Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development

Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and...

Full description

Saved in:
Bibliographic Details
Published inCell death & disease Vol. 14; no. 12; pp. 841 - 13
Main Authors Ramos, Thaís A. R., Urquiza-Zurich, Sebastián, Kim, Soo Young, Gillette, Thomas G., Hill, Joseph A., Lavandero, Sergio, do Rêgo, Thaís G., Maracaja-Coutinho, Vinicius
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.12.2023
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2041-4889
2041-4889
DOI10.1038/s41419-023-06296-9

Cover

Abstract Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.
AbstractList Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.
Abstract Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.
Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development linked with the emergence of cardiovascular diseases. We used bioinformatic approaches, machine learning algorithms, systems biology analyses, and statistical techniques to define co-expression modules linked to heart development and cardiovascular diseases. We also uncovered differentially expressed transcripts in subpopulations of cardiomyocytes. Finally, from this work, we were able to identify eight cardiac cell-types; several new coding, lncRNA, and pcRNA markers; two cardiomyocyte subpopulations at four different time points (ventricle E9.5, left ventricle E11.5, right ventricle E14.5 and left atrium P0) that harbored co-expressed gene modules enriched in mitochondrial, heart development and cardiovascular diseases. Our results evidence the role of particular lncRNAs in heart development and highlight the usage of co-expression modular approaches in the cell-type functional definition.
ArticleNumber 841
Author Lavandero, Sergio
Hill, Joseph A.
Urquiza-Zurich, Sebastián
Gillette, Thomas G.
Maracaja-Coutinho, Vinicius
do Rêgo, Thaís G.
Ramos, Thaís A. R.
Kim, Soo Young
Author_xml – sequence: 1
  givenname: Thaís A. R.
  surname: Ramos
  fullname: Ramos, Thaís A. R.
  organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba
– sequence: 2
  givenname: Sebastián
  surname: Urquiza-Zurich
  fullname: Urquiza-Zurich, Sebastián
  organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile
– sequence: 3
  givenname: Soo Young
  surname: Kim
  fullname: Kim, Soo Young
  organization: Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas
– sequence: 4
  givenname: Thomas G.
  orcidid: 0000-0002-7617-3544
  surname: Gillette
  fullname: Gillette, Thomas G.
  organization: Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas
– sequence: 5
  givenname: Joseph A.
  orcidid: 0000-0002-5379-1614
  surname: Hill
  fullname: Hill, Joseph A.
  organization: Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center Dallas, Department of Molecular Biology, University of Texas Southwestern Medical Center
– sequence: 6
  givenname: Sergio
  orcidid: 0000-0003-4258-1483
  surname: Lavandero
  fullname: Lavandero, Sergio
  email: slavander@uchile.cl
  organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Corporación Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC)
– sequence: 7
  givenname: Thaís G.
  surname: do Rêgo
  fullname: do Rêgo, Thaís G.
  email: gaudenciothais@gmail.com
  organization: Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Departamento de Informática, Centro de Informática, Universidade Federal da Paraíba
– sequence: 8
  givenname: Vinicius
  orcidid: 0000-0002-8873-9381
  surname: Maracaja-Coutinho
  fullname: Maracaja-Coutinho, Vinicius
  email: vinicius.maracaja@uchile.cl
  organization: Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Programa de Pós-Graduação em Bioinformática, Bioinformatics Multidisciplinary Environment (BioME), Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38110334$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARfdAfYIEisWET8CuOvUJVBaVSBRKPteXYJ7m-cuyLnVupf4_TlNJ2UW9s2TNzxufMcXUQYoCqeoPRB4yo-JgZZlg2iNAGcSJ5I19URwQx3DAh5MGD82F1mvMWlUUpIi1_VR1SgYsIZUeV-enC6KEx4H09Jx2ySW43uxi0r70ONhu9gzoOtY9hrIuJxkRbOPWPb2e5jslsIBfevFxNcZ-h3oBOc23hGnzcTRDm19XLQfsMp3f7SfX7y-df51-bq-8Xl-dnV41pGZ6blnPopegGBEIOGIuumLStANIizTopDTEWGcskR0D7notOEqoH2-KuM2SgJ9Xlqmuj3qpdcpNONypqp24vYhpVceaMB4Xang20w7LHhGHOtUYSlT4KBNb2XBetT6vWbt9PYE35RtL-kejjl-A2aozXCqOOCMxkUXh_p5Din31pkppcXtqsA5Q-KSLLGDliYoG-ewLdxn0qE1hRmHQdbgvq7UNL917-DbMAyAowKeacYLiHYKSW0Kg1NKqERt2GRi21xROScbNeAlC-5fzzVLpSc6kTRkj_bT_D-guKhdWd
CitedBy_id crossref_primary_10_3389_fcell_2024_1339292
crossref_primary_10_1038_s41392_024_02069_8
crossref_primary_10_1007_s44307_024_00010_2
crossref_primary_10_1161_ATVBAHA_124_320393
Cites_doi 10.1038/s41576-019-0184-5
10.1038/nrcardio.2015.55
10.1016/j.bbadis.2013.07.023
10.1186/s13059-018-1405-5
10.1172/JCI62876
10.1242/dev.079970
10.1038/s41598-016-0001-8
10.1016/j.devcel.2016.10.001
10.1007/s10741-019-09873-3
10.1038/s41374-020-00519-9
10.3389/fcell.2020.624216
10.1073/pnas.1822046116
10.1016/0377-0427(87)90125-7
10.1038/s41467-017-00319-8
10.4062/biomolther.2015.066
10.1093/eurheartj/ehu180
10.1002/cm.21029
10.1038/s41596-020-00425-w
10.3389/fgene.2019.00317
10.1111/j.1749-6632.2009.05100.x
10.1093/nar/gkz542
10.1161/CIRCULATIONAHA.117.030742
10.1038/s41420-020-00383-y
10.5772/intechopen.81773
10.1161/CIRCRESAHA.120.318574
10.3389/fphys.2017.00414
10.3389/fphys.2019.00847
10.1093/database/baac019
10.1039/C9RA08693E
10.1016/j.acvdsp.2020.03.105
10.1093/bioinformatics/bty1044
10.1016/j.stemcr.2018.01.013
10.1016/j.immuni.2013.11.019
10.1016/j.yjmcc.2019.12.013
10.1016/j.yjmcc.2017.03.006
10.1016/j.yjmcc.2014.10.005
10.1038/75556
10.1161/CIRCGENETICS.115.001363
10.1073/pnas.1701416114
10.1161/CIRCGENETICS.115.001019
10.1038/s41580-020-00315-9
10.7554/eLife.43882
10.1161/CIRCRESAHA.117.310624
10.1038/s41598-019-38989-7
10.1002/9781119053248
10.1093/nar/gkw377
10.1111/joa.12486
10.1016/j.ncrna.2018.04.002
10.18632/oncotarget.7225
10.1016/j.carpath.2018.03.002
10.1016/j.jacbts.2016.06.008
10.1242/dev.176198
10.1002/mus.24211
10.1186/s13059-014-0550-8
10.1152/ajpheart.00601.2020
10.1093/database/baz046
10.3389/fcvm.2019.00173
10.1186/s12859-018-2053-1
10.1038/s41598-019-51872-9
10.1172/JCI70577
10.1161/HCG.0000000000000062
10.3389/fphys.2019.00030
10.3390/jcdd6020021
10.1093/nar/28.1.27
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41419-023-06296-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Science Database (subscription)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-4889
EndPage 13
ExternalDocumentID oai_doaj_org_article_05b4f3719b124166aa09006280eddb6a
PMC10728149
38110334
10_1038_s41419_023_06296_9
Genre Journal Article
GrantInformation_xml – fundername: the NIH: HL-120732 (JAH), HL-128215 (JAH), HL-126012 (JAH), HL-147933, (JAH), HL-155765 (JAH), 14SFRN20510023 (JAH), 14SFRN20670003 (JAH), Leducq grant number 11CVD04 (JAH), Cancer Prevention and Research Institute of Texas grant RP110486P3 (JAH)
– fundername: Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (VMC) and FONDECYT 1211731 (VMC).
– fundername: Agencia Nacional de Investigacion y Desarrollo (ANID, Chile), FONDAP 15130011 (SL), FONDECYT 1200490 (SL)
GroupedDBID ---
0R~
3V.
53G
5VS
70F
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
E3Z
EBLON
EBS
EMOBN
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
LK8
M0L
M2P
M48
M7P
M~E
NAO
O5R
O5S
O9-
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
TR2
UKHRP
W2D
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-566eb987f0e89f1187110d58e250a4799c2cd0cd4960e3bb687923afd5177c2f3
IEDL.DBID M48
ISSN 2041-4889
IngestDate Wed Aug 27 01:29:28 EDT 2025
Thu Aug 21 18:37:41 EDT 2025
Fri Sep 05 13:38:14 EDT 2025
Wed Aug 13 07:50:35 EDT 2025
Thu Apr 03 07:02:01 EDT 2025
Tue Jul 01 03:50:12 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Fri Feb 21 02:36:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-566eb987f0e89f1187110d58e250a4799c2cd0cd4960e3bb687923afd5177c2f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5379-1614
0000-0003-4258-1483
0000-0002-8873-9381
0000-0002-7617-3544
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41419-023-06296-9
PMID 38110334
PQID 2903127715
PQPubID 2041963
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_05b4f3719b124166aa09006280eddb6a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10728149
proquest_miscellaneous_2903860489
proquest_journals_2903127715
pubmed_primary_38110334
crossref_primary_10_1038_s41419_023_06296_9
crossref_citationtrail_10_1038_s41419_023_06296_9
springer_journals_10_1038_s41419_023_06296_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-18
PublicationDateYYYYMMDD 2023-12-18
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-18
  day: 18
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cell death & disease
PublicationTitleAbbrev Cell Death Dis
PublicationTitleAlternate Cell Death Dis
PublicationYear 2023
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Sánchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Front Physiol. 2019;10:847:1–13.
DerksWBergmannOCycling cardiomyocytes: scarce but important in recovery from heart infarction?Circ Res2021128169711:CAS:528:DC%2BB3MXhs1aqsbjN10.1161/CIRCRESAHA.120.31857433476201
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550:1–21.
Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019;2019:1–9.
Hobuß L, Bär C, Thum T. Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol. 2019;10:1–9.
AshburnerMBallCABlakeJABotsteinDButlerHCherryJMGene Ontology: tool for the unification of biologyNat Genet2000252591:CAS:528:DC%2BD3cXjtFSlsbc%3D10.1038/75556108026513037419
Wu C, Arora P. Long Noncoding Mhrt RNA. Circ Cardiovasc Genet. 2015:213–215.
Li Z, Zhao W, Wang M, Zhou X. The role of long noncoding RNAs in gene expression regulation. Vlachakis D, editor. 2019.
ZhihaoLJingyuNLanLMichaelSRuiGXiyunBSERCA2a: a key protein in the Ca 2+ cycle of the heart failureHeart Fail Rev2019255233510.1007/s10741-019-09873-3
GladkaMMMolenaarBde RuiterHvan der ElstSTsuiHVersteegDSingle-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activationCirculation2018138166801:CAS:528:DC%2BC1cXht1ygtb%2FK10.1161/CIRCULATIONAHA.117.03074229386203
SanninoGPasqualiniLRicciardelliEMontillaPSoverchiaLRuggeriBAcute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint modelOncotarget2016784556510.18632/oncotarget.7225268634564890979
Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res. 2017;121:575–83.
LiXLiuQWangKLuoWLiangTYuanSRetracted Article: LncRNA SNHG5 regulates the cell viability and apoptosis of glioma cells by the miR-1297/KPNA2 axisRSC Adv20201014985061:CAS:528:DC%2BB3cXksFOrsw%3D%3D10.1039/C9RA08693E354946899048252
Wang TY, Lee D, Fox-Talbot K, Arking DE, Chakravarti A, Halushka MK. Cardiomyocytes have mosaic patterns of protein expression. Cardiovasc Pathol. 2018;34:50-57.
Aghagolzadeh P, Bernasconi R, Nemir M, Khalil H, Pulido C, Chouvardas P, et al. Single-cell analysis of the long noncoding RNA transcriptome identifies novel therapeutic targets for cardiac fibrosis. Arch Cardiovascular Dis Suppl. 2020;12:243–45.
Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191–98.
Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, et al. Mitochondrial function and dysfunction in dilated cardiomyopathy. Front Cell Dev Biol. 2021;8:1-21.
BhatiaGSharmaSUpadhyaySKSinghKLong non-coding RNAs coordinate developmental transitions and other key biological processes in grapevineSci Rep.2019911410.1038/s41598-019-38989-7
Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832:2414–24.
MansoAMOkadaHSakamotoFMMorenoEMonkleySJLiRLoss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathyProc Natl Acad Sci USA2017114E625091:CAS:528:DC%2BC2sXhtFCrtL7J10.1073/pnas.1701416114286983645544289
See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun. 2017;8:225:1–13.
England J, Pang KL, Parnall M, Haig MI, Loughna S. Cardiac troponin T is necessary for normal development in the embryonic chick heart. J Anat. 2016;229:436–49.
Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882.
de LimaDSCardozoLEMaracaja-CoutinhoVSuhrbierAManeKJeffriesDLong noncoding RNAs are involved in multiple immunological pathways in response to vaccinationProc Natl Acad Sci USA201911617121610.1073/pnas.1822046116313995446708379
Han X, Zhang J, Liu Y, Fan X, Ai S, Luo Y, et al. The lncRNA Hand2os1/Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development. 2019;146:1–16.
Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. Systems analysis of transcriptional data provides insights into muscle’s biological response to botulinum toxin. Muscle Nerve. 2014;50:744-58.
Turton N, Swan R, Mahenthiralingam T, Pitts D, Dykes IM. The functions of long non-coding RNA during embryonic cardiovascular development and its potential for diagnosis and treatment of congenital heart disease. J Cardiovasc Dev Dis. 2019;6:1–22.
Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: a new vision of an OLD friend. J Mol Cell Cardiol. 2014;0:160-67.
QuiatDOlsonENMicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatmentJ Clin Invest20131231181:CAS:528:DC%2BC3sXnsFGhsw%3D%3D10.1172/JCI62876232814053533276
RousseeuwPJSilhouettes: A graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-7
BangCBatkaiSDangwalSGuptaSKFoinquinosAHolzmannACardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophyJ Clin Invest20141242136461:CAS:528:DC%2BC2cXotVSnsbY%3D10.1172/JCI70577247431454001534
DeLaughterDMBickAGWakimotoHMcKeanDGorhamJMKathiriyaISSingle-cell resolution of temporal gene expression during heart developmentDev Cell201639480901:CAS:528:DC%2BC28XhvVeqsL3P10.1016/j.devcel.2016.10.001278401075198784
Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC: Basic to Translational Science. 2016;1:472–93.
PantTDhanasekaranABaiXZhaoMThorpEBForbessJMGenome-wide differential expression profiling of lncRNAs and mRNAs associated with early diabetic cardiomyopathySci Rep.201991161:CAS:528:DC%2BC1MXitVKrsrzJ10.1038/s41598-019-51872-9
Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317:1–13.
Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–49.
TongLHillRADamisahECMurrayKNYuanPBordeyAImaging and optogenetic modulation of vascular mural cells in the live brainNat Protoc2020164729610.1038/s41596-020-00425-w33299155
MareeduSPachonRThilagavathiJFefelovaNBalakrishnanRNiranjanNSarcolipin haploinsufficiency prevents dystrophic cardiomyopathy in miceAm J Physiol Heart Circ Physiol2021320H200101:CAS:528:DC%2BB3MXjvVymur4%3D10.1152/ajpheart.00601.202033216625
Grissa D, Junge A, Oprea TI, Jensen LJ. Diseases 2.0: a weekly updated database of disease-gene associations from text mining and data integration. Database. 2022:1–8.
Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, et al. Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases. Front Cardiovascular Med. 2019;6:173:1–14.
ShaathHVishnubalajiRElangoRKhattakSAlajezNMSingle-cell long noncoding RNA (lncRNA) transcriptome implicates MALAT1 in triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapyCell Death Discov2021711410.1038/s41420-020-00383-y
ToumaMKangXZhaoYCassAAGaoFBiniwaleRDecoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional DiscoveryCirc Cardiovasc Genet201693954071:CAS:528:DC%2BC28XhslWhsrrE10.1161/CIRCGENETICS.115.001363275911855085833
KuleshovMVJonesMRRouillardADFernandezNFDuanQWangZEnrichr: a comprehensive gene set enrichment analysis web server 2016 updateNucleic Acids Res201644W9071:CAS:528:DC%2BC2sXhtV2itrfF10.1093/nar/gkw377271419614987924
Li S, Pan H, Tan C, Sun Y, Song Y, Zhang X, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation. Stem Cell Rep. 2018;10:808-21.
Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol. 2020;139:47–61
Zhang J, Gao C, Meng M, Tang H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol Ther. 2016;24:19–24.
OunzainSMichelettiRBeckmannTSchroenBAlexanianMPezzutoIGenome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAsEur Heart J20153635368a1:CAS:528:DC%2BC2sXhvFChsrnF10.1093/eurheartj/ehu18024786300
Kotrys AV, Cysewski D, Czarnomska SD, Pietras Z, Borowski LS, Dziembowski A, et al. Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Res. 2019;47:7502–17.
Will Y, Eric McDuffie J, Olaharski AJ, Jeffy BD. Drug discovery toxicology: from target assessment to translational biomarkers. John Wiley & Sons; 2016. 584 p.
Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, et al. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton. 2012;69:324-35.
LiZJChengJSongYLiHHZhengJFLncRNA SNHG5 upregulation induced by YY1 contributes to angiogenesis via miR-26b/CTGF/VEGFA axis in acute myelogenous leukemiaLab Invest20201013415210.1038/s41374-020-00519-933318617
Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B,
S Mareedu (6296_CR61) 2021; 320
M Touma (6296_CR17) 2016; 9
MM Gladka (6296_CR21) 2018; 138
D Quiat (6296_CR9) 2013; 123
G Bhatia (6296_CR5) 2019; 9
6296_CR37
L Tong (6296_CR64) 2020; 16
6296_CR36
6296_CR38
6296_CR32
6296_CR35
S Ounzain (6296_CR18) 2015; 36
C Bang (6296_CR10) 2014; 124
MV Kuleshov (6296_CR30) 2016; 44
6296_CR6
6296_CR7
PJ Rousseeuw (6296_CR19) 1987; 20
W Derks (6296_CR25) 2021; 128
X Li (6296_CR44) 2020; 10
6296_CR29
6296_CR26
6296_CR28
6296_CR27
6296_CR22
6296_CR23
6296_CR62
DM DeLaughter (6296_CR20) 2016; 39
AM Manso (6296_CR39) 2017; 114
M Kanehisa (6296_CR33) 2000; 28
N Gil (6296_CR8) 2019; 21
TS Andrews (6296_CR24) 2019; 35
6296_CR59
6296_CR14
6296_CR58
6296_CR16
6296_CR11
6296_CR54
6296_CR13
6296_CR57
6296_CR12
6296_CR56
L Zhihao (6296_CR60) 2019; 25
6296_CR1
6296_CR51
6296_CR2
6296_CR50
6296_CR3
6296_CR53
6296_CR4
DS de Lima (6296_CR34) 2019; 116
T Pant (6296_CR42) 2019; 9
ZJ Li (6296_CR63) 2020; 101
H Shaath (6296_CR15) 2021; 7
M Fish (6296_CR52) 2016; 6
6296_CR48
6296_CR47
G Sannino (6296_CR55) 2016; 7
6296_CR49
M Ashburner (6296_CR31) 2000; 25
6296_CR43
6296_CR46
6296_CR45
6296_CR40
6296_CR41
References_xml – reference: QuiatDOlsonENMicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatmentJ Clin Invest20131231181:CAS:528:DC%2BC3sXnsFGhsw%3D%3D10.1172/JCI62876232814053533276
– reference: Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550:1–21.
– reference: KuleshovMVJonesMRRouillardADFernandezNFDuanQWangZEnrichr: a comprehensive gene set enrichment analysis web server 2016 updateNucleic Acids Res201644W9071:CAS:528:DC%2BC2sXhtV2itrfF10.1093/nar/gkw377271419614987924
– reference: Piccoli MT, Gupta SK, Viereck J, Foinquinos A, Samolovac S, Kramer FL, et al. Inhibition of the cardiac fibroblast-enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ Res. 2017;121:575–83.
– reference: Hobuß L, Bär C, Thum T. Long non-coding RNAs: at the heart of cardiac dysfunction? Front Physiol. 2019;10:1–9.
– reference: Taegtmeyer H, Sen S, Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010;1188:191–98.
– reference: DerksWBergmannOCycling cardiomyocytes: scarce but important in recovery from heart infarction?Circ Res2021128169711:CAS:528:DC%2BB3MXhs1aqsbjN10.1161/CIRCRESAHA.120.31857433476201
– reference: Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub-Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. Elife. 2019;8:e43882.
– reference: FishMShaboodienGKrausSSliwaKSeidmanCEBurkeMAMutation analysis of the phospholamban gene in 315 South Africans with dilated, hypertrophic, peripartum and arrhythmogenic right ventricular cardiomyopathiesSci Rep.2016618
– reference: Farrell ET, Grimes AC, de Lange WJ, Armstrong AE, Ralphe JC. Increased postnatal cardiac hyperplasia precedes cardiomyocyte hypertrophy in a model of hypertrophic cardiomyopathy. Front Physiol. 2017;8:414:1–13.
– reference: Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013;1832:2414–24.
– reference: ShaathHVishnubalajiRElangoRKhattakSAlajezNMSingle-cell long noncoding RNA (lncRNA) transcriptome implicates MALAT1 in triple-negative breast cancer (TNBC) resistance to neoadjuvant chemotherapyCell Death Discov2021711410.1038/s41420-020-00383-y
– reference: Warkman AS, Whitman SA, Miller MK, Garriock RJ, Schwach CM, Gregorio CC, et al. Developmental expression and cardiac transcriptional regulation of Myh7b, a third myosin heavy chain in the vertebrate heart. Cytoskeleton. 2012;69:324-35.
– reference: Aghagolzadeh P, Bernasconi R, Nemir M, Khalil H, Pulido C, Chouvardas P, et al. Single-cell analysis of the long noncoding RNA transcriptome identifies novel therapeutic targets for cardiac fibrosis. Arch Cardiovascular Dis Suppl. 2020;12:243–45.
– reference: Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40:91–104.
– reference: Li S, Pan H, Tan C, Sun Y, Song Y, Zhang X, et al. Mitochondrial dysfunctions contribute to hypertrophic cardiomyopathy in patient iPSC-derived cardiomyocytes with MT-RNR2 mutation. Stem Cell Rep. 2018;10:808-21.
– reference: TongLHillRADamisahECMurrayKNYuanPBordeyAImaging and optogenetic modulation of vascular mural cells in the live brainNat Protoc2020164729610.1038/s41596-020-00425-w33299155
– reference: Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22:96–118.
– reference: Li Z, Zhao W, Wang M, Zhou X. The role of long noncoding RNAs in gene expression regulation. Vlachakis D, editor. 2019.
– reference: Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC: Basic to Translational Science. 2016;1:472–93.
– reference: Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 2015;12:415–25.
– reference: Grissa D, Junge A, Oprea TI, Jensen LJ. Diseases 2.0: a weekly updated database of disease-gene associations from text mining and data integration. Database. 2022:1–8.
– reference: Will Y, Eric McDuffie J, Olaharski AJ, Jeffy BD. Drug discovery toxicology: from target assessment to translational biomarkers. John Wiley & Sons; 2016. 584 p.
– reference: Haghighi K, Bidwell P, Kranias EG. Phospholamban interactome in cardiac contractility and survival: a new vision of an OLD friend. J Mol Cell Cardiol. 2014;0:160-67.
– reference: LiZJChengJSongYLiHHZhengJFLncRNA SNHG5 upregulation induced by YY1 contributes to angiogenesis via miR-26b/CTGF/VEGFA axis in acute myelogenous leukemiaLab Invest20201013415210.1038/s41374-020-00519-933318617
– reference: See K, Tan WLW, Lim EH, Tiang Z, Lee LT, Li PYQ, et al. Single cardiomyocyte nuclear transcriptomes reveal a lincRNA-regulated de-differentiation and cell cycle stress-response in vivo. Nat Commun. 2017;8:225:1–13.
– reference: Amaral PP, Leonardi T, Han N, Viré E, Gascoigne DK, Arias-Carrasco R, et al. Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci. Genome Biol. 2018;19:32:1–21.
– reference: MareeduSPachonRThilagavathiJFefelovaNBalakrishnanRNiranjanNSarcolipin haploinsufficiency prevents dystrophic cardiomyopathy in miceAm J Physiol Heart Circ Physiol2021320H200101:CAS:528:DC%2BB3MXjvVymur4%3D10.1152/ajpheart.00601.202033216625
– reference: Mukund K, Mathewson M, Minamoto V, Ward SR, Subramaniam S, Lieber RL. Systems analysis of transcriptional data provides insights into muscle’s biological response to botulinum toxin. Muscle Nerve. 2014;50:744-58.
– reference: de LimaDSCardozoLEMaracaja-CoutinhoVSuhrbierAManeKJeffriesDLong noncoding RNAs are involved in multiple immunological pathways in response to vaccinationProc Natl Acad Sci USA201911617121610.1073/pnas.1822046116313995446708379
– reference: MansoAMOkadaHSakamotoFMMorenoEMonkleySJLiRLoss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathyProc Natl Acad Sci USA2017114E625091:CAS:528:DC%2BC2sXhtFCrtL7J10.1073/pnas.1701416114286983645544289
– reference: RousseeuwPJSilhouettes: A graphical aid to the interpretation and validation of cluster analysisJ Comput Appl Math198720536510.1016/0377-0427(87)90125-7
– reference: LiXLiuQWangKLuoWLiangTYuanSRetracted Article: LncRNA SNHG5 regulates the cell viability and apoptosis of glioma cells by the miR-1297/KPNA2 axisRSC Adv20201014985061:CAS:528:DC%2BB3cXksFOrsw%3D%3D10.1039/C9RA08693E354946899048252
– reference: ZhihaoLJingyuNLanLMichaelSRuiGXiyunBSERCA2a: a key protein in the Ca 2+ cycle of the heart failureHeart Fail Rev2019255233510.1007/s10741-019-09873-3
– reference: England J, Pang KL, Parnall M, Haig MI, Loughna S. Cardiac troponin T is necessary for normal development in the embryonic chick heart. J Anat. 2016;229:436–49.
– reference: GladkaMMMolenaarBde RuiterHvan der ElstSTsuiHVersteegDSingle-cell sequencing of the healthy and diseased heart reveals cytoskeleton-associated protein 4 as a new modulator of fibroblasts activationCirculation2018138166801:CAS:528:DC%2BC1cXht1ygtb%2FK10.1161/CIRCULATIONAHA.117.03074229386203
– reference: OunzainSMichelettiRBeckmannTSchroenBAlexanianMPezzutoIGenome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAsEur Heart J20153635368a1:CAS:528:DC%2BC2sXhvFChsrnF10.1093/eurheartj/ehu18024786300
– reference: Ramaccini D, Montoya-Uribe V, Aan FJ, Modesti L, Potes Y, Wieckowski MR, et al. Mitochondrial function and dysfunction in dilated cardiomyopathy. Front Cell Dev Biol. 2021;8:1-21.
– reference: GilNUlitskyIRegulation of gene expression by cis -acting long non-coding RNAsNat Rev Genet2019211021710.1038/s41576-019-0184-531729473
– reference: AshburnerMBallCABlakeJABotsteinDButlerHCherryJMGene Ontology: tool for the unification of biologyNat Genet2000252591:CAS:528:DC%2BD3cXjtFSlsbc%3D10.1038/75556108026513037419
– reference: BangCBatkaiSDangwalSGuptaSKFoinquinosAHolzmannACardiac fibroblast-derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophyJ Clin Invest20141242136461:CAS:528:DC%2BC2cXotVSnsbY%3D10.1172/JCI70577247431454001534
– reference: ToumaMKangXZhaoYCassAAGaoFBiniwaleRDecoding the Long Noncoding RNA During Cardiac Maturation: A Roadmap for Functional DiscoveryCirc Cardiovasc Genet201693954071:CAS:528:DC%2BC28XhslWhsrrE10.1161/CIRCGENETICS.115.001363275911855085833
– reference: Chaudhry F, Isherwood J, Bawa T, Patel D, Gurdziel K, Lanfear DE, et al. Single-cell RNA sequencing of the cardiovascular system: new looks for old diseases. Front Cardiovascular Med. 2019;6:173:1–14.
– reference: Hermans-Beijnsberger S, van Bilsen M, Schroen B. Long non-coding RNAs in the failing heart and vasculature. Noncoding RNA Res. 2018;3:118–30.
– reference: Xu Y, Luo Y, Liang C, Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis. J Mol Cell Cardiol. 2020;139:47–61
– reference: Chen G, Ning B, Shi T. Single-cell RNA-Seq technologies and related computational data analysis. Front Genet. 2019;10:317:1–13.
– reference: AndrewsTSHembergMM3Drop: dropout-based feature selection for scRNASeqBioinformatics201935286571:CAS:528:DC%2BB3cXktV2jsr0%3D10.1093/bioinformatics/bty104430590489
– reference: Wu C, Arora P. Long Noncoding Mhrt RNA. Circ Cardiovasc Genet. 2015:213–215.
– reference: BhatiaGSharmaSUpadhyaySKSinghKLong non-coding RNAs coordinate developmental transitions and other key biological processes in grapevineSci Rep.2019911410.1038/s41598-019-38989-7
– reference: PantTDhanasekaranABaiXZhaoMThorpEBForbessJMGenome-wide differential expression profiling of lncRNAs and mRNAs associated with early diabetic cardiomyopathySci Rep.201991161:CAS:528:DC%2BC1MXitVKrsrzJ10.1038/s41598-019-51872-9
– reference: Han X, Zhang J, Liu Y, Fan X, Ai S, Luo Y, et al. The lncRNA Hand2os1/Uph locus orchestrates heart development through regulation of precise expression of Hand2. Development. 2019;146:1–16.
– reference: Russo PST, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, et al. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. BMC Bioinforma. 2018;19:56:1–13.
– reference: DeLaughterDMBickAGWakimotoHMcKeanDGorhamJMKathiriyaISSingle-cell resolution of temporal gene expression during heart developmentDev Cell201639480901:CAS:528:DC%2BC28XhvVeqsL3P10.1016/j.devcel.2016.10.001278401075198784
– reference: Kotrys AV, Cysewski D, Czarnomska SD, Pietras Z, Borowski LS, Dziembowski A, et al. Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Res. 2019;47:7502–17.
– reference: Zhang J, Gao C, Meng M, Tang H. Long Noncoding RNA MHRT Protects Cardiomyocytes against H2O2-Induced Apoptosis. Biomol Ther. 2016;24:19–24.
– reference: Turton N, Swan R, Mahenthiralingam T, Pitts D, Dykes IM. The functions of long non-coding RNA during embryonic cardiovascular development and its potential for diagnosis and treatment of congenital heart disease. J Cardiovasc Dev Dis. 2019;6:1–22.
– reference: Das S, Shah R, Dimmeler S, Freedman JE, Holley C, Lee JM, et al. Noncoding RNAs in Cardiovascular Disease: Current Knowledge, Tools and Technologies for Investigation, and Future Directions: A Scientific Statement From the American Heart Association. Circulation: Genomic and Precision Medicine. 2020;13:350–72.
– reference: KanehisaMGotoSKEGG: kyoto encyclopedia of genes and genomesNucleic Acids Res20002827301:CAS:528:DC%2BD3cXhvVGqu74%3D10.1093/nar/28.1.2710592173102409
– reference: Sánchez J, Gomez JF, Martinez-Mateu L, Romero L, Saiz J, Trenor B. Heterogeneous Effects of Fibroblast-Myocyte Coupling in Different Regions of the Human Atria Under Conditions of Atrial Fibrillation. Front Physiol. 2019;10:847:1–13.
– reference: Wang TY, Lee D, Fox-Talbot K, Arking DE, Chakravarti A, Halushka MK. Cardiomyocytes have mosaic patterns of protein expression. Cardiovasc Pathol. 2018;34:50-57.
– reference: SanninoGPasqualiniLRicciardelliEMontillaPSoverchiaLRuggeriBAcute stress enhances the expression of neuroprotection- and neurogenesis-associated genes in the hippocampus of a mouse restraint modelOncotarget2016784556510.18632/oncotarget.7225268634564890979
– reference: Franzén O, Gan LM, Björkegren JLM. PanglaoDB: a web server for exploration of mouse and human single-cell RNA sequencing data. Database. 2019;2019:1–9.
– reference: Acharya A, Baek ST, Huang G, Eskiocak B, Goetsch S, Sung CY, et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139:2139–49.
– reference: England J, Granados-Riveron J, Polo-Parada L, Kuriakose D, Moore C, David, et al. Tropomyosin 1: Multiple roles in the developing heart and in the formation of congenital heart defects. J Mol Cell Cardiol. 2017;106:1–13.
– volume: 21
  start-page: 102
  year: 2019
  ident: 6296_CR8
  publication-title: Nat Rev Genet
  doi: 10.1038/s41576-019-0184-5
– ident: 6296_CR11
  doi: 10.1038/nrcardio.2015.55
– ident: 6296_CR14
  doi: 10.1016/j.bbadis.2013.07.023
– ident: 6296_CR6
  doi: 10.1186/s13059-018-1405-5
– volume: 123
  start-page: 11
  year: 2013
  ident: 6296_CR9
  publication-title: J Clin Invest
  doi: 10.1172/JCI62876
– ident: 6296_CR26
  doi: 10.1242/dev.079970
– volume: 6
  start-page: 1
  year: 2016
  ident: 6296_CR52
  publication-title: Sci Rep.
  doi: 10.1038/s41598-016-0001-8
– volume: 39
  start-page: 480
  year: 2016
  ident: 6296_CR20
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2016.10.001
– volume: 25
  start-page: 523
  year: 2019
  ident: 6296_CR60
  publication-title: Heart Fail Rev
  doi: 10.1007/s10741-019-09873-3
– volume: 101
  start-page: 341
  year: 2020
  ident: 6296_CR63
  publication-title: Lab Invest
  doi: 10.1038/s41374-020-00519-9
– ident: 6296_CR54
  doi: 10.3389/fcell.2020.624216
– volume: 116
  start-page: 17121
  year: 2019
  ident: 6296_CR34
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1822046116
– volume: 20
  start-page: 53
  year: 1987
  ident: 6296_CR19
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– ident: 6296_CR46
  doi: 10.1038/s41467-017-00319-8
– ident: 6296_CR38
  doi: 10.4062/biomolther.2015.066
– volume: 36
  start-page: 353
  year: 2015
  ident: 6296_CR18
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehu180
– ident: 6296_CR57
  doi: 10.1002/cm.21029
– volume: 16
  start-page: 472
  year: 2020
  ident: 6296_CR64
  publication-title: Nat Protoc
  doi: 10.1038/s41596-020-00425-w
– ident: 6296_CR12
  doi: 10.3389/fgene.2019.00317
– ident: 6296_CR13
  doi: 10.1111/j.1749-6632.2009.05100.x
– ident: 6296_CR43
  doi: 10.1093/nar/gkz542
– volume: 138
  start-page: 166
  year: 2018
  ident: 6296_CR21
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.117.030742
– volume: 7
  start-page: 1
  year: 2021
  ident: 6296_CR15
  publication-title: Cell Death Discov
  doi: 10.1038/s41420-020-00383-y
– ident: 6296_CR1
  doi: 10.5772/intechopen.81773
– volume: 128
  start-page: 169
  year: 2021
  ident: 6296_CR25
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.120.318574
– ident: 6296_CR59
  doi: 10.3389/fphys.2017.00414
– ident: 6296_CR28
  doi: 10.3389/fphys.2019.00847
– ident: 6296_CR32
  doi: 10.1093/database/baac019
– volume: 10
  start-page: 1498
  year: 2020
  ident: 6296_CR44
  publication-title: RSC Adv
  doi: 10.1039/C9RA08693E
– ident: 6296_CR16
  doi: 10.1016/j.acvdsp.2020.03.105
– volume: 35
  start-page: 2865
  year: 2019
  ident: 6296_CR24
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1044
– ident: 6296_CR47
  doi: 10.1016/j.stemcr.2018.01.013
– ident: 6296_CR27
  doi: 10.1016/j.immuni.2013.11.019
– ident: 6296_CR37
  doi: 10.1016/j.yjmcc.2019.12.013
– ident: 6296_CR53
  doi: 10.1016/j.yjmcc.2017.03.006
– ident: 6296_CR51
  doi: 10.1016/j.yjmcc.2014.10.005
– volume: 25
  start-page: 25
  year: 2000
  ident: 6296_CR31
  publication-title: Nat Genet
  doi: 10.1038/75556
– volume: 9
  start-page: 395
  year: 2016
  ident: 6296_CR17
  publication-title: Circ Cardiovasc Genet
  doi: 10.1161/CIRCGENETICS.115.001363
– volume: 114
  start-page: E6250
  year: 2017
  ident: 6296_CR39
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1701416114
– ident: 6296_CR36
  doi: 10.1161/CIRCGENETICS.115.001019
– ident: 6296_CR7
  doi: 10.1038/s41580-020-00315-9
– ident: 6296_CR22
  doi: 10.7554/eLife.43882
– ident: 6296_CR62
  doi: 10.1161/CIRCRESAHA.117.310624
– volume: 9
  start-page: 1
  year: 2019
  ident: 6296_CR5
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-38989-7
– ident: 6296_CR50
  doi: 10.1002/9781119053248
– volume: 44
  start-page: W90
  year: 2016
  ident: 6296_CR30
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw377
– ident: 6296_CR56
  doi: 10.1111/joa.12486
– ident: 6296_CR3
  doi: 10.1016/j.ncrna.2018.04.002
– volume: 7
  start-page: 8455
  year: 2016
  ident: 6296_CR55
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.7225
– ident: 6296_CR48
  doi: 10.1016/j.carpath.2018.03.002
– ident: 6296_CR58
  doi: 10.1016/j.jacbts.2016.06.008
– ident: 6296_CR40
  doi: 10.1242/dev.176198
– ident: 6296_CR49
  doi: 10.1002/mus.24211
– ident: 6296_CR29
  doi: 10.1186/s13059-014-0550-8
– volume: 320
  start-page: H200
  year: 2021
  ident: 6296_CR61
  publication-title: Am J Physiol Heart Circ Physiol
  doi: 10.1152/ajpheart.00601.2020
– ident: 6296_CR23
  doi: 10.1093/database/baz046
– ident: 6296_CR45
  doi: 10.3389/fcvm.2019.00173
– ident: 6296_CR35
  doi: 10.1186/s12859-018-2053-1
– volume: 9
  start-page: 1
  year: 2019
  ident: 6296_CR42
  publication-title: Sci Rep.
  doi: 10.1038/s41598-019-51872-9
– volume: 124
  start-page: 2136
  year: 2014
  ident: 6296_CR10
  publication-title: J Clin Invest
  doi: 10.1172/JCI70577
– ident: 6296_CR41
  doi: 10.1161/HCG.0000000000000062
– ident: 6296_CR2
  doi: 10.3389/fphys.2019.00030
– ident: 6296_CR4
  doi: 10.3390/jcdd6020021
– volume: 28
  start-page: 27
  year: 2000
  ident: 6296_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
SSID ssj0000330256
Score 2.3991554
Snippet Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ development...
Abstract Long non-coding RNAs (lncRNAs) comprise the most representative transcriptional units of the mammalian genome. They are associated with organ...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 841
SubjectTerms 38/39
45/91
631/136/142
692/308/2056
692/699/75/230
Antibodies
Biochemistry
Biomedical and Life Sciences
Cardiomyocytes
Cardiovascular diseases
Cell Biology
Cell Culture
Cell death
Cluster analysis
Gene expression
Genomes
Heart
Heart diseases
Immunology
Life Sciences
Non-coding RNA
Smooth muscle
Statistical analysis
Ventricle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LahRBsJCA4EWMzzFRWvCmTbp7-nmMYggeclADuTUz3T0qLLshOx78e6t6ZjdZnxev_YCi3tVdD4CXRiYnkxe88zJx7Y3nPpfEXUbrof1QdKpZvmf29Fy_vzAXN0Z9UU7Y1B54QtyRML0eWidDj5ZIWtt1ItTCP1Fy7m11jXDlRjBVdTCG6WjM5yoZ0fqjtZaa6nUUDTNQwfKwY4lqw_7feZm_Jkv-9GNaDdHJPbg7e5DseIJ8H26V5X24Pc2U_P4A0ke8tSicXuTZSJZooxfwUi3spZQnthrYYrX8zDD652lFBox9ODtes9VVnaBFfIFL9C5QGA29Hlm-Ti96COcn7z69PeXzJAWejJYjR5-t9MG7QRQfBpowjlY_G1_QAeq0CyGplEXKGuOZ0va99dRWsBuykc4lNbSPYA_hKU-AGduLZLVrXVubDXZFYMRhUJSpzFYMDcgNVmOa24zTtItFrN_drY8TJSJSIlZKxNDAq-2dy6nJxl9PvyFibU9Sg-y6gGwTZ7aJ_2KbBg43pI6z1K6jCqjilHPSNPBiu43yRiTrlgVxXs94i3oP4Xg8ccYWEvR-EOZWN-B3eGYH1N2d5dcvtac3RuHKY7TawOsNe13D9WdcPP0fuDiAO4rkQiou_SHsjVffyjN0tcb-eZWqH4QuIQ4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6t24ucJFURVcegBqLQ3K7GdgrRKym449N93xnmslkevsS1NPDOeGXtmPkLeKhGMCJaz2orApFWW2ZgCMxGsh7RtkiFn-Z7p03P5ZaVW04XbdkqrnM_EfFDHPuAd-VHpQPxKY4T6cPmLIWoUvq5OEBq3yR0BnghCN5iVWe5YOATrYNKnWhle2aOtFBKrdkqENCidZm7PHuW2_f_yNf9Omfzj3TSbo5MH5P7kR9LjkfEPya3UPSJ3R2TJq8ckfINV68TwXp4OaI_m0wEW5fJeTHyifUvXfXdBu75joUczRr-eHW9pv8k4Wigd8AlvBxJF6OuBxl2S0RNyfvL5-6dTNuEpsKCkGBh4bqlx1rQ8WdcizjjY_qhsAjeolsa5UIbIQ5QQ1aSqabTF5oJ1G5UwJpRt9ZQcAD3pOaFKNzxoaSpT5ZaDdeIQdyhQaCy25W1BxLyrPkzNxhHzYu3zo3dl_cgJD5zwmRPeFeTdsuZybLVx4-yPyKxlJrbJzh_6zYWftM5z1ci2MsI14MYIreuau1w1ylOMja4Lcjiz2k-6u_U7SSvIm2UYtA5ZVncJ9jzPsRpOP6Dj2SgZCyXgAwHNlSyI3ZOZPVL3R7qfP3Jnb4jFSwsxa0Hez-K1o-v_e_Hi5t94Se6VKPGiZMIekoNh8zu9AldqaF5nfbkGrTQZUg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LahUx9FArghvx7WiVCO40mPdjWS-W4qILtdBdmMlkqnC5U-4dF_69J5lHuVoFt0kOHHLeyXkAvNE8Wh4do7XjkSqnHXVtitS2aD2U65KKJcv3zJyeq08X-uIAxFwLU5L2S0vLoqbn7LD3O8VVLrcReRaB8Ib6W3DbWakzV6_ManlXYRigoxmf6mOYdDeA7tmg0qr_Jv_yzzTJ3_5Kiwk6uQ_3Jt-RHI_YPoCDtHkId8Zpkj8fQfyCUOtE81s8GbINmjUCApWS3pzsRPqOrPvNJcG4n8Y-my7y-ex4R_ptmZ2VOQKX8otAInnc9UDa68Six3B-8vHr6pROMxRo1IoPFL211HhnO5ac7_JscbT3rXYJXZ9aWe-jiC2LrcJIJsmmMS43FKy7VnNro-jkEzhEfNIzINo0LBplpZWlzWCdGMYaGoU4F9iyrgI-32qIU4PxPOdiHcpHt3RhpERASoRCieAreLvAXI3tNf55-kMm1nIyt8YuC_32MkysEphuVCct9w26LtyYuma-VIqy1LaNqSs4mkkdJnndBeFRuQlrua7g9bKNkpZJVm8S3nk54wxqPMTj6cgZCybo9yDOUlXg9nhmD9X9nc33b6WbN8bfwmGcWsG7mb2u8fr7XTz_v-Mv4K7IEsAF5e4IDoftj_QS3amheVXk5xcJHxc2
  priority: 102
  providerName: Springer Nature
Title Single-cell transcriptional landscape of long non-coding RNAs orchestrating mouse heart development
URI https://link.springer.com/article/10.1038/s41419-023-06296-9
https://www.ncbi.nlm.nih.gov/pubmed/38110334
https://www.proquest.com/docview/2903127715
https://www.proquest.com/docview/2903860489
https://pubmed.ncbi.nlm.nih.gov/PMC10728149
https://doaj.org/article/05b4f3719b124166aa09006280eddb6a
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1di9QwcLgPBF_Eb6vnUsE3jSZp0iQPInvLHsc-LHLnwr6VNk3vhKXV3Qrei7_dSdrusboKvrSQJmWYj8xMMh8AryWzillNSa6ZJUJLTXTpLFElag-hKydsiPKdp-cLMVvK5QEM7Y56BG72una-n9RivXr349vNRxT4D13KuH6_EUz4VBzu-xRwkxJzCMfhvsiH8vXmftiZ0XnnoaErpwJdJ61Nn0ez_zc7uiqU9N9nh_4ZTvnbnWpQVWf34V5vY8bjjikewIGrH8KdruvkzSOwl7hq5Yg_s49br6uGnQMXhdRfHxQVN1W8auqruG5qYhuv4uKL-XgTN-vQY8tzDg75kwMX-7bYbVzeBiA9hsXZ9PPknPS9FoiVgrUErTpXGK0q6rSpfA9ytAtKqR2aSLlQxlhuS2pLgR6PS4oi1b7wYF6VkilleZU8gSOExz2DWKYFtalQiUpCOcLcUfRJJAq7T8SlVQRswGpm-0Lkvh_GKgsX4onOOkpkSIksUCIzEbzZrvnaleH45-xTT6ztTF9COww066usl8iMykJUiWKmQBOHpWmeUxMySqkryyLNIzgZSJ0NbJlxg5sgV4rJCF5tP6NEepLltUOchzk6xZ0R4XjaccYWErSPEOZERKB3eGYH1N0v9ZfrUPUb_XSu0Z-N4O3AXrdw_R0Xz_8Lcy_gLvcCwDhh-gSO2vV39xKtrrYYwaFaqhEcj8ezyxm-T6fzTxc4Okkno3CSMQrC5p8_p78AmxUpUQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE1i1HSd2DhVqodWWlhUqrdSbSWynIK2SsrsI9c_x25jxJrtaHr316kc08YxnxvbMfIS8zITTwhnOSiMcUyYzzPjgmPZgPZSpg3IxyneUD0_Uh9PsdI386nNhMKyy14lRUfvW4R35pixA_KTWInt7_p0hahS-rvYQGmUHreC3YomxLrHjIFz8hCPcdGv_PfD7lZR7u8fvhqxDGWAuU2LGwJ8JFZy8ax5MUSP6NlhEn5kAzkGpdFE46Tx3XoGvH9Kqyg2W3CtrnwmtnaxT-O41sq7wAmVA1nd2R5-OFrc8PE3RqeiydXhqNqdKKMwbkgiqIIucFSsWMQIH_Mvb_Tto84-X22gQ926TW50nS7fnoneHrIXmLrk-x7a8uEfcZ5g1DgxfBugMLWKvn2BSTDDG0Cva1nTcNme0aRvmWjSk9Gi0PaXtJCJ5oXxCE95PBIrg2zPql2FO98nJlaz1AzIAesIjQrO84i5XOtVpLHpYBg4nnwxUCqb78johol9V67py54i6Mbbx2T01ds4JC5ywkRO2SMjrxZzzebGPS0fvILMWI7FQd2xoJ2e22_eWZ5WqUy2KChwpkedlyYuYt8qD91VeJmSjZ7XttMfULmU9IS8W3bDvkWVlE2DN4xiTg_4FOh7OJWNBCXhhQHOqEmJWZGaF1NWe5tvXWFtccC0NnJoT8qYXryVd_1-Lx5f_xnNyY3j88dAe7o8OnpCbEqVfSCbMBhnMJj_CU3DsZtWzbvdQ8uWqN-xv2wFbpA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKxAXxJtAASPBCay1HSd2DhVqaVctRauqUKk3N7GdgrRKyu4i1L_Ir2LGm-xqefTWa2JHE894HvbMfIS8zoTTwhnOSiMcUyYzzPjgmPZgPZSpg3Ixy3eU75-oj6fZ6Rr51dfCYFplrxOjovatwzPygSxA_KTWIhvUXVrE0e7w_cV3hghSeNPaw2mUHcyC34rtxroij8Nw-RPCuenWwS7w_o2Uw70vH_ZZhzjAXKbEjIFvEyqIwmseTFEjEjdYR5-ZAI5CqXRROOk8d16B3x_SqsoNtt8ra58JrZ2sU_juDbKhwepDILixszc6Ol6c-PA0RQejq9zhqRlMlVBYQyQRYEEWOStWrGMEEfiX5_t3Aucft7jROA7vkjudV0u352J4j6yF5j65Oce5vHxA3GeYNQ4MbwnoDK1jr6tgUiw2xjQs2tZ03DbntGkb5lo0qvR4tD2l7SSieqGswiM8qwgUgbhn1C9Tnh6Sk2tZ60dkHegJTwjN8oq7XOlUp7EBYhk4REEZqBcs_eV1QkS_qtZ1rc8RgWNs4xV8auycExY4YSMnbJGQt4s5F_PGH1eO3kFmLUZi0-74oJ2c204HWJ5Vqk61KCpwqkSelyUvYg0rD95XeZmQzZ7VttMkU7uU-4S8WrwGHYAsK5sAax7HmBx0MdDxeC4ZC0rAIwOaU5UQsyIzK6Suvmm-fY19xgXX0kAEnZB3vXgt6fr_Wjy9-jdekluwce2ng9HhM3JbovALyYTZJOuzyY_wHHy8WfWi2zyUnF33fv0NiDNf6A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-cell+transcriptional+landscape+of+long+non-coding+RNAs+orchestrating+mouse+heart+development&rft.jtitle=Cell+death+%26+disease&rft.au=Ramos%2C+Tha%C3%ADs+A.+R.&rft.au=Urquiza-Zurich%2C+Sebasti%C3%A1n&rft.au=Kim%2C+Soo+Young&rft.au=Gillette%2C+Thomas+G.&rft.date=2023-12-18&rft.issn=2041-4889&rft.eissn=2041-4889&rft.volume=14&rft.issue=12&rft_id=info:doi/10.1038%2Fs41419-023-06296-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41419_023_06296_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-4889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-4889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-4889&client=summon