Physics-informed shape optimization using coordinate projection

The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched sub...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 6537 - 12
Main Authors Zhang, Zhizhou, Lin, Chungwei, Wang, Bingnan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.03.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-57137-4

Cover

Abstract The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework’s capability as a viable tool for shape optimization in complex material design tasks.
AbstractList The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework's capability as a viable tool for shape optimization in complex material design tasks.
Abstract The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework’s capability as a viable tool for shape optimization in complex material design tasks.
The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework's capability as a viable tool for shape optimization in complex material design tasks.The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and analysis. Among various scientific machine learning techniques, physics-informed neural network (PINN) has been one of the most researched subjects, for its ability to incorporate physics prior knowledge into model training. However, the intrinsic continuity requirement of PINN demands the adoption of domain decomposition when multiple materials with distinct properties exist. This greatly complicates the gradient computation of design features, restricting the application of PINN to structural shape optimization. To address this, we present a novel framework that employs neural network coordinate projection for shape optimization within PINN. This technique allows for direct mapping from a standard shape to its optimal counterpart, optimizing the design objective without the need for traditional transition functions or the definition of intermediate material properties. Our method demonstrates a high degree of adaptability, allowing the incorporation of diverse constraints and objectives directly as training penalties. The proposed approach is tested on magnetostatic problems for iron core shape optimization, a scenario typically plagued by the high permeability contrast between materials. Validation with finite-element analysis confirms the accuracy and efficiency of our approach. The results highlight the framework's capability as a viable tool for shape optimization in complex material design tasks.
ArticleNumber 6537
Author Zhang, Zhizhou
Lin, Chungwei
Wang, Bingnan
Author_xml – sequence: 1
  givenname: Zhizhou
  surname: Zhang
  fullname: Zhang, Zhizhou
  organization: Mitsubishi Electric Research Laboratories
– sequence: 2
  givenname: Chungwei
  surname: Lin
  fullname: Lin, Chungwei
  organization: Mitsubishi Electric Research Laboratories
– sequence: 3
  givenname: Bingnan
  surname: Wang
  fullname: Wang, Bingnan
  email: bwang@merl.com
  organization: Mitsubishi Electric Research Laboratories
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38503891$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxKWXgL9jnypUUahUCQ5wtrzO865XWTvYCVL59Xg3pbQ91BdbfjPjeX7zGh3FFAGhtwR_IJipj4UToVWLKW9FR1jX8hfohGIuWsooPXpwPkZnpWxxXYJqTvQrdMyUqBqanKCL75vbElxpQ_Qp76BvysaO0KRxCrvwx04hxWYuIa4bl1LuQ7QTNGNOW3D72hv00tuhwNndfop-Xn3-cfm1vfn25fry003rBCdTS4XngkiQK1COOVAcW69E75yVSlnvKGXKS685eOpJV41K5S3XshpmQrJTdL3o9sluzZjDzuZbk2wwh4uU18bmKbgBDHF05ZTqPeOee2aV1tJacJRzjR3pq9bFojXOq9qxgzhlOzwSfVyJYWPW6bchWAvC6N7N-Z1CTr9mKJPZheJgGGyENBdDdUc7zJXEFfr-CXSb5hzrX1WUVFJpybqKevfQ0r2Xf4OqALoAXE6lZPD3EILNPhBmCYSpgTCHQBheSeoJyYXpMNLaVhiep7KFWuo7cQ35v-1nWH8BgtjKFg
CitedBy_id crossref_primary_10_1016_j_cma_2025_117851
Cites_doi 10.1016/j.cma.2023.116042
10.1039/D0NA00388C
10.1016/j.engstruct.2022.115484
10.4208/cicp.OA-2020-0164
10.1016/S0045-7825(02)00559-5
10.1364/PRJ.415960
10.1109/TMAG.2005.846048
10.1145/3514228
10.1021/jacs.0c09105
10.1109/TMAG.2023.3247023
10.1007/s00158-016-1513-3
10.1007/s10409-021-01148-1
10.1016/j.cma.2021.113741
10.1016/j.taml.2021.100220
10.1073/pnas.2101784118
10.1098/rsta.2020.0097
10.1109/TEC.2022.3180295
10.1016/j.cad.2023.103520
10.3390/s21051654
10.1007/s00158-013-0912-y
10.1016/j.jcp.2018.10.045
10.1039/D1EE02395K
10.1126/sciadv.abk0644
10.1038/s42254-021-00314-5
10.1007/s00158-020-02748-4
10.1137/S1064827501380630
10.1016/j.cma.2023.116401
10.1016/S0045-7949(01)00126-2
10.1109/TMAG.2008.2002784
10.1007/s00158-013-0956-z
10.1016/j.jcp.2021.110754
10.1063/5.0091063
10.1007/s10915-022-01939-z
10.1093/imamat/hxae011
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-024-57137-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_1c2bc88df34f4f3a8996aaec24490c1d
PMC10951326
38503891
10_1038_s41598_024_57137_4
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c541t-25f4516e6be8c3ce840af85dcca688afc2238f6f94ef2f1729468fa4964193563
IEDL.DBID AAJSJ
ISSN 2045-2322
IngestDate Wed Aug 27 01:05:34 EDT 2025
Thu Aug 21 18:34:45 EDT 2025
Thu Sep 04 17:25:27 EDT 2025
Wed Aug 13 10:59:54 EDT 2025
Mon Jul 21 05:55:04 EDT 2025
Tue Jul 01 00:51:37 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Fri Feb 21 02:37:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Physics-informed neural network
Coordinate projection
Weak formulation
Shape optimization
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-25f4516e6be8c3ce840af85dcca688afc2238f6f94ef2f1729468fa4964193563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-024-57137-4
PMID 38503891
PQID 2968689637
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_1c2bc88df34f4f3a8996aaec24490c1d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10951326
proquest_miscellaneous_2972704860
proquest_journals_2968689637
pubmed_primary_38503891
crossref_primary_10_1038_s41598_024_57137_4
crossref_citationtrail_10_1038_s41598_024_57137_4
springer_journals_10_1038_s41598_024_57137_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-19
PublicationDateYYYYMMDD 2024-03-19
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References WangMYWangXGuoDA level set method for structural topology optimizationComput. Methods Appl. Mech. Eng.20031922272462003CMAME.192..227W195140810.1016/S0045-7825(02)00559-5
WiechaPRArbouetAGirardCMuskensOLDeep learning in nano-photonics: Inverse design and beyondPhoton. Res.20219B182B20010.1364/PRJ.415960
ZuoWSaitouKMulti-material topology optimization using ordered simp interpolationStruct. Multidiscip. Optim.201755477491361346410.1007/s00158-016-1513-3
RahimiMMoosaviSMSmitBHattonTAToward smart carbon capture with machine learningCell Rep. Phys. Sci.20212569
ZehnderJLiYCorosSThomaszewskiBNtopo: Mesh-free topology optimization using implicit neural representationsAdv. Neural Inf. Process. Syst.2021341036810381
ZhangZGuGXPhysics-informed deep learning for digital materialsTheor. Appl. Mech. Lett.20211110022010.1016/j.taml.2021.100220
ParkS-IMinSYamasakiSNishiwakiSYooJMagnetic actuator design using level set based topology optimizationIEEE Trans. Magn.200844403740402008ITM....44.4037P10.1109/TMAG.2008.2002784
Grossmann, T. G., Komorowska, U. J., Latz, J. & Schönlieb, C.-B. Can physics-informed neural networks beat the finite element method? arXiv:2302.04107 (2023).
ChandrasekharASureshKTounn: Topology optimization using neural networksStruct. Multidiscip. Optim.20216311351149423367410.1007/s00158-020-02748-4
CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (pinns) for fluid mechanics: A reviewActa. Mech. Sin.202137172717382021AcMSn..37.1727C441228010.1007/s10409-021-01148-1
CuomoSScientific machine learning through physics-informed neural networks: Where we are and what’s nextJ. Sci. Comput.20229288445797210.1007/s10915-022-01939-z
Van DijkNPMauteKLangelaarMVan KeulenFLevel-set methods for structural topology optimization: A reviewStruct. Multidiscip. Optim.201348437472310758310.1007/s00158-013-0912-y
MoosaviSMJablonkaKMSmitBThe role of machine learning in the understanding and design of materialsJ. Am. Chem. Soc.202014220273202871:CAS:528:DC%2BB3cXit1yntr3O10.1021/jacs.0c09105331706787716341
SchultzMGCan deep learning beat numerical weather prediction?Phil. Trans. R. Soc. A2021379202000972021RSPTA.37900097S42361491:STN:280:DC%2BB3snjvFChuw%3D%3D10.1098/rsta.2020.0097335832667898133
KarniadakisGEPhysics-informed machine learningNat. Rev. Phys.2021342244010.1038/s42254-021-00314-5
CaoYLiSPetzoldLSerbanRAdjoint sensitivity analysis for differential-algebraic equations: The adjoint dae system and its numerical solutionSIAM J. Sci. Comput.20032410761089195052510.1137/S1064827501380630
Bommasani, R. et al. On the opportunities and risks of foundation models. arXiv:2108.07258 (2021).
Gozalo-Brizuela, R. & Garrido-Merchan, E. C. Chatgpt is not all you need. A state of the art review of large generative ai models. arXiv:2301.04655 (2023).
RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045
BiKAccurate medium-range global weather forecasting with 3d neural networksNature2023202316
FujiwaraKOkamotoYKameariAAhagonAThe newton-raphson method accelerated by using a line search-comparison between energy functional and residual minimizationIEEE Trans. Magn.200541172417272005ITM....41.1724F10.1109/TMAG.2005.846048
Ma, P. et al. Learning neural constitutive laws from motion observations for generalizable pde dynamics. arXiv:2304.14369 (2023).
PatelRGThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ. Comput. Phys.2022449110754433843010.1016/j.jcp.2021.110754
Mowlavi, S. & Kamrin, K. Topology optimization with physics-informed neural networks: application to noninvasive detection of hidden geometries. arXiv:2303.09280 (2023).
McClenny, L. & Braga-Neto, U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv:2009.04544 (2020).
YanYHarnessing the power of machine learning for carbon capture, utilisation, and storage (ccus)-a state-of-the-art reviewEnergy Environ. Sci.202114612261571:CAS:528:DC%2BB3MXisVWjsrjJ10.1039/D1EE02395K
KhanALowtherDAPhysics informed neural networks for electromagnetic analysisIEEE Trans. Magn.20225814
WillardJJiaXXuSSteinbachMKumarVIntegrating scientific knowledge with machine learning for engineering and environmental systemsACM Comput. Surv.20225513710.1145/3514228
Jagtap, A. D. & Karniadakis, G. E. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. In AAAI spring symposium: MLPS, vol. 10 (2021).
Beltrán-PulidoABilionisIAliprantisDPhysics-informed neural networks for solving parametric magnetostatic problemsIEEE Trans. Energy Convers.202237267826892022ITEnC..37.2678B10.1109/TEC.2022.3180295
JeongHA physics-informed neural network-based topology optimization (pinnto) framework for structural optimizationEng. Struct.202327811548410.1016/j.engstruct.2022.115484
Saleh, E., Ghaffari, S., Bretl, T., Olson, L. & West, M. Learning from integral losses in physics informed neural networks. arXiv:2305.17387 (2023).
MezzadriFGasickJQianXA framework for physics-informed deep learning over freeform domainsComput. Aided Des.2023160103520457728710.1016/j.cad.2023.103520
JeongHA complete physics-informed neural network-based framework for structural topology optimizationComput. Methods Appl. Mech. Eng.20234171164012023CMAME.417k6401J463875710.1016/j.cma.2023.116401
JacksonJDClassical Electrodynamics1999UkSpringer
ZhangEDaoMKarniadakisGESureshSAnalyses of internal structures and defects in materials using physics-informed neural networksSci. Adv.20228eabk06442022SciA....8..644Z10.1126/sciadv.abk0644351716708849303
Li, Z. et al. Physics-informed neural operator for learning partial differential equations. arXiv:2111.03794 (2021).
YinLYangWOptimality criteria method for topology optimization under multiple constraintsComput. Struct.2001791839185010.1016/S0045-7949(01)00126-2
KochkovDMachine learning-accelerated computational fluid dynamicsProc. Natl. Acad. Sci.2021118e210178411843012541:CAS:528:DC%2BB3MXhtFOju7rN10.1073/pnas.2101784118340066458166023
Von RuedenLInformed machine learning-a taxonomy and survey of integrating prior knowledge into learning systemsIEEE Trans. Knowl. Data Eng.202135614633
Kovachki, N. et al. Neural operator: Learning maps between function spaces. arXiv:2108.08481 (2021).
HaghighatERaissiMMoureAGomezHJuanesRA physics-informed deep learning framework for inversion and surrogate modeling in solid mechanicsComput. Methods Appl. Mech. Eng.20213791137412021CMAME.379k3741H422929210.1016/j.cma.2021.113741
Vurtur BadarinathPChierichettiMDavoudi KakhkiFA machine learning approach as a surrogate for a finite element analysis: Status of research and application to one dimensional systemsSensors20212116542021Senso..21.1654V10.3390/s21051654336736057957535
CaiJChuXXuKLiHWeiJMachine learning-driven new material discoveryNanoscale Adv.20202311531302020NanoA...2.3115C10.1039/D0NA00388C361342809419423
BaldanMDi BarbaPLowtherDAPhysics-informed neural networks for inverse electromagnetic problemsIEEE Trans. Magn.2023591510.1109/TMAG.2023.3247023
DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: Post 2000Struct. Multidiscip. Optim.201449138318245010.1007/s00158-013-0956-z
QiuRPhysics-informed neural networks for phase-field method in two-phase flowPhys. Fluids20223474510.1063/5.0091063
SunYSenguptaUJuniperMPhysics-informed deep learning for simultaneous surrogate modeling and pde-constrained optimization of an airfoil geometryComput. Methods Appl. Mech. Eng.20234111160422023CMAME.411k6042S457860210.1016/j.cma.2023.116042
57137_CR2
57137_CR1
J Cai (57137_CR7) 2020; 2
M Baldan (57137_CR25) 2023; 59
A Khan (57137_CR20) 2022; 58
Y Yan (57137_CR4) 2021; 14
NP Van Dijk (57137_CR40) 2013; 48
E Zhang (57137_CR32) 2022; 8
JD Jackson (57137_CR47) 1999
SM Moosavi (57137_CR8) 2020; 142
L Von Rueden (57137_CR11) 2021; 35
57137_CR30
57137_CR31
W Zuo (57137_CR34) 2017; 55
L Yin (57137_CR46) 2001; 79
R Qiu (57137_CR41) 2022; 34
K Bi (57137_CR5) 2023; 2023
A Beltrán-Pulido (57137_CR26) 2022; 37
D Kochkov (57137_CR9) 2021; 118
S Cai (57137_CR16) 2021; 37
MG Schultz (57137_CR6) 2021; 379
Y Sun (57137_CR28) 2023; 411
S Cuomo (57137_CR13) 2022; 92
A Chandrasekhar (57137_CR38) 2021; 63
RG Patel (57137_CR19) 2022; 449
J Zehnder (57137_CR36) 2021; 34
K Fujiwara (57137_CR48) 2005; 41
F Mezzadri (57137_CR27) 2023; 160
Y Cao (57137_CR23) 2003; 24
57137_CR45
PR Wiecha (57137_CR24) 2021; 9
JD Deaton (57137_CR35) 2014; 49
57137_CR42
P Vurtur Badarinath (57137_CR10) 2021; 21
57137_CR21
Z Zhang (57137_CR29) 2021; 11
H Jeong (57137_CR33) 2023; 278
E Haghighat (57137_CR18) 2021; 379
57137_CR22
57137_CR44
M Raissi (57137_CR14) 2019; 378
M Rahimi (57137_CR3) 2021; 2
GE Karniadakis (57137_CR15) 2021; 3
57137_CR17
MY Wang (57137_CR39) 2003; 192
H Jeong (57137_CR37) 2023; 417
J Willard (57137_CR12) 2022; 55
S-I Park (57137_CR43) 2008; 44
References_xml – reference: ZhangZGuGXPhysics-informed deep learning for digital materialsTheor. Appl. Mech. Lett.20211110022010.1016/j.taml.2021.100220
– reference: Von RuedenLInformed machine learning-a taxonomy and survey of integrating prior knowledge into learning systemsIEEE Trans. Knowl. Data Eng.202135614633
– reference: McClenny, L. & Braga-Neto, U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv:2009.04544 (2020).
– reference: MezzadriFGasickJQianXA framework for physics-informed deep learning over freeform domainsComput. Aided Des.2023160103520457728710.1016/j.cad.2023.103520
– reference: Vurtur BadarinathPChierichettiMDavoudi KakhkiFA machine learning approach as a surrogate for a finite element analysis: Status of research and application to one dimensional systemsSensors20212116542021Senso..21.1654V10.3390/s21051654336736057957535
– reference: RahimiMMoosaviSMSmitBHattonTAToward smart carbon capture with machine learningCell Rep. Phys. Sci.20212569
– reference: ZehnderJLiYCorosSThomaszewskiBNtopo: Mesh-free topology optimization using implicit neural representationsAdv. Neural Inf. Process. Syst.2021341036810381
– reference: CaoYLiSPetzoldLSerbanRAdjoint sensitivity analysis for differential-algebraic equations: The adjoint dae system and its numerical solutionSIAM J. Sci. Comput.20032410761089195052510.1137/S1064827501380630
– reference: ZuoWSaitouKMulti-material topology optimization using ordered simp interpolationStruct. Multidiscip. Optim.201755477491361346410.1007/s00158-016-1513-3
– reference: YinLYangWOptimality criteria method for topology optimization under multiple constraintsComput. Struct.2001791839185010.1016/S0045-7949(01)00126-2
– reference: WangMYWangXGuoDA level set method for structural topology optimizationComput. Methods Appl. Mech. Eng.20031922272462003CMAME.192..227W195140810.1016/S0045-7825(02)00559-5
– reference: Gozalo-Brizuela, R. & Garrido-Merchan, E. C. Chatgpt is not all you need. A state of the art review of large generative ai models. arXiv:2301.04655 (2023).
– reference: SchultzMGCan deep learning beat numerical weather prediction?Phil. Trans. R. Soc. A2021379202000972021RSPTA.37900097S42361491:STN:280:DC%2BB3snjvFChuw%3D%3D10.1098/rsta.2020.0097335832667898133
– reference: MoosaviSMJablonkaKMSmitBThe role of machine learning in the understanding and design of materialsJ. Am. Chem. Soc.202014220273202871:CAS:528:DC%2BB3cXit1yntr3O10.1021/jacs.0c09105331706787716341
– reference: KarniadakisGEPhysics-informed machine learningNat. Rev. Phys.2021342244010.1038/s42254-021-00314-5
– reference: BaldanMDi BarbaPLowtherDAPhysics-informed neural networks for inverse electromagnetic problemsIEEE Trans. Magn.2023591510.1109/TMAG.2023.3247023
– reference: Van DijkNPMauteKLangelaarMVan KeulenFLevel-set methods for structural topology optimization: A reviewStruct. Multidiscip. Optim.201348437472310758310.1007/s00158-013-0912-y
– reference: CuomoSScientific machine learning through physics-informed neural networks: Where we are and what’s nextJ. Sci. Comput.20229288445797210.1007/s10915-022-01939-z
– reference: SunYSenguptaUJuniperMPhysics-informed deep learning for simultaneous surrogate modeling and pde-constrained optimization of an airfoil geometryComput. Methods Appl. Mech. Eng.20234111160422023CMAME.411k6042S457860210.1016/j.cma.2023.116042
– reference: DeatonJDGrandhiRVA survey of structural and multidisciplinary continuum topology optimization: Post 2000Struct. Multidiscip. Optim.201449138318245010.1007/s00158-013-0956-z
– reference: WillardJJiaXXuSSteinbachMKumarVIntegrating scientific knowledge with machine learning for engineering and environmental systemsACM Comput. Surv.20225513710.1145/3514228
– reference: Grossmann, T. G., Komorowska, U. J., Latz, J. & Schönlieb, C.-B. Can physics-informed neural networks beat the finite element method? arXiv:2302.04107 (2023).
– reference: Beltrán-PulidoABilionisIAliprantisDPhysics-informed neural networks for solving parametric magnetostatic problemsIEEE Trans. Energy Convers.202237267826892022ITEnC..37.2678B10.1109/TEC.2022.3180295
– reference: JacksonJDClassical Electrodynamics1999UkSpringer
– reference: CaiSMaoZWangZYinMKarniadakisGEPhysics-informed neural networks (pinns) for fluid mechanics: A reviewActa. Mech. Sin.202137172717382021AcMSn..37.1727C441228010.1007/s10409-021-01148-1
– reference: ZhangEDaoMKarniadakisGESureshSAnalyses of internal structures and defects in materials using physics-informed neural networksSci. Adv.20228eabk06442022SciA....8..644Z10.1126/sciadv.abk0644351716708849303
– reference: PatelRGThermodynamically consistent physics-informed neural networks for hyperbolic systemsJ. Comput. Phys.2022449110754433843010.1016/j.jcp.2021.110754
– reference: QiuRPhysics-informed neural networks for phase-field method in two-phase flowPhys. Fluids20223474510.1063/5.0091063
– reference: Saleh, E., Ghaffari, S., Bretl, T., Olson, L. & West, M. Learning from integral losses in physics informed neural networks. arXiv:2305.17387 (2023).
– reference: JeongHA complete physics-informed neural network-based framework for structural topology optimizationComput. Methods Appl. Mech. Eng.20234171164012023CMAME.417k6401J463875710.1016/j.cma.2023.116401
– reference: Kovachki, N. et al. Neural operator: Learning maps between function spaces. arXiv:2108.08481 (2021).
– reference: Li, Z. et al. Physics-informed neural operator for learning partial differential equations. arXiv:2111.03794 (2021).
– reference: ChandrasekharASureshKTounn: Topology optimization using neural networksStruct. Multidiscip. Optim.20216311351149423367410.1007/s00158-020-02748-4
– reference: KochkovDMachine learning-accelerated computational fluid dynamicsProc. Natl. Acad. Sci.2021118e210178411843012541:CAS:528:DC%2BB3MXhtFOju7rN10.1073/pnas.2101784118340066458166023
– reference: WiechaPRArbouetAGirardCMuskensOLDeep learning in nano-photonics: Inverse design and beyondPhoton. Res.20219B182B20010.1364/PRJ.415960
– reference: YanYHarnessing the power of machine learning for carbon capture, utilisation, and storage (ccus)-a state-of-the-art reviewEnergy Environ. Sci.202114612261571:CAS:528:DC%2BB3MXisVWjsrjJ10.1039/D1EE02395K
– reference: KhanALowtherDAPhysics informed neural networks for electromagnetic analysisIEEE Trans. Magn.20225814
– reference: Ma, P. et al. Learning neural constitutive laws from motion observations for generalizable pde dynamics. arXiv:2304.14369 (2023).
– reference: HaghighatERaissiMMoureAGomezHJuanesRA physics-informed deep learning framework for inversion and surrogate modeling in solid mechanicsComput. Methods Appl. Mech. Eng.20213791137412021CMAME.379k3741H422929210.1016/j.cma.2021.113741
– reference: ParkS-IMinSYamasakiSNishiwakiSYooJMagnetic actuator design using level set based topology optimizationIEEE Trans. Magn.200844403740402008ITM....44.4037P10.1109/TMAG.2008.2002784
– reference: FujiwaraKOkamotoYKameariAAhagonAThe newton-raphson method accelerated by using a line search-comparison between energy functional and residual minimizationIEEE Trans. Magn.200541172417272005ITM....41.1724F10.1109/TMAG.2005.846048
– reference: Bommasani, R. et al. On the opportunities and risks of foundation models. arXiv:2108.07258 (2021).
– reference: CaiJChuXXuKLiHWeiJMachine learning-driven new material discoveryNanoscale Adv.20202311531302020NanoA...2.3115C10.1039/D0NA00388C361342809419423
– reference: BiKAccurate medium-range global weather forecasting with 3d neural networksNature2023202316
– reference: JeongHA physics-informed neural network-based topology optimization (pinnto) framework for structural optimizationEng. Struct.202327811548410.1016/j.engstruct.2022.115484
– reference: Jagtap, A. D. & Karniadakis, G. E. Extended physics-informed neural networks (xpinns): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. In AAAI spring symposium: MLPS, vol. 10 (2021).
– reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJ. Comput. Phys.20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045
– reference: Mowlavi, S. & Kamrin, K. Topology optimization with physics-informed neural networks: application to noninvasive detection of hidden geometries. arXiv:2303.09280 (2023).
– ident: 57137_CR1
– volume: 411
  start-page: 116042
  year: 2023
  ident: 57137_CR28
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116042
– volume: 2
  start-page: 3115
  year: 2020
  ident: 57137_CR7
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00388C
– volume: 278
  start-page: 115484
  year: 2023
  ident: 57137_CR33
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115484
– ident: 57137_CR44
  doi: 10.4208/cicp.OA-2020-0164
– volume: 192
  start-page: 227
  year: 2003
  ident: 57137_CR39
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 9
  start-page: B182
  year: 2021
  ident: 57137_CR24
  publication-title: Photon. Res.
  doi: 10.1364/PRJ.415960
– ident: 57137_CR45
– volume: 41
  start-page: 1724
  year: 2005
  ident: 57137_CR48
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2005.846048
– volume: 35
  start-page: 614
  year: 2021
  ident: 57137_CR11
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 55
  start-page: 1
  year: 2022
  ident: 57137_CR12
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3514228
– volume: 34
  start-page: 10368
  year: 2021
  ident: 57137_CR36
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 142
  start-page: 20273
  year: 2020
  ident: 57137_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09105
– volume: 59
  start-page: 1
  year: 2023
  ident: 57137_CR25
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2023.3247023
– volume: 55
  start-page: 477
  year: 2017
  ident: 57137_CR34
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1513-3
– volume: 37
  start-page: 1727
  year: 2021
  ident: 57137_CR16
  publication-title: Acta. Mech. Sin.
  doi: 10.1007/s10409-021-01148-1
– volume: 379
  start-page: 113741
  year: 2021
  ident: 57137_CR18
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113741
– volume-title: Classical Electrodynamics
  year: 1999
  ident: 57137_CR47
– volume: 11
  start-page: 100220
  year: 2021
  ident: 57137_CR29
  publication-title: Theor. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2021.100220
– ident: 57137_CR31
– volume: 118
  start-page: e2101784118
  year: 2021
  ident: 57137_CR9
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.2101784118
– ident: 57137_CR2
– volume: 58
  start-page: 1
  year: 2022
  ident: 57137_CR20
  publication-title: IEEE Trans. Magn.
– ident: 57137_CR17
– ident: 57137_CR42
– volume: 379
  start-page: 20200097
  year: 2021
  ident: 57137_CR6
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2020.0097
– volume: 37
  start-page: 2678
  year: 2022
  ident: 57137_CR26
  publication-title: IEEE Trans. Energy Convers.
  doi: 10.1109/TEC.2022.3180295
– volume: 160
  start-page: 103520
  year: 2023
  ident: 57137_CR27
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2023.103520
– volume: 21
  start-page: 1654
  year: 2021
  ident: 57137_CR10
  publication-title: Sensors
  doi: 10.3390/s21051654
– ident: 57137_CR21
– volume: 48
  start-page: 437
  year: 2013
  ident: 57137_CR40
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0912-y
– volume: 378
  start-page: 686
  year: 2019
  ident: 57137_CR14
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 14
  start-page: 6122
  year: 2021
  ident: 57137_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02395K
– volume: 2023
  start-page: 1
  year: 2023
  ident: 57137_CR5
  publication-title: Nature
– volume: 8
  start-page: eabk0644
  year: 2022
  ident: 57137_CR32
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abk0644
– volume: 3
  start-page: 422
  year: 2021
  ident: 57137_CR15
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-021-00314-5
– volume: 63
  start-page: 1135
  year: 2021
  ident: 57137_CR38
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02748-4
– volume: 24
  start-page: 1076
  year: 2003
  ident: 57137_CR23
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501380630
– ident: 57137_CR30
– volume: 417
  start-page: 116401
  year: 2023
  ident: 57137_CR37
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2023.116401
– volume: 79
  start-page: 1839
  year: 2001
  ident: 57137_CR46
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(01)00126-2
– volume: 44
  start-page: 4037
  year: 2008
  ident: 57137_CR43
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2008.2002784
– volume: 49
  start-page: 1
  year: 2014
  ident: 57137_CR35
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-0956-z
– volume: 449
  start-page: 110754
  year: 2022
  ident: 57137_CR19
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110754
– volume: 34
  start-page: 745
  year: 2022
  ident: 57137_CR41
  publication-title: Phys. Fluids
  doi: 10.1063/5.0091063
– volume: 92
  start-page: 88
  year: 2022
  ident: 57137_CR13
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01939-z
– volume: 2
  start-page: 569
  year: 2021
  ident: 57137_CR3
  publication-title: Cell Rep. Phys. Sci.
– ident: 57137_CR22
  doi: 10.1093/imamat/hxae011
SSID ssj0000529419
Score 2.4348629
Snippet The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural design and...
Abstract The rapid growth of artificial intelligence is revolutionizing classical engineering society, offering novel approaches to material and structural...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6537
SubjectTerms 639/301/1034
639/705/1042
639/766/25
Adaptability
Artificial intelligence
Coordinate projection
Design
Finite element method
Humanities and Social Sciences
multidisciplinary
Neural networks
Optimization
Permeability
Physics
Physics-informed neural network
Science
Science (multidisciplinary)
Shape optimization
Structural engineering
Weak formulation
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LTxwxDLYqJKReqgKlHV6aSr21EZvEk0lOCFAR6qGnInGLMpmkILWziF0O_HucZHbLlj4uXDcZybId-_PG-QzwgVBD61TTMkMOwbBTKQ4GzzrsI-qudRhyl-9XdX6BXy6by0ejvlJPWKEHLoo75F50Xus-SowYpaP6QDkXPKUlM_G8T9GX0tijYqqweguD3IyvZCZSH84oU6XXZAJZQ4VZy3AlE2XC_j-hzKfNkr_dmOZEdPYaXo0Isj4ukm_AizBswnqZKXm_BUe5p9PPWKFEDX09u3I3oZ5SbPg5PrqsU7f799pPqfK8Hght1uMfMrT2Bi7OPn87PWfjlATmG-RzJpqYhu0G1QXtpQ9Usbmom55Mo7R20RMA0FFFgyGKSHjFoNLRoVGkINkouQ1rw3QI76CeuE447mPPG4c6xoQOWo7Cxbb1UqoK-EJj1o8U4mmSxQ-br7KltkXLlrRss5YtVvBx-c1NIdD45-6TZIjlzkR-nX8gl7CjS9j_uUQFewsz2vFEzqwwSitN4aat4P1ymc5SuiBxQ5jepT2E5vJYrgreFqsvJZE6cxHyCvSKP6yIuroyXF9lvm6eYCzB5Ao-LVznl1x_18XOc-hiF16K5POpA9Hswdr89i7sE4yadwf5xDwAM3MYaA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERKXivJMaVGQuIHVdezYzqkCRFVx4ESlvVmOY7eVIFma7aH_vjOON9Xy6C2KHcmZlz_PjGcA3iNq0E7VmjUoEEy2iuxg8KyVXZSm1U6GlOX7XZ2eyW_LepkdbmNOq9zYxGSou8GTj_yoapRRBsVFH69-M-oaRdHV3ELjITziCFVIqvVSzz4WimJJ3uS7Mgthjkbcr-hOWSVZjcczzeTWfpTK9v8La_6dMvlH3DRtRydPYTfjyPLTxPg9eBD6Z_B46ix5g08ps9OPz-E4P7GpRGroyvHCrUI5oK34lS9hlpT9fl76AU-ilz2izzI7aHDsBZydfP3x5ZTlrgnM15KvWVVHar4bVBuMFz7gCc5FU3fIKmWMix4BgYkqNjLEKiJ-aaQy0clGIalErcRL2OmHPryGcuHaynEfO147aWIktKC5rFzU2guhCuAb2lmfS4pTZ4ufNoW2hbETvS3S2yZ6W1nAh_mb1VRQ497Zn4kl80wqhp1eDFfnNuuW5b5qvTFdFDLKKBweIZVzwSNyaRaedwUcbBhqs4aO9k6eCng3D6NuUcDE9WG4pjmI7lKbrgJeTfyfVyJMqk3ICzBbkrG11O2R_vIi1e_mBGsRNhfwcSNEd-v6Py327_-NN_CkIrmmXMPmAHbWV9fhEAHTun2btOIW7cQSNA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-BLsa0fq62s4FsbbT42mzxIUWkpBX3qQd9CNpu0hbrb3l3B_vdOstmT01PwdTOBMB-Z32zmA-AdoobayqomGhWCiEbGe9A70og2CNXUVviU5ftNnk7E2UV1sQbjuKPMwNnK0C7Ok5pMb97_uHs4QoP_OJSMqw8zdEKxUIwJUmHMVRPxCDbQM7Go5V8z3B96fTMtqM61M6u3Lvmn1MZ_Ffb8M4Xyt3fU5J5OnsJmxpXlp0ERtmDNd9vweJg0-bADRynT083I0CjVt-Xsyt76sscb43suxSxjDvxl6XqMR687xKBl_k2Da89gcnJ8_uWU5NkJxFWCzgmrQhzB62XjlePOYxxng6paFJhUygaHsEAFGbTwgQVEMVpIFazQEhnEK8mfw3rXd_4llIe2YZa60NLKChVCxAw1FcyGunacywLoyDHjcmPxON_ixqQHbq7MwGWDXDaJy0YUsL_Yczu01fgn9ecoiAVlbImdPvTTS5MtzFDHGqdUG7gIInCLgaS01jvEL_rQ0baA3VGMZlQzw7RUUuElVBfwdrGMFhafTWzn-_tIgxgvDesq4MUg9cVJuEodCmkBakkflo66vNJdX6Uu3jSCWwTPBRyMqvPrXH_nxav_I38NT1jU7piBqHdhfT6993sIo-bNm2QbPwFbPxaG
  priority: 102
  providerName: Scholars Portal
Title Physics-informed shape optimization using coordinate projection
URI https://link.springer.com/article/10.1038/s41598-024-57137-4
https://www.ncbi.nlm.nih.gov/pubmed/38503891
https://www.proquest.com/docview/2968689637
https://www.proquest.com/docview/2972704860
https://pubmed.ncbi.nlm.nih.gov/PMC10951326
https://doaj.org/article/1c2bc88df34f4f3a8996aaec24490c1d
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLafp0my4u9Naarh6W5FPZLAlhoaG0DexNyLKUBFI7ZDeH_vuOZNll2ySQiw3SCMRoNPONNJoB-ICoQRpRyqJCgSh4LYIedLaoeeO5qqXhLkb5nojjU75YlsstoMNbmBi0H1NaRjU9RId9XqGhCY_BKC9K9KtkwbdhV0lGcTPuzmaLH4vxZCXcXXFSpRcyU6ZuGbxhhWKy_tsQ5v-Bkv_clkYjdPQUniT0mM_6-e7BlmufwaO-nuTv5_AlxnPaVdGnQ3VNvjo3Vy7vUC_8Sg8u8xDpfpbbDr3OC-SBy9NhDPa9gNOjw5_z4yJVSChsycm6oKUPhXadqJ2yzDr01oxXZYPLIpQy3qLxV174ijtPPWKVigvlDa8EMoiVgr2EnbZr3WvIp6amhljfkNJw5X1ABpJwaryUljGRARk4pm1KHx6qWFzqeI3NlO65rJHLOnJZ8ww-jmOu-uQZ91IfhIUYKUPi69jQXZ_pJAiaWFpbpRrPuOeeGXQXhTHOIkqpppY0GewPy6jTblxpWgklFKoamcH7sRv3UbgcMa3rbgINIrlYkiuDV_2qjzNhKuYhJBmoDXnYmOpmT3txHnN1kwBhESJn8GkQnb_zupsXbx5G_hYe0yDdIc6w2oed9fWNe4dgaV1PYFsu5STtEfwfHJ58-46tczGfxAMI_H7l6g9MAhNo
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLOkFAgSnMDqxnZs54AqXtWWlp5aaW_Gcey2EiTbZivUP8VvZOw8quXRW29R7ET2eDzzjWc8A_AKUYM0IpekQIYgvBRBDjpLSl55rkppuItRvvtiesi_zPLZCvwa7sKEsMpBJkZBXTU2nJFv0kIooZBd5Nb8lISqUcG7OpTQ6Nhi1138RJOtfbfzCdf3NaXbnw8-TklfVYDYnGcLQnMfitM6UTplmXVo4Riv8gqnIpQy3qLCVF74gjtPPer3ggvlDS8ER7CTC4b_vQE3OZvwkKtfzuR4phO8Ztipv5szYWqzRf0Y7rBRTnI0ByXhS_ovlgn4F7b9O0TzDz9tVH_b9-Buj1vT9x2j3YcVVz-AW10lywt8ipGktn0IW_0T6VKyuiptj83cpQ3Kph_9pc80RNsfpbZBMp7UiHbT_kAI2x7B4bXQ8zGs1k3tnkA6MSU1mfVVlhuuvA_oRGacGi-lZUwkkA2007ZPYR4qaXzX0ZXOlO7orZHeOtJb8wTejN_MuwQeV_b-EJZk7BmSb8cXzdmR7veyziwtrVKVZ9xzzwyarMIYZxEpFRObVQlsDAuqe4nQ6kv-TeDl2Ix7OThoTO2a89AH0WQsC5bAWrf-40iYirkQswTUEmcsDXW5pT45jvnCswCjEaYn8HZgostx_Z8W61dP4wXcnh583dN7O_u7T-EODTwe4hyLDVhdnJ27ZwjWFuXzuENS-HbdW_I33tdOwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAgSDBCaLd2I7tHFAFlFVLUcWBSnszjmO3lWiybbZC_Wv8OsaOk2p59NZbFDuRPZ7HZ894BuAVogaheSGyEhkiYxX3etCarGK1Y7ISmtkQ5bvHt_fZ53kxX4Nfw10YH1Y56MSgqOvW-DPyCSm55BLZRUxcDIv4ujXbXJxkvoKU97QO5TR6Ftm15z9x-9a929nCtX5NyOzTt4_bWawwkJmC5cuMFM4XqrW8stJQY3G3o50sapwWl1I7g8ZTOu5KZh1xaOtLxqXTrOQMgU_BKf73GlwXlFEfTibmYjzf8R407BTv6UypnHRoK_19NsKyAreGImMrtjCUDPgXzv07XPMPn20whbM7cDti2PR9z3R3Yc029-BGX9XyHJ9CVKnp7sNmfMr69Ky2TrtDvbBpi3rqOF4ATX3k_UFqWiTjUYPIN42HQ9j2APavhJ4PYb1pG_sY0qmuiM6Nq_NCM-mcRyoiZ0Q7IQylPIF8oJ0yMZ25r6rxQwW3OpWqp7dCeqtAb8USeDN-s-iTeVza-4NfkrGnT8QdXrSnByrKtcoNqYyUtaPMMUc1bl-51tYgaiqnJq8T2BgWVEXt0KkLXk7g5diMcu2dNbqx7Znvg8gylAhL4FG__uNIqAx5EfME5ApnrAx1taU5Ogy5w3MPqRGyJ_B2YKKLcf2fFk8un8YLuInCqL7s7O0-hVvEs7gPeSw3YH15emafIW5bVs-DgKTw_aol8jekKVL7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Physics-informed+shape+optimization+using+coordinate+projection&rft.jtitle=Scientific+reports&rft.au=Zhang%2C+Zhizhou&rft.au=Lin%2C+Chungwei&rft.au=Wang%2C+Bingnan&rft.date=2024-03-19&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-024-57137-4&rft.externalDocID=10_1038_s41598_024_57137_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon