Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output

Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 13; no. 1; pp. 179 - 13
Main Authors Lian, Minrui, Gao, Changsong, Lin, Zhenyuan, Shan, Liuting, Chen, Cong, Zou, Yi, Cheng, Enping, Liu, Changfei, Guo, Tailiang, Chen, Wei, Chen, Huipeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2024
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2047-7538
2095-5545
2047-7538
DOI10.1038/s41377-024-01516-z

Cover

Abstract Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design. This manuscript proposes a photoelectric dual-output mixed physical node reservoir system. It achieves higher handwriting digit recognition accuracy and use the photoelectric output characteristics to achieve multichannel image recognition.
AbstractList Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.This manuscript proposes a photoelectric dual-output mixed physical node reservoir system. It achieves higher handwriting digit recognition accuracy and use the photoelectric output characteristics to achieve multichannel image recognition.
Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.
Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.
Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design. This manuscript proposes a photoelectric dual-output mixed physical node reservoir system. It achieves higher handwriting digit recognition accuracy and use the photoelectric output characteristics to achieve multichannel image recognition.
Abstract Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing artificial intelligence. However, owing to the single physical node mapping characteristic of traditional memristor reservoir computing, it inevitably induces high repeatability of eigenvalues to a certain extent and significantly limits the efficiency and performance of memristor-based reservoir computing for complex tasks. Hence, this work firstly reports an artificial light-emitting synaptic (LES) device with dual photoelectric output for reservoir computing, and a reservoir system with mixed physical nodes is proposed. The system effectively transforms the input signal into two eigenvalue outputs using a mixed physical node reservoir comprising distinct physical quantities, namely optical output with nonlinear optical effects and electrical output with memory characteristics. Unlike previously reported memristor-based reservoir systems, which pursue rich reservoir states in one physical dimension, our mixed physical node reservoir system can obtain reservoir states in two physical dimensions with one input without increasing the number and types of devices. The recognition rate of the artificial light-emitting synaptic reservoir system can achieve 97.22% in MNIST recognition. Furthermore, the recognition task of multichannel images can be realized through the nonlinear mapping of the photoelectric dual reservoir, resulting in a recognition accuracy of 99.25%. The mixed physical node reservoir computing proposed in this work is promising for implementing the development of photoelectric mixed neural networks and material-algorithm collaborative design.
ArticleNumber 179
Author Liu, Changfei
Chen, Wei
Lin, Zhenyuan
Shan, Liuting
Lian, Minrui
Gao, Changsong
Chen, Huipeng
Zou, Yi
Chen, Cong
Cheng, Enping
Guo, Tailiang
Author_xml – sequence: 1
  givenname: Minrui
  surname: Lian
  fullname: Lian, Minrui
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
– sequence: 2
  givenname: Changsong
  surname: Gao
  fullname: Gao, Changsong
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 3
  givenname: Zhenyuan
  surname: Lin
  fullname: Lin, Zhenyuan
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
– sequence: 4
  givenname: Liuting
  surname: Shan
  fullname: Shan, Liuting
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 5
  givenname: Cong
  surname: Chen
  fullname: Chen, Cong
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 6
  givenname: Yi
  surname: Zou
  fullname: Zou, Yi
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 7
  givenname: Enping
  surname: Cheng
  fullname: Cheng, Enping
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 8
  givenname: Changfei
  surname: Liu
  fullname: Liu, Changfei
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
– sequence: 9
  givenname: Tailiang
  orcidid: 0009-0006-7868-7756
  surname: Guo
  fullname: Guo, Tailiang
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
– sequence: 10
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Department of Chemistry, National University of Singapore, Department of Physics, National University of Singapore
– sequence: 11
  givenname: Huipeng
  orcidid: 0000-0003-1706-3174
  surname: Chen
  fullname: Chen, Huipeng
  email: hpchen@fzu.edu.cn
  organization: Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39085198$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v3CAURFWqJt3mD_RQWeqlF7dgzBp6qaKoH5Ei9ZKeEQvPu6ywcQFns_n1xbvbdJNDVHMwHzPDvHm8Rie97wGhtwR_JJjyT7EmtGlKXNUlJozMy_sX6KzCdVM2jPKTo_kpOo9xjfMnaoJ58wqdUoE5I4Kfobsbv1HBxKKzd2CKYbWNVitX9N5AESBCuPU2FNp3w5hsv_xcOLtcpRI6m6Z1Ebe9GpLVR-C4jQm6YmPTqjBjFhtWPnlwoFPIQD-mrPUGvWyVi3B--M_Qr29fby5_lNc_v19dXlyXmtUklfNcK6u1oQ1hGlSFiVBVLagwCwIK5oLzFgvVNpXRdY4EMo1R3FSqNbRqMZ2hq72u8Woth2A7FbbSKyt3Gz4spQrZvwOpGQPKK24EUzVWRi0oWeR7qOGKLgjJWnSvNfaD2m6Ucw-CBMupLXLfFpnbIndtkfeZ9WXPGsZFB0ZDn4Jyj6w8PuntSi79rSSkEoTTqYYPB4Xgf48Qk-xs1OCc6sGPUVLM54KxKZcZev8EuvZj6HPCO1SdB2cZ9e7Y0oOXv-8iA_geoIOPMUArtU0qWT85tO75cqsn1P_K6JBszOB-CeGf7WdYfwACj_Du
CitedBy_id crossref_primary_10_1016_j_mtelec_2025_100148
crossref_primary_10_1002_adfm_202502211
crossref_primary_10_1039_D4TC05233A
crossref_primary_10_1002_adfm_202424382
Cites_doi 10.1021/acs.jpcc.6b00989
10.1038/s41467-022-34230-8
10.1002/advs.202205654
10.1186/s11671-020-3249-7
10.1002/aenm.201903534
10.1002/adfm.202306149
10.1002/adma.202003610
10.3390/mi10080546
10.3390/mi10060384
10.1038/s41928-022-00876-x
10.1038/s41928-019-0313-3
10.1002/aenm.201600256
10.35848/1347-4065/ab8d4f
10.1038/s41928-022-00872-1
10.1007/s40843-021-2029-y
10.3390/electronics12071654
10.1088/0957-4484/24/38/384004
10.1016/j.mtphys.2021.100392
10.1002/smll.202201111
10.1002/adma.202201364
10.1063/1.116442
10.1038/s41467-017-02337-y
10.1002/aelm.202300108
10.1038/s41467-022-30539-6
10.1126/sciadv.abg1455
10.1039/D2NR05012A
10.1016/j.cosrev.2009.03.005
10.1038/ncomms4541
10.1038/s41578-019-0159-3
10.1021/ic060495e
10.1063/5.0158076
10.1002/adfm.202302929
10.1039/C8NA00206A
10.1038/s41467-022-30527-w
10.1002/aenm.201800866
10.1109/LED.2017.2722463
10.1109/TCOM.1984.1095992
10.1038/s41467-023-39207-9
10.1038/s41928-020-0422-z
10.1016/j.nanoen.2021.106118
10.1021/acsami.9b04901
10.1002/adma.202211598
10.1073/pnas.79.8.2554
10.1103/PhysRevE.87.042808
10.1038/nature14539
10.1038/nature23011
10.1109/ISCAS45731.2020.9180800
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41377-024-01516-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection (ProQuest)
ProQuest One Community College
ProQuest Central
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef
MEDLINE - Academic
PubMed



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Selected full-text)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 13
ExternalDocumentID oai_doaj_org_article_c55e3828d95a40adab31bdb13d8a3b11
10.1038/s41377-024-01516-z
PMC11291830
39085198
10_1038_s41377_024_01516_z
Genre Journal Article
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PUEGO
NPM
7XB
8FK
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c541t-603854cd3715cea2019a24939db1eae6988f09af72dc4413ec5453072afd32f03
IEDL.DBID DOA
ISSN 2047-7538
2095-5545
IngestDate Fri Oct 03 12:41:38 EDT 2025
Sun Oct 26 03:56:56 EDT 2025
Tue Sep 30 17:08:22 EDT 2025
Thu Sep 04 18:02:17 EDT 2025
Tue Oct 07 06:46:02 EDT 2025
Mon Jul 21 06:03:39 EDT 2025
Wed Oct 01 04:24:41 EDT 2025
Thu Apr 24 22:50:23 EDT 2025
Fri Feb 21 02:38:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-603854cd3715cea2019a24939db1eae6988f09af72dc4413ec5453072afd32f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-7868-7756
0000-0003-1706-3174
OpenAccessLink https://doaj.org/article/c55e3828d95a40adab31bdb13d8a3b11
PMID 39085198
PQID 3086464685
PQPubID 2041947
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c55e3828d95a40adab31bdb13d8a3b11
unpaywall_primary_10_1038_s41377_024_01516_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11291830
proquest_miscellaneous_3086955249
proquest_journals_3086464685
pubmed_primary_39085198
crossref_citationtrail_10_1038_s41377_024_01516_z
crossref_primary_10_1038_s41377_024_01516_z
springer_journals_10_1038_s41377_024_01516_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2024
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Zhang (CR15) 2022; 13
Torrejon (CR11) 2017; 547
Chee (CR25) 2016; 120
Tang (CR33) 2018; 8
Park (CR13) 2022; 13
Sillin (CR9) 2013; 24
Qi (CR7) 2023; 33
Nakajima (CR6) 2020; 59
Li (CR29) 2022; 13
Wang (CR41) 2020; 5
Ilyas (CR14) 2020; 15
Wang (CR47) 2023; 123
Wang (CR17) 2020; 3
Shi (CR30) 2020; 10
Cao (CR28) 1996; 68
Yang (CR3) 2020; 32
Sun (CR5) 2023; 14
Leng (CR42) 2023; 9
Jaafar (CR20) 2022; 14
Ghosh (CR37) 2023; 12
Nazeeruddin (CR23) 2006; 45
Pan (CR32) 2019; 1
Snyder, Goudarzi, Teuscher (CR43) 2013; 87
Zhang (CR19) 2023; 33
Zhu, Yuan, Ni (CR24) 2019; 10
Lukoševičius, Jaeger (CR46) 2009; 3
LeCun, Bengio, Hinton (CR2) 2015; 521
Moon (CR18) 2019; 2
Zha (CR16) 2023; 35
Rao (CR39) 2021; 18
Sun (CR12) 2021; 7
Wei (CR4) 2022; 5
CR45
Liang (CR34) 2022; 5
Wang (CR35) 2019; 11
Liu (CR31) 2021; 86
Kim (CR36) 2023; 10
Zhu (CR26) 2022; 34
Zhang (CR40) 2017; 38
Vandoorne (CR10) 2014; 5
Du (CR8) 2017; 8
Yamaguchi (CR21) 1984; 32
Hopfield (CR1) 1982; 79
Jo (CR38) 2019; 10
Liu (CR22) 2016; 6
Zeng (CR27) 2022; 65
Dale (CR44) 2019; 475
Wang (CR48) 2022; 18
YB Leng (1516_CR42) 2023; 9
Y LeCun (1516_CR2) 2015; 521
MP Zhu (1516_CR24) 2019; 10
JQ Yang (1516_CR3) 2020; 32
EL Li (1516_CR29) 2022; 13
K Nakajima (1516_CR6) 2020; 59
S Jo (1516_CR38) 2019; 10
M Wang (1516_CR17) 2020; 3
D Snyder (1516_CR43) 2013; 87
PK Ghosh (1516_CR37) 2023; 12
ZY Qi (1516_CR7) 2023; 33
MK Nazeeruddin (1516_CR23) 2006; 45
KJ Chee (1516_CR25) 2016; 120
R Wang (1516_CR47) 2023; 123
HO Sillin (1516_CR9) 2013; 24
YZ Shi (1516_CR30) 2020; 10
J Rao (1516_CR39) 2021; 18
R Wang (1516_CR48) 2022; 18
JJ Zha (1516_CR16) 2023; 35
LF Sun (1516_CR12) 2021; 7
SO Park (1516_CR13) 2022; 13
K Vandoorne (1516_CR10) 2014; 5
ZF Zhang (1516_CR15) 2022; 13
M Dale (1516_CR44) 2019; 475
Y Cao (1516_CR28) 1996; 68
J Moon (1516_CR18) 2019; 2
J Liu (1516_CR22) 2016; 6
1516_CR45
QW Pan (1516_CR32) 2019; 1
XM Zhang (1516_CR40) 2017; 38
XC Liang (1516_CR34) 2022; 5
JJ Hopfield (1516_CR1) 1982; 79
YM Sun (1516_CR5) 2023; 14
GH Zhang (1516_CR19) 2023; 33
ZM Wei (1516_CR4) 2022; 5
N Ilyas (1516_CR14) 2020; 15
AH Jaafar (1516_CR20) 2022; 14
XT Zhu (1516_CR26) 2022; 34
H Yamaguchi (1516_CR21) 1984; 32
G Kim (1516_CR36) 2023; 10
C Du (1516_CR8) 2017; 8
YQ Liu (1516_CR31) 2021; 86
WJ Tang (1516_CR33) 2018; 8
ZR Wang (1516_CR41) 2020; 5
HA Zeng (1516_CR27) 2022; 65
YY Wang (1516_CR35) 2019; 11
J Torrejon (1516_CR11) 2017; 547
M Lukoševičius (1516_CR46) 2009; 3
References_xml – ident: CR45
– volume: 120
  start-page: 11324
  year: 2016
  end-page: 11330
  ident: CR25
  article-title: Polymer light-emitting electrochemical cell blends based on selection of lithium salts, LiX [X = trifluoromethanesulfonate, hexafluorophosphate, and bis(trifluoromethylsulfonyl)imide] with low turn-on voltage
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00989
– volume: 13
  year: 2022
  ident: CR15
  article-title: In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34230-8
– volume: 10
  year: 2023
  ident: CR36
  article-title: Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202205654
– volume: 15
  year: 2020
  ident: CR14
  article-title: Analog switching and artificial synaptic behavior of Ag/SiO :Ag/TiO /p -Si memristor device
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-020-3249-7
– volume: 10
  year: 2020
  ident: CR30
  article-title: MXene-based mesoporous nanosheets toward superior lithium ion conductors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903534
– volume: 33
  year: 2023
  ident: CR7
  article-title: Physical reservoir computing based on nanoscale materials and devices
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306149
– volume: 32
  year: 2020
  ident: CR3
  article-title: Neuromorphic engineering: from biological to spike-based hardware nervous systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003610
– volume: 10
  start-page: 546
  year: 2019
  ident: CR24
  article-title: Magneto-electroluminescence in ITO/MEH-PPV:PEO:LiCF SO /Al polymer light-emitting electrochemical cells
  publication-title: Micromachines
  doi: 10.3390/mi10080546
– volume: 10
  start-page: 384
  year: 2019
  ident: CR38
  article-title: Memristor neural network training with clock synchronous neuromorphic system
  publication-title: Micromachines
  doi: 10.3390/mi10060384
– volume: 5
  start-page: 859
  year: 2022
  end-page: 869
  ident: CR34
  article-title: Multimode transistors and neural networks based on ion-dynamic capacitance
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00876-x
– volume: 475
  start-page: 20180723
  year: 2019
  ident: CR44
  article-title: A substrate-independent framework to characterize reservoir computers
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 2
  start-page: 480
  year: 2019
  end-page: 487
  ident: CR18
  article-title: Temporal data classification and forecasting using a memristor-based reservoir computing system
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0313-3
– volume: 6
  start-page: 1600256
  year: 2016
  ident: CR22
  article-title: Lithium ion batteries: uniform hierarchical Fe3O4@polypyrrole nanocages for superior lithium ion battery anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600256
– volume: 59
  start-page: 060501
  year: 2020
  ident: CR6
  article-title: Physical reservoir computing—an introductory perspective
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ab8d4f
– volume: 5
  start-page: 715
  year: 2022
  end-page: 716
  ident: CR4
  article-title: Reservoir computing with 2D materials
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00872-1
– volume: 65
  start-page: 2511
  year: 2022
  end-page: 2520
  ident: CR27
  article-title: A light-emitting electrochemical artificial synapse with dual output of photoelectric signals
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-021-2029-y
– volume: 12
  start-page: 1654
  year: 2023
  ident: CR37
  article-title: CMOS-based memristor emulator circuits for low-power edge-computing applications
  publication-title: Electronics
  doi: 10.3390/electronics12071654
– volume: 24
  start-page: 384004
  year: 2013
  ident: CR9
  article-title: A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/384004
– volume: 18
  year: 2021
  ident: CR39
  article-title: An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2021.100392
– volume: 18
  year: 2022
  ident: CR48
  article-title: Bio-inspired in-sensor compression and computing based on phototransistors
  publication-title: Small
  doi: 10.1002/smll.202201111
– volume: 34
  year: 2022
  ident: CR26
  article-title: Negative phototransistors with ultrahigh sensitivity and weak-light detection based on 1D/2D molecular crystal p–n heterojunctions and their application in light encoders
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201364
– volume: 68
  start-page: 3218
  year: 1996
  end-page: 3220
  ident: CR28
  article-title: Efficient, fast response light-emitting electrochemical cells: electroluminescent and solid electrolyte polymers with interpenetrating network morphology
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116442
– volume: 8
  year: 2017
  ident: CR8
  article-title: Reservoir computing using dynamic memristors for temporal information processing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02337-y
– volume: 9
  year: 2023
  ident: CR42
  article-title: Recent progress in multiterminal memristors for neuromorphic applications
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202300108
– volume: 13
  year: 2022
  ident: CR13
  article-title: Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30539-6
– volume: 7
  year: 2021
  ident: CR12
  article-title: In-sensor reservoir computing for language learning via two-dimensional memristors
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg1455
– volume: 14
  start-page: 17170
  year: 2022
  end-page: 17181
  ident: CR20
  article-title: 3D-structured mesoporous silica memristors for neuromorphic switching and reservoir computing
  publication-title: Nanoscale
  doi: 10.1039/D2NR05012A
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: CR46
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 5
  year: 2014
  ident: CR10
  article-title: Experimental demonstration of reservoir computing on a silicon photonics chip
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4541
– volume: 5
  start-page: 173
  year: 2020
  end-page: 195
  ident: CR41
  article-title: Resistive switching materials for information processing
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0159-3
– volume: 45
  start-page: 9245
  year: 2006
  end-page: 9250
  ident: CR23
  article-title: Efficient green-blue-light-emitting cationic iridium complex for light-emitting electrochemical cells
  publication-title: Inorg. Chem.
  doi: 10.1021/ic060495e
– volume: 123
  year: 2023
  ident: CR47
  article-title: Deep reservoir computing based on self-rectifying memristor synapse for time series prediction
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0158076
– volume: 33
  year: 2023
  ident: CR19
  article-title: Functional materials for memristor-based reservoir computing: dynamics and applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302929
– volume: 1
  start-page: 395
  year: 2019
  end-page: 402
  ident: CR32
  article-title: 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00206A
– volume: 13
  year: 2022
  ident: CR29
  article-title: MXene based saturation organic vertical photoelectric transistors with low subthreshold swing
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30527-w
– volume: 8
  year: 2018
  ident: CR33
  article-title: Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800866
– volume: 38
  start-page: 1208
  year: 2017
  end-page: 1211
  ident: CR40
  article-title: Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2722463
– volume: 32
  start-page: 1201
  year: 1984
  end-page: 1209
  ident: CR21
  article-title: Efficient encoding of colored pictures in R, G, B components
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1984.1095992
– volume: 14
  year: 2023
  ident: CR5
  article-title: Experimental demonstration of a skyrmion-enhanced strain-mediated physical reservoir computing system
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39207-9
– volume: 3
  start-page: 563
  year: 2020
  end-page: 570
  ident: CR17
  article-title: Gesture recognition using a bioinspired learning architecture that integrates visual data with somatosensory data from stretchable sensors
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0422-z
– volume: 86
  year: 2021
  ident: CR31
  article-title: A one-structure-layer PDMS/Mxenes based stretchable triboelectric nanogenerator for simultaneously harvesting mechanical and light energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106118
– volume: 11
  start-page: 24230
  year: 2019
  end-page: 24240
  ident: CR35
  article-title: Self-doping memristors with equivalently synaptic ion dynamics for neuromorphic computing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04901
– volume: 35
  year: 2023
  ident: CR16
  article-title: Electronic/optoelectronic memory device enabled by tellurium-based 2D van der Waals heterostructure for in-sensor reservoir computing at the optical communication band
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211598
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: CR1
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 87
  start-page: 042808
  year: 2013
  ident: CR43
  article-title: Computational capabilities of random automata networks for reservoir computing
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.042808
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR2
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 547
  start-page: 428
  year: 2017
  end-page: 431
  ident: CR11
  article-title: Neuromorphic computing with nanoscale spintronic oscillators
  publication-title: Nature
  doi: 10.1038/nature23011
– volume: 5
  year: 2014
  ident: 1516_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4541
– volume: 13
  year: 2022
  ident: 1516_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30527-w
– volume: 87
  start-page: 042808
  year: 2013
  ident: 1516_CR43
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.042808
– volume: 475
  start-page: 20180723
  year: 2019
  ident: 1516_CR44
  publication-title: Proc. R. Soc. A Math. Phys. Eng. Sci.
– volume: 14
  year: 2023
  ident: 1516_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39207-9
– volume: 79
  start-page: 2554
  year: 1982
  ident: 1516_CR1
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 13
  year: 2022
  ident: 1516_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-34230-8
– volume: 65
  start-page: 2511
  year: 2022
  ident: 1516_CR27
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-021-2029-y
– volume: 8
  year: 2018
  ident: 1516_CR33
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800866
– volume: 5
  start-page: 715
  year: 2022
  ident: 1516_CR4
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00872-1
– volume: 18
  year: 2022
  ident: 1516_CR48
  publication-title: Small
  doi: 10.1002/smll.202201111
– volume: 1
  start-page: 395
  year: 2019
  ident: 1516_CR32
  publication-title: Nanoscale Adv.
  doi: 10.1039/C8NA00206A
– volume: 10
  year: 2023
  ident: 1516_CR36
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202205654
– volume: 5
  start-page: 859
  year: 2022
  ident: 1516_CR34
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00876-x
– volume: 38
  start-page: 1208
  year: 2017
  ident: 1516_CR40
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2017.2722463
– volume: 32
  year: 2020
  ident: 1516_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202003610
– volume: 45
  start-page: 9245
  year: 2006
  ident: 1516_CR23
  publication-title: Inorg. Chem.
  doi: 10.1021/ic060495e
– volume: 120
  start-page: 11324
  year: 2016
  ident: 1516_CR25
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00989
– volume: 8
  year: 2017
  ident: 1516_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02337-y
– volume: 10
  year: 2020
  ident: 1516_CR30
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903534
– volume: 24
  start-page: 384004
  year: 2013
  ident: 1516_CR9
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/24/38/384004
– volume: 32
  start-page: 1201
  year: 1984
  ident: 1516_CR21
  publication-title: IEEE Trans. Commun.
  doi: 10.1109/TCOM.1984.1095992
– volume: 33
  year: 2023
  ident: 1516_CR7
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202306149
– volume: 86
  year: 2021
  ident: 1516_CR31
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106118
– ident: 1516_CR45
  doi: 10.1109/ISCAS45731.2020.9180800
– volume: 3
  start-page: 127
  year: 2009
  ident: 1516_CR46
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 3
  start-page: 563
  year: 2020
  ident: 1516_CR17
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0422-z
– volume: 123
  year: 2023
  ident: 1516_CR47
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0158076
– volume: 2
  start-page: 480
  year: 2019
  ident: 1516_CR18
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0313-3
– volume: 33
  year: 2023
  ident: 1516_CR19
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302929
– volume: 10
  start-page: 546
  year: 2019
  ident: 1516_CR24
  publication-title: Micromachines
  doi: 10.3390/mi10080546
– volume: 34
  year: 2022
  ident: 1516_CR26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202201364
– volume: 11
  start-page: 24230
  year: 2019
  ident: 1516_CR35
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b04901
– volume: 10
  start-page: 384
  year: 2019
  ident: 1516_CR38
  publication-title: Micromachines
  doi: 10.3390/mi10060384
– volume: 59
  start-page: 060501
  year: 2020
  ident: 1516_CR6
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/ab8d4f
– volume: 547
  start-page: 428
  year: 2017
  ident: 1516_CR11
  publication-title: Nature
  doi: 10.1038/nature23011
– volume: 15
  year: 2020
  ident: 1516_CR14
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-020-3249-7
– volume: 68
  start-page: 3218
  year: 1996
  ident: 1516_CR28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.116442
– volume: 521
  start-page: 436
  year: 2015
  ident: 1516_CR2
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 13
  year: 2022
  ident: 1516_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30539-6
– volume: 14
  start-page: 17170
  year: 2022
  ident: 1516_CR20
  publication-title: Nanoscale
  doi: 10.1039/D2NR05012A
– volume: 9
  year: 2023
  ident: 1516_CR42
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.202300108
– volume: 6
  start-page: 1600256
  year: 2016
  ident: 1516_CR22
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600256
– volume: 18
  year: 2021
  ident: 1516_CR39
  publication-title: Mater. Today Phys.
  doi: 10.1016/j.mtphys.2021.100392
– volume: 5
  start-page: 173
  year: 2020
  ident: 1516_CR41
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0159-3
– volume: 7
  year: 2021
  ident: 1516_CR12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abg1455
– volume: 12
  start-page: 1654
  year: 2023
  ident: 1516_CR37
  publication-title: Electronics
  doi: 10.3390/electronics12071654
– volume: 35
  year: 2023
  ident: 1516_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211598
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.4358702
Snippet Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for advancing...
Abstract Memristor-based physical reservoir computing holds significant potential for efficiently processing complex spatiotemporal data, which is crucial for...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 179
SubjectTerms 639/624/1075/401
639/766/1130/2799
Accuracy
Artificial intelligence
Lasers
Light sources
Mapping
Microwaves
Neural networks
Optical and Electronic Materials
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
RF and Optical Engineering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1rb9Mw8DQ6IeAD4k1gICPxjUWLYzu1kRBiaNOERIXQJu1b5NjOqNQlpU1h26_n7Dy2ClShfksuqXMv3_leAG_LTGVOFja2XLmY25TGBRurWCXapOhiCKl8cfLXSXZ0wr-citMtmPS1MD6tsteJQVHb2vgz8j2GtjfHnxQf5z9jPzXKR1f7ERq6G61gP4QWY7dgO_WdsUawvX8w-fZ9OHVBZ4YmctxVzyRM7i2577kX41aFXrWgWXy1tkOFRv7_sj7_TqIcIqn34M6qmuvL33o2u7FZHT6A-52VST61bPEQtlz1CG6HbE-zfAwXxyFZdknOpxfOknlHK1LV1hFfj7T4VU8XxISJD_hn78ks9Btx59OQJk2Wl5VGXWNuALctoYk_1yW-vgvfWjd1O2UHAetVg-96AieHB8efj-JuBENsBKdNnPnAITeWjakwTqO1oDQ6bEzZgjrtMiVlmShdjlNr0LBiDh8TqDZSXVqWlgl7CqOqrtxzIFaXLkvK0k8Q5KIUWnD0vWRGXZFwk8kIaI_23HT9yf2YjFke4uRM5i2pciRVHkiVX0Xwbnhm3nbn2Ai976k5QPrO2uFCvTjLO0HNjRCOoRtqldA80VYXjBb4tcxKzQpKI9jpeSHvxH2ZXzNnBG-G2yioPvqiK1evWhglBGIvgmct6wwrYcpbvgpxINeYam2p63eq6Y_QDNzby6iWkwh2e_67XtcmXOwOPPofqHux-atfwt00SJBPjNyBUbNYuVdorDXF604C_wDV4T6v
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8DQ6IeAB8TUIDGQk3mhEHNupzVtBTFMleGGT9hY5tiMqdUnVpLDt13N20rBoaALlLTk7zn3Yd7kvgHdlpjInCxtbrlzMbUrjgs1UrBJtUjQxhFQ-Ofnrt-z4lC_OxNkeTHe5MCP_fSjd3XBfFC_GswTNXkGz-OoO7EtkTDmB_fl88X0x_FNBU4UmctbnxuDwDzcHj86fUKb_b7rlzRDJwU_6AO5tq7W-_KVXq2tH0dEjeNjrkGTeEf0x7LnqCdwNsZymeQoXJyEUtiHnywtnybqnBKlq64jPNtr8rJcbYkI_B3zZR7IK1UTc-TIEQZPmstK4k5hrwF3BZ-L_2hKfvYWz1m3d9dBBwHrb4lzP4PToy8nn47hvsBAbwWkbZ94tyI1lMyqM06gLKI3mGFO2oE67TElZJkqXs9QaVJuYw2ECN4VUl5alZcIOYFLVlXsBxOrSZUlZ-v6AXJRCC46WlcyoKxJuMhkB3aE9N331cd8EY5UHLziTeUeqHEmVB1LlVxG8H8asu9obt0J_8tQcIH3d7HAD2SnvxTA3QjiGRqZVQvNEW10wWuDXMis1KyiN4HDHC3kvzE2OrJZxvKSI4O3wGMXQ-1Z05eptB6OEQOxF8LxjnWElTHm9ViEO5IipRksdP6mWP0Kpb68N46abRDDd8d-fdd2Gi-nAo_-Aupf_N_sruJ8GifJhkIcwaTdb9xpVs7Z400vkb89nM0o
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceD8CBRmJG3WJYztrcyuIqkKi4tCVyilybEddsU1WmwTa_fWMnWxooKqKcksmljMe299kxt8g9LZIVepkbonlyhFuE0pyNlVExdok4GIIqfzh5K-H6cGMfzkWxz1Njj8LM4rfM_m-5p4Sj8BOAk6voClZ30RbqQDcPUFbs8Nve9999ThPNwC4O5SfA8xAYI8U_QmZyxsZ7UKBrP8yhPlvouQQLb2LbrflUp__0ovFhQ1p_35X2agOPIY-D-XHbtvku2b9F8vj9b71AbrX41K81xnSQ3TDlY_QrZAfaurH6OwopNfW-HR-5ixe9qOLy8o67E8wrX5W8xU2oUYEdP0DXgSGEnc6D4nVuD4vNaxO5oJwRyKN_Z9g7E-EQatVU3V1eUCwahto6wma7X8--nRA-qINxAhOG5L6UCM3lk2pME4DvlAaXDymbE6ddqmSsoiVLqaJNQDFmIPXBCw0iS4sS4qYPUWTsirdc4StLlwaF4WvOchFIbTg4K3JlLo85iaVEaKbQcxMz2juC2ssshBZZzLrNJqBRrOg0WwdoXfDO8uOz-NK6Y_eNgZJz8UdbsCwZf3UzowQjoHjapXQPNZW54zm8LXMSs1ySiO0vbGsrF8g6oyBK8nhkiJCb4bHMLV9vEaXrmo7GSUEaC9CzzpDHHrClMfKCnQgRyY66ur4STk_CfThHmHDQh5HaGdjzX_6dZUudgaLv4bqXvyf-Et0JwmG71Mrt9GkWbXuFcC9Jn_dz_PfDfBLag
  priority: 102
  providerName: Unpaywall
Title Towards mixed physical node reservoir computing: light-emitting synaptic reservoir system with dual photoelectric output
URI https://link.springer.com/article/10.1038/s41377-024-01516-z
https://www.ncbi.nlm.nih.gov/pubmed/39085198
https://www.proquest.com/docview/3086464685
https://www.proquest.com/docview/3086955249
https://pubmed.ncbi.nlm.nih.gov/PMC11291830
https://doi.org/10.1038/s41377-024-01516-z
https://doaj.org/article/c55e3828d95a40adab31bdb13d8a3b11
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib038074990
  issn: 2095-5545
  databaseCode: ADMLS
  dateStart: 20130401
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (selected full-text only)
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: NAO
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: AAJSJ
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals (Selected full-text)
  customDbUrl:
  eissn: 2047-7538
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000941087
  issn: 2047-7538
  databaseCode: C6C
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgCAEPiG8CozISbyxaEtuJzVtXbZoqUU2wSuUpcmxHFHVJ1aSw7a_nbKehFWjwgPIQybkkzt3ZvovvfofQuzIVqeGFDjUVJqQ6icOCZCIUkVQJuBiMC5uc_HGSnk7peMZmW6W-bEyYhwf2jDtUjBkCboEWTNJIalmQuNBFTDSXpPBZvREXW87UNx8vF0c867JkIsIPG2qx9UJYksB7ZnEaXu-sRA6w_09W5u_Bkv2O6QN0b10t5dUPuVhsLUonj9DDzprEQ_8Vj9EtUz1Bd11Up2qeostzFxTb4Iv5pdF42ckEV7U22OYdrb7X8xVWrrIDvOwDXjhcEXMxd-HQuLmqJMwpaovYQz9j-_8W2zwueGrd1r6aDhDW6xae9QxNT47PR6dhV2ohVIzGbZjaDUKqNMlipowEq0BIcMyIAE4baVLBeRkJWWaJVmBAEQO3MZgeEllqkpQReY72qroyLxHWsjRpVJa2UiBlJZOMgo_F09gUEVUpD1C8YXuuOhxyWw5jkbv9cMJzL6ocRJU7UeXXAXrf37P0KBw3Uh9ZafaUFkHbNYBe5Z1e5X_TqwDtb3Qh74Z1kxNwACkcnAXobX8ZBqTdZZGVqdeeRjAG3AvQC686fU-IsBauAB7wHaXa6erulWr-1YF-W7sYpt8oQAcb_fvVr5t4cdDr6D-w7tX_YN1rdD9x48yGSe6jvXa1Nm_AdGuLAbqdzbIBujMcjj-P4Xx0PDn7BK2jdDRwIxjappOz4ZefOElH4A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0Bqb0OAB8U1ggJHgiUWLYzuNkSbEYFPHtgqhTtpbcGwHKnVJaVK27sfx2zg7H1sFqniZ8pZcHOfufL7zfSH0OotEZOJU-5oJ4zMdEj-lPeGLQKoQTAweC5ucfDSI-sfs8wk_WUG_21wYG1bZykQnqHWh7Bn5FgXdm8EV8_eTn77tGmW9q20LDdm0VtDbrsRYk9hxYOZnYMKV2_ufgN5vwnBvd_ix7zddBnzFGan8yPrGmNK0R7gyEjZEIcEmoUKnxEgTiTjOAiGzXqgV6A7UwGscVkYoM03DLKAw7g20xigTYPyt7ewOvnztTnnAeCJB3GuydeBLWyWzNf582BrBiuck8i8WdkTXOOBf2u7fQZud5_Y2Wp_lEzk_k-Pxlc1x7y6602i1-EPNhvfQisnvo5suulSVD9D50AXnlvh0dG40njS8gfNCG2zzn6a_itEUK9dhAj72Do9dfRNzOnJh2bic5xJkm7oCXJegxvYcGdt8Mhi1qIq6qw8AFrMKxnqIjq-FGI_Qal7k5gnCWmYmCrLMdixkPOOSM7D14oiYNGAqij1EWrQnqqmHbttyjBPnl6dxUpMqAVIljlTJhYfedu9M6mogS6F3LDU7SFvJ290opt-TRjAkinNDwezVgksWSC1TSlL4W6pjSVNCPLTR8kLSiJcyuVwMHnrVPQbBYL09MjfFrIYRnAP2PPS4Zp1uJlRYTVsADuIFplqY6uKTfPTDFR-3-jlsA4GHNlv-u5zXMlxsdjz6H6h7uvyvX6L1_vDoMDncHxw8Q7dCt5psUOYGWq2mM_McFMUqfdGsRoy-XbcA-AO9lnqZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQw0CpFvA6IN4ECRoITjTaO7SRGQggoVUuh4tBKezOO7cBK22TZ7NJuP42vY-w82hVoxaXKLZk4zrzHHs8g9KJIRGKz3ISGCRsyE5Mwp6kIRaR0DCEGz4Q7nPxlP9k5ZJ-GfLiGfndnYVxaZacTvaI2lXZr5AMKvjeDK-ODok2L-Lq1_XbyM3QdpNxOa9dOo2GRPbs4hvCtfrO7BbR-GcfbHw8-7IRth4FQc0ZmYeL2xZg2NCVcWwXGUCiIR6gwObHKJiLLikioIo2NBr-BWniNg1TEqjA0LiIK415Cl1NKhUsnTIdpv74DYROJsrQ9pwPfGdTMVfcLwShC_M5JEp4u2ULfMuBffu7f6Zr9nu0NdG1eTtTiWI3H58zi9i10s_Vn8buGAW-jNVveQVd8Xqmu76KTA5-WW-Oj0Yk1eNJyBS4rY7E7-TT9VY2mWPveEvCx13jsK5vYo5FPyMb1olSg1fQ54Kb4NHYryNidJINRq1nV9PMBwGo-g7HuocMLIcV9tF5WpX2IsFGFTaKicL0KGS-44gyivCwhNo-YTrIAkQ7tUreV0F1DjrH0O_I0kw2pJJBKelLJ0wC96t-ZNHVAVkK_d9TsIV0Nb3-jmn6XrUqQmnNLIeA1gisWKaNySnL4W2oyRXNCArTR8YJsFUstz8QgQM_7x6AS3D6PKm01b2AE54C9AD1oWKefCRXOxxaAg2yJqZamuvykHP3wZcedZw4GIArQZsd_Z_NahYvNnkf_A3WPVv_1M3QVxF5-3t3fe4yux16YXDbmBlqfTef2CXiIs_ypF0WMvl207P8BXiB4Mw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgKwQceD8CBRmJG3WJYztrcyuIqkKi4tCVyilybEddsU1WmwTa_fWMnWxooKqKcksmljMe299kxt8g9LZIVepkbonlyhFuE0pyNlVExdok4GIIqfzh5K-H6cGMfzkWxz1Njj8LM4rfM_m-5p4Sj8BOAk6voClZ30RbqQDcPUFbs8Nve9999ThPNwC4O5SfA8xAYI8U_QmZyxsZ7UKBrP8yhPlvouQQLb2LbrflUp__0ovFhQ1p_35X2agOPIY-D-XHbtvku2b9F8vj9b71AbrX41K81xnSQ3TDlY_QrZAfaurH6OwopNfW-HR-5ixe9qOLy8o67E8wrX5W8xU2oUYEdP0DXgSGEnc6D4nVuD4vNaxO5oJwRyKN_Z9g7E-EQatVU3V1eUCwahto6wma7X8--nRA-qINxAhOG5L6UCM3lk2pME4DvlAaXDymbE6ddqmSsoiVLqaJNQDFmIPXBCw0iS4sS4qYPUWTsirdc4StLlwaF4WvOchFIbTg4K3JlLo85iaVEaKbQcxMz2juC2ssshBZZzLrNJqBRrOg0WwdoXfDO8uOz-NK6Y_eNgZJz8UdbsCwZf3UzowQjoHjapXQPNZW54zm8LXMSs1ySiO0vbGsrF8g6oyBK8nhkiJCb4bHMLV9vEaXrmo7GSUEaC9CzzpDHHrClMfKCnQgRyY66ur4STk_CfThHmHDQh5HaGdjzX_6dZUudgaLv4bqXvyf-Et0JwmG71Mrt9GkWbXuFcC9Jn_dz_PfDfBLag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+mixed+physical+node+reservoir+computing%3A+light-emitting+synaptic+reservoir+system+with+dual+photoelectric+output&rft.jtitle=Light%2C+science+%26+applications&rft.au=Lian%2C+Minrui&rft.au=Gao%2C+Changsong&rft.au=Lin%2C+Zhenyuan&rft.au=Shan%2C+Liuting&rft.date=2024-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=13&rft_id=info:doi/10.1038%2Fs41377-024-01516-z&rft_id=info%3Apmid%2F39085198&rft.externalDocID=PMC11291830
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon