Hybrid 2D–CMOS microchips for memristive applications

Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry 1 , 2 . However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 618; no. 7963; pp. 57 - 62
Main Authors Zhu, Kaichen, Pazos, Sebastian, Aguirre, Fernando, Shen, Yaqing, Yuan, Yue, Zheng, Wenwen, Alharbi, Osamah, Villena, Marco A., Fang, Bin, Li, Xinyi, Milozzi, Alessandro, Farronato, Matteo, Muñoz-Rojo, Miguel, Wang, Tao, Li, Ren, Fariborzi, Hossein, Roldan, Juan B., Benstetter, Guenther, Zhang, Xixiang, Alshareef, Husam N., Grasser, Tibor, Wu, Huaqiang, Ielmini, Daniele, Lanza, Mario
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2023
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN0028-0836
1476-4687
1476-4687
DOI10.1038/s41586-023-05973-1

Cover

Abstract Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry 1 , 2 . However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm 2 ) devices on unfunctional SiO 2 –Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm 2 ) interconnection 3 and as a channel of large transistors (roughly 16.5 µm 2 ) (refs.  4 , 5 ), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D–CMOS hybrid microchips for memristive applications—CMOS stands for complementary metal–oxide–semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm 2 . We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications. High-integration-density 2D–CMOS hybrid microchips for memristive applications are made demonstrating in-memory computation and electrical response suitable for the implementation of spiking neural networks representing an advance towards integration of 2D materials in microelectronic products and memristive applications.
AbstractList Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry 1 , 2 . However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm 2 ) devices on unfunctional SiO 2 –Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm 2 ) interconnection 3 and as a channel of large transistors (roughly 16.5 µm 2 ) (refs.  4 , 5 ), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D–CMOS hybrid microchips for memristive applications—CMOS stands for complementary metal–oxide–semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm 2 . We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications. High-integration-density 2D–CMOS hybrid microchips for memristive applications are made demonstrating in-memory computation and electrical response suitable for the implementation of spiking neural networks representing an advance towards integration of 2D materials in microelectronic products and memristive applications.
Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2-Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2-Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.
Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry . However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm ) devices on unfunctional SiO -Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm ) interconnection and as a channel of large transistors (roughly 16.5 µm ) (refs.  ), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm . We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.
Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry1,2. However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm2) devices on unfunctional SiO2-Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm2) interconnection3 and as a channel of large transistors (roughly 16.5 µm2) (refs. 4,5), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D-CMOS hybrid microchips for memristive applications-CMOS stands for complementary metal-oxide-semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm2. We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.
Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the semiconductor industry 1,2 . However, most studies in this field have been limited to the fabrication and characterization of isolated large (more than 1 µm 2 ) devices on unfunctional SiO 2 –Si substrates. Some studies have integrated monolayer graphene on silicon microchips as a large-area (more than 500 µm 2 ) interconnection 3 and as a channel of large transistors (roughly 16.5 µm 2 ) (refs.  4,5 ), but in all cases the integration density was low, no computation was demonstrated and manipulating monolayer 2D materials was challenging because native pinholes and cracks during transfer increase variability and reduce yield. Here, we present the fabrication of high-integration-density 2D–CMOS hybrid microchips for memristive applications—CMOS stands for complementary metal–oxide–semiconductor. We transfer a sheet of multilayer hexagonal boron nitride onto the back-end-of-line interconnections of silicon microchips containing CMOS transistors of the 180 nm node, and finalize the circuits by patterning the top electrodes and interconnections. The CMOS transistors provide outstanding control over the currents across the hexagonal boron nitride memristors, which allows us to achieve endurances of roughly 5 million cycles in memristors as small as 0.053 µm 2 . We demonstrate in-memory computation by constructing logic gates, and measure spike-timing dependent plasticity signals that are suitable for the implementation of spiking neural networks. The high performance and the relatively-high technology readiness level achieved represent a notable advance towards the integration of 2D materials in microelectronic products and memristive applications.
Author Zhang, Xixiang
Zhu, Kaichen
Shen, Yaqing
Alharbi, Osamah
Roldan, Juan B.
Zheng, Wenwen
Li, Ren
Farronato, Matteo
Lanza, Mario
Aguirre, Fernando
Fang, Bin
Wang, Tao
Fariborzi, Hossein
Yuan, Yue
Benstetter, Guenther
Wu, Huaqiang
Muñoz-Rojo, Miguel
Grasser, Tibor
Ielmini, Daniele
Milozzi, Alessandro
Alshareef, Husam N.
Villena, Marco A.
Pazos, Sebastian
Li, Xinyi
Author_xml – sequence: 1
  givenname: Kaichen
  surname: Zhu
  fullname: Zhu, Kaichen
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 2
  givenname: Sebastian
  orcidid: 0000-0002-7354-4530
  surname: Pazos
  fullname: Pazos, Sebastian
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Fernando
  orcidid: 0000-0001-7793-1194
  surname: Aguirre
  fullname: Aguirre, Fernando
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 4
  givenname: Yaqing
  surname: Shen
  fullname: Shen, Yaqing
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 5
  givenname: Yue
  surname: Yuan
  fullname: Yuan, Yue
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 6
  givenname: Wenwen
  surname: Zheng
  fullname: Zheng, Wenwen
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 7
  givenname: Osamah
  surname: Alharbi
  fullname: Alharbi, Osamah
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 8
  givenname: Marco A.
  orcidid: 0000-0001-5547-3380
  surname: Villena
  fullname: Villena, Marco A.
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 9
  givenname: Bin
  surname: Fang
  fullname: Fang, Bin
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 10
  givenname: Xinyi
  surname: Li
  fullname: Li, Xinyi
  organization: Institute of Microelectronics, Tsinghua University
– sequence: 11
  givenname: Alessandro
  orcidid: 0000-0001-5207-1984
  surname: Milozzi
  fullname: Milozzi, Alessandro
  organization: Department of Electronics, Information and Bioengineering, Politecnico of Milan
– sequence: 12
  givenname: Matteo
  orcidid: 0000-0003-1122-6497
  surname: Farronato
  fullname: Farronato, Matteo
  organization: Department of Electronics, Information and Bioengineering, Politecnico of Milan
– sequence: 13
  givenname: Miguel
  orcidid: 0000-0001-9237-4584
  surname: Muñoz-Rojo
  fullname: Muñoz-Rojo, Miguel
  organization: Department of Thermal and Fluid Engineering, Faculty of Engineering Technology, University of Twente, Institute of Micro and Nanotechnology, IMN-CNM, CSIC (CEI UAM+CSIC)
– sequence: 14
  givenname: Tao
  surname: Wang
  fullname: Wang, Tao
  organization: Institute of Functional Nano and Soft Materials, Collaborative Innovation Center of Suzhou Nanoscience and Technology, Soochow University
– sequence: 15
  givenname: Ren
  orcidid: 0000-0002-7504-2147
  surname: Li
  fullname: Li, Ren
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology
– sequence: 16
  givenname: Hossein
  orcidid: 0000-0002-7828-0239
  surname: Fariborzi
  fullname: Fariborzi, Hossein
  organization: Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology
– sequence: 17
  givenname: Juan B.
  orcidid: 0000-0003-1662-6457
  surname: Roldan
  fullname: Roldan, Juan B.
  organization: Department of Electronics and Computer Technology, Faculty of Sciences, University of Granada
– sequence: 18
  givenname: Guenther
  orcidid: 0000-0001-7625-1293
  surname: Benstetter
  fullname: Benstetter, Guenther
  organization: Department of Electrical Engineering and Media Technology, Deggendorf Institute of Technology
– sequence: 19
  givenname: Xixiang
  orcidid: 0000-0002-3478-6414
  surname: Zhang
  fullname: Zhang, Xixiang
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 20
  givenname: Husam N.
  orcidid: 0000-0001-5029-2142
  surname: Alshareef
  fullname: Alshareef, Husam N.
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
– sequence: 21
  givenname: Tibor
  orcidid: 0000-0001-6536-2238
  surname: Grasser
  fullname: Grasser, Tibor
  organization: Institute for Microelectronics, TU Wien
– sequence: 22
  givenname: Huaqiang
  orcidid: 0000-0001-8359-7997
  surname: Wu
  fullname: Wu, Huaqiang
  organization: Institute of Microelectronics, Tsinghua University
– sequence: 23
  givenname: Daniele
  orcidid: 0000-0002-1853-1614
  surname: Ielmini
  fullname: Ielmini, Daniele
  organization: Department of Electronics, Information and Bioengineering, Politecnico of Milan
– sequence: 24
  givenname: Mario
  orcidid: 0000-0003-4756-8632
  surname: Lanza
  fullname: Lanza, Mario
  email: mario.lanza@kaust.edu.sa
  organization: Materials Science and Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36972685$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1OHDEQhS1EFAbIBViglrJh0-Dyv1dRNJCABGJBWFtutweMutsduweJHXfghjlJDEOAsGBlqfy9qlevNtH6EAeP0A7gfcBUHWQGXIkaE1pjriWtYQ3NgElRM6HkOpphTFSNFRUbaDPnG4wxB8k-ow0qtCRC8RmSx3dNCm1FDv_cP8zPzi-qPrgU3XUYc7WIqep9n0Kewq2v7Dh2wdkpxCFvo08L22X_5fndQpc_jn7Nj-vT858n8--nteMMppqxFjfCM6kdk4QRDNpRjUtFUc1tA0BAKmKt4kzi1roGWltqosVq0ShLt9C3Vd9x2fS-dX6Yku3MmEJv052JNpj_f4Zwba7irYESC6ECSoe95w4p_l76PJk-ZOe7zg4-LrMhCjSRXAEr6Nd36E1cpqHsVyhCmJZck0LtvrX04uVfqAUgK6AEmXPyixcEsHm8nFldzhSL5uly5tGmeidyYXrKuqwVuo-ldCXNZc5w5dOr7Q9UfwFdrqwd
CitedBy_id crossref_primary_10_1186_s40580_024_00432_7
crossref_primary_10_1038_s41565_024_01705_2
crossref_primary_10_1002_smll_202403737
crossref_primary_10_1002_anie_202420602
crossref_primary_10_1002_adfm_202403158
crossref_primary_10_1021_acsnano_3c03505
crossref_primary_10_1021_acsami_4c09593
crossref_primary_10_1002_adfm_202304242
crossref_primary_10_1002_adma_202401060
crossref_primary_10_1021_acs_chemrev_4c00631
crossref_primary_10_1063_5_0243690
crossref_primary_10_1002_aelm_202400435
crossref_primary_10_1007_s40820_025_01702_7
crossref_primary_10_1016_j_mssp_2024_108829
crossref_primary_10_1002_adma_202307951
crossref_primary_10_1016_j_nanoen_2024_109646
crossref_primary_10_1038_s41928_024_01192_2
crossref_primary_10_26599_NR_2025_94907225
crossref_primary_10_1038_s41928_023_00984_2
crossref_primary_10_1063_5_0205749
crossref_primary_10_1002_advs_202405989
crossref_primary_10_1007_s11433_024_2403_x
crossref_primary_10_1021_acsanm_3c02076
crossref_primary_10_1039_D4NH00508B
crossref_primary_10_1002_adfm_202403029
crossref_primary_10_1016_j_nanoen_2024_109473
crossref_primary_10_1016_j_chaos_2024_115909
crossref_primary_10_1088_2631_7990_acef79
crossref_primary_10_1038_s41699_023_00427_8
crossref_primary_10_1038_s41928_024_01251_8
crossref_primary_10_1002_adfm_202414042
crossref_primary_10_1021_acsnano_4c15271
crossref_primary_10_1021_acsnano_4c00456
crossref_primary_10_1016_j_scib_2023_11_034
crossref_primary_10_3390_ma17164008
crossref_primary_10_1021_prechem_3c00122
crossref_primary_10_1021_acs_nanolett_4c01319
crossref_primary_10_1038_s41928_024_01233_w
crossref_primary_10_1039_D3MH01224G
crossref_primary_10_1038_s41699_024_00509_1
crossref_primary_10_1039_D3TC04510B
crossref_primary_10_1038_s41928_023_00954_8
crossref_primary_10_1002_adma_202410060
crossref_primary_10_1002_adma_202406970
crossref_primary_10_1063_5_0221088
crossref_primary_10_1016_j_mser_2025_100938
crossref_primary_10_1002_advs_202403176
crossref_primary_10_1088_2515_7639_ad467b
crossref_primary_10_1002_aelm_202400022
crossref_primary_10_1002_aelm_202400264
crossref_primary_10_1021_acsnano_3c10775
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1021_acs_nanolett_3c04057
crossref_primary_10_1002_ange_202309605
crossref_primary_10_1038_s44287_025_00141_1
crossref_primary_10_1088_1361_6463_ad436e
crossref_primary_10_1021_acsanm_4c04769
crossref_primary_10_1002_aelm_202300565
crossref_primary_10_1038_s41928_023_01064_1
crossref_primary_10_1088_1674_4926_24100042
crossref_primary_10_1177_09506608251318108
crossref_primary_10_1002_ange_202420602
crossref_primary_10_1021_acsami_3c07744
crossref_primary_10_1039_D3NR00030C
crossref_primary_10_1002_adfm_202408978
crossref_primary_10_1007_s12274_023_6325_3
crossref_primary_10_1016_j_matcom_2024_04_017
crossref_primary_10_1016_j_mssp_2024_109232
crossref_primary_10_1021_jacs_3c14044
crossref_primary_10_1021_acsami_3c10582
crossref_primary_10_1088_2634_4386_ad3a94
crossref_primary_10_1002_adma_202308153
crossref_primary_10_1021_acs_chemrev_4c00174
crossref_primary_10_1038_s41578_024_00661_6
crossref_primary_10_1038_s41467_024_51591_4
crossref_primary_10_1038_s41586_024_07286_3
crossref_primary_10_1002_adma_202405932
crossref_primary_10_1002_adma_202410163
crossref_primary_10_1063_5_0147403
crossref_primary_10_1021_acsnano_3c01927
crossref_primary_10_1021_acsaelm_3c01727
crossref_primary_10_3390_electronics13091632
crossref_primary_10_1002_adma_202307359
crossref_primary_10_1002_anie_202309605
crossref_primary_10_1007_s43939_024_00074_w
crossref_primary_10_1016_j_inoche_2025_113980
crossref_primary_10_1021_acsami_3c19261
crossref_primary_10_1587_nolta_15_811
crossref_primary_10_1002_adma_202401021
crossref_primary_10_1016_j_mser_2024_100837
crossref_primary_10_1021_acsnano_4c01457
crossref_primary_10_1021_acs_nanolett_4c06118
crossref_primary_10_1038_s41699_024_00519_z
crossref_primary_10_1038_s41467_025_58039_3
crossref_primary_10_1007_s40820_023_01273_5
crossref_primary_10_1016_j_mee_2024_112306
crossref_primary_10_1021_acs_nanolett_3c01248
crossref_primary_10_1002_adma_202413640
crossref_primary_10_1021_acsnano_3c12938
crossref_primary_10_1103_PhysRevB_110_115414
crossref_primary_10_1038_s41467_024_46372_y
crossref_primary_10_1002_adma_202405115
crossref_primary_10_1016_j_mser_2024_100825
crossref_primary_10_1016_j_chaos_2024_115390
crossref_primary_10_1038_s44287_023_00001_w
crossref_primary_10_1016_j_pmatsci_2025_101471
crossref_primary_10_3390_chips3040014
crossref_primary_10_1038_s41699_024_00522_4
crossref_primary_10_1038_s41467_024_55395_4
crossref_primary_10_1016_j_apsusc_2024_160592
crossref_primary_10_1016_j_mssp_2024_108480
crossref_primary_10_1038_s44287_024_00038_5
crossref_primary_10_1515_nanoph_2023_0570
crossref_primary_10_1002_adma_202406608
crossref_primary_10_1002_adma_202306033
crossref_primary_10_1038_s41586_023_06860_5
crossref_primary_10_1016_j_nanoen_2023_108891
crossref_primary_10_1007_s40820_024_01335_2
crossref_primary_10_1007_s40820_024_01456_8
crossref_primary_10_1016_j_sse_2025_109076
crossref_primary_10_1021_acsnano_4c02923
crossref_primary_10_1021_acs_jpclett_4c03367
crossref_primary_10_1038_s41467_024_51178_z
crossref_primary_10_1063_5_0179424
crossref_primary_10_1039_D3MH01834B
crossref_primary_10_1038_s41377_024_01486_2
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1002_aelm_202400212
crossref_primary_10_1038_s41586_024_07406_z
crossref_primary_10_1002_adfm_202419319
crossref_primary_10_1080_23746149_2023_2288353
crossref_primary_10_3389_fnins_2023_1271956
crossref_primary_10_1016_j_vacuum_2024_113207
crossref_primary_10_1016_j_matt_2023_12_031
crossref_primary_10_1063_5_0220628
crossref_primary_10_1016_j_mtnano_2024_100569
crossref_primary_10_1039_D4MA00133H
crossref_primary_10_1021_acsnano_4c11890
crossref_primary_10_1021_acsnano_4c11133
crossref_primary_10_1038_s41467_025_56079_3
crossref_primary_10_1038_s41699_024_00444_1
crossref_primary_10_1021_acs_chemrev_4c00369
crossref_primary_10_1002_smll_202310158
crossref_primary_10_1021_acs_jpcc_4c07779
crossref_primary_10_1088_2399_1984_ad32d2
crossref_primary_10_1038_s44335_024_00001_5
crossref_primary_10_1038_s41699_024_00508_2
crossref_primary_10_1002_adfm_202405670
crossref_primary_10_1038_s41467_024_48485_w
crossref_primary_10_1002_adma_202310704
crossref_primary_10_1007_s12274_024_6791_2
crossref_primary_10_1360_TB_2024_0931
crossref_primary_10_26565_2312_4334_2024_1_44
crossref_primary_10_1088_1361_6528_ad0bd1
Cites_doi 10.1038/s41586-022-04523-5
10.1038/s41586-020-2009-2
10.1016/S1369-7021(08)70119-6
10.1002/aelm.201900979
10.1002/adma.202103656
10.1038/s41586-021-04323-3
10.1038/nnano.2012.240
10.3389/fncom.2015.00099
10.1038/ncomms5232
10.1109/TED.2020.2968079
10.1021/acsnano.1c06980
10.1038/s41586-019-1573-9
10.1002/adfm.201504771
10.1038/nphoton.2017.75
10.1038/ncomms4086
10.7554/eLife.47314
10.1126/science.1254642
10.1126/science.1204428
10.1038/s41928-018-0118-9
10.1007/BF03214833
10.1038/s41586-020-2861-0
10.1038/s41467-018-04484-2
10.1038/s41928-019-0220-7
10.1038/s41928-020-0416-x
10.1109/TED.2019.2900736
10.1126/science.abj9979
10.23919/IWLPC.2019.8914124
10.1109/DRC.2013.6633853
10.1109/IEDM13553.2020.9372106
10.1109/IEDM19573.2019.8993466
10.1109/IEDM.2018.8614495
10.1109/IRPS.2012.6241919
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
Copyright Nature Publishing Group Jun 1, 2023
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: Copyright Nature Publishing Group Jun 1, 2023
DBID C6C
AAYXX
CITATION
NPM
3V.
7QG
7QL
7QP
7QR
7RV
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7X2
7X7
7XB
88A
88E
88G
88I
8AF
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M2M
M2O
M2P
M7N
M7P
M7S
MBDVC
NAPCQ
P5Z
P62
P64
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PSYQQ
PTHSS
PYCSY
Q9U
R05
RC3
S0X
SOI
7X8
5PM
DOI 10.1038/s41586-023-05973-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni)
Medical Database
Psychology Database
ProQuest Research Library
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database (ProQuest)
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database (ProQuest)
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
University of Michigan
Genetics Abstracts
SIRS Editorial
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest One Psychology
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
elibrary
ProQuest AP Science
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
University of Michigan
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
SIRS Editorial
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Research Library
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest Nursing & Allied Health Source
ProQuest Psychology Journals (Alumni)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Psychology Journals
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Agricultural Science Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 62
ExternalDocumentID PMC10232361
36972685
10_1038_s41586_023_05973_1
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
0WA
123
186
1OL
1VR
29M
2KS
2XV
39C
41X
53G
5RE
6TJ
70F
7RV
7X2
7X7
7XC
85S
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8WZ
97F
97L
A6W
A7Z
AAEEF
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
AAZLF
ABDQB
ABFSI
ABIVO
ABJCF
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABUWG
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGHTU
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATWCN
AVWKF
AXYYD
AZFZN
AZQEC
BBNVY
BCU
BEC
BENPR
BGLVJ
BHPHI
BIN
BKEYQ
BKKNO
BKSAR
BPHCQ
BVXVI
C6C
CCPQU
CJ0
CS3
D1I
D1J
D1K
DU5
DWQXO
E.-
E.L
EAP
EBS
EE.
EMH
EPS
EX3
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
HCIFZ
HG6
HMCUK
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
INR
IOF
IPY
ISR
K6-
KB.
KOO
L6V
L7B
LK5
LK8
LSO
M0K
M1P
M2M
M2O
M2P
M7P
M7R
M7S
N9A
NAPCQ
NEPJS
O9-
OBC
OES
OHH
OMK
OVD
P2P
P62
PATMY
PCBAR
PDBOC
PKN
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
R05
RND
RNS
RNT
RNTTT
RXW
S0X
SC5
SHXYY
SIXXV
SJFOW
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UIG
UKHRP
UKR
UMD
UQL
VQA
VVN
WH7
WOW
X7M
XIH
XKW
XZL
Y6R
YAE
YCJ
YFH
YIF
YIN
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
Z5M
ZCA
~02
~7V
~88
~KM
AARCD
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
NFIDA
PHGZM
PHGZT
.-4
.GJ
.HR
00M
08P
1CY
1VW
354
3EH
3O-
4.4
41~
42X
4R4
663
79B
9M8
A8Z
AAJYS
AAKAS
AAVBQ
AAYOK
ABAWZ
ABDBF
ABDPE
ABEFU
ABMOR
ABNNU
ABTAH
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADNMO
ADRHT
ADYSU
ADZCM
AETEA
AFFDN
AFHKK
AGCDD
AGGDT
AGNAY
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
B0M
BCR
BDKGC
BES
BKOMP
BLC
DB5
DO4
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMK
EMOBN
EPL
ESE
ESN
ESX
FA8
I-F
ITC
J5H
L-9
LGEZI
LOTEE
MVM
N4W
NADUK
NEJ
NPM
NXXTH
ODYON
OHT
P-O
PEA
PM3
PV9
QS-
R4F
RHI
SKT
SV3
TH9
TUD
TUS
UAO
UBY
UHB
USG
VOH
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZKG
ZY4
~8M
~G0
3V.
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
7XB
88A
8FD
8FK
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
MBDVC
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
RC3
SOI
7X8
AGSTI
PUEGO
5PM
ID FETCH-LOGICAL-c541t-44d0b6e479c47242019c3906e48395ab1121782aa85470dacb1da1216d08fb8a3
IEDL.DBID BENPR
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:36:59 EDT 2025
Fri Sep 05 07:56:19 EDT 2025
Sat Aug 23 12:44:24 EDT 2025
Thu Apr 03 07:07:15 EDT 2025
Tue Jul 01 02:58:37 EDT 2025
Thu Apr 24 22:53:04 EDT 2025
Fri Feb 21 02:39:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7963
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-44d0b6e479c47242019c3906e48395ab1121782aa85470dacb1da1216d08fb8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1122-6497
0000-0002-7828-0239
0000-0003-4756-8632
0000-0003-1662-6457
0000-0002-3478-6414
0000-0001-6536-2238
0000-0001-9237-4584
0000-0001-5547-3380
0000-0002-1853-1614
0000-0001-5029-2142
0000-0001-5207-1984
0000-0002-7504-2147
0000-0002-7354-4530
0000-0001-8359-7997
0000-0001-7625-1293
0000-0001-7793-1194
OpenAccessLink https://www.nature.com/articles/s41586-023-05973-1
PMID 36972685
PQID 2822497592
PQPubID 40569
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10232361
proquest_miscellaneous_2819275814
proquest_journals_2822497592
pubmed_primary_36972685
crossref_primary_10_1038_s41586_023_05973_1
crossref_citationtrail_10_1038_s41586_023_05973_1
springer_journals_10_1038_s41586_023_05973_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Kim (CR24) 2020; 3
Liu (CR31) 2022; 605
CR19
CR39
CR38
CR15
Zhuang (CR27) 2020; 6
CR37
CR36
CR13
CR35
CR12
CR11
Lin (CR34) 2019; 66
CR10
Shi (CR25) 2018; 1
Yang (CR14) 2014; 5
Diehl, Cook (CR20) 2015; 9
Stimberg, Brette, Goodman (CR46) 2019; 8
Goda (CR33) 2020; 67
Yang, Strukov, Stewart (CR16) 2013; 8
Qian (CR26) 2016; 26
Merolla (CR17) 2014; 345
Li (CR18) 2018; 9
Marega (CR32) 2020; 587
Goodman (CR40) 2002; 35
Lanza (CR42) 2021; 15
CR2
Lin (CR4) 2011; 332
Akinwande (CR1) 2019; 573
CR7
Yang (CR28) 2019; 2
CR29
CR9
Han, Garcia, Oida, Jenkins, Haensch (CR5) 2014; 5
CR23
CR22
CR44
CR21
CR43
CR41
Shen (CR6) 2021; 33
Goossens (CR3) 2017; 11
Wu (CR30) 2022; 603
Sawa (CR8) 2008; 11
Chen (CR45) 2020; 579
J Yang (5973_CR16) 2013; 8
Y Shi (5973_CR25) 2018; 1
D Akinwande (5973_CR1) 2019; 573
Y Yang (5973_CR14) 2014; 5
5973_CR11
5973_CR12
PA Merolla (5973_CR17) 2014; 345
5973_CR10
A Sawa (5973_CR8) 2008; 11
5973_CR19
5973_CR2
Y Shen (5973_CR6) 2021; 33
F Wu (5973_CR30) 2022; 603
5973_CR39
S Goossens (5973_CR3) 2017; 11
5973_CR15
5973_CR37
5973_CR38
5973_CR13
5973_CR35
5973_CR36
S Han (5973_CR5) 2014; 5
M Lanza (5973_CR42) 2021; 15
5973_CR9
5973_CR7
P Goodman (5973_CR40) 2002; 35
5973_CR22
5973_CR44
5973_CR23
5973_CR21
K Qian (5973_CR26) 2016; 26
5973_CR43
5973_CR41
L Liu (5973_CR31) 2022; 605
PU Diehl (5973_CR20) 2015; 9
WL Lin (5973_CR34) 2019; 66
C Li (5973_CR18) 2018; 9
5973_CR29
M Stimberg (5973_CR46) 2019; 8
P Zhuang (5973_CR27) 2020; 6
A Goda (5973_CR33) 2020; 67
Y Lin (5973_CR4) 2011; 332
R Yang (5973_CR28) 2019; 2
TA Chen (5973_CR45) 2020; 579
M Kim (5973_CR24) 2020; 3
G Marega (5973_CR32) 2020; 587
References_xml – ident: CR22
– volume: 605
  start-page: 69
  year: 2022
  end-page: 75
  ident: CR31
  article-title: Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire
  publication-title: Nature
  doi: 10.1038/s41586-022-04523-5
– ident: CR43
– volume: 579
  start-page: 219
  year: 2020
  end-page: 223
  ident: CR45
  article-title: Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)
  publication-title: Nature
  doi: 10.1038/s41586-020-2009-2
– volume: 11
  start-page: 28
  year: 2008
  end-page: 36
  ident: CR8
  article-title: Resistive switching in transition metal oxides
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70119-6
– ident: CR39
– ident: CR2
– volume: 6
  start-page: 1900979
  year: 2020
  ident: CR27
  article-title: Nonpolar resistive switching of multilayer-hBN-based memories
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900979
– ident: CR37
– volume: 33
  start-page: 2103656
  year: 2021
  ident: CR6
  article-title: Variability and yield in h-BN-based memristive circuits: the role of each type of defect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103656
– ident: CR12
– volume: 603
  start-page: 259
  year: 2022
  end-page: 264
  ident: CR30
  article-title: Vertical MoS transistors with sub-1-nm gate lengths
  publication-title: Nature
  doi: 10.1038/s41586-021-04323-3
– ident: CR10
– volume: 8
  start-page: 13
  year: 2013
  end-page: 24
  ident: CR16
  article-title: Memristive devices for computing
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2012.240
– volume: 9
  start-page: 1662
  year: 2015
  end-page: 5188
  ident: CR20
  article-title: Unsupervised learning of digit recognition using spike-timing-dependent plasticity
  publication-title: Front. Comput. Neurosc.
  doi: 10.3389/fncom.2015.00099
– ident: CR35
– ident: CR29
– volume: 5
  year: 2014
  ident: CR14
  article-title: Electrochemical dynamics of nanoscale metallic inclusions in dielectrics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5232
– ident: CR23
– volume: 67
  start-page: 1373
  year: 2020
  end-page: 1381
  ident: CR33
  article-title: 3-D NAND technology achievements and future scaling perspectives
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.2968079
– volume: 15
  start-page: 17214
  year: 2021
  end-page: 17231
  ident: CR42
  article-title: Standards for the characterization of endurance in resistive switching devices
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06980
– volume: 573
  start-page: 507
  year: 2019
  end-page: 518
  ident: CR1
  article-title: Graphene and two-dimensional materials for silicon technology
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– ident: CR21
– ident: CR19
– ident: CR44
– volume: 26
  start-page: 2176
  year: 2016
  end-page: 2184
  ident: CR26
  article-title: Hexagonal boron nitride thin film for flexible resistive memory applications
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504771
– volume: 11
  start-page: 366
  year: 2017
  end-page: 371
  ident: CR3
  article-title: Broadband image sensor array based on graphene–CMOS integration
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.75
– ident: CR15
– ident: CR38
– volume: 5
  year: 2014
  ident: CR5
  article-title: Graphene radio frequency receiver integrated circuit
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4086
– ident: CR13
– ident: CR11
– volume: 8
  start-page: e47314
  year: 2019
  ident: CR46
  article-title: Brian 2, an intuitive and efficient neural simulator
  publication-title: eLife
  doi: 10.7554/eLife.47314
– ident: CR9
– volume: 345
  start-page: 668
  year: 2014
  end-page: 673
  ident: CR17
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 332
  start-page: 1294
  year: 2011
  end-page: 1297
  ident: CR4
  article-title: Wafer-scale graphene integrated circuit
  publication-title: Science
  doi: 10.1126/science.1204428
– volume: 1
  start-page: 458
  year: 2018
  end-page: 465
  ident: CR25
  article-title: Electronic synapses made of layered two-dimensional materials
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0118-9
– ident: CR36
– volume: 35
  start-page: 21
  year: 2002
  end-page: 26
  ident: CR40
  article-title: Current and future uses of gold in electronics
  publication-title: Gold Bull.
  doi: 10.1007/BF03214833
– ident: CR7
– volume: 587
  start-page: 72
  year: 2020
  end-page: 77
  ident: CR32
  article-title: Logic-in-memory based on an atomically thin semiconductor
  publication-title: Nature
  doi: 10.1038/s41586-020-2861-0
– volume: 9
  year: 2018
  ident: CR18
  article-title: Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04484-2
– volume: 2
  start-page: 108
  year: 2019
  end-page: 114
  ident: CR28
  article-title: Ternary content-addressable memory with MoS transistors for massively parallel data search
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0220-7
– ident: CR41
– volume: 3
  start-page: 479
  year: 2020
  end-page: 485
  ident: CR24
  article-title: Analogue switches made from boron nitride monolayers for application in 5G and terahertz communication systems
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0416-x
– volume: 66
  start-page: 1734
  year: 2019
  end-page: 1740
  ident: CR34
  article-title: Grain boundary trap-induced current transient in a 3-D NAND flash cell string
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2900736
– ident: 5973_CR35
– volume: 5
  year: 2014
  ident: 5973_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5232
– volume: 1
  start-page: 458
  year: 2018
  ident: 5973_CR25
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0118-9
– volume: 66
  start-page: 1734
  year: 2019
  ident: 5973_CR34
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2019.2900736
– volume: 8
  start-page: e47314
  year: 2019
  ident: 5973_CR46
  publication-title: eLife
  doi: 10.7554/eLife.47314
– ident: 5973_CR15
  doi: 10.1126/science.abj9979
– volume: 33
  start-page: 2103656
  year: 2021
  ident: 5973_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202103656
– volume: 345
  start-page: 668
  year: 2014
  ident: 5973_CR17
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 11
  start-page: 28
  year: 2008
  ident: 5973_CR8
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70119-6
– volume: 587
  start-page: 72
  year: 2020
  ident: 5973_CR32
  publication-title: Nature
  doi: 10.1038/s41586-020-2861-0
– ident: 5973_CR37
– volume: 35
  start-page: 21
  year: 2002
  ident: 5973_CR40
  publication-title: Gold Bull.
  doi: 10.1007/BF03214833
– ident: 5973_CR12
– volume: 2
  start-page: 108
  year: 2019
  ident: 5973_CR28
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0220-7
– volume: 67
  start-page: 1373
  year: 2020
  ident: 5973_CR33
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2020.2968079
– ident: 5973_CR22
– ident: 5973_CR44
  doi: 10.23919/IWLPC.2019.8914124
– ident: 5973_CR9
– volume: 11
  start-page: 366
  year: 2017
  ident: 5973_CR3
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2017.75
– volume: 3
  start-page: 479
  year: 2020
  ident: 5973_CR24
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-020-0416-x
– ident: 5973_CR41
– ident: 5973_CR7
  doi: 10.1109/DRC.2013.6633853
– volume: 5
  year: 2014
  ident: 5973_CR5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4086
– ident: 5973_CR43
– volume: 8
  start-page: 13
  year: 2013
  ident: 5973_CR16
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2012.240
– volume: 26
  start-page: 2176
  year: 2016
  ident: 5973_CR26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504771
– ident: 5973_CR36
– volume: 573
  start-page: 507
  year: 2019
  ident: 5973_CR1
  publication-title: Nature
  doi: 10.1038/s41586-019-1573-9
– ident: 5973_CR2
– ident: 5973_CR39
  doi: 10.1109/IEDM13553.2020.9372106
– volume: 9
  start-page: 1662
  year: 2015
  ident: 5973_CR20
  publication-title: Front. Comput. Neurosc.
  doi: 10.3389/fncom.2015.00099
– ident: 5973_CR38
– ident: 5973_CR11
– ident: 5973_CR13
– ident: 5973_CR19
  doi: 10.1109/IEDM19573.2019.8993466
– ident: 5973_CR29
  doi: 10.1109/IEDM.2018.8614495
– volume: 603
  start-page: 259
  year: 2022
  ident: 5973_CR30
  publication-title: Nature
  doi: 10.1038/s41586-021-04323-3
– volume: 332
  start-page: 1294
  year: 2011
  ident: 5973_CR4
  publication-title: Science
  doi: 10.1126/science.1204428
– volume: 15
  start-page: 17214
  year: 2021
  ident: 5973_CR42
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c06980
– volume: 579
  start-page: 219
  year: 2020
  ident: 5973_CR45
  publication-title: Nature
  doi: 10.1038/s41586-020-2009-2
– volume: 605
  start-page: 69
  year: 2022
  ident: 5973_CR31
  publication-title: Nature
  doi: 10.1038/s41586-022-04523-5
– ident: 5973_CR10
  doi: 10.1109/IRPS.2012.6241919
– volume: 6
  start-page: 1900979
  year: 2020
  ident: 5973_CR27
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900979
– volume: 9
  year: 2018
  ident: 5973_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04484-2
– ident: 5973_CR23
– ident: 5973_CR21
SSID ssj0005174
Score 2.7128606
Snippet Exploiting the excellent electronic properties of two-dimensional (2D) materials to fabricate advanced electronic circuits is a major goal for the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms 639/166/987
639/301/357/1018
Alternation learning
Boron
Boron nitride
Circuits
CMOS
Computation
Density
Electrodes
Electronic circuits
Electrons
Fabrication
Firing pattern
Graphene
Humanities and Social Sciences
Integrated circuits
Integration
Interconnections
Logic circuits
Memristors
Monolayers
multidisciplinary
Multilayers
Neural networks
Pinholes
Science
Science (multidisciplinary)
Semiconductors
Silicon
Silicon dioxide
Silicon substrates
Silicon wafers
Technology assessment
Transistors
Two dimensional materials
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTtwwFL1CIKRuqvJomwJVkLpo1UaNX7G9REPRCAm6KEjsIr8QSJ2AmgGJHf_AH_IlXHuSgQGKxNa-SRz73tzj-PgY4AvVxjnrZUGSqHbFjwvtSl9Yr2kpPbciiSTt7VfDQ757JI7mgPZ7YRJpP0laps90zw772WKiUZEuG9lmWrICZzwLSjIRvXpQDe5pHY-Ul7uNMiVTz9xjNhk9QZhPiZKPVktTEtp5B2879JhvTdq7BHOhWYbFxOJ07TIsdZHa5l87OelvKyCHV3FXVk63b69vBnu__-SjSMJzJ6fnbY6QNR-FUYr0y5A_XM5ehcOdXweDYdEdl1A4wcm44NyXtgpcasclZl4Eb47pEksQBAljEVkRxAPGKMFl6Y2zxBssq3ypjq0y7D3MN2dN-Ai5JiEExzi12nA0w5zuyyCYMJxQqasMSN9vteu0xOORFn_rtKbNVD3p6xr7uk59XZMMvk-vOZ8oabxovd4PR91FVVsnyquWQtMMNqfVGA9xkcM04ewi2iBmxUkQ4Rl8mIze9HGs0pJWSmSgZsZ1ahC1tmdrmtOTpLkdFS6iTk0GP3oXuG_X_1_j0-vM1-ANTe4Z__Ksw_z430XYQNAztp-Tl98BDBH3Vw
  priority: 102
  providerName: Springer Nature
Title Hybrid 2D–CMOS microchips for memristive applications
URI https://link.springer.com/article/10.1038/s41586-023-05973-1
https://www.ncbi.nlm.nih.gov/pubmed/36972685
https://www.proquest.com/docview/2822497592
https://www.proquest.com/docview/2819275814
https://pubmed.ncbi.nlm.nih.gov/PMC10232361
Volume 618
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fb9MwED9trZB4QWz8WcaogsQDCKLFiR3HDwit2UqFtIKASX2L_G_aJJp2pEPa274D35BPwtlN2nUTe_GDfVFi--z7xXf-HcDrREitleER8aTaGT2NhI5NpIxIYm6oYp4k6XiUDU_o5zEbb8CovQvjwirbPdFv1Gaq3Rn5vg93FJyJ5OPsInJZo5x3tU2hIZvUCuaDpxjbhC5uySzuQLd_NPr6bRX0cYuXublGE6f5fo2mLHcBuS6eTfA0Iuum6g7-vBtGecuX6k3U4DE8arBleLBQhi3YsNU2PPAxnrrehq1mHdfhm4Zs-u0T4MMrd2crTA7_Xv8pjr98DycuRE-fnc_qEAFtOLETvw_8tuFNZ_dTOBkc_SiGUZNMIdKMknlEqYlVZikXmnK0ywjtdCpirEGIxKRC3EUQLUiZM8pjI7UiRmJdZuL8VOUyfQadalrZHQgFsdbqlCZKSIpiaPFNbFnKJCUJF1kApB23UjdM4y7hxc_Se7zTvFyMdYljXfqxLkkA75bPzBY8G_dK77XTUTZrri5XGhLAq2UzrhbnApGVnV46GUS0-ItEaADPF7O3fF2aCZ5kOQsgX5vXpYBj4l5vqc7PPCO3479wLDYBvG9VYPVd_-_G7v3deAEPE6-O7sxnDzrzX5f2JUKguerBJh9zLPOCuHLwqQfdg0G_P-o1Go-1RVb8A5bDBSY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEC1_gQJGAgkEUWPHieNDhaA_2tLugqCVeguO7aqV2OxCtqDeeAfeh4fhSRh7nV22Fb31ajs_Ho89nz3jbwCeMqm0royIqSfVzvlhLHVi4spIlgjDq8yTJPX6eXefvzvIDhbgd3sXxoVVtmuiX6jNULsz8lUf7ihFJtnr0dfYZY1y3tU2hYYKqRXMmqcYCxc7duzpD9zCNWvbGzjezxjb2txb78Yhy0CsM07HMecmqXLLhdRcoMFCzKNTmWAJYodMVQhIKJpRpYqMi8QoXVGjsCw3SXFYFSrF916BRe4OUDqw-Haz_-HjLMjkDA90uLaTpMVqg6azcAHALn5OijSm86bxHN49H7Z5xnfrTeLWTbgRsCx5M1G-JViw9TJc9TGlulmGpbBuNOR5ILd-cQtE99TdESNs48_PX-u995_IwIUE6qPjUUMQQJOBHfh157sl_zrXb8P-pYj1DnTqYW3vAZHUWqtTziqpODZDhGESm6WZ4pQJmUdAW7mVOjCbuwQbX0rvYU-LciLrEmVdelmXNIKX02dGE16PC1uvtMNRhjnelDONjODJtBpnp3O5qNoOT1wbRNC4JaM8gruT0Zt-Ls2lYHmRRVDMjeu0gWP-nq-pj488A7jj23CsORG8alVg9l__78b9i7vxGK5193q75e52f-cBXGdeNd150wp0xt9O7EOEX-PqUdBxAp8ve1r9BVZtOzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4am0DcoG38BcYIEkggiBo7ThxfTIitqzrGygSbtLvg2K42iaaFdEy74x14Kx6DJ-HYdVq6id3tNnH-jo99Pud8_g7AcyqkUqXmEXGi2hnrR0LFOiq1oDHXrEydSNJeL-sesvdH6dEC_G72wlhaZTMnuolaD5X9R95ydEfBU0FbfU-L2G933o6-RbaClM20NuU0pC-zoDec3Jjf5LFrzs9wOVdv7LSx719Q2tk-2OpGvuJApFJGxhFjOi4zw7hQjGPwQvyjEhHjEcQRqSwRnBAMqVLmKeOxlqokWuKxTMd5v8xlgve9AUscoz4uBJc2t3v7n2aEkwua0H4LT5zkrRrDaG7JwJZLJ3gSkfkweQn7XqZwXsjjuvDYWYY7HteG7yaOuAILplqFm45fqupVWPFzSB2-9ELXr-4C757b_WIhbf_5-Wtr7-PncGDpger4ZFSHCKbDgRm4OeiHCf9NtN-Dw2sx631YrIaVeQihIMYYlTBaCsmwGaINHZs0SSUjlIssANLYrVBe5dwW2_hauGx7khcTWxdo68LZuiABvJ5eM5pofFzZeq3pjsKP97qYeWcAz6ancaTa9IuszPDUtkE0jcszwgJ4MOm96eOSTHCa5WkA-Vy_ThtYFfD5M9XJsVMDt9obVkEngDeNC8ze6_-f8ejqz3gKt3B4FR92eruP4TZ1nml_Pa3B4vj7qXmCSGxcrnsXD-HLdY-qv4XXP3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+2D%E2%80%93CMOS+microchips+for+memristive+applications&rft.jtitle=Nature+%28London%29&rft.au=Zhu%2C+Kaichen&rft.au=Pazos%2C+Sebastian&rft.au=Aguirre%2C+Fernando&rft.au=Shen%2C+Yaqing&rft.date=2023-06-01&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=618&rft.issue=7963&rft.spage=57&rft.epage=62K&rft_id=info:doi/10.1038%2Fs41586-023-05973-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon