Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development
Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and...
Saved in:
Published in | Cell death & disease Vol. 14; no. 12; pp. 841 - 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.12.2023
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2041-4889 2041-4889 |
DOI | 10.1038/s41419-023-06296-9 |
Cover
Abstract | Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition. |
---|---|
AbstractList | Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition. Abstract Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition. Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition. |
ArticleNumber | 841 |
Author | Lavandero, Sergio Hill, Joseph A. Urquiza-Zurich, Sebastián Gillette, Thomas G. Maracaja-Coutinho, Vinicius do Rêgo, Thaís G. Ramos, Thaís A. R. Kim, Soo Young |
Author_xml | – sequence: 1 givenname: Thaís A. R. surname: Ramos fullname: Ramos, Thaís A. R. organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba – sequence: 2 givenname: Sebastián surname: Urquiza-Zurich fullname: Urquiza-Zurich, Sebastián organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile – sequence: 3 givenname: Soo Young surname: Kim fullname: Kim, Soo Young organization: Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas – sequence: 4 givenname: Thomas G. orcidid: 0000-0002-7617-3544 surname: Gillette fullname: Gillette, Thomas G. organization: Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas – sequence: 5 givenname: Joseph A. orcidid: 0000-0002-5379-1614 surname: Hill fullname: Hill, Joseph A. organization: Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Department of Molecular Biology, University of Texas Southwestern Medical Center – sequence: 6 givenname: Sergio orcidid: 0000-0003-4258-1483 surname: Lavandero fullname: Lavandero, Sergio email: slavander@uchile.cl organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC) – sequence: 7 givenname: Thaís G. surname: do Rêgo fullname: do Rêgo, Thaís G. email: gaudenciothais@gmail.com organization: Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba – sequence: 8 givenname: Vinicius orcidid: 0000-0002-8873-9381 surname: Maracaja-Coutinho fullname: Maracaja-Coutinho, Vinicius email: vinicius.maracaja@uchile.cl organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38110334$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUjFARfdAfYIEisWET8CuOvUJVBaVSBRKPteXYJ7m-cuyLnVupf4_TlNJ2UW9s2TNzxufMcXUQYoCqeoPRB4yo-JgZZlg2iNAGcSJ5I19URwQx3DAh5MGD82F1mvMWlUUpIi1_VR1SgYsIZUeV-enC6KEx4H09Jx2ySW43uxi0r70ONhu9gzoOtY9hrIuJxkRbOPWPb2e5jslsIBfevFxNcZ-h3oBOc23hGnzcTRDm19XLQfsMp3f7SfX7y-df51-bq-8Xl-dnV41pGZ6blnPopegGBEIOGIuumLStANIizTopDTEWGcskR0D7notOEqoH2-KuM2SgJ9Xlqmuj3qpdcpNONypqp24vYhpVceaMB4Xang20w7LHhGHOtUYSlT4KBNb2XBetT6vWbt9PYE35RtL-kejjl-A2aozXCqOOCMxkUXh_p5Din31pkppcXtqsA5Q-KSLLGDliYoG-ewLdxn0qE1hRmHQdbgvq7UNL917-DbMAyAowKeacYLiHYKSW0Kg1NKqERt2GRi21xROScbNeAlC-5fzzVLpSc6kTRkj_bT_D-guKhdWd |
CitedBy_id | crossref_primary_10_3389_fcell_2024_1339292 crossref_primary_10_1038_s41392_024_02069_8 crossref_primary_10_1007_s44307_024_00010_2 crossref_primary_10_1161_ATVBAHA_124_320393 |
Cites_doi | 10.1038/s41576-019-0184-5 10.1038/nrcardio.2015.55 10.1016/j.bbadis.2013.07.023 10.1186/s13059-018-1405-5 10.1172/JCI62876 10.1242/dev.079970 10.1038/s41598-016-0001-8 10.1016/j.devcel.2016.10.001 10.1007/s10741-019-09873-3 10.1038/s41374-020-00519-9 10.3389/fcell.2020.624216 10.1073/pnas.1822046116 10.1016/0377-0427(87)90125-7 10.1038/s41467-017-00319-8 10.4062/biomolther.2015.066 10.1093/eurheartj/ehu180 10.1002/cm.21029 10.1038/s41596-020-00425-w 10.3389/fgene.2019.00317 10.1111/j.1749-6632.2009.05100.x 10.1093/nar/gkz542 10.1161/CIRCULATIONAHA.117.030742 10.1038/s41420-020-00383-y 10.5772/intechopen.81773 10.1161/CIRCRESAHA.120.318574 10.3389/fphys.2017.00414 10.3389/fphys.2019.00847 10.1093/database/baac019 10.1039/C9RA08693E 10.1016/j.acvdsp.2020.03.105 10.1093/bioinformatics/bty1044 10.1016/j.stemcr.2018.01.013 10.1016/j.immuni.2013.11.019 10.1016/j.yjmcc.2019.12.013 10.1016/j.yjmcc.2017.03.006 10.1016/j.yjmcc.2014.10.005 10.1038/75556 10.1161/CIRCGENETICS.115.001363 10.1073/pnas.1701416114 10.1161/CIRCGENETICS.115.001019 10.1038/s41580-020-00315-9 10.7554/eLife.43882 10.1161/CIRCRESAHA.117.310624 10.1038/s41598-019-38989-7 10.1002/9781119053248 10.1093/nar/gkw377 10.1111/joa.12486 10.1016/j.ncrna.2018.04.002 10.18632/oncotarget.7225 10.1016/j.carpath.2018.03.002 10.1016/j.jacbts.2016.06.008 10.1242/dev.176198 10.1002/mus.24211 10.1186/s13059-014-0550-8 10.1152/ajpheart.00601.2020 10.1093/database/baz046 10.3389/fcvm.2019.00173 10.1186/s12859-018-2053-1 10.1038/s41598-019-51872-9 10.1172/JCI70577 10.1161/HCG.0000000000000062 10.3389/fphys.2019.00030 10.3390/jcdd6020021 10.1093/nar/28.1.27 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41419-023-06296-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central - New (Subscription) Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Science Database (subscription) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-4889 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_05b4f3719b124166aa09006280eddb6a PMC10728149 38110334 10_1038_s41419_023_06296_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: the NIH: HL-120732 (JAH), HL-128215 (JAH), HL-126012 (JAH), HL-147933, (JAH), HL-155765 (JAH), 14SFRN20510023 (JAH), 14SFRN20670003 (JAH), Leducq grant number 11CVD04 (JAH), Cancer Prevention and Research Institute of Texas grant RP110486P3 (JAH) – fundername: Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (VMC) and FONDECYT 1211731 (VMC). – fundername: Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (SL), FONDECYT 1200490 (SL) |
GroupedDBID | --- 0R~ 3V. 53G 5VS 70F 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO E3Z EBLON EBS EMOBN FRP FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 LK8 M0L M2P M48 M7P M~E NAO O5R O5S O9- OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT TR2 UKHRP W2D AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-566eb987f0e89f1187110d58e250a4799c2cd0cd4960e3bb687923afd5177c2f3 |
IEDL.DBID | M48 |
ISSN | 2041-4889 |
IngestDate | Wed Aug 27 01:29:28 EDT 2025 Thu Aug 21 18:37:41 EDT 2025 Fri Sep 05 13:38:14 EDT 2025 Wed Aug 13 07:50:35 EDT 2025 Thu Apr 03 07:02:01 EDT 2025 Tue Jul 01 03:50:12 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Fri Feb 21 02:36:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-566eb987f0e89f1187110d58e250a4799c2cd0cd4960e3bb687923afd5177c2f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5379-1614 0000-0003-4258-1483 0000-0002-8873-9381 0000-0002-7617-3544 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41419-023-06296-9 |
PMID | 38110334 |
PQID | 2903127715 |
PQPubID | 2041963 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_05b4f3719b124166aa09006280eddb6a pubmedcentral_primary_oai_pubmedcentral_nih_gov_10728149 proquest_miscellaneous_2903860489 proquest_journals_2903127715 pubmed_primary_38110334 crossref_primary_10_1038_s41419_023_06296_9 crossref_citationtrail_10_1038_s41419_023_06296_9 springer_journals_10_1038_s41419_023_06296_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-18 |
PublicationDateYYYYMMDD | 2023-12-18 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Cell death & disease |
PublicationTitleAbbrev | Cell Death Dis |
PublicationTitleAlternate | Cell Death Dis |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Sánchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Front Physiol. 2019;10:847:1–13. DerksWBergmannOCycling cardiomyocytes: scarce but important in recovery from heart infarction?Circ Res2021128169711:CAS:528:DC%2BB3MXhs1aqsbjN10.1161/CIRCRESAHA.120.31857433476201 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550:1–21. Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019;2019:1–9. Hobuß L, Bär C, Thum T. Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol. 2019;10:1–9. AshburnerMBallCABlakeJABotsteinDButlerHCherryJMGene Ontology: tool for the unification of biologyNat Genet2000252591:CAS:528:DC%2BD3cXjtFSlsbc%3D10.1038/75556108026513037419 Wu C, Arora P. Long Noncoding Mhrt RNA. Circ Cardiovasc Genet. 2015:213–215. Li Z, Zhao W, Wang M, Zhou X. The role of long noncoding RNAs in gene expression regulation. Vlachakis D, editor. 2019. ZhihaoLJingyuNLanLMichaelSRuiGXiyunBSERCA2a: a key protein in the Ca 2+ cycle of the heart failureHeart Fail Rev2019255233510.1007/s10741-019-09873-3 GladkaMMMolenaarBde RuiterHvan der ElstSTsuiHVersteegDSingle-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activationCirculation2018138166801:CAS:528:DC%2BC1cXht1ygtb%2FK10.1161/CIRCULATIONAHA.117.03074229386203 SanninoGPasqualiniLRicciardelliEMontillaPSoverchiaLRuggeriBAcute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint modelOncotarget2016784556510.18632/oncotarget.7225268634564890979 Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res. 2017;121:575–83. LiXLiuQWangKLuoWLiangTYuanSRetracted Article: LncRNA SNHG5 regulates the cell viability and apoptosis of glioma cells by the miR-1297/KPNA2 axisRSC Adv20201014985061:CAS:528:DC%2BB3cXksFOrsw%3D%3D10.1039/C9RA08693E354946899048252 Wang TY, Lee D, Fox-Talbot K, Arking DE, Chakravarti A, Halushka MK. Cardiomyocytes have mosaic patterns of protein expression. Cardiovasc Pathol. 2018;34:50-57. Aghagolzadeh P, Bernasconi R, Nemir M, Khalil H, Pulido C, Chouvardas P, et al. Single-cell analysis of the long noncoding RNA transcriptome identifies novel therapeutic targets for cardiac fibrosis. Arch Cardiovascular Dis Suppl. 2020;12:243–45. Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191–98. Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, et al. Mitochondrial function and dysfunction in dilated cardiomyopathy. Front Cell Dev Biol. 2021;8:1-21. BhatiaGSharmaSUpadhyaySKSinghKLong non-coding RNAs coordinate developmental transitions and other key biological processes in grapevineSci Rep.2019911410.1038/s41598-019-38989-7 Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832:2414–24. MansoAMOkadaHSakamotoFMMorenoEMonkleySJLiRLoss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathyProc Natl Acad Sci USA2017114E625091:CAS:528:DC%2BC2sXhtFCrtL7J10.1073/pnas.1701416114286983645544289 See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun. 2017;8:225:1–13. England J, Pang KL, Parnall M, Haig MI, Loughna S. Cardiac troponin T is necessary for normal development in the embryonic chick heart. J Anat. 2016;229:436–49. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882. de LimaDSCardozoLEMaracaja-CoutinhoVSuhrbierAManeKJeffriesDLong noncoding RNAs are involved in multiple immunological pathways in response to vaccinationProc Natl Acad Sci USA201911617121610.1073/pnas.1822046116313995446708379 Han X, Zhang J, Liu Y, Fan X, Ai S, Luo Y, et al. The lncRNA Hand2os1/Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development. 2019;146:1–16. Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. Systems analysis of transcriptional data provides insights into muscle’s biological response to botulinum toxin. Muscle Nerve. 2014;50:744-58. Turton N, Swan R, Mahenthiralingam T, Pitts D, Dykes IM. The functions of long non-coding RNA during embryonic cardiovascular development and its potential for diagnosis and treatment of congenital heart disease. J Cardiovasc Dev Dis. 2019;6:1–22. Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: a new vision of an OLD friend. J Mol Cell Cardiol. 2014;0:160-67. QuiatDOlsonENMicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatmentJ Clin Invest20131231181:CAS:528:DC%2BC3sXnsFGhsw%3D%3D10.1172/JCI62876232814053533276 RousseeuwPJSilhouettes: A graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-7 BangCBatkaiSDangwalSGuptaSKFoinquinosAHolzmannACardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophyJ Clin Invest20141242136461:CAS:528:DC%2BC2cXotVSnsbY%3D10.1172/JCI70577247431454001534 DeLaughterDMBickAGWakimotoHMcKeanDGorhamJMKathiriyaISSingle-cell resolution of temporal gene expression during heart developmentDev Cell201639480901:CAS:528:DC%2BC28XhvVeqsL3P10.1016/j.devcel.2016.10.001278401075198784 Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC: Basic to Translational Science. 2016;1:472–93. PantTDhanasekaranABaiXZhaoMThorpEBForbessJMGenome-wide differential expression profiling of lncRNAs and mRNAs associated with early diabetic cardiomyopathySci Rep.201991161:CAS:528:DC%2BC1MXitVKrsrzJ10.1038/s41598-019-51872-9 Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317:1–13. Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–49. TongLHillRADamisahECMurrayKNYuanPBordeyAImaging and optogenetic modulation of vascular mural cells in the live brainNat Protoc2020164729610.1038/s41596-020-00425-w33299155 MareeduSPachonRThilagavathiJFefelovaNBalakrishnanRNiranjanNSarcolipin haploinsufficiency prevents dystrophic cardiomyopathy in miceAm J Physiol Heart Circ Physiol2021320H200101:CAS:528:DC%2BB3MXjvVymur4%3D10.1152/ajpheart.00601.202033216625 Grissa D, Junge A, Oprea TI, Jensen LJ. Diseases 2.0: a weekly updated database of disease-gene associations from text mining and data integration. Database. 2022:1–8. Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, et al. Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases. Front Cardiovascular Med. 2019;6:173:1–14. ShaathHVishnubalajiRElangoRKhattakSAlajezNMSingle-cell long noncoding RNA (lncRNA) transcriptome implicates MALAT1 in triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapyCell Death Discov2021711410.1038/s41420-020-00383-y ToumaMKangXZhaoYCassAAGaoFBiniwaleRDecoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional DiscoveryCirc Cardiovasc Genet201693954071:CAS:528:DC%2BC28XhslWhsrrE10.1161/CIRCGENETICS.115.001363275911855085833 KuleshovMVJonesMRRouillardADFernandezNFDuanQWangZEnrichr: a comprehensive gene set enrichment analysis web server 2016 updateNucleic Acids Res201644W9071:CAS:528:DC%2BC2sXhtV2itrfF10.1093/nar/gkw377271419614987924 Li S, Pan H, Tan C, Sun Y, Song Y, Zhang X, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation. Stem Cell Rep. 2018;10:808-21. Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol. 2020;139:47–61 Zhang J, Gao C, Meng M, Tang H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol Ther. 2016;24:19–24. OunzainSMichelettiRBeckmannTSchroenBAlexanianMPezzutoIGenome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAsEur Heart J20153635368a1:CAS:528:DC%2BC2sXhvFChsrnF10.1093/eurheartj/ehu18024786300 Kotrys AV, Cysewski D, Czarnomska SD, Pietras Z, Borowski LS, Dziembowski A, et al. Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Res. 2019;47:7502–17. Will Y, Eric McDuffie J, Olaharski AJ, Jeffy BD. Drug discovery toxicology: from target assessment to translational biomarkers. John Wiley & Sons; 2016. 584 p. Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, et al. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton. 2012;69:324-35. LiZJChengJSongYLiHHZhengJFLncRNA SNHG5 upregulation induced by YY1 contributes to angiogenesis via miR-26b/CTGF/VEGFA axis in acute myelogenous leukemiaLab Invest20201013415210.1038/s41374-020-00519-933318617 Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, S Mareedu (6296_CR61) 2021; 320 M Touma (6296_CR17) 2016; 9 MM Gladka (6296_CR21) 2018; 138 D Quiat (6296_CR9) 2013; 123 G Bhatia (6296_CR5) 2019; 9 6296_CR37 L Tong (6296_CR64) 2020; 16 6296_CR36 6296_CR38 6296_CR32 6296_CR35 S Ounzain (6296_CR18) 2015; 36 C Bang (6296_CR10) 2014; 124 MV Kuleshov (6296_CR30) 2016; 44 6296_CR6 6296_CR7 PJ Rousseeuw (6296_CR19) 1987; 20 W Derks (6296_CR25) 2021; 128 X Li (6296_CR44) 2020; 10 6296_CR29 6296_CR26 6296_CR28 6296_CR27 6296_CR22 6296_CR23 6296_CR62 DM DeLaughter (6296_CR20) 2016; 39 AM Manso (6296_CR39) 2017; 114 M Kanehisa (6296_CR33) 2000; 28 N Gil (6296_CR8) 2019; 21 TS Andrews (6296_CR24) 2019; 35 6296_CR59 6296_CR14 6296_CR58 6296_CR16 6296_CR11 6296_CR54 6296_CR13 6296_CR57 6296_CR12 6296_CR56 L Zhihao (6296_CR60) 2019; 25 6296_CR1 6296_CR51 6296_CR2 6296_CR50 6296_CR3 6296_CR53 6296_CR4 DS de Lima (6296_CR34) 2019; 116 T Pant (6296_CR42) 2019; 9 ZJ Li (6296_CR63) 2020; 101 H Shaath (6296_CR15) 2021; 7 M Fish (6296_CR52) 2016; 6 6296_CR48 6296_CR47 G Sannino (6296_CR55) 2016; 7 6296_CR49 M Ashburner (6296_CR31) 2000; 25 6296_CR43 6296_CR46 6296_CR45 6296_CR40 6296_CR41 |
References_xml | – reference: QuiatDOlsonENMicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatmentJ Clin Invest20131231181:CAS:528:DC%2BC3sXnsFGhsw%3D%3D10.1172/JCI62876232814053533276 – reference: Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550:1–21. – reference: KuleshovMVJonesMRRouillardADFernandezNFDuanQWangZEnrichr: a comprehensive gene set enrichment analysis web server 2016 updateNucleic Acids Res201644W9071:CAS:528:DC%2BC2sXhtV2itrfF10.1093/nar/gkw377271419614987924 – reference: Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res. 2017;121:575–83. – reference: Hobuß L, Bär C, Thum T. Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol. 2019;10:1–9. – reference: Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191–98. – reference: DerksWBergmannOCycling cardiomyocytes: scarce but important in recovery from heart infarction?Circ Res2021128169711:CAS:528:DC%2BB3MXhs1aqsbjN10.1161/CIRCRESAHA.120.31857433476201 – reference: Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882. – reference: FishMShaboodienGKrausSSliwaKSeidmanCEBurkeMAMutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathiesSci Rep.2016618 – reference: Farrell ET, Grimes AC, de Lange WJ, Armstrong AE, Ralphe JC. Increased postnatal cardiac hyperplasia precedes cardiomyocyte hypertrophy in a model of hypertrophic cardiomyopathy. Front Physiol. 2017;8:414:1–13. – reference: Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832:2414–24. – reference: ShaathHVishnubalajiRElangoRKhattakSAlajezNMSingle-cell long noncoding RNA (lncRNA) transcriptome implicates MALAT1 in triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapyCell Death Discov2021711410.1038/s41420-020-00383-y – reference: Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, et al. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton. 2012;69:324-35. – reference: Aghagolzadeh P, Bernasconi R, Nemir M, Khalil H, Pulido C, Chouvardas P, et al. Single-cell analysis of the long noncoding RNA transcriptome identifies novel therapeutic targets for cardiac fibrosis. Arch Cardiovascular Dis Suppl. 2020;12:243–45. – reference: Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40:91–104. – reference: Li S, Pan H, Tan C, Sun Y, Song Y, Zhang X, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation. Stem Cell Rep. 2018;10:808-21. – reference: TongLHillRADamisahECMurrayKNYuanPBordeyAImaging and optogenetic modulation of vascular mural cells in the live brainNat Protoc2020164729610.1038/s41596-020-00425-w33299155 – reference: Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118. – reference: Li Z, Zhao W, Wang M, Zhou X. The role of long noncoding RNAs in gene expression regulation. Vlachakis D, editor. 2019. – reference: Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC: Basic to Translational Science. 2016;1:472–93. – reference: Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 2015;12:415–25. – reference: Grissa D, Junge A, Oprea TI, Jensen LJ. Diseases 2.0: a weekly updated database of disease-gene associations from text mining and data integration. Database. 2022:1–8. – reference: Will Y, Eric McDuffie J, Olaharski AJ, Jeffy BD. Drug discovery toxicology: from target assessment to translational biomarkers. John Wiley & Sons; 2016. 584 p. – reference: Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: a new vision of an OLD friend. J Mol Cell Cardiol. 2014;0:160-67. – reference: LiZJChengJSongYLiHHZhengJFLncRNA SNHG5 upregulation induced by YY1 contributes to angiogenesis via miR-26b/CTGF/VEGFA axis in acute myelogenous leukemiaLab Invest20201013415210.1038/s41374-020-00519-933318617 – reference: See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun. 2017;8:225:1–13. – reference: Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, et al. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol. 2018;19:32:1–21. – reference: MareeduSPachonRThilagavathiJFefelovaNBalakrishnanRNiranjanNSarcolipin haploinsufficiency prevents dystrophic cardiomyopathy in miceAm J Physiol Heart Circ Physiol2021320H200101:CAS:528:DC%2BB3MXjvVymur4%3D10.1152/ajpheart.00601.202033216625 – reference: Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. Systems analysis of transcriptional data provides insights into muscle’s biological response to botulinum toxin. Muscle Nerve. 2014;50:744-58. – reference: de LimaDSCardozoLEMaracaja-CoutinhoVSuhrbierAManeKJeffriesDLong noncoding RNAs are involved in multiple immunological pathways in response to vaccinationProc Natl Acad Sci USA201911617121610.1073/pnas.1822046116313995446708379 – reference: MansoAMOkadaHSakamotoFMMorenoEMonkleySJLiRLoss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathyProc Natl Acad Sci USA2017114E625091:CAS:528:DC%2BC2sXhtFCrtL7J10.1073/pnas.1701416114286983645544289 – reference: RousseeuwPJSilhouettes: A graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-7 – reference: LiXLiuQWangKLuoWLiangTYuanSRetracted Article: LncRNA SNHG5 regulates the cell viability and apoptosis of glioma cells by the miR-1297/KPNA2 axisRSC Adv20201014985061:CAS:528:DC%2BB3cXksFOrsw%3D%3D10.1039/C9RA08693E354946899048252 – reference: ZhihaoLJingyuNLanLMichaelSRuiGXiyunBSERCA2a: a key protein in the Ca 2+ cycle of the heart failureHeart Fail Rev2019255233510.1007/s10741-019-09873-3 – reference: England J, Pang KL, Parnall M, Haig MI, Loughna S. Cardiac troponin T is necessary for normal development in the embryonic chick heart. J Anat. 2016;229:436–49. – reference: GladkaMMMolenaarBde RuiterHvan der ElstSTsuiHVersteegDSingle-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activationCirculation2018138166801:CAS:528:DC%2BC1cXht1ygtb%2FK10.1161/CIRCULATIONAHA.117.03074229386203 – reference: OunzainSMichelettiRBeckmannTSchroenBAlexanianMPezzutoIGenome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAsEur Heart J20153635368a1:CAS:528:DC%2BC2sXhvFChsrnF10.1093/eurheartj/ehu18024786300 – reference: Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, et al. Mitochondrial function and dysfunction in dilated cardiomyopathy. Front Cell Dev Biol. 2021;8:1-21. – reference: GilNUlitskyIRegulation of gene expression by cis -acting long non-coding RNAsNat Rev Genet2019211021710.1038/s41576-019-0184-531729473 – reference: AshburnerMBallCABlakeJABotsteinDButlerHCherryJMGene Ontology: tool for the unification of biologyNat Genet2000252591:CAS:528:DC%2BD3cXjtFSlsbc%3D10.1038/75556108026513037419 – reference: BangCBatkaiSDangwalSGuptaSKFoinquinosAHolzmannACardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophyJ Clin Invest20141242136461:CAS:528:DC%2BC2cXotVSnsbY%3D10.1172/JCI70577247431454001534 – reference: ToumaMKangXZhaoYCassAAGaoFBiniwaleRDecoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional DiscoveryCirc Cardiovasc Genet201693954071:CAS:528:DC%2BC28XhslWhsrrE10.1161/CIRCGENETICS.115.001363275911855085833 – reference: Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, et al. Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases. Front Cardiovascular Med. 2019;6:173:1–14. – reference: Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res. 2018;3:118–30. – reference: Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol. 2020;139:47–61 – reference: Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317:1–13. – reference: AndrewsTSHembergMM3Drop: dropout-based feature selection for scRNASeqBioinformatics201935286571:CAS:528:DC%2BB3cXktV2jsr0%3D10.1093/bioinformatics/bty104430590489 – reference: Wu C, Arora P. Long Noncoding Mhrt RNA. Circ Cardiovasc Genet. 2015:213–215. – reference: BhatiaGSharmaSUpadhyaySKSinghKLong non-coding RNAs coordinate developmental transitions and other key biological processes in grapevineSci Rep.2019911410.1038/s41598-019-38989-7 – reference: PantTDhanasekaranABaiXZhaoMThorpEBForbessJMGenome-wide differential expression profiling of lncRNAs and mRNAs associated with early diabetic cardiomyopathySci Rep.201991161:CAS:528:DC%2BC1MXitVKrsrzJ10.1038/s41598-019-51872-9 – reference: Han X, Zhang J, Liu Y, Fan X, Ai S, Luo Y, et al. The lncRNA Hand2os1/Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development. 2019;146:1–16. – reference: Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, et al. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinforma. 2018;19:56:1–13. – reference: DeLaughterDMBickAGWakimotoHMcKeanDGorhamJMKathiriyaISSingle-cell resolution of temporal gene expression during heart developmentDev Cell201639480901:CAS:528:DC%2BC28XhvVeqsL3P10.1016/j.devcel.2016.10.001278401075198784 – reference: Kotrys AV, Cysewski D, Czarnomska SD, Pietras Z, Borowski LS, Dziembowski A, et al. Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Res. 2019;47:7502–17. – reference: Zhang J, Gao C, Meng M, Tang H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol Ther. 2016;24:19–24. – reference: Turton N, Swan R, Mahenthiralingam T, Pitts D, Dykes IM. The functions of long non-coding RNA during embryonic cardiovascular development and its potential for diagnosis and treatment of congenital heart disease. J Cardiovasc Dev Dis. 2019;6:1–22. – reference: Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, et al. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation: Genomic and Precision Medicine. 2020;13:350–72. – reference: KanehisaMGotoSKEGG: kyoto encyclopedia of genes and genomesNucleic Acids Res20002827301:CAS:528:DC%2BD3cXhvVGqu74%3D10.1093/nar/28.1.2710592173102409 – reference: Sánchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Front Physiol. 2019;10:847:1–13. – reference: Wang TY, Lee D, Fox-Talbot K, Arking DE, Chakravarti A, Halushka MK. Cardiomyocytes have mosaic patterns of protein expression. Cardiovasc Pathol. 2018;34:50-57. – reference: SanninoGPasqualiniLRicciardelliEMontillaPSoverchiaLRuggeriBAcute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint modelOncotarget2016784556510.18632/oncotarget.7225268634564890979 – reference: Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019;2019:1–9. – reference: Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–49. – reference: England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, David, et al. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol. 2017;106:1–13. – volume: 21 start-page: 102 year: 2019 ident: 6296_CR8 publication-title: Nat Rev Genet doi: 10.1038/s41576-019-0184-5 – ident: 6296_CR11 doi: 10.1038/nrcardio.2015.55 – ident: 6296_CR14 doi: 10.1016/j.bbadis.2013.07.023 – ident: 6296_CR6 doi: 10.1186/s13059-018-1405-5 – volume: 123 start-page: 11 year: 2013 ident: 6296_CR9 publication-title: J Clin Invest doi: 10.1172/JCI62876 – ident: 6296_CR26 doi: 10.1242/dev.079970 – volume: 6 start-page: 1 year: 2016 ident: 6296_CR52 publication-title: Sci Rep. doi: 10.1038/s41598-016-0001-8 – volume: 39 start-page: 480 year: 2016 ident: 6296_CR20 publication-title: Dev Cell doi: 10.1016/j.devcel.2016.10.001 – volume: 25 start-page: 523 year: 2019 ident: 6296_CR60 publication-title: Heart Fail Rev doi: 10.1007/s10741-019-09873-3 – volume: 101 start-page: 341 year: 2020 ident: 6296_CR63 publication-title: Lab Invest doi: 10.1038/s41374-020-00519-9 – ident: 6296_CR54 doi: 10.3389/fcell.2020.624216 – volume: 116 start-page: 17121 year: 2019 ident: 6296_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1822046116 – volume: 20 start-page: 53 year: 1987 ident: 6296_CR19 publication-title: J Comput Appl Math doi: 10.1016/0377-0427(87)90125-7 – ident: 6296_CR46 doi: 10.1038/s41467-017-00319-8 – ident: 6296_CR38 doi: 10.4062/biomolther.2015.066 – volume: 36 start-page: 353 year: 2015 ident: 6296_CR18 publication-title: Eur Heart J doi: 10.1093/eurheartj/ehu180 – ident: 6296_CR57 doi: 10.1002/cm.21029 – volume: 16 start-page: 472 year: 2020 ident: 6296_CR64 publication-title: Nat Protoc doi: 10.1038/s41596-020-00425-w – ident: 6296_CR12 doi: 10.3389/fgene.2019.00317 – ident: 6296_CR13 doi: 10.1111/j.1749-6632.2009.05100.x – ident: 6296_CR43 doi: 10.1093/nar/gkz542 – volume: 138 start-page: 166 year: 2018 ident: 6296_CR21 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.117.030742 – volume: 7 start-page: 1 year: 2021 ident: 6296_CR15 publication-title: Cell Death Discov doi: 10.1038/s41420-020-00383-y – ident: 6296_CR1 doi: 10.5772/intechopen.81773 – volume: 128 start-page: 169 year: 2021 ident: 6296_CR25 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.120.318574 – ident: 6296_CR59 doi: 10.3389/fphys.2017.00414 – ident: 6296_CR28 doi: 10.3389/fphys.2019.00847 – ident: 6296_CR32 doi: 10.1093/database/baac019 – volume: 10 start-page: 1498 year: 2020 ident: 6296_CR44 publication-title: RSC Adv doi: 10.1039/C9RA08693E – ident: 6296_CR16 doi: 10.1016/j.acvdsp.2020.03.105 – volume: 35 start-page: 2865 year: 2019 ident: 6296_CR24 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1044 – ident: 6296_CR47 doi: 10.1016/j.stemcr.2018.01.013 – ident: 6296_CR27 doi: 10.1016/j.immuni.2013.11.019 – ident: 6296_CR37 doi: 10.1016/j.yjmcc.2019.12.013 – ident: 6296_CR53 doi: 10.1016/j.yjmcc.2017.03.006 – ident: 6296_CR51 doi: 10.1016/j.yjmcc.2014.10.005 – volume: 25 start-page: 25 year: 2000 ident: 6296_CR31 publication-title: Nat Genet doi: 10.1038/75556 – volume: 9 start-page: 395 year: 2016 ident: 6296_CR17 publication-title: Circ Cardiovasc Genet doi: 10.1161/CIRCGENETICS.115.001363 – volume: 114 start-page: E6250 year: 2017 ident: 6296_CR39 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1701416114 – ident: 6296_CR36 doi: 10.1161/CIRCGENETICS.115.001019 – ident: 6296_CR7 doi: 10.1038/s41580-020-00315-9 – ident: 6296_CR22 doi: 10.7554/eLife.43882 – ident: 6296_CR62 doi: 10.1161/CIRCRESAHA.117.310624 – volume: 9 start-page: 1 year: 2019 ident: 6296_CR5 publication-title: Sci Rep. doi: 10.1038/s41598-019-38989-7 – ident: 6296_CR50 doi: 10.1002/9781119053248 – volume: 44 start-page: W90 year: 2016 ident: 6296_CR30 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw377 – ident: 6296_CR56 doi: 10.1111/joa.12486 – ident: 6296_CR3 doi: 10.1016/j.ncrna.2018.04.002 – volume: 7 start-page: 8455 year: 2016 ident: 6296_CR55 publication-title: Oncotarget doi: 10.18632/oncotarget.7225 – ident: 6296_CR48 doi: 10.1016/j.carpath.2018.03.002 – ident: 6296_CR58 doi: 10.1016/j.jacbts.2016.06.008 – ident: 6296_CR40 doi: 10.1242/dev.176198 – ident: 6296_CR49 doi: 10.1002/mus.24211 – ident: 6296_CR29 doi: 10.1186/s13059-014-0550-8 – volume: 320 start-page: H200 year: 2021 ident: 6296_CR61 publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00601.2020 – ident: 6296_CR23 doi: 10.1093/database/baz046 – ident: 6296_CR45 doi: 10.3389/fcvm.2019.00173 – ident: 6296_CR35 doi: 10.1186/s12859-018-2053-1 – volume: 9 start-page: 1 year: 2019 ident: 6296_CR42 publication-title: Sci Rep. doi: 10.1038/s41598-019-51872-9 – volume: 124 start-page: 2136 year: 2014 ident: 6296_CR10 publication-title: J Clin Invest doi: 10.1172/JCI70577 – ident: 6296_CR41 doi: 10.1161/HCG.0000000000000062 – ident: 6296_CR2 doi: 10.3389/fphys.2019.00030 – ident: 6296_CR4 doi: 10.3390/jcdd6020021 – volume: 28 start-page: 27 year: 2000 ident: 6296_CR33 publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 |
SSID | ssj0000330256 |
Score | 2.3991554 |
Snippet | Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development... Abstract Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 841 |
SubjectTerms | 38/39 45/91 631/136/142 692/308/2056 692/699/75/230 Antibodies Biochemistry Biomedical and Life Sciences Cardiomyocytes Cardiovascular diseases Cell Biology Cell Culture Cell death Cluster analysis Gene expression Genomes Heart Heart diseases Immunology Life Sciences Non-coding RNA Smooth muscle Statistical analysis Ventricle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LahRBsJCA4EWMzzFRWvCmTbp7-nmMYggeclADuTUz3T0qLLshOx78e6t6ZjdZnxev_YCi3tVdD4CXRiYnkxe88zJx7Y3nPpfEXUbrof1QdKpZvmf29Fy_vzAXN0Z9UU7Y1B54QtyRML0eWidDj5ZIWtt1ItTCP1Fy7m11jXDlRjBVdTCG6WjM5yoZ0fqjtZaa6nUUDTNQwfKwY4lqw_7feZm_Jkv-9GNaDdHJPbg7e5DseIJ8H26V5X24Pc2U_P4A0ke8tSicXuTZSJZooxfwUi3spZQnthrYYrX8zDD652lFBox9ODtes9VVnaBFfIFL9C5QGA29Hlm-Ti96COcn7z69PeXzJAWejJYjR5-t9MG7QRQfBpowjlY_G1_QAeq0CyGplEXKGuOZ0va99dRWsBuykc4lNbSPYA_hKU-AGduLZLVrXVubDXZFYMRhUJSpzFYMDcgNVmOa24zTtItFrN_drY8TJSJSIlZKxNDAq-2dy6nJxl9PvyFibU9Sg-y6gGwTZ7aJ_2KbBg43pI6z1K6jCqjilHPSNPBiu43yRiTrlgVxXs94i3oP4Xg8ccYWEvR-EOZWN-B3eGYH1N2d5dcvtac3RuHKY7TawOsNe13D9WdcPP0fuDiAO4rkQiou_SHsjVffyjN0tcb-eZWqH4QuIQ4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6t24ucJFURVcegBqLQ3K7GdgrRKym449N93xnmslkevsS1NPDOeGXtmPkLeKhGMCJaz2orApFWW2ZgCMxGsh7RtkiFn-Z7p03P5ZaVW04XbdkqrnM_EfFDHPuAd-VHpQPxKY4T6cPmLIWoUvq5OEBq3yR0BnghCN5iVWe5YOATrYNKnWhle2aOtFBKrdkqENCidZm7PHuW2_f_yNf9Omfzj3TSbo5MH5P7kR9LjkfEPya3UPSJ3R2TJq8ckfINV68TwXp4OaI_m0wEW5fJeTHyifUvXfXdBu75joUczRr-eHW9pv8k4Wigd8AlvBxJF6OuBxl2S0RNyfvL5-6dTNuEpsKCkGBh4bqlx1rQ8WdcizjjY_qhsAjeolsa5UIbIQ5QQ1aSqabTF5oJ1G5UwJpRt9ZQcAD3pOaFKNzxoaSpT5ZaDdeIQdyhQaCy25W1BxLyrPkzNxhHzYu3zo3dl_cgJD5zwmRPeFeTdsuZybLVx4-yPyKxlJrbJzh_6zYWftM5z1ci2MsI14MYIreuau1w1ylOMja4Lcjiz2k-6u_U7SSvIm2UYtA5ZVncJ9jzPsRpOP6Dj2SgZCyXgAwHNlSyI3ZOZPVL3R7qfP3Jnb4jFSwsxa0Hez-K1o-v_e_Hi5t94Se6VKPGiZMIekoNh8zu9AldqaF5nfbkGrTQZUg priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LahUx9FArghvx7WiVCO40mPdjWS-W4qILtdBdmMlkqnC5U-4dF_69J5lHuVoFt0kOHHLeyXkAvNE8Wh4do7XjkSqnHXVtitS2aD2U65KKJcv3zJyeq08X-uIAxFwLU5L2S0vLoqbn7LD3O8VVLrcReRaB8Ib6W3DbWakzV6_ManlXYRigoxmf6mOYdDeA7tmg0qr_Jv_yzzTJ3_5Kiwk6uQ_3Jt-RHI_YPoCDtHkId8Zpkj8fQfyCUOtE81s8GbINmjUCApWS3pzsRPqOrPvNJcG4n8Y-my7y-ex4R_ptmZ2VOQKX8otAInnc9UDa68Six3B-8vHr6pROMxRo1IoPFL211HhnO5ac7_JscbT3rXYJXZ9aWe-jiC2LrcJIJsmmMS43FKy7VnNro-jkEzhEfNIzINo0LBplpZWlzWCdGMYaGoU4F9iyrgI-32qIU4PxPOdiHcpHt3RhpERASoRCieAreLvAXI3tNf55-kMm1nIyt8YuC_32MkysEphuVCct9w26LtyYuma-VIqy1LaNqSs4mkkdJnndBeFRuQlrua7g9bKNkpZJVm8S3nk54wxqPMTj6cgZCybo9yDOUlXg9nhmD9X9nc33b6WbN8bfwmGcWsG7mb2u8fr7XTz_v-Mv4K7IEsAF5e4IDoftj_QS3amheVXk5xcJHxc2 priority: 102 providerName: Springer Nature |
Title | Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development |
URI | https://link.springer.com/article/10.1038/s41419-023-06296-9 https://www.ncbi.nlm.nih.gov/pubmed/38110334 https://www.proquest.com/docview/2903127715 https://www.proquest.com/docview/2903860489 https://pubmed.ncbi.nlm.nih.gov/PMC10728149 https://doaj.org/article/05b4f3719b124166aa09006280eddb6a |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwcLgPBF_Eb6vnUsE3jSZp0iQPInvLHsc-LHLnwr6VNk3vhKXV3Qrei7_dSdrusboKvrSQJmWYj8xMMh8AryWzillNSa6ZJUJLTXTpLFElag-hKydsiPKdp-cLMVvK5QEM7Y56BG72una-n9RivXr349vNRxT4D13KuH6_EUz4VBzu-xRwkxJzCMfhvsiH8vXmftiZ0XnnoaErpwJdJ61Nn0ez_zc7uiqU9N9nh_4ZTvnbnWpQVWf34V5vY8bjjikewIGrH8KdruvkzSOwl7hq5Yg_s49br6uGnQMXhdRfHxQVN1W8auqruG5qYhuv4uKL-XgTN-vQY8tzDg75kwMX-7bYbVzeBiA9hsXZ9PPknPS9FoiVgrUErTpXGK0q6rSpfA9ytAtKqR2aSLlQxlhuS2pLgR6PS4oi1b7wYF6VkilleZU8gSOExz2DWKYFtalQiUpCOcLcUfRJJAq7T8SlVQRswGpm-0Lkvh_GKgsX4onOOkpkSIksUCIzEbzZrvnaleH45-xTT6ztTF9COww066usl8iMykJUiWKmQBOHpWmeUxMySqkryyLNIzgZSJ0NbJlxg5sgV4rJCF5tP6NEepLltUOchzk6xZ0R4XjaccYWErSPEOZERKB3eGYH1N0v9ZfrUPUb_XSu0Z-N4O3AXrdw_R0Xz_8Lcy_gLvcCwDhh-gSO2vV39xKtrrYYwaFaqhEcj8ezyxm-T6fzTxc4Okkno3CSMQrC5p8_p78AmxUpUQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE1i1HSd2DhVqodWWlhUqrdSbSWynIK2SsrsI9c_x25jxJrtaHr316kc08YxnxvbMfIS8zITTwhnOSiMcUyYzzPjgmPZgPZSpg3IxyneUD0_Uh9PsdI386nNhMKyy14lRUfvW4R35pixA_KTWInt7_p0hahS-rvYQGmUHreC3YomxLrHjIFz8hCPcdGv_PfD7lZR7u8fvhqxDGWAuU2LGwJ8JFZy8ax5MUSP6NlhEn5kAzkGpdFE46Tx3XoGvH9Kqyg2W3CtrnwmtnaxT-O41sq7wAmVA1nd2R5-OFrc8PE3RqeiydXhqNqdKKMwbkgiqIIucFSsWMQIH_Mvb_Tto84-X22gQ926TW50nS7fnoneHrIXmLrk-x7a8uEfcZ5g1DgxfBugMLWKvn2BSTDDG0Cva1nTcNme0aRvmWjSk9Gi0PaXtJCJ5oXxCE95PBIrg2zPql2FO98nJlaz1AzIAesIjQrO84i5XOtVpLHpYBg4nnwxUCqb78johol9V67py54i6Mbbx2T01ds4JC5ywkRO2SMjrxZzzebGPS0fvILMWI7FQd2xoJ2e22_eWZ5WqUy2KChwpkedlyYuYt8qD91VeJmSjZ7XttMfULmU9IS8W3bDvkWVlE2DN4xiTg_4FOh7OJWNBCXhhQHOqEmJWZGaF1NWe5tvXWFtccC0NnJoT8qYXryVd_1-Lx5f_xnNyY3j88dAe7o8OnpCbEqVfSCbMBhnMJj_CU3DsZtWzbvdQ8uWqN-xv2wFbpA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxJtAASPBCay1HSd2DhVqaVctRauqUKk3N7GdgrRKyu4i1L_Ir2LGm-xqefTWa2JHE894HvbMfIS8zoTTwhnOSiMcUyYzzPjgmPZgPZSpg3Ixy3eU75-oj6fZ6Rr51dfCYFplrxOjovatwzPygSxA_KTWIhvUXVrE0e7w_cV3hghSeNPaw2mUHcyC34rtxroij8Nw-RPCuenWwS7w_o2Uw70vH_ZZhzjAXKbEjIFvEyqIwmseTFEjEjdYR5-ZAI5CqXRROOk8d16B3x_SqsoNtt8ra58JrZ2sU_juDbKhwepDILixszc6Ol6c-PA0RQejq9zhqRlMlVBYQyQRYEEWOStWrGMEEfiX5_t3Aucft7jROA7vkjudV0u352J4j6yF5j65Oce5vHxA3GeYNQ4MbwnoDK1jr6tgUiw2xjQs2tZ03DbntGkb5lo0qvR4tD2l7SSieqGswiM8qwgUgbhn1C9Tnh6Sk2tZ60dkHegJTwjN8oq7XOlUp7EBYhk4REEZqBcs_eV1QkS_qtZ1rc8RgWNs4xV8auycExY4YSMnbJGQt4s5F_PGH1eO3kFmLUZi0-74oJ2c204HWJ5Vqk61KCpwqkSelyUvYg0rD95XeZmQzZ7VttMkU7uU-4S8WrwGHYAsK5sAax7HmBx0MdDxeC4ZC0rAIwOaU5UQsyIzK6Suvmm-fY19xgXX0kAEnZB3vXgt6fr_Wjy9-jdekluwce2ng9HhM3JbovALyYTZJOuzyY_wHHy8WfWi2zyUnF33fv0NiDNf6A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+transcriptional+landscape+of+long+non-coding+RNAs+orchestrating+mouse+heart+development&rft.jtitle=Cell+death+%26+disease&rft.au=Ramos%2C+Tha%C3%ADs+A.+R.&rft.au=Urquiza-Zurich%2C+Sebasti%C3%A1n&rft.au=Kim%2C+Soo+Young&rft.au=Gillette%2C+Thomas+G.&rft.date=2023-12-18&rft.issn=2041-4889&rft.eissn=2041-4889&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1038%2Fs41419-023-06296-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41419_023_06296_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon |