Physics-informed shape optimization using coordinate projection
The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched sub...
Saved in:
Published in | Scientific reports Vol. 14; no. 1; pp. 6537 - 12 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.03.2024
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-024-57137-4 |
Cover
Abstract | The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework’s capability as a viable tool for shape optimization in complex material design tasks. |
---|---|
AbstractList | The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework's capability as a viable tool for shape optimization in complex material design tasks. Abstract The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework’s capability as a viable tool for shape optimization in complex material design tasks. The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework's capability as a viable tool for shape optimization in complex material design tasks.The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework's capability as a viable tool for shape optimization in complex material design tasks. |
ArticleNumber | 6537 |
Author | Zhang, Zhizhou Lin, Chungwei Wang, Bingnan |
Author_xml | – sequence: 1 givenname: Zhizhou surname: Zhang fullname: Zhang, Zhizhou organization: Mitsubishi Electric Research Laboratories – sequence: 2 givenname: Chungwei surname: Lin fullname: Lin, Chungwei organization: Mitsubishi Electric Research Laboratories – sequence: 3 givenname: Bingnan surname: Wang fullname: Wang, Bingnan email: bwang@merl.com organization: Mitsubishi Electric Research Laboratories |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38503891$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxKWXgL9jnypUUahUCQ5wtrzO865XWTvYCVL59Xg3pbQ91BdbfjPjeX7zGh3FFAGhtwR_IJipj4UToVWLKW9FR1jX8hfohGIuWsooPXpwPkZnpWxxXYJqTvQrdMyUqBqanKCL75vbElxpQ_Qp76BvysaO0KRxCrvwx04hxWYuIa4bl1LuQ7QTNGNOW3D72hv00tuhwNndfop-Xn3-cfm1vfn25fry003rBCdTS4XngkiQK1COOVAcW69E75yVSlnvKGXKS685eOpJV41K5S3XshpmQrJTdL3o9sluzZjDzuZbk2wwh4uU18bmKbgBDHF05ZTqPeOee2aV1tJacJRzjR3pq9bFojXOq9qxgzhlOzwSfVyJYWPW6bchWAvC6N7N-Z1CTr9mKJPZheJgGGyENBdDdUc7zJXEFfr-CXSb5hzrX1WUVFJpybqKevfQ0r2Xf4OqALoAXE6lZPD3EILNPhBmCYSpgTCHQBheSeoJyYXpMNLaVhiep7KFWuo7cQ35v-1nWH8BgtjKFg |
CitedBy_id | crossref_primary_10_1016_j_cma_2025_117851 |
Cites_doi | 10.1016/j.cma.2023.116042 10.1039/D0NA00388C 10.1016/j.engstruct.2022.115484 10.4208/cicp.OA-2020-0164 10.1016/S0045-7825(02)00559-5 10.1364/PRJ.415960 10.1109/TMAG.2005.846048 10.1145/3514228 10.1021/jacs.0c09105 10.1109/TMAG.2023.3247023 10.1007/s00158-016-1513-3 10.1007/s10409-021-01148-1 10.1016/j.cma.2021.113741 10.1016/j.taml.2021.100220 10.1073/pnas.2101784118 10.1098/rsta.2020.0097 10.1109/TEC.2022.3180295 10.1016/j.cad.2023.103520 10.3390/s21051654 10.1007/s00158-013-0912-y 10.1016/j.jcp.2018.10.045 10.1039/D1EE02395K 10.1126/sciadv.abk0644 10.1038/s42254-021-00314-5 10.1007/s00158-020-02748-4 10.1137/S1064827501380630 10.1016/j.cma.2023.116401 10.1016/S0045-7949(01)00126-2 10.1109/TMAG.2008.2002784 10.1007/s00158-013-0956-z 10.1016/j.jcp.2021.110754 10.1063/5.0091063 10.1007/s10915-022-01939-z 10.1093/imamat/hxae011 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-024-57137-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_1c2bc88df34f4f3a8996aaec24490c1d PMC10951326 38503891 10_1038_s41598_024_57137_4 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c541t-25f4516e6be8c3ce840af85dcca688afc2238f6f94ef2f1729468fa4964193563 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:05:34 EDT 2025 Thu Aug 21 18:34:45 EDT 2025 Thu Sep 04 17:25:27 EDT 2025 Wed Aug 13 10:59:54 EDT 2025 Mon Jul 21 05:55:04 EDT 2025 Tue Jul 01 00:51:37 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Fri Feb 21 02:37:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Physics-informed neural network Coordinate projection Weak formulation Shape optimization |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c541t-25f4516e6be8c3ce840af85dcca688afc2238f6f94ef2f1729468fa4964193563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-024-57137-4 |
PMID | 38503891 |
PQID | 2968689637 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1c2bc88df34f4f3a8996aaec24490c1d pubmedcentral_primary_oai_pubmedcentral_nih_gov_10951326 proquest_miscellaneous_2972704860 proquest_journals_2968689637 pubmed_primary_38503891 crossref_primary_10_1038_s41598_024_57137_4 crossref_citationtrail_10_1038_s41598_024_57137_4 springer_journals_10_1038_s41598_024_57137_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-19 |
PublicationDateYYYYMMDD | 2024-03-19 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | WangMYWangXGuoDA level set method for structural topology optimizationComput. Methods Appl. Mech. Eng.20031922272462003CMAME.192..227W195140810.1016/S0045-7825(02)00559-5 WiechaPRArbouetAGirardCMuskensOLDeep learning in nano-photonics: Inverse design and beyondPhoton. Res.20219B182B20010.1364/PRJ.415960 ZuoWSaitouKMulti-material topology optimization using ordered simp interpolationStruct. Multidiscip. Optim.201755477491361346410.1007/s00158-016-1513-3 RahimiMMoosaviSMSmitBHattonTAToward smart carbon capture with machine learningCell Rep. Phys. Sci.20212569 ZehnderJLiYCorosSThomaszewskiBNtopo: Mesh-free topology optimization using implicit neural representationsAdv. Neural Inf. Process. Syst.2021341036810381 ZhangZGuGXPhysics-informed deep learning for digital materialsTheor. Appl. Mech. Lett.20211110022010.1016/j.taml.2021.100220 ParkS-IMinSYamasakiSNishiwakiSYooJMagnetic actuator design using level set based topology optimizationIEEE Trans. Magn.200844403740402008ITM....44.4037P10.1109/TMAG.2008.2002784 Grossmann, T. G., Komorowska, U. J., Latz, J. & Schönlieb, C.-B. Can physics-informed neural networks beat the finite element method? arXiv:2302.04107 (2023). ChandrasekharASureshKTounn: Topology optimization using neural networksStruct. Multidiscip. Optim.20216311351149423367410.1007/s00158-020-02748-4 CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (pinns) for fluid mechanics: A reviewActa. Mech. Sin.202137172717382021AcMSn..37.1727C441228010.1007/s10409-021-01148-1 CuomoSScientific machine learning through physics-informed neural networks: Where we are and what’s nextJ. Sci. Comput.20229288445797210.1007/s10915-022-01939-z Van DijkNPMauteKLangelaarMVan KeulenFLevel-set methods for structural topology optimization: A reviewStruct. Multidiscip. Optim.201348437472310758310.1007/s00158-013-0912-y MoosaviSMJablonkaKMSmitBThe role of machine learning in the understanding and design of materialsJ. Am. Chem. Soc.202014220273202871:CAS:528:DC%2BB3cXit1yntr3O10.1021/jacs.0c09105331706787716341 SchultzMGCan deep learning beat numerical weather prediction?Phil. Trans. R. Soc. A2021379202000972021RSPTA.37900097S42361491:STN:280:DC%2BB3snjvFChuw%3D%3D10.1098/rsta.2020.0097335832667898133 KarniadakisGEPhysics-informed machine learningNat. Rev. Phys.2021342244010.1038/s42254-021-00314-5 CaoYLiSPetzoldLSerbanRAdjoint sensitivity analysis for differential-algebraic equations: The adjoint dae system and its numerical solutionSIAM J. Sci. Comput.20032410761089195052510.1137/S1064827501380630 Bommasani, R. et al. On the opportunities and risks of foundation models. arXiv:2108.07258 (2021). Gozalo-Brizuela, R. & Garrido-Merchan, E. C. Chatgpt is not all you need. A state of the art review of large generative ai models. arXiv:2301.04655 (2023). RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045 BiKAccurate medium-range global weather forecasting with 3d neural networksNature2023202316 FujiwaraKOkamotoYKameariAAhagonAThe newton-raphson method accelerated by using a line search-comparison between energy functional and residual minimizationIEEE Trans. Magn.200541172417272005ITM....41.1724F10.1109/TMAG.2005.846048 Ma, P. et al. Learning neural constitutive laws from motion observations for generalizable pde dynamics. arXiv:2304.14369 (2023). PatelRGThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ. Comput. Phys.2022449110754433843010.1016/j.jcp.2021.110754 Mowlavi, S. & Kamrin, K. Topology optimization with physics-informed neural networks: application to noninvasive detection of hidden geometries. arXiv:2303.09280 (2023). McClenny, L. & Braga-Neto, U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv:2009.04544 (2020). YanYHarnessing the power of machine learning for carbon capture, utilisation, and storage (ccus)-a state-of-the-art reviewEnergy Environ. Sci.202114612261571:CAS:528:DC%2BB3MXisVWjsrjJ10.1039/D1EE02395K KhanALowtherDAPhysics informed neural networks for electromagnetic analysisIEEE Trans. Magn.20225814 WillardJJiaXXuSSteinbachMKumarVIntegrating scientific knowledge with machine learning for engineering and environmental systemsACM Comput. Surv.20225513710.1145/3514228 Jagtap, A. D. & Karniadakis, G. E. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. In AAAI spring symposium: MLPS, vol. 10 (2021). Beltrán-PulidoABilionisIAliprantisDPhysics-informed neural networks for solving parametric magnetostatic problemsIEEE Trans. Energy Convers.202237267826892022ITEnC..37.2678B10.1109/TEC.2022.3180295 JeongHA physics-informed neural network-based topology optimization (pinnto) framework for structural optimizationEng. Struct.202327811548410.1016/j.engstruct.2022.115484 Saleh, E., Ghaffari, S., Bretl, T., Olson, L. & West, M. Learning from integral losses in physics informed neural networks. arXiv:2305.17387 (2023). MezzadriFGasickJQianXA framework for physics-informed deep learning over freeform domainsComput. Aided Des.2023160103520457728710.1016/j.cad.2023.103520 JeongHA complete physics-informed neural network-based framework for structural topology optimizationComput. Methods Appl. Mech. Eng.20234171164012023CMAME.417k6401J463875710.1016/j.cma.2023.116401 JacksonJDClassical Electrodynamics1999UkSpringer ZhangEDaoMKarniadakisGESureshSAnalyses of internal structures and defects in materials using physics-informed neural networksSci. Adv.20228eabk06442022SciA....8..644Z10.1126/sciadv.abk0644351716708849303 Li, Z. et al. Physics-informed neural operator for learning partial differential equations. arXiv:2111.03794 (2021). YinLYangWOptimality criteria method for topology optimization under multiple constraintsComput. Struct.2001791839185010.1016/S0045-7949(01)00126-2 KochkovDMachine learning-accelerated computational fluid dynamicsProc. Natl. Acad. Sci.2021118e210178411843012541:CAS:528:DC%2BB3MXhtFOju7rN10.1073/pnas.2101784118340066458166023 Von RuedenLInformed machine learning-a taxonomy and survey of integrating prior knowledge into learning systemsIEEE Trans. Knowl. Data Eng.202135614633 Kovachki, N. et al. Neural operator: Learning maps between function spaces. arXiv:2108.08481 (2021). HaghighatERaissiMMoureAGomezHJuanesRA physics-informed deep learning framework for inversion and surrogate modeling in solid mechanicsComput. Methods Appl. Mech. Eng.20213791137412021CMAME.379k3741H422929210.1016/j.cma.2021.113741 Vurtur BadarinathPChierichettiMDavoudi KakhkiFA machine learning approach as a surrogate for a finite element analysis: Status of research and application to one dimensional systemsSensors20212116542021Senso..21.1654V10.3390/s21051654336736057957535 CaiJChuXXuKLiHWeiJMachine learning-driven new material discoveryNanoscale Adv.20202311531302020NanoA...2.3115C10.1039/D0NA00388C361342809419423 BaldanMDi BarbaPLowtherDAPhysics-informed neural networks for inverse electromagnetic problemsIEEE Trans. Magn.2023591510.1109/TMAG.2023.3247023 DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: Post 2000Struct. Multidiscip. Optim.201449138318245010.1007/s00158-013-0956-z QiuRPhysics-informed neural networks for phase-field method in two-phase flowPhys. Fluids20223474510.1063/5.0091063 SunYSenguptaUJuniperMPhysics-informed deep learning for simultaneous surrogate modeling and pde-constrained optimization of an airfoil geometryComput. Methods Appl. Mech. Eng.20234111160422023CMAME.411k6042S457860210.1016/j.cma.2023.116042 57137_CR2 57137_CR1 J Cai (57137_CR7) 2020; 2 M Baldan (57137_CR25) 2023; 59 A Khan (57137_CR20) 2022; 58 Y Yan (57137_CR4) 2021; 14 NP Van Dijk (57137_CR40) 2013; 48 E Zhang (57137_CR32) 2022; 8 JD Jackson (57137_CR47) 1999 SM Moosavi (57137_CR8) 2020; 142 L Von Rueden (57137_CR11) 2021; 35 57137_CR30 57137_CR31 W Zuo (57137_CR34) 2017; 55 L Yin (57137_CR46) 2001; 79 R Qiu (57137_CR41) 2022; 34 K Bi (57137_CR5) 2023; 2023 A Beltrán-Pulido (57137_CR26) 2022; 37 D Kochkov (57137_CR9) 2021; 118 S Cai (57137_CR16) 2021; 37 MG Schultz (57137_CR6) 2021; 379 Y Sun (57137_CR28) 2023; 411 S Cuomo (57137_CR13) 2022; 92 A Chandrasekhar (57137_CR38) 2021; 63 RG Patel (57137_CR19) 2022; 449 J Zehnder (57137_CR36) 2021; 34 K Fujiwara (57137_CR48) 2005; 41 F Mezzadri (57137_CR27) 2023; 160 Y Cao (57137_CR23) 2003; 24 57137_CR45 PR Wiecha (57137_CR24) 2021; 9 JD Deaton (57137_CR35) 2014; 49 57137_CR42 P Vurtur Badarinath (57137_CR10) 2021; 21 57137_CR21 Z Zhang (57137_CR29) 2021; 11 H Jeong (57137_CR33) 2023; 278 E Haghighat (57137_CR18) 2021; 379 57137_CR22 57137_CR44 M Raissi (57137_CR14) 2019; 378 M Rahimi (57137_CR3) 2021; 2 GE Karniadakis (57137_CR15) 2021; 3 57137_CR17 MY Wang (57137_CR39) 2003; 192 H Jeong (57137_CR37) 2023; 417 J Willard (57137_CR12) 2022; 55 S-I Park (57137_CR43) 2008; 44 |
References_xml | – reference: ZhangZGuGXPhysics-informed deep learning for digital materialsTheor. Appl. Mech. Lett.20211110022010.1016/j.taml.2021.100220 – reference: Von RuedenLInformed machine learning-a taxonomy and survey of integrating prior knowledge into learning systemsIEEE Trans. Knowl. Data Eng.202135614633 – reference: McClenny, L. & Braga-Neto, U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv:2009.04544 (2020). – reference: MezzadriFGasickJQianXA framework for physics-informed deep learning over freeform domainsComput. Aided Des.2023160103520457728710.1016/j.cad.2023.103520 – reference: Vurtur BadarinathPChierichettiMDavoudi KakhkiFA machine learning approach as a surrogate for a finite element analysis: Status of research and application to one dimensional systemsSensors20212116542021Senso..21.1654V10.3390/s21051654336736057957535 – reference: RahimiMMoosaviSMSmitBHattonTAToward smart carbon capture with machine learningCell Rep. Phys. Sci.20212569 – reference: ZehnderJLiYCorosSThomaszewskiBNtopo: Mesh-free topology optimization using implicit neural representationsAdv. Neural Inf. Process. Syst.2021341036810381 – reference: CaoYLiSPetzoldLSerbanRAdjoint sensitivity analysis for differential-algebraic equations: The adjoint dae system and its numerical solutionSIAM J. Sci. Comput.20032410761089195052510.1137/S1064827501380630 – reference: ZuoWSaitouKMulti-material topology optimization using ordered simp interpolationStruct. Multidiscip. Optim.201755477491361346410.1007/s00158-016-1513-3 – reference: YinLYangWOptimality criteria method for topology optimization under multiple constraintsComput. Struct.2001791839185010.1016/S0045-7949(01)00126-2 – reference: WangMYWangXGuoDA level set method for structural topology optimizationComput. Methods Appl. Mech. Eng.20031922272462003CMAME.192..227W195140810.1016/S0045-7825(02)00559-5 – reference: Gozalo-Brizuela, R. & Garrido-Merchan, E. C. Chatgpt is not all you need. A state of the art review of large generative ai models. arXiv:2301.04655 (2023). – reference: SchultzMGCan deep learning beat numerical weather prediction?Phil. Trans. R. Soc. A2021379202000972021RSPTA.37900097S42361491:STN:280:DC%2BB3snjvFChuw%3D%3D10.1098/rsta.2020.0097335832667898133 – reference: MoosaviSMJablonkaKMSmitBThe role of machine learning in the understanding and design of materialsJ. Am. Chem. Soc.202014220273202871:CAS:528:DC%2BB3cXit1yntr3O10.1021/jacs.0c09105331706787716341 – reference: KarniadakisGEPhysics-informed machine learningNat. Rev. Phys.2021342244010.1038/s42254-021-00314-5 – reference: BaldanMDi BarbaPLowtherDAPhysics-informed neural networks for inverse electromagnetic problemsIEEE Trans. Magn.2023591510.1109/TMAG.2023.3247023 – reference: Van DijkNPMauteKLangelaarMVan KeulenFLevel-set methods for structural topology optimization: A reviewStruct. Multidiscip. Optim.201348437472310758310.1007/s00158-013-0912-y – reference: CuomoSScientific machine learning through physics-informed neural networks: Where we are and what’s nextJ. Sci. Comput.20229288445797210.1007/s10915-022-01939-z – reference: SunYSenguptaUJuniperMPhysics-informed deep learning for simultaneous surrogate modeling and pde-constrained optimization of an airfoil geometryComput. Methods Appl. Mech. Eng.20234111160422023CMAME.411k6042S457860210.1016/j.cma.2023.116042 – reference: DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: Post 2000Struct. Multidiscip. Optim.201449138318245010.1007/s00158-013-0956-z – reference: WillardJJiaXXuSSteinbachMKumarVIntegrating scientific knowledge with machine learning for engineering and environmental systemsACM Comput. Surv.20225513710.1145/3514228 – reference: Grossmann, T. G., Komorowska, U. J., Latz, J. & Schönlieb, C.-B. Can physics-informed neural networks beat the finite element method? arXiv:2302.04107 (2023). – reference: Beltrán-PulidoABilionisIAliprantisDPhysics-informed neural networks for solving parametric magnetostatic problemsIEEE Trans. Energy Convers.202237267826892022ITEnC..37.2678B10.1109/TEC.2022.3180295 – reference: JacksonJDClassical Electrodynamics1999UkSpringer – reference: CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (pinns) for fluid mechanics: A reviewActa. Mech. Sin.202137172717382021AcMSn..37.1727C441228010.1007/s10409-021-01148-1 – reference: ZhangEDaoMKarniadakisGESureshSAnalyses of internal structures and defects in materials using physics-informed neural networksSci. Adv.20228eabk06442022SciA....8..644Z10.1126/sciadv.abk0644351716708849303 – reference: PatelRGThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ. Comput. Phys.2022449110754433843010.1016/j.jcp.2021.110754 – reference: QiuRPhysics-informed neural networks for phase-field method in two-phase flowPhys. Fluids20223474510.1063/5.0091063 – reference: Saleh, E., Ghaffari, S., Bretl, T., Olson, L. & West, M. Learning from integral losses in physics informed neural networks. arXiv:2305.17387 (2023). – reference: JeongHA complete physics-informed neural network-based framework for structural topology optimizationComput. Methods Appl. Mech. Eng.20234171164012023CMAME.417k6401J463875710.1016/j.cma.2023.116401 – reference: Kovachki, N. et al. Neural operator: Learning maps between function spaces. arXiv:2108.08481 (2021). – reference: Li, Z. et al. Physics-informed neural operator for learning partial differential equations. arXiv:2111.03794 (2021). – reference: ChandrasekharASureshKTounn: Topology optimization using neural networksStruct. Multidiscip. Optim.20216311351149423367410.1007/s00158-020-02748-4 – reference: KochkovDMachine learning-accelerated computational fluid dynamicsProc. Natl. Acad. Sci.2021118e210178411843012541:CAS:528:DC%2BB3MXhtFOju7rN10.1073/pnas.2101784118340066458166023 – reference: WiechaPRArbouetAGirardCMuskensOLDeep learning in nano-photonics: Inverse design and beyondPhoton. Res.20219B182B20010.1364/PRJ.415960 – reference: YanYHarnessing the power of machine learning for carbon capture, utilisation, and storage (ccus)-a state-of-the-art reviewEnergy Environ. Sci.202114612261571:CAS:528:DC%2BB3MXisVWjsrjJ10.1039/D1EE02395K – reference: KhanALowtherDAPhysics informed neural networks for electromagnetic analysisIEEE Trans. Magn.20225814 – reference: Ma, P. et al. Learning neural constitutive laws from motion observations for generalizable pde dynamics. arXiv:2304.14369 (2023). – reference: HaghighatERaissiMMoureAGomezHJuanesRA physics-informed deep learning framework for inversion and surrogate modeling in solid mechanicsComput. Methods Appl. Mech. Eng.20213791137412021CMAME.379k3741H422929210.1016/j.cma.2021.113741 – reference: ParkS-IMinSYamasakiSNishiwakiSYooJMagnetic actuator design using level set based topology optimizationIEEE Trans. Magn.200844403740402008ITM....44.4037P10.1109/TMAG.2008.2002784 – reference: FujiwaraKOkamotoYKameariAAhagonAThe newton-raphson method accelerated by using a line search-comparison between energy functional and residual minimizationIEEE Trans. Magn.200541172417272005ITM....41.1724F10.1109/TMAG.2005.846048 – reference: Bommasani, R. et al. On the opportunities and risks of foundation models. arXiv:2108.07258 (2021). – reference: CaiJChuXXuKLiHWeiJMachine learning-driven new material discoveryNanoscale Adv.20202311531302020NanoA...2.3115C10.1039/D0NA00388C361342809419423 – reference: BiKAccurate medium-range global weather forecasting with 3d neural networksNature2023202316 – reference: JeongHA physics-informed neural network-based topology optimization (pinnto) framework for structural optimizationEng. Struct.202327811548410.1016/j.engstruct.2022.115484 – reference: Jagtap, A. D. & Karniadakis, G. E. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. In AAAI spring symposium: MLPS, vol. 10 (2021). – reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045 – reference: Mowlavi, S. & Kamrin, K. Topology optimization with physics-informed neural networks: application to noninvasive detection of hidden geometries. arXiv:2303.09280 (2023). – ident: 57137_CR1 – volume: 411 start-page: 116042 year: 2023 ident: 57137_CR28 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116042 – volume: 2 start-page: 3115 year: 2020 ident: 57137_CR7 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00388C – volume: 278 start-page: 115484 year: 2023 ident: 57137_CR33 publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115484 – ident: 57137_CR44 doi: 10.4208/cicp.OA-2020-0164 – volume: 192 start-page: 227 year: 2003 ident: 57137_CR39 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00559-5 – volume: 9 start-page: B182 year: 2021 ident: 57137_CR24 publication-title: Photon. Res. doi: 10.1364/PRJ.415960 – ident: 57137_CR45 – volume: 41 start-page: 1724 year: 2005 ident: 57137_CR48 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2005.846048 – volume: 35 start-page: 614 year: 2021 ident: 57137_CR11 publication-title: IEEE Trans. Knowl. Data Eng. – volume: 55 start-page: 1 year: 2022 ident: 57137_CR12 publication-title: ACM Comput. Surv. doi: 10.1145/3514228 – volume: 34 start-page: 10368 year: 2021 ident: 57137_CR36 publication-title: Adv. Neural Inf. Process. Syst. – volume: 142 start-page: 20273 year: 2020 ident: 57137_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c09105 – volume: 59 start-page: 1 year: 2023 ident: 57137_CR25 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2023.3247023 – volume: 55 start-page: 477 year: 2017 ident: 57137_CR34 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-016-1513-3 – volume: 37 start-page: 1727 year: 2021 ident: 57137_CR16 publication-title: Acta. Mech. Sin. doi: 10.1007/s10409-021-01148-1 – volume: 379 start-page: 113741 year: 2021 ident: 57137_CR18 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113741 – volume-title: Classical Electrodynamics year: 1999 ident: 57137_CR47 – volume: 11 start-page: 100220 year: 2021 ident: 57137_CR29 publication-title: Theor. Appl. Mech. Lett. doi: 10.1016/j.taml.2021.100220 – ident: 57137_CR31 – volume: 118 start-page: e2101784118 year: 2021 ident: 57137_CR9 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.2101784118 – ident: 57137_CR2 – volume: 58 start-page: 1 year: 2022 ident: 57137_CR20 publication-title: IEEE Trans. Magn. – ident: 57137_CR17 – ident: 57137_CR42 – volume: 379 start-page: 20200097 year: 2021 ident: 57137_CR6 publication-title: Phil. Trans. R. Soc. A doi: 10.1098/rsta.2020.0097 – volume: 37 start-page: 2678 year: 2022 ident: 57137_CR26 publication-title: IEEE Trans. Energy Convers. doi: 10.1109/TEC.2022.3180295 – volume: 160 start-page: 103520 year: 2023 ident: 57137_CR27 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2023.103520 – volume: 21 start-page: 1654 year: 2021 ident: 57137_CR10 publication-title: Sensors doi: 10.3390/s21051654 – ident: 57137_CR21 – volume: 48 start-page: 437 year: 2013 ident: 57137_CR40 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0912-y – volume: 378 start-page: 686 year: 2019 ident: 57137_CR14 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 14 start-page: 6122 year: 2021 ident: 57137_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02395K – volume: 2023 start-page: 1 year: 2023 ident: 57137_CR5 publication-title: Nature – volume: 8 start-page: eabk0644 year: 2022 ident: 57137_CR32 publication-title: Sci. Adv. doi: 10.1126/sciadv.abk0644 – volume: 3 start-page: 422 year: 2021 ident: 57137_CR15 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00314-5 – volume: 63 start-page: 1135 year: 2021 ident: 57137_CR38 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02748-4 – volume: 24 start-page: 1076 year: 2003 ident: 57137_CR23 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501380630 – ident: 57137_CR30 – volume: 417 start-page: 116401 year: 2023 ident: 57137_CR37 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2023.116401 – volume: 79 start-page: 1839 year: 2001 ident: 57137_CR46 publication-title: Comput. Struct. doi: 10.1016/S0045-7949(01)00126-2 – volume: 44 start-page: 4037 year: 2008 ident: 57137_CR43 publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2008.2002784 – volume: 49 start-page: 1 year: 2014 ident: 57137_CR35 publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-0956-z – volume: 449 start-page: 110754 year: 2022 ident: 57137_CR19 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110754 – volume: 34 start-page: 745 year: 2022 ident: 57137_CR41 publication-title: Phys. Fluids doi: 10.1063/5.0091063 – volume: 92 start-page: 88 year: 2022 ident: 57137_CR13 publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01939-z – volume: 2 start-page: 569 year: 2021 ident: 57137_CR3 publication-title: Cell Rep. Phys. Sci. – ident: 57137_CR22 doi: 10.1093/imamat/hxae011 |
SSID | ssj0000529419 |
Score | 2.4348629 |
Snippet | The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and... Abstract The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6537 |
SubjectTerms | 639/301/1034 639/705/1042 639/766/25 Adaptability Artificial intelligence Coordinate projection Design Finite element method Humanities and Social Sciences multidisciplinary Neural networks Optimization Permeability Physics Physics-informed neural network Science Science (multidisciplinary) Shape optimization Structural engineering Weak formulation |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDLYqJKReqgKlHV6aSr21EZvEk0lOCFAR6qGnInGLMpmkILWziF0O_HucZHbLlj4uXDcZybId-_PG-QzwgVBD61TTMkMOwbBTKQ4GzzrsI-qudRhyl-9XdX6BXy6by0ejvlJPWKEHLoo75F50Xus-SowYpaP6QDkXPKUlM_G8T9GX0tijYqqweguD3IyvZCZSH84oU6XXZAJZQ4VZy3AlE2XC_j-hzKfNkr_dmOZEdPYaXo0Isj4ukm_AizBswnqZKXm_BUe5p9PPWKFEDX09u3I3oZ5SbPg5PrqsU7f799pPqfK8Hght1uMfMrT2Bi7OPn87PWfjlATmG-RzJpqYhu0G1QXtpQ9Usbmom55Mo7R20RMA0FFFgyGKSHjFoNLRoVGkINkouQ1rw3QI76CeuE447mPPG4c6xoQOWo7Cxbb1UqoK-EJj1o8U4mmSxQ-br7KltkXLlrRss5YtVvBx-c1NIdD45-6TZIjlzkR-nX8gl7CjS9j_uUQFewsz2vFEzqwwSitN4aat4P1ymc5SuiBxQ5jepT2E5vJYrgreFqsvJZE6cxHyCvSKP6yIuroyXF9lvm6eYCzB5Ao-LVznl1x_18XOc-hiF16K5POpA9Hswdr89i7sE4yadwf5xDwAM3MYaA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXivJMaVGQuIHVdezYzqkCRFVx4ESlvVmOY7eVIFma7aH_vjOON9Xy6C2KHcmZlz_PjGcA3iNq0E7VmjUoEEy2iuxg8KyVXZSm1U6GlOX7XZ2eyW_LepkdbmNOq9zYxGSou8GTj_yoapRRBsVFH69-M-oaRdHV3ELjITziCFVIqvVSzz4WimJJ3uS7Mgthjkbcr-hOWSVZjcczzeTWfpTK9v8La_6dMvlH3DRtRydPYTfjyPLTxPg9eBD6Z_B46ix5g08ps9OPz-E4P7GpRGroyvHCrUI5oK34lS9hlpT9fl76AU-ilz2izzI7aHDsBZydfP3x5ZTlrgnM15KvWVVHar4bVBuMFz7gCc5FU3fIKmWMix4BgYkqNjLEKiJ-aaQy0clGIalErcRL2OmHPryGcuHaynEfO147aWIktKC5rFzU2guhCuAb2lmfS4pTZ4ufNoW2hbETvS3S2yZ6W1nAh_mb1VRQ497Zn4kl80wqhp1eDFfnNuuW5b5qvTFdFDLKKBweIZVzwSNyaRaedwUcbBhqs4aO9k6eCng3D6NuUcDE9WG4pjmI7lKbrgJeTfyfVyJMqk3ICzBbkrG11O2R_vIi1e_mBGsRNhfwcSNEd-v6Py327_-NN_CkIrmmXMPmAHbWV9fhEAHTun2btOIW7cQSNA priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-BLsa0fq62s4FsbbT42mzxIUWkpBX3qQd9CNpu0hbrb3l3B_vdOstmT01PwdTOBMB-Z32zmA-AdoobayqomGhWCiEbGe9A70og2CNXUVviU5ftNnk7E2UV1sQbjuKPMwNnK0C7Ok5pMb97_uHs4QoP_OJSMqw8zdEKxUIwJUmHMVRPxCDbQM7Go5V8z3B96fTMtqM61M6u3Lvmn1MZ_Ffb8M4Xyt3fU5J5OnsJmxpXlp0ERtmDNd9vweJg0-bADRynT083I0CjVt-Xsyt76sscb43suxSxjDvxl6XqMR687xKBl_k2Da89gcnJ8_uWU5NkJxFWCzgmrQhzB62XjlePOYxxng6paFJhUygaHsEAFGbTwgQVEMVpIFazQEhnEK8mfw3rXd_4llIe2YZa60NLKChVCxAw1FcyGunacywLoyDHjcmPxON_ixqQHbq7MwGWDXDaJy0YUsL_Yczu01fgn9ecoiAVlbImdPvTTS5MtzFDHGqdUG7gIInCLgaS01jvEL_rQ0baA3VGMZlQzw7RUUuElVBfwdrGMFhafTWzn-_tIgxgvDesq4MUg9cVJuEodCmkBakkflo66vNJdX6Uu3jSCWwTPBRyMqvPrXH_nxav_I38NT1jU7piBqHdhfT6993sIo-bNm2QbPwFbPxaG priority: 102 providerName: Scholars Portal |
Title | Physics-informed shape optimization using coordinate projection |
URI | https://link.springer.com/article/10.1038/s41598-024-57137-4 https://www.ncbi.nlm.nih.gov/pubmed/38503891 https://www.proquest.com/docview/2968689637 https://www.proquest.com/docview/2972704860 https://pubmed.ncbi.nlm.nih.gov/PMC10951326 https://doaj.org/article/1c2bc88df34f4f3a8996aaec24490c1d |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLafp0my4u9Naarh6W5FPZLAlhoaG0DexNyLKUBFI7ZDeH_vuOZNll2ySQiw3SCMRoNPONNJoB-ICoQRpRyqJCgSh4LYIedLaoeeO5qqXhLkb5nojjU75YlsstoMNbmBi0H1NaRjU9RId9XqGhCY_BKC9K9KtkwbdhV0lGcTPuzmaLH4vxZCXcXXFSpRcyU6ZuGbxhhWKy_tsQ5v-Bkv_clkYjdPQUniT0mM_6-e7BlmufwaO-nuTv5_AlxnPaVdGnQ3VNvjo3Vy7vUC_8Sg8u8xDpfpbbDr3OC-SBy9NhDPa9gNOjw5_z4yJVSChsycm6oKUPhXadqJ2yzDr01oxXZYPLIpQy3qLxV174ijtPPWKVigvlDa8EMoiVgr2EnbZr3WvIp6amhljfkNJw5X1ABpJwaryUljGRARk4pm1KHx6qWFzqeI3NlO65rJHLOnJZ8ww-jmOu-uQZ91IfhIUYKUPi69jQXZ_pJAiaWFpbpRrPuOeeGXQXhTHOIkqpppY0GewPy6jTblxpWgklFKoamcH7sRv3UbgcMa3rbgINIrlYkiuDV_2qjzNhKuYhJBmoDXnYmOpmT3txHnN1kwBhESJn8GkQnb_zupsXbx5G_hYe0yDdIc6w2oed9fWNe4dgaV1PYFsu5STtEfwfHJ58-46tczGfxAMI_H7l6g9MAhNo |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLOkFAgSnMDqxnZs54AqXtWWlp5aaW_Gcey2EiTbZivUP8VvZOw8quXRW29R7ET2eDzzjWc8A_AKUYM0IpekQIYgvBRBDjpLSl55rkppuItRvvtiesi_zPLZCvwa7sKEsMpBJkZBXTU2nJFv0kIooZBd5Nb8lISqUcG7OpTQ6Nhi1138RJOtfbfzCdf3NaXbnw8-TklfVYDYnGcLQnMfitM6UTplmXVo4Riv8gqnIpQy3qLCVF74gjtPPer3ggvlDS8ER7CTC4b_vQE3OZvwkKtfzuR4phO8Ztipv5szYWqzRf0Y7rBRTnI0ByXhS_ovlgn4F7b9O0TzDz9tVH_b9-Buj1vT9x2j3YcVVz-AW10lywt8ipGktn0IW_0T6VKyuiptj83cpQ3Kph_9pc80RNsfpbZBMp7UiHbT_kAI2x7B4bXQ8zGs1k3tnkA6MSU1mfVVlhuuvA_oRGacGi-lZUwkkA2007ZPYR4qaXzX0ZXOlO7orZHeOtJb8wTejN_MuwQeV_b-EJZk7BmSb8cXzdmR7veyziwtrVKVZ9xzzwyarMIYZxEpFRObVQlsDAuqe4nQ6kv-TeDl2Ix7OThoTO2a89AH0WQsC5bAWrf-40iYirkQswTUEmcsDXW5pT45jvnCswCjEaYn8HZgostx_Z8W61dP4wXcnh583dN7O_u7T-EODTwe4hyLDVhdnJ27ZwjWFuXzuENS-HbdW_I33tdOwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaLd2I7tHFAFlFVLUcWBSnszjmO3lWiybbZC_Wv8OsaOk2p59NZbFDuRPZ7HZ894BuAVogaheSGyEhkiYxX3etCarGK1Y7ISmtkQ5bvHt_fZ53kxX4Nfw10YH1Y56MSgqOvW-DPyCSm55BLZRUxcDIv4ujXbXJxkvoKU97QO5TR6Ftm15z9x-9a929nCtX5NyOzTt4_bWawwkJmC5cuMFM4XqrW8stJQY3G3o50sapwWl1I7g8ZTOu5KZh1xaOtLxqXTrOQMgU_BKf73GlwXlFEfTibmYjzf8R407BTv6UypnHRoK_19NsKyAreGImMrtjCUDPgXzv07XPMPn20whbM7cDti2PR9z3R3Yc029-BGX9XyHJ9CVKnp7sNmfMr69Ky2TrtDvbBpi3rqOF4ATX3k_UFqWiTjUYPIN42HQ9j2APavhJ4PYb1pG_sY0qmuiM6Nq_NCM-mcRyoiZ0Q7IQylPIF8oJ0yMZ25r6rxQwW3OpWqp7dCeqtAb8USeDN-s-iTeVza-4NfkrGnT8QdXrSnByrKtcoNqYyUtaPMMUc1bl-51tYgaiqnJq8T2BgWVEXt0KkLXk7g5diMcu2dNbqx7Znvg8gylAhL4FG__uNIqAx5EfME5ApnrAx1taU5Ogy5w3MPqRGyJ_B2YKKLcf2fFk8un8YLuInCqL7s7O0-hVvEs7gPeSw3YH15emafIW5bVs-DgKTw_aol8jekKVL7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+shape+optimization+using+coordinate+projection&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Zhizhou&rft.au=Lin%2C+Chungwei&rft.au=Wang%2C+Bingnan&rft.date=2024-03-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-57137-4&rft.externalDocID=10_1038_s41598_024_57137_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |