 – volume: 5 start-page: 173 year: 2020 end-page: 195 ident: CR41 article-title: Resistive switching materials for information processing publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0159-3 – volume: 45 start-page: 9245 year: 2006 end-page: 9250 ident: CR23 article-title: Efficient green-blue-light-emitting cationic iridium complex for light-emitting electrochemical cells publication-title: Inorg. Chem. doi: 10.1021/ic060495e – volume: 123 year: 2023 ident: CR47 article-title: Deep reservoir computing based on self-rectifying memristor synapse for time series prediction publication-title: Appl. Phys. Lett. doi: 10.1063/5.0158076 – volume: 33 year: 2023 ident: CR19 article-title: Functional materials for memristor-based reservoir computing: dynamics and applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302929 – volume: 1 start-page: 395 year: 2019 end-page: 402 ident: CR32 article-title: 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries publication-title: Nanoscale Adv. doi: 10.1039/C8NA00206A – volume: 13 year: 2022 ident: CR29 article-title: MXene based saturation organic vertical photoelectric transistors with low subthreshold swing publication-title: Nat. Commun. doi: 10.1038/s41467-022-30527-w – volume: 8 year: 2018 ident: CR33 article-title: Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800866 – volume: 38 start-page: 1208 year: 2017 end-page: 1211 ident: CR40 article-title: Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2722463 – volume: 32 start-page: 1201 year: 1984 end-page: 1209 ident: CR21 article-title: Efficient encoding of colored pictures in R, G, B components publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1984.1095992 – volume: 14 year: 2023 ident: CR5 article-title: Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system publication-title: Nat. Commun. doi: 10.1038/s41467-023-39207-9 – volume: 3 start-page: 563 year: 2020 end-page: 570 ident: CR17 article-title: Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors publication-title: Nat. Electron. doi: 10.1038/s41928-020-0422-z – volume: 86 year: 2021 ident: CR31 article-title: A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106118 – volume: 11 start-page: 24230 year: 2019 end-page: 24240 ident: CR35 article-title: Self-doping memristors with equivalently synaptic ion dynamics for neuromorphic computing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04901 – volume: 35 year: 2023 ident: CR16 article-title: Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band publication-title: Adv. Mater. doi: 10.1002/adma.202211598 – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: CR1 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 87 start-page: 042808 year: 2013 ident: CR43 article-title: Computational capabilities of random automata networks for reservoir computing publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.042808 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR2 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 547 start-page: 428 year: 2017 end-page: 431 ident: CR11 article-title: Neuromorphic computing with nanoscale spintronic oscillators publication-title: Nature doi: 10.1038/nature23011 – volume: 5 year: 2014 ident: 1516_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms4541 – volume: 13 year: 2022 ident: 1516_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30527-w – volume: 87 start-page: 042808 year: 2013 ident: 1516_CR43 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.042808 – volume: 475 start-page: 20180723 year: 2019 ident: 1516_CR44 publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci. – volume: 14 year: 2023 ident: 1516_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-023-39207-9 – volume: 79 start-page: 2554 year: 1982 ident: 1516_CR1 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 13 year: 2022 ident: 1516_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-022-34230-8 – volume: 65 start-page: 2511 year: 2022 ident: 1516_CR27 publication-title: Sci. China Mater. doi: 10.1007/s40843-021-2029-y – volume: 8 year: 2018 ident: 1516_CR33 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800866 – volume: 5 start-page: 715 year: 2022 ident: 1516_CR4 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00872-1 – volume: 18 year: 2022 ident: 1516_CR48 publication-title: Small doi: 10.1002/smll.202201111 – volume: 1 start-page: 395 year: 2019 ident: 1516_CR32 publication-title: Nanoscale Adv. doi: 10.1039/C8NA00206A – volume: 10 year: 2023 ident: 1516_CR36 publication-title: Adv. Sci. doi: 10.1002/advs.202205654 – volume: 5 start-page: 859 year: 2022 ident: 1516_CR34 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00876-x – volume: 38 start-page: 1208 year: 2017 ident: 1516_CR40 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2017.2722463 – volume: 32 year: 2020 ident: 1516_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202003610 – volume: 45 start-page: 9245 year: 2006 ident: 1516_CR23 publication-title: Inorg. Chem. doi: 10.1021/ic060495e – volume: 120 start-page: 11324 year: 2016 ident: 1516_CR25 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00989 – volume: 8 year: 2017 ident: 1516_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02337-y – volume: 10 year: 2020 ident: 1516_CR30 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903534 – volume: 24 start-page: 384004 year: 2013 ident: 1516_CR9 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/38/384004 – volume: 32 start-page: 1201 year: 1984 ident: 1516_CR21 publication-title: IEEE Trans. Commun. doi: 10.1109/TCOM.1984.1095992 – volume: 33 year: 2023 ident: 1516_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202306149 – volume: 86 year: 2021 ident: 1516_CR31 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106118 – ident: 1516_CR45 doi: 10.1109/ISCAS45731.2020.9180800 – volume: 3 start-page: 127 year: 2009 ident: 1516_CR46 publication-title: Comput. Sci. Rev. doi: 10.1016/j.cosrev.2009.03.005 – volume: 3 start-page: 563 year: 2020 ident: 1516_CR17 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0422-z – volume: 123 year: 2023 ident: 1516_CR47 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0158076 – volume: 2 start-page: 480 year: 2019 ident: 1516_CR18 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0313-3 – volume: 33 year: 2023 ident: 1516_CR19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302929 – volume: 10 start-page: 546 year: 2019 ident: 1516_CR24 publication-title: Micromachines doi: 10.3390/mi10080546 – volume: 34 year: 2022 ident: 1516_CR26 publication-title: Adv. Mater. doi: 10.1002/adma.202201364 – volume: 11 start-page: 24230 year: 2019 ident: 1516_CR35 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b04901 – volume: 10 start-page: 384 year: 2019 ident: 1516_CR38 publication-title: Micromachines doi: 10.3390/mi10060384 – volume: 59 start-page: 060501 year: 2020 ident: 1516_CR6 publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/ab8d4f – volume: 547 start-page: 428 year: 2017 ident: 1516_CR11 publication-title: Nature doi: 10.1038/nature23011 – volume: 15 year: 2020 ident: 1516_CR14 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-020-3249-7 – volume: 68 start-page: 3218 year: 1996 ident: 1516_CR28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.116442 – volume: 521 start-page: 436 year: 2015 ident: 1516_CR2 publication-title: Nature doi: 10.1038/nature14539 – volume: 13 year: 2022 ident: 1516_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30539-6 – volume: 14 start-page: 17170 year: 2022 ident: 1516_CR20 publication-title: Nanoscale doi: 10.1039/D2NR05012A – volume: 9 year: 2023 ident: 1516_CR42 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.202300108 – volume: 6 start-page: 1600256 year: 2016 ident: 1516_CR22 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600256 – volume: 18 year: 2021 ident: 1516_CR39 publication-title: Mater. Today Phys. doi: 10.1016/j.mtphys.2021.100392 – volume: 5 start-page: 173 year: 2020 ident: 1516_CR41 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0159-3 – volume: 7 year: 2021 ident: 1516_CR12 publication-title: Sci. Adv. doi: 10.1126/sciadv.abg1455 – volume: 12 start-page: 1654 year: 2023 ident: 1516_CR37 publication-title: Electronics doi: 10.3390/electronics12071654 – volume: 35 year: 2023 ident: 1516_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.202211598 |
| SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
| Score | 2.4358702 |
| Snippet | Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing... Abstract Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 179 |
| SubjectTerms | 639/624/1075/401 639/766/1130/2799 Accuracy Artificial intelligence Lasers Light sources Mapping Microwaves Neural networks Optical and Electronic Materials Optical Devices Optics Photonics Physics Physics and Astronomy RF and Optical Engineering |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1rb9Mw8DQ6IeAD4k1gICPxjUWLYzu1kRBiaNOERIXQJu1b5NjOqNQlpU1h26_n7Dy2ClShfksuqXMv3_leAG_LTGVOFja2XLmY25TGBRurWCXapOhiCKl8cfLXSXZ0wr-citMtmPS1MD6tsteJQVHb2vgz8j2GtjfHnxQf5z9jPzXKR1f7ERq6G61gP4QWY7dgO_WdsUawvX8w-fZ9OHVBZ4YmctxVzyRM7i2577kX41aFXrWgWXy1tkOFRv7_sj7_TqIcIqn34M6qmuvL33o2u7FZHT6A-52VST61bPEQtlz1CG6HbE-zfAwXxyFZdknOpxfOknlHK1LV1hFfj7T4VU8XxISJD_hn78ks9Btx59OQJk2Wl5VGXWNuALctoYk_1yW-vgvfWjd1O2UHAetVg-96AieHB8efj-JuBENsBKdNnPnAITeWjakwTqO1oDQ6bEzZgjrtMiVlmShdjlNr0LBiDh8TqDZSXVqWlgl7CqOqrtxzIFaXLkvK0k8Q5KIUWnD0vWRGXZFwk8kIaI_23HT9yf2YjFke4uRM5i2pciRVHkiVX0Xwbnhm3nbn2Ai976k5QPrO2uFCvTjLO0HNjRCOoRtqldA80VYXjBb4tcxKzQpKI9jpeSHvxH2ZXzNnBG-G2yioPvqiK1evWhglBGIvgmct6wwrYcpbvgpxINeYam2p63eq6Y_QDNzby6iWkwh2e_67XtcmXOwOPPofqHux-atfwt00SJBPjNyBUbNYuVdorDXF604C_wDV4T6v priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8DQ6IeAB8TUIDGQk3mhEHNupzVtBTFMleGGT9hY5tiMqdUnVpLDt13N20rBoaALlLTk7zn3Yd7kvgHdlpjInCxtbrlzMbUrjgs1UrBJtUjQxhFQ-Ofnrt-z4lC_OxNkeTHe5MCP_fSjd3XBfFC_GswTNXkGz-OoO7EtkTDmB_fl88X0x_FNBU4UmctbnxuDwDzcHj86fUKb_b7rlzRDJwU_6AO5tq7W-_KVXq2tH0dEjeNjrkGTeEf0x7LnqCdwNsZymeQoXJyEUtiHnywtnybqnBKlq64jPNtr8rJcbYkI_B3zZR7IK1UTc-TIEQZPmstK4k5hrwF3BZ-L_2hKfvYWz1m3d9dBBwHrb4lzP4PToy8nn47hvsBAbwWkbZ94tyI1lMyqM06gLKI3mGFO2oE67TElZJkqXs9QaVJuYw2ECN4VUl5alZcIOYFLVlXsBxOrSZUlZ-v6AXJRCC46WlcyoKxJuMhkB3aE9N331cd8EY5UHLziTeUeqHEmVB1LlVxG8H8asu9obt0J_8tQcIH3d7HAD2SnvxTA3QjiGRqZVQvNEW10wWuDXMis1KyiN4HDHC3kvzE2OrJZxvKSI4O3wGMXQ-1Z05eptB6OEQOxF8LxjnWElTHm9ViEO5IipRksdP6mWP0Kpb68N46abRDDd8d-fdd2Gi-nAo_-Aupf_N_sruJ8GifJhkIcwaTdb9xpVs7Z400vkb89nM0o priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceD8CBRmJG3WJYztrcyuIqkKi4tCVyilybEddsU1WmwTa_fWMnWxooKqKcksmljMe299kxt8g9LZIVepkbonlyhFuE0pyNlVExdok4GIIqfzh5K-H6cGMfzkWxz1Njj8LM4rfM_m-5p4Sj8BOAk6voClZ30RbqQDcPUFbs8Nve9999ThPNwC4O5SfA8xAYI8U_QmZyxsZ7UKBrP8yhPlvouQQLb2LbrflUp__0ovFhQ1p_35X2agOPIY-D-XHbtvku2b9F8vj9b71AbrX41K81xnSQ3TDlY_QrZAfaurH6OwopNfW-HR-5ixe9qOLy8o67E8wrX5W8xU2oUYEdP0DXgSGEnc6D4nVuD4vNaxO5oJwRyKN_Z9g7E-EQatVU3V1eUCwahto6wma7X8--nRA-qINxAhOG5L6UCM3lk2pME4DvlAaXDymbE6ddqmSsoiVLqaJNQDFmIPXBCw0iS4sS4qYPUWTsirdc4StLlwaF4WvOchFIbTg4K3JlLo85iaVEaKbQcxMz2juC2ssshBZZzLrNJqBRrOg0WwdoXfDO8uOz-NK6Y_eNgZJz8UdbsCwZf3UzowQjoHjapXQPNZW54zm8LXMSs1ySiO0vbGsrF8g6oyBK8nhkiJCb4bHMLV9vEaXrmo7GSUEaC9CzzpDHHrClMfKCnQgRyY66ur4STk_CfThHmHDQh5HaGdjzX_6dZUudgaLv4bqXvyf-Et0JwmG71Mrt9GkWbXuFcC9Jn_dz_PfDfBLag priority: 102 providerName: Unpaywall |
| Title | Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output |
| URI | https://link.springer.com/article/10.1038/s41377-024-01516-z https://www.ncbi.nlm.nih.gov/pubmed/39085198 https://www.proquest.com/docview/3086464685 https://www.proquest.com/docview/3086955249 https://pubmed.ncbi.nlm.nih.gov/PMC11291830 https://doi.org/10.1038/s41377-024-01516-z https://doaj.org/article/c55e3828d95a40adab31bdb13d8a3b11 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib038074990 issn: 2095-5545 databaseCode: ADMLS dateStart: 20130401 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only) customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: NAO dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: AAJSJ dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals (Selected full-text) customDbUrl: eissn: 2047-7538 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000941087 issn: 2047-7538 databaseCode: C6C dateStart: 20120301 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiG8CozISbyxaEtuJzVtXbZoqUU2wSuUpcmxHFHVJ1aSw7a_nbKehFWjwgPIQybkkzt3ZvovvfofQuzIVqeGFDjUVJqQ6icOCZCIUkVQJuBiMC5uc_HGSnk7peMZmW6W-bEyYhwf2jDtUjBkCboEWTNJIalmQuNBFTDSXpPBZvREXW87UNx8vF0c867JkIsIPG2qx9UJYksB7ZnEaXu-sRA6w_09W5u_Bkv2O6QN0b10t5dUPuVhsLUonj9DDzprEQ_8Vj9EtUz1Bd11Up2qeostzFxTb4Iv5pdF42ckEV7U22OYdrb7X8xVWrrIDvOwDXjhcEXMxd-HQuLmqJMwpaovYQz9j-_8W2zwueGrd1r6aDhDW6xae9QxNT47PR6dhV2ohVIzGbZjaDUKqNMlipowEq0BIcMyIAE4baVLBeRkJWWaJVmBAEQO3MZgeEllqkpQReY72qroyLxHWsjRpVJa2UiBlJZOMgo_F09gUEVUpD1C8YXuuOhxyWw5jkbv9cMJzL6ocRJU7UeXXAXrf37P0KBw3Uh9ZafaUFkHbNYBe5Z1e5X_TqwDtb3Qh74Z1kxNwACkcnAXobX8ZBqTdZZGVqdeeRjAG3AvQC686fU-IsBauAB7wHaXa6erulWr-1YF-W7sYpt8oQAcb_fvVr5t4cdDr6D-w7tX_YN1rdD9x48yGSe6jvXa1Nm_AdGuLAbqdzbIBujMcjj-P4Xx0PDn7BK2jdDRwIxjappOz4ZefOElH4A |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Bqb0OAB8U1ggJHgiUWLYzuNkSbEYFPHtgqhTtpbcGwHKnVJaVK27sfx2zg7H1sFqniZ8pZcHOfufL7zfSH0OotEZOJU-5oJ4zMdEj-lPeGLQKoQTAweC5ucfDSI-sfs8wk_WUG_21wYG1bZykQnqHWh7Bn5FgXdm8EV8_eTn77tGmW9q20LDdm0VtDbrsRYk9hxYOZnYMKV2_ufgN5vwnBvd_ix7zddBnzFGan8yPrGmNK0R7gyEjZEIcEmoUKnxEgTiTjOAiGzXqgV6A7UwGscVkYoM03DLKAw7g20xigTYPyt7ewOvnztTnnAeCJB3GuydeBLWyWzNf582BrBiuck8i8WdkTXOOBf2u7fQZud5_Y2Wp_lEzk_k-Pxlc1x7y6602i1-EPNhvfQisnvo5suulSVD9D50AXnlvh0dG40njS8gfNCG2zzn6a_itEUK9dhAj72Do9dfRNzOnJh2bic5xJkm7oCXJegxvYcGdt8Mhi1qIq6qw8AFrMKxnqIjq-FGI_Qal7k5gnCWmYmCrLMdixkPOOSM7D14oiYNGAqij1EWrQnqqmHbttyjBPnl6dxUpMqAVIljlTJhYfedu9M6mogS6F3LDU7SFvJ290opt-TRjAkinNDwezVgksWSC1TSlL4W6pjSVNCPLTR8kLSiJcyuVwMHnrVPQbBYL09MjfFrIYRnAP2PPS4Zp1uJlRYTVsADuIFplqY6uKTfPTDFR-3-jlsA4GHNlv-u5zXMlxsdjz6H6h7uvyvX6L1_vDoMDncHxw8Q7dCt5psUOYGWq2mM_McFMUqfdGsRoy-XbcA-AO9lnqZ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFvA6IN4ECRoITjTaO7SRGQggoVUuh4tBKezOO7cBK22TZ7NJuP42vY-w82hVoxaXKLZk4zrzHHs8g9KJIRGKz3ISGCRsyE5Mwp6kIRaR0DCEGz4Q7nPxlP9k5ZJ-GfLiGfndnYVxaZacTvaI2lXZr5AMKvjeDK-ODok2L-Lq1_XbyM3QdpNxOa9dOo2GRPbs4hvCtfrO7BbR-GcfbHw8-7IRth4FQc0ZmYeL2xZg2NCVcWwXGUCiIR6gwObHKJiLLikioIo2NBr-BWniNg1TEqjA0LiIK415Cl1NKhUsnTIdpv74DYROJsrQ9pwPfGdTMVfcLwShC_M5JEp4u2ULfMuBffu7f6Zr9nu0NdG1eTtTiWI3H58zi9i10s_Vn8buGAW-jNVveQVd8Xqmu76KTA5-WW-Oj0Yk1eNJyBS4rY7E7-TT9VY2mWPveEvCx13jsK5vYo5FPyMb1olSg1fQ54Kb4NHYryNidJINRq1nV9PMBwGo-g7HuocMLIcV9tF5WpX2IsFGFTaKicL0KGS-44gyivCwhNo-YTrIAkQ7tUreV0F1DjrH0O_I0kw2pJJBKelLJ0wC96t-ZNHVAVkK_d9TsIV0Nb3-jmn6XrUqQmnNLIeA1gisWKaNySnL4W2oyRXNCArTR8YJsFUstz8QgQM_7x6AS3D6PKm01b2AE54C9AD1oWKefCRXOxxaAg2yJqZamuvykHP3wZcedZw4GIArQZsd_Z_NahYvNnkf_A3WPVv_1M3QVxF5-3t3fe4yux16YXDbmBlqfTef2CXiIs_ypF0WMvl207P8BXiB4Mw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceD8CBRmJG3WJYztrcyuIqkKi4tCVyilybEddsU1WmwTa_fWMnWxooKqKcksmljMe299kxt8g9LZIVepkbonlyhFuE0pyNlVExdok4GIIqfzh5K-H6cGMfzkWxz1Njj8LM4rfM_m-5p4Sj8BOAk6voClZ30RbqQDcPUFbs8Nve9999ThPNwC4O5SfA8xAYI8U_QmZyxsZ7UKBrP8yhPlvouQQLb2LbrflUp__0ovFhQ1p_35X2agOPIY-D-XHbtvku2b9F8vj9b71AbrX41K81xnSQ3TDlY_QrZAfaurH6OwopNfW-HR-5ixe9qOLy8o67E8wrX5W8xU2oUYEdP0DXgSGEnc6D4nVuD4vNaxO5oJwRyKN_Z9g7E-EQatVU3V1eUCwahto6wma7X8--nRA-qINxAhOG5L6UCM3lk2pME4DvlAaXDymbE6ddqmSsoiVLqaJNQDFmIPXBCw0iS4sS4qYPUWTsirdc4StLlwaF4WvOchFIbTg4K3JlLo85iaVEaKbQcxMz2juC2ssshBZZzLrNJqBRrOg0WwdoXfDO8uOz-NK6Y_eNgZJz8UdbsCwZf3UzowQjoHjapXQPNZW54zm8LXMSs1ySiO0vbGsrF8g6oyBK8nhkiJCb4bHMLV9vEaXrmo7GSUEaC9CzzpDHHrClMfKCnQgRyY66ur4STk_CfThHmHDQh5HaGdjzX_6dZUudgaLv4bqXvyf-Et0JwmG71Mrt9GkWbXuFcC9Jn_dz_PfDfBLag |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+mixed+physical+node+reservoir+computing%3A+light-emitting+synaptic+reservoir+system+with+dual+photoelectric+output&rft.jtitle=Light%2C+science+%26+applications&rft.au=Lian%2C+Minrui&rft.au=Gao%2C+Changsong&rft.au=Lin%2C+Zhenyuan&rft.au=Shan%2C+Liuting&rft.date=2024-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=13&rft_id=info:doi/10.1038%2Fs41377-024-01516-z&rft_id=info%3Apmid%2F39085198&rft.externalDocID=PMC11291830 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |