Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India
Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented...
Saved in:
| Published in | Scientific reports Vol. 14; no. 1; pp. 930 - 27 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
09.01.2024
Nature Publishing Group Nature Portfolio |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2045-2322 2045-2322 |
| DOI | 10.1038/s41598-024-51479-9 |
Cover
| Abstract | Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination (
R
2
) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R
2
value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R
2
value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. |
|---|---|
| AbstractList | Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ([Formula: see text]) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ([Formula: see text]) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R 2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R 2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( $${R}^{2}$$ R2) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ([Formula: see text]) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( $${R}^{2}$$ R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R 2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R 2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. Abstract Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( $${R}^{2}$$ R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination (R2) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability. |
| ArticleNumber | 930 |
| Author | Datta Gupta, Saurabh Yalamanchi, Pydiraju |
| Author_xml | – sequence: 1 givenname: Pydiraju surname: Yalamanchi fullname: Yalamanchi, Pydiraju organization: Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines) – sequence: 2 givenname: Saurabh surname: Datta Gupta fullname: Datta Gupta, Saurabh email: sdattagupta237@gmail.com organization: Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines) |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38195867$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNks1u1DAUhSNUREvpC7BAltgUiYB_J86qQlWBoqlYAGvrxrEzrhJ7sJ2ivg5PiqczlLaLimQRyznnu8f3-nm154M3VfWS4HcEM_k-cSJaWWPKa0F409btk-qAYi5qyijdu7Per45SusTlEbTlpH1W7TNJWiEXzUH1-yxlN0F2waNg0TpEg1KOs85zWYHv0drEyUDnRpevkfMou2GVkYbYBQ_ZoGiSiVfBRdRBMj0qoAn0ynmDRgPROz-g44vlGwTjEKLLqwnNabP57ewCldKDSZvKX8AlGCcTUZq7uqCcf4vOfe_gRfXUwpjM0e57WP34ePb99HO9_Prp_PTDstaCk1xTDlharcFYawWHhSZGitKbjhvGmrbFfQvAtey6znR6YRnpLRHSyJ5bDD07rM633D7ApVrHki1eqwBO3WyEOCiI2enRKEoFazTRC9lI3nPRWkwxLlxqecMtKSy2Zc1-Dde_YBxvgQSrzQDVdoCqDFDdDFC1xXWyda3nbjK9Nj5HGO9Fuf_Hu5UawlUBNs1i0bBCON4RYvg5m5TV5JI24wjehDkp2hKGJRGMFunrB9LLMEdfOrxRUcKZKO9h9epupNssf29QEdCtQMeQUjT2_w4qH5i0yzeXsBzLjY9bd51NpY4fTPwX-xHXHx2W_a8 |
| CitedBy_id | crossref_primary_10_1016_j_jappgeo_2025_105702 crossref_primary_10_3390_ma17143521 crossref_primary_10_1016_j_apt_2024_104586 crossref_primary_10_1007_s11600_024_01523_z crossref_primary_10_1016_j_jgsce_2025_205602 crossref_primary_10_1016_j_rineng_2024_103421 crossref_primary_10_1007_s13369_024_09418_3 crossref_primary_10_1007_s11053_024_10402_9 crossref_primary_10_1016_j_rineng_2024_102263 crossref_primary_10_2118_221498_PA crossref_primary_10_3390_min14080799 |
| Cites_doi | 10.1103/PhysRevE.71.057301 10.1016/j.apenergy.2021.117016 10.1209/0295-5075/9/7/009 10.1111/j.1468-8123.2004.00093.x 10.1016/j.fuel.2018.08.136 10.1016/0734-189X(85)90125-2 10.1016/j.cma.2008.04.002 10.1007/s11440-006-0018-4 10.1016/j.jngse.2019.103005 10.1016/j.petrol.2011.12.004 10.1103/PhysRev.94.511 10.1016/j.tafmec.2019.102447 10.1007/s12594-020-1429-9 10.1016/j.petrol.2021.108576 10.1038/s41598-023-30708-7 10.1016/j.petrol.2012.03.019 10.1007/s11242-004-5466-4 10.1111/0885-9507.00206 10.1016/j.petrol.2020.107581 10.1155/2021/8876679 10.1016/j.ijheatmasstransfer.2018.12.184 10.1016/j.petrol.2019.106577 10.2118/171613-MS 10.1023/B:JOSS.0000015179.12689.e4 10.1093/jge/gxac087 10.1103/PhysrevE.96.023307 10.1006/jcis.1996.0358 10.2118/18181-PA 10.1016/j.cma.2016.02.020 10.2118/65-01-07 10.13140/RG.2.2.11248.40961 10.1016/j.advwaters.2016.05.020 10.1007/s13202-013-0062-1 10.1016/j.commatsci.2010.04.042 10.2118/191193-MS 10.1021/acsomega.1c01015 10.1109/tsmc.1979.4310076 10.1007/s00024-021-02733-y 10.1007/s00254-008-1645-x 10.1016/j.petrol.2011.12.014 10.1016/j.jngse.2019.05.003 10.1016/j.compfluid.2013.05.019 10.1016/j.advwatres.2019.02.012 10.1007/s11433-019-9427-x 10.1029/2003GL018761 10.1016/j.biomech.2014.06.024 10.1103/PhysRevLett.56.1505 10.1016/S0309-1708(02)00049-0 10.1002/nag.932 10.1016/j.petrol.2020.107933 10.1016/j.petrol.2014.08.020 10.1016/j.petrol.2020.108202 10.1016/j.advwaters.2005.10.012 10.2138/rmg.2015.80.04 10.1007/s11004-012-9431-4 10.1016/j.energy.2019.116077 10.1109/83.366472 10.1016/j.advwatres.2013.06.001 10.1016/j.advwaters.2013.06.001 10.1016/j.conbuildmat2005.01.047 10.1007/s00366-015-0400-7 10.1007/s11600-020-00510-4 10.1029/2003WR002120 10.1016/j.advwatres.2018.04.001 10.1103/PhysRevE.80.036307 10.1016/j.marpetgeo.2017.08.005 10.1016/0031-3203(94)E0043-K 10.1016/j.petrol.2021.109589 10.1111/j.1551-2916.2008.02736.x 10.1038/nmeth.2019 10.1103/PhysRevE.100.053314 10.1029/2019JB018309 10.2118/199335-PA 10.1021/acs.energyfuels.3c01693 10.1016/j.cageo.2019.01.019 10.1006/enfo.2001.0061 10.1017/jfm.2020.381 10.1016/j.jngse.2017.02.045 10.1016/j.fuel.2012.06.119 10.1177/0971102320160207 10.1016/j.compscitech.2003.11.008 10.1016/j.ijheatmasstransfer.2015.02.035 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1038/s41598-024-51479-9 |
| DatabaseName | Springer Nature Open Access Journals (NTUSG) CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals - DOAJ (NTUSG) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: Proquest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2045-2322 |
| EndPage | 27 |
| ExternalDocumentID | oai_doaj_org_article_22537c1c68784d459f0200bbe2f474f1 10.1038/s41598-024-51479-9 PMC10776673 38195867 10_1038_s41598_024_51479_9 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c541t-24a08fccaefff54a6c1e85514b4e337990d9aa4c8bbbebc6f31df158e8d4f0ad3 |
| IEDL.DBID | M48 |
| ISSN | 2045-2322 |
| IngestDate | Tue Oct 14 18:25:55 EDT 2025 Sun Oct 26 03:16:45 EDT 2025 Tue Sep 30 17:10:29 EDT 2025 Wed Oct 01 14:46:46 EDT 2025 Tue Oct 07 07:48:39 EDT 2025 Thu Jan 02 22:31:12 EST 2025 Wed Oct 01 01:31:23 EDT 2025 Thu Apr 24 23:11:52 EDT 2025 Fri Feb 21 02:39:35 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-24a08fccaefff54a6c1e85514b4e337990d9aa4c8bbbebc6f31df158e8d4f0ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-024-51479-9.pdf |
| PMID | 38195867 |
| PQID | 2912143535 |
| PQPubID | 2041939 |
| PageCount | 27 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_22537c1c68784d459f0200bbe2f474f1 unpaywall_primary_10_1038_s41598_024_51479_9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776673 proquest_miscellaneous_2913081532 proquest_journals_2912143535 pubmed_primary_38195867 crossref_primary_10_1038_s41598_024_51479_9 crossref_citationtrail_10_1038_s41598_024_51479_9 springer_journals_10_1038_s41598_024_51479_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-09 |
| PublicationDateYYYYMMDD | 2024-01-09 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Scientific reports |
| PublicationTitleAbbrev | Sci Rep |
| PublicationTitleAlternate | Sci Rep |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
| References | RabbaniABabaeiMHybrid pore network and lattice Boltzmann permeability modelling accelerated by machine learningAdv. Water Resour.20191261161282019AdWR..126..116R10.1016/j.advwatres.2019.02.012 TranHKashaASakhaee-PourAHusseinIPredicting carbonate formation permeability using machine learningJ. Pet. Sci. Eng.20201951075811:CAS:528:DC%2BB3cXhtlKkt73J10.1016/j.petrol.2020.107581 YinYQuZGZhangJFPore-scale prediction of effective mass diffusivity of heterogeneous shale structure using the lattice Boltzmann methodInt. J. Heat Mass Transf.201913397698510.1016/j.ijheatmasstransfer.2018.12.184 ClarksonCRPore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusionFuels20131036066161:CAS:528:DC%2BC38XhslKnurnL10.1016/j.fuel.2012.06.119 MustafaATariqZMahmoudMAbdulraheemAMachine learning accelerated approach to infer nuclear magnetic resonance porosity for middle eastern carbonate reservoirSci. Rep.202313139562023NatSR..13.3956M1:CAS:528:DC%2BB3sXlsVSntLc%3D10.1038/s41598-023-30708-7368945539998858 SongYSChungKKangTJYounJRPrediction of permeability tensor for three-dimensional circular braided preform by applying a finite volume method to a unit cellCompos. Sci. Technol.20046410–11162916361:CAS:528:DC%2BD2cXkt1agtb0%3D10.1016/j.compscitech.2003.11.008 SongSBPore structure characterization and permeability prediction of coal samples based on SEM imagesJ. Nat. Gas Sci. Eng.20196716017110.1016/j.jngse.2019.05.003 Holmes, M., Holmes, A. & Holmes, D. Relationship between porosity and water saturation: Methodology to distinguish mobile from capillary bound water. In Adapted from Oral Presentation at AAPG Annual Convention, Denver, Colorado, 7–10 June 2009 AAPG National Meeting (2009). BasheerIASelection of methodology for neural network modelling of constitutive hystereses behavior of soilsComput. Aided. Civil Infrastruct. Eng.200015644546310.1111/0885-9507.00206 KachharaRPJodhawatRLPaliwaiBSBivalve biostratigraphy of the Jaisalmer formation, western Rajasthan, IndiaGeological Evolution of Northwestern India1999Scientific Publishers109117 OnifadeMLawalAIAladejareAEBadaSIdrisMAPrediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysisInt. J. Coal Prep. Util.20194241170118410.1016/j.advwaters.2013.06.001 PazdniakouAAdlerPMDynamic permeability of porous media by the lattice Boltzmann methodAdv. Water Resour.2013622923022013AdWR...62..292P10.1016/j.advwatres.2013.06.001 ZhangLLuSXiaoDLiBPore structure characteristics of tight sandstone in the northern Songliao Basin, ChinaMar. Pet. Geol.2017881701801:CAS:528:DC%2BC2sXhtl2gsbfL10.1016/j.marpetgeo.2017.08.005 ChenLPore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitationInt. J. Heat Mass Transf.2015859359491:CAS:528:DC%2BC2MXjs1Omsrg%3D10.1016/j.ijheatmasstransfer.2015.02.035 Wang, Y. D., Chung, T., Armstrong, R. T. & Mostaghimi, P. ML-LBM: Machine Learning Aided Flow Simulation in Porous Media. https://doi.org/10.13140/RG.2.2.11248.40961 (2020). PandeyRMauryaASHydrocarbon uncertainty based on facies analysis: Middle Jurassic sequence (Jaisalmer Formation), Jaisalmer Basin, RajasthanJ. Geol. Soc. India2020953013071:CAS:528:DC%2BB3cXltFChs7s%3D10.1007/s12594-020-1429-9 KapurJNSahooPKWongAKCA new method for gray-level picture thresholding using the entropy of histogramComput. Vis. Graph. Image Process.198529327328510.1016/0734-189X(85)90125-2 RostamiABaghbanAMohammadiAHHemmatiASHabibzadehSRigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: Smart modelling and correlation developmentFuel20192361101231:CAS:528:DC%2BC1cXhs1OltLrI10.1016/j.fuel.2018.08.136 SrisutthiyakornNMavkoGComputation of grain size distribution in 2-D and 3-D binary imagesComput. Geosci.201912621302019CG....126...21S10.1016/j.cageo.2019.01.019 HeXLuoLSLattice Boltzmann for the incompressible Naiver–Stokes equationJ. Stat. Phys.1997889279441997JSP....88..927H10.1023/B:JOSS.0000015179.12689.e4 AlipourMEsatyanaESakhaee-PourASadooniFNAl-KuwariHACharacterizing fracture toughness using machine learningJ. Pet. Sci. Eng.20212001082021:CAS:528:DC%2BB3MXpsVaisA%3D%3D10.1016/j.petrol.2020.108202 BorujeniATLaneNMThompsonKTyagiMEffects of image resolution and numerical resolution on computed permeability of consolidated packing using LBM and FEM pore-scale simulationsComput. Fluids201388753763313123010.1016/j.compfluid.2013.05.019 FrischUHasslacherBPomeauYLattice gas automata for the Navier–Stokes equationPhys. Rev. Lett.19865615051986PhRvL..56.1505F1:CAS:528:DyaL28XitlSlurg%3D10.1103/PhysRevLett.56.150510032689 KamathJEvaluation of accuracy of estimation air permeability from mercury injection dataSPE Form. Eval.1992743043101:CAS:528:DyaK3sXmt1OmsQ%3D%3D10.2118/18181-PA GohariMSJNiriMEGhiasi-FreezJImproving permeability estimation of carbonate rocks using extracted pore network parameters: A gas field case studyActa Geophys.202169119 RabbaniAAyatollahiSKharratRDashtiNEstimation of 3D pore network coordination number of rocks from watershed segmentation of a single 2-D imageAdv. Water Resour.2016942642772016AdWR...94..264R10.1016/j.advwaters.2016.05.020 KalkanEAkbulutSTortumACelikSPrediction of the unconfined compressive strength of compacted granular soils by using inference systemsEnviron. Geol.2009587142914402009EnGeo..58.1429K1:CAS:528:DC%2BD1MXhtlSkt7bI10.1007/s00254-008-1645-x LuYLiuKPore structure characterization of eocene low-permeability sandstone via fractal analysis and machine learning: An example from Dongying depression, Bohai Bay Basin, ChinaACS Omega20216711693117101:CAS:528:DC%2BB3MXptlWhurk%3D10.1021/acsomega.1c01015340563248154024 GauthierTDDetecting trends using Spearman’s rank correlation coefficientEnviron. Forens.2001243593621:CAS:528:DC%2BD38XivVOqsb4%3D10.1006/enfo.2001.0061 BhatnagarPLGrossEPKrookMA model for collision process in gases. I. Small amplitude processes in charged and neutral one-component systemsPhys. Rev.19549435115251954PhRv...94..511B1:CAS:528:DyaG2cXksVKhtg%3D%3D10.1103/PhysRev.94.511 CoatsGRDumanoirJLA new approach to improved log-derived permeabilityLog Anal.1974151731 BaldwinCASedermanAJMantleMDAlexanderPGladdenLFDetermination and characterization of the structure of a pore space from 3D volume imagesJ. Colloid Interface Sci.1996181179921996JCIS..181...79B1:CAS:528:DyaK28XktVens7w%3D10.1006/jcis.1996.0358 BluntMJJacksonMDPiriMValvatnePHDetailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flowAdv. Water Resour.2002258–12106910892002AdWR...25.1069B1:CAS:528:DC%2BD38XptFGrtbk%3D10.1016/S0309-1708(02)00049-0 OtsuNA threshold selection method from grey-level histogramsIEEE Trans. Syst. Man Cybern.19799626610.1109/tsmc.1979.4310076 Das GuptaSKA revision of the mesozoic-tertiary stratigraphy of the Jaisalmer Basin, Rajasthan, IndiaIndian J. Earth Sci.1975217794 HakimovNZolfaghariAKalantari-DahaghiANegahbanSGunterGPore-scale network modelling of microporosity in low resistivity pay zones of carbonate reservoirJ. Nat. Gas Sci. Eng.20197110300510.1016/j.jngse.2019.103005 AnovitzLMColeDRCharacterization and analysis of porosity and pore structuresRev. Mineral. Geochem.20158016116410.2138/rmg.2015.80.04 MortensenNACocklesFBruusHRe-examination of Hagen–Poiseuille flow: Shape dependence of the hydraulic resistance in microchannelPhys. Rev. E200571573012005PhRvE..71E7301M1:CAS:528:DC%2BD2MXltVOqt7w%3D10.1103/PhysRevE.71.057301 HuangLKWangMJJImage thresholding by minimizing the measures of fuzzinessPattern Recogn.19952841511995PatRe..28...41H10.1016/0031-3203(94)E0043-K AlessaSSakhaee-PourASadooniFNAl-KuwariHAComprehensive pore size characterization of Midra shaleJ. Pet. Sci. Eng.20212031085761:CAS:528:DC%2BB3MXmslahurk%3D10.1016/j.petrol.2021.108576 ChehraziARezaeeRA systematic method for permeability prediction, a Petro-Facies approachJ. Pet. Sci. Eng.2012828311610.1016/j.petrol.2011.12.004 RezaeeRSaeediAClennellBTight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance dataJ. Pet. Sci. Eng.201288–8992991:CAS:528:DC%2BC38Xos1Cntb4%3D10.1016/j.petrol.2011.12.014 ChengYPore structure and permeability characterization of tight sandstone reservoirs: From a multiscale perspectiveEnergy Fuels202337139185919644390301:CAS:528:DC%2BB3sXht1Cqs7nO10.1021/acs.energyfuels.3c01693 SandinoCKroliczekPMcErlainDDBoydSKPredicting the permeability of trabecular bone by micro-computed tomography and finite element modellingJ. Biomech.201447123129313410.1016/j.biomech.2014.06.02425016487 FagbemiSTahmasebiPCoupling pore network and finite element methods for rapid modelling of deformationJ. Fluid Mech.2020897381411264810.1017/jfm.2020.381 AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr. Build. Mater.200620980181110.1016/j.conbuildmat2005.01.047 GosticksJTVersatile and efficient pore network extraction method using marker-based watershed segmentationPhys. Rev. E2017960233072017PhRvE..96b3307G10.1103/PhysrevE.96.023307 Zamirian, M., Aminian, K., Ameri, S. & Fathi, E. New steady-state technique for measuring shale core plug permeability. In SPE/CSUR Unconventional Resources Conference, Calgary, Canada. https://doi.org/10.2118/171613-MS (2014). GhassemiAPakAPore-scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann methodInt. J. Numer. Anal. Methods Geomech.201135888690110.1002/nag.932 TahmasebiPHezarkhaniAA fast and independent architecture of artificial neural network for permeability predictionJ. Pet. Sci. Eng.2012868711812610.1016/j.petrol.2012.03.019 AkanjiLTNasrGGBageriMCore-scale characterization of flow in tight Arabian formationsJ. Pet. Explor. Prod. Technol.20133423324110.1007/s13202-013-0062-1 WangSQinCFengQJavadpourFRuiZA framework for predicting the production performance of unconventional resources using deep learningAppl. Energy202129511701610. ML Stewart (51479_CR31) 2006; 29 JA White (51479_CR26) 2006; 1 P Tahmasebi (51479_CR41) 2012; 86 S Goswami (51479_CR46) 2020; 106 BB Adhikary (51479_CR95) 2006; 20 51479_CR32 R Rezaee (51479_CR13) 2012; 88–89 JT Gosticks (51479_CR74) 2017; 96 A Timur (51479_CR90) 1968; 9 N Hakimov (51479_CR35) 2019; 71 LK Huang (51479_CR72) 1995; 28 LT Akanji (51479_CR17) 2013; 3 U Frisch (51479_CR38) 1986; 56 RS Buckles (51479_CR92) 1965; 4 R Pandey (51479_CR63) 2020; 95 P Mostaghimi (51479_CR20) 2013; 45 MSJ Gohari (51479_CR55) 2021; 69 P Yalamanchi (51479_CR57) 2021; 178 RC Gonzales (51479_CR79) 2004 K Zadan (51479_CR62) 2015; 3 H Dong (51479_CR8) 2009; 80 N Otsu (51479_CR71) 1979; 9 Y Yin (51479_CR28) 2019; 133 Y Lu (51479_CR43) 2021; 6 PL Bhatnagar (51479_CR85) 1954; 94 M Sahimi (51479_CR3) 2012 Y Wu (51479_CR33) 2020; 125 SK Das Gupta (51479_CR67) 1975; 2 A Rabbani (51479_CR80) 2014; 123 IA Basheer (51479_CR98) 2000; 15 J Xing (51479_CR101) 2019; 188 JN Kapur (51479_CR70) 1985; 29 T Chung (51479_CR18) 2020; 184 M Onifade (51479_CR100) 2019; 42 A Rabbani (51479_CR47) 2017; 42 A Ghassemi (51479_CR37) 2011; 35 H Lu (51479_CR49) 2021; 2021 N Srisutthiyakorn (51479_CR82) 2019; 126 NA Mortensen (51479_CR87) 2005; 71 RP Oldham (51479_CR65) 1886; 19 GR Coats (51479_CR91) 1974; 15 S Song (51479_CR4) 2019; 100 LM Anovitz (51479_CR9) 2015; 80 M Alipour (51479_CR45) 2021; 200 SB Song (51479_CR5) 2019; 67 M Roostaei (51479_CR2) 2020; 23 J Kamath (51479_CR14) 1992; 7 FJ Higuera (51479_CR39) 1989; 9 S Zhang (51479_CR58) 2022; 19 C Pan (51479_CR83) 2004; 40 C Liu (51479_CR11) 2019; 62 F Alzubaidi (51479_CR48) 2021; 197 N Saxena (51479_CR56) 2018; 116 L Zhang (51479_CR19) 2017; 88 JC Yen (51479_CR73) 1995; 4 TD Gauthier (51479_CR102) 2001; 2 A Mustafa (51479_CR44) 2023; 13 CA Baldwin (51479_CR75) 1996; 181 51479_CR77 AT Borujeni (51479_CR23) 2013; 88 Z Sun (51479_CR24) 2010; 49 IW Haslam (51479_CR86) 2008; 197 S Alessa (51479_CR15) 2021; 203 JK Sharma (51479_CR69) 2016; 61 HK Dahle (51479_CR36) 2005; 58 A Chehrazi (51479_CR40) 2012; 82 B Munch (51479_CR16) 2008; 91 51479_CR60 51479_CR61 51479_CR64 E Kalkan (51479_CR94) 2009; 58 X He (51479_CR84) 1997; 88 51479_CR68 C Sandino (51479_CR25) 2014; 47 H Tran (51479_CR54) 2020; 195 YS Song (51479_CR22) 2004; 64 AM Awasthi (51479_CR59) 2002; 1 MP Tixier (51479_CR89) 1949; 8 MJ Blunt (51479_CR6) 2002; 25 Y Keehm (51479_CR30) 2004; 31 L Chen (51479_CR27) 2015; 85 S Fagbemi (51479_CR34) 2020; 897 51479_CR93 Y Cheng (51479_CR50) 2023; 37 51479_CR96 B Gordan (51479_CR97) 2016; 32 51479_CR12 J Schindelin (51479_CR76) 2012; 9 A Rabbani (51479_CR29) 2019; 126 A Rabbani (51479_CR81) 2016; 94 A Rostami (51479_CR52) 2019; 236 M Sonka (51479_CR78) 2014 S Wang (51479_CR42) 2021; 295 S Geiger (51479_CR21) 2004; 4 RP Kachhara (51479_CR66) 1999 51479_CR1 A Pazdniakou (51479_CR88) 2013; 62 JO Adegbite (51479_CR51) 2021; 6 K Wang (51479_CR7) 2016; 304 CR Clarkson (51479_CR10) 2013; 103 H Zhang (51479_CR53) 2022; 208 VN Vapnik (51479_CR99) 1995 |
| References_xml | – reference: FagbemiSTahmasebiPCoupling pore network and finite element methods for rapid modelling of deformationJ. Fluid Mech.2020897381411264810.1017/jfm.2020.381 – reference: RoostaeiMComparison of various particle size distribution measurement methodsSPE Res. Eval. Eng.202023115911791:CAS:528:DC%2BB3MXhtFemtbY%3D10.2118/199335-PA – reference: GonzalesRCWoodsREEddinsSLDigital Image Processing Using MATLAB2004Pearson Prentice Hall – reference: PandeyRMauryaASHydrocarbon uncertainty based on facies analysis: Middle Jurassic sequence (Jaisalmer Formation), Jaisalmer Basin, RajasthanJ. Geol. Soc. India2020953013071:CAS:528:DC%2BB3cXltFChs7s%3D10.1007/s12594-020-1429-9 – reference: LuHPore structure characteristics and permeability prediction model in a cretaceous carbonate reservoir, North Persian Gulf BasinGeofluids20212021887667910.1155/2021/8876679 – reference: ZadanKArbabKAA review on Lithostratigraphy and Biostratigraphy of Jaisalmer basin, western Rajasthan, IndiaInt. Res. J. Earth Sci.2015383745 – reference: AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr. Build. Mater.200620980181110.1016/j.conbuildmat2005.01.047 – reference: MunchBHolzerLContradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusionJ. Am. Ceram. Soc.20089112405940671:CAS:528:DC%2BD1MXosV2n10.1111/j.1551-2916.2008.02736.x – reference: Ghasemi, K. et al. Determination of particle shape and size distribution from micro–X-ray CT Scans for petrophysical evaluation and sand control design. In SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain. One Petro (2018). – reference: TimurAAn investigation of permeability, porosity, and residual water saturation relationships for sandstone reservoirsLog Anal.19689435 – reference: VapnikVNThe Nature of Statistical Learning Theory. Information Science and Statistics Series1995Springer – reference: Pandey, D. K., Fursich, F. T. & Baron-Szabo, R. Jurassic corals from the Jaisalmer Basin, western Rajasthan, India. In Zitteliana 13–37 (2009). – reference: Das GuptaSKA revision of the mesozoic-tertiary stratigraphy of the Jaisalmer Basin, Rajasthan, IndiaIndian J. Earth Sci.1975217794 – reference: SongSDingQWeiJImproved algorithm for estimating pore size distribution from pore space images of porous mediaPhys. Rev. E20191000533142019PhRvE.100e3314S1:CAS:528:DC%2BB3cXoslWktg%3D%3D10.1103/PhysRevE.100.05331431869964 – reference: OtsuNA threshold selection method from grey-level histogramsIEEE Trans. Syst. Man Cybern.19799626610.1109/tsmc.1979.4310076 – reference: SongSBPore structure characterization and permeability prediction of coal samples based on SEM imagesJ. Nat. Gas Sci. Eng.20196716017110.1016/j.jngse.2019.05.003 – reference: CoatsGRDumanoirJLA new approach to improved log-derived permeabilityLog Anal.1974151731 – reference: WangKSunWA semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strainComput. Methods Appl. Mech. Eng.20163045465832016CMAME.304..546W348632910.1016/j.cma.2016.02.020 – reference: BhatnagarPLGrossEPKrookMA model for collision process in gases. I. Small amplitude processes in charged and neutral one-component systemsPhys. Rev.19549435115251954PhRv...94..511B1:CAS:528:DyaG2cXksVKhtg%3D%3D10.1103/PhysRev.94.511 – reference: ZhangSZouCPengCYanLWuXPore structure and its effect on acoustic velocity and permeability of reef-shoal carbonates in the Tarim Basin, Northwest ChinaJ. Geophys. Eng.20221961340135410.1093/jge/gxac087 – reference: AlzubaidiFMostaghimiPSwietojanskiPClarkSArmstrongRTAutomated lithology classification from drill core images using conventional neural networksJ. Pet. Sci. Eng.20211971079331:CAS:528:DC%2BB3cXitVSitrnN10.1016/j.petrol.2020.107933 – reference: DongHBluntMJPore-network extraction from micro-computerized-tomography imagesPhys. Rev. E2009800363072009PhRvE..80c6307D10.1103/PhysRevE.80.036307 – reference: BasheerIASelection of methodology for neural network modelling of constitutive hystereses behavior of soilsComput. Aided. Civil Infrastruct. Eng.200015644546310.1111/0885-9507.00206 – reference: SandinoCKroliczekPMcErlainDDBoydSKPredicting the permeability of trabecular bone by micro-computed tomography and finite element modellingJ. Biomech.201447123129313410.1016/j.biomech.2014.06.02425016487 – reference: Zamirian, M., Aminian, K., Ameri, S. & Fathi, E. New steady-state technique for measuring shale core plug permeability. In SPE/CSUR Unconventional Resources Conference, Calgary, Canada. https://doi.org/10.2118/171613-MS (2014). – reference: MortensenNACocklesFBruusHRe-examination of Hagen–Poiseuille flow: Shape dependence of the hydraulic resistance in microchannelPhys. Rev. E200571573012005PhRvE..71E7301M1:CAS:528:DC%2BD2MXltVOqt7w%3D10.1103/PhysRevE.71.057301 – reference: SonkaMHlavacVBoyleRImage Processing, Analysis, and Machine Vision20144Cengage Learning170232 – reference: HeXLuoLSLattice Boltzmann for the incompressible Naiver–Stokes equationJ. Stat. Phys.1997889279441997JSP....88..927H10.1023/B:JOSS.0000015179.12689.e4 – reference: SchindelinJFiji: An open-source platform for biological-image analysisNat. Methods2012976766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.201922743772 – reference: HigueraFJJimenezJBoltzmann approach to lattice gas simulationsEPL1989976636681989EL......9..663H10.1209/0295-5075/9/7/009 – reference: GohariMSJNiriMEGhiasi-FreezJImproving permeability estimation of carbonate rocks using extracted pore network parameters: A gas field case studyActa Geophys.202169119 – reference: KeehmYMukerjiTNurAPermeability prediction from thin sections: 3D reconstruction and lattice-Boltzmann flow simulationGeophys. Res. Lett.2004314L046062004GeoRL..31.4606K10.1029/2003GL018761 – reference: DahleHKCeliaMAHassanizadehSMBundle of tubes model for calculating dynamic effects in the capillary pressure saturation relationshipTransp. Porous Media2005581–252210.1007/s11242-004-5466-4 – reference: LuYLiuKPore structure characterization of eocene low-permeability sandstone via fractal analysis and machine learning: An example from Dongying depression, Bohai Bay Basin, ChinaACS Omega20216711693117101:CAS:528:DC%2BB3MXptlWhurk%3D10.1021/acsomega.1c01015340563248154024 – reference: KapurJNSahooPKWongAKCA new method for gray-level picture thresholding using the entropy of histogramComput. Vis. Graph. Image Process.198529327328510.1016/0734-189X(85)90125-2 – reference: Holmes, M., Holmes, A. & Holmes, D. Relationship between porosity and water saturation: Methodology to distinguish mobile from capillary bound water. In Adapted from Oral Presentation at AAPG Annual Convention, Denver, Colorado, 7–10 June 2009 AAPG National Meeting (2009). – reference: SaxenaNImaging and computational considerations for image computed permeability: Operating envelope of digital rock physicsAdv. Water Resour.20181161271442018AdWR..116..127S10.1016/j.advwatres.2018.04.001 – reference: TahmasebiPHezarkhaniAA fast and independent architecture of artificial neural network for permeability predictionJ. Pet. Sci. Eng.2012868711812610.1016/j.petrol.2012.03.019 – reference: ZhangHPermeability prediction of low-resolution porous media images using autoencoder-based conventional neural networkJ. Pet. Sci. Eng.20222081095892022mcfp.book.....Z1:CAS:528:DC%2BB3MXitF2ns7bN10.1016/j.petrol.2021.109589 – reference: BorujeniATLaneNMThompsonKTyagiMEffects of image resolution and numerical resolution on computed permeability of consolidated packing using LBM and FEM pore-scale simulationsComput. Fluids201388753763313123010.1016/j.compfluid.2013.05.019 – reference: RabbaniAAssadiAKharratRDashtiNAyatollahiSEstimation of carbonates permeability using pore network parameters extracted from thin section images and comparison with experimental dataJ. Nat. Gas Sci. Eng.201742859810.1016/j.jngse.2017.02.045 – reference: Wang, Y. D., Chung, T., Armstrong, R. T. & Mostaghimi, P. ML-LBM: Machine Learning Aided Flow Simulation in Porous Media. https://doi.org/10.13140/RG.2.2.11248.40961 (2020). – reference: OnifadeMLawalAIAladejareAEBadaSIdrisMAPrediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysisInt. J. Coal Prep. Util.20194241170118410.1016/j.advwaters.2013.06.001 – reference: BaldwinCASedermanAJMantleMDAlexanderPGladdenLFDetermination and characterization of the structure of a pore space from 3D volume imagesJ. Colloid Interface Sci.1996181179921996JCIS..181...79B1:CAS:528:DyaK28XktVens7w%3D10.1006/jcis.1996.0358 – reference: Ham, F. & Kostanic, I. Fundamental neurocomputing concepts. Princ. Neurocomput. Sci. Eng. (2001). – reference: FrischUHasslacherBPomeauYLattice gas automata for the Navier–Stokes equationPhys. Rev. Lett.19865615051986PhRvL..56.1505F1:CAS:528:DyaL28XitlSlurg%3D10.1103/PhysRevLett.56.150510032689 – reference: GeigerSRobertsSGMatthäiSKZoppouCBurriACombining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic mediaGeofluids20044428429910.1111/j.1468-8123.2004.00093.x – reference: AdegbiteJOBelhajHBeraAInvestigations on the relationship among the porosity, permeability and pore throat size of transition zone samples in carbonate reservoirs using multiple regression analysis, artificial neural network and adaptive neuro-fuzzy interface systemPet. Res.202164321332 – reference: BucklesRSCorrelating and averaging connate water saturation dataJ. Can. Pet. Technol.1965442521:CAS:528:DyaF2sXoslKksA%3D%3D10.2118/65-01-07 – reference: YenJCChangFJChangSA new criterion for automatic multilevel thresholdingIEEE Trans. Image Process.199543703781995ITIP....4..370Y1:STN:280:DC%2BD1c7ivF2itg%3D%3D10.1109/83.36647218289986 – reference: XingJLuoKWangHGaoZFanJA comprehensive study on estimating heating value of biomass proximate and ultimate analysis with machine learning approachesEnergy201918811607710.1016/j.energy.2019.116077 – reference: YalamanchiPDatta GuptaSSelection of a suitable rock mixing method for computing Gardner’s constant through machine learning (ML) approach to estimate the compressional velocity: A study from Jaisalmer sub basin, IndiaPure Appl. Geophys.2021178182518442021PApGe.178.1825Y10.1007/s00024-021-02733-y – reference: MATLAB Version: 9.13.0, R2022b. https://www.mathworks.com (The MathWorks Inc.). – reference: Wandrey, C. J., Law, B. E. & Shah H. A. Sembar Goru/Ghaij total petroleum system Indus Sulaiman–Kirthar geologic province, Palistan and India. In USGC, 2208C 1-23 (2004). – reference: StewartMLWardALRectorDRA study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann methodAdv. Water Resour.2006299132813402006AdWR...29.1328S10.1016/j.advwaters.2005.10.012 – reference: RabbaniAAyatollahiSKharratRDashtiNEstimation of 3D pore network coordination number of rocks from watershed segmentation of a single 2-D imageAdv. Water Resour.2016942642772016AdWR...94..264R10.1016/j.advwaters.2016.05.020 – reference: ChungTWangYDArmstrongRTMostaghimiPVoxel agglomeration for accelerated estimation of permeability from micro-CT imagesJ. Pet. Sci. Eng20201841065771:CAS:528:DC%2BC1MXitFSgs77M10.1016/j.petrol.2019.106577 – reference: ZhangLLuSXiaoDLiBPore structure characteristics of tight sandstone in the northern Songliao Basin, ChinaMar. Pet. Geol.2017881701801:CAS:528:DC%2BC2sXhtl2gsbfL10.1016/j.marpetgeo.2017.08.005 – reference: AlessaSSakhaee-PourASadooniFNAl-KuwariHAComprehensive pore size characterization of Midra shaleJ. Pet. Sci. Eng.20212031085761:CAS:528:DC%2BB3MXmslahurk%3D10.1016/j.petrol.2021.108576 – reference: Narayanan, K., Subrahmanyan, M. & Srinivasan, N. Geology of Jaisalmer. Unpublished Report ONGC (1961). – reference: SharmaJKPandeyDKTaxonomy of late Bathonian–Oxfordian ammonites from the Jaisalmer Basin: Implications for intrabasinal litho-and biostratigraphic correlationsJ. Palaeontol. Soc. India2016612249266 – reference: HaslamIWCrouchRSSeaidMCoupled finite element-lattice Boltzmann analysisComput. Methods Appl. Mech. Eng.200819751–52450545112008CMAME.197.4505H10.1016/j.cma.2008.04.002 – reference: GosticksJTVersatile and efficient pore network extraction method using marker-based watershed segmentationPhys. Rev. E2017960233072017PhRvE..96b3307G10.1103/PhysrevE.96.023307 – reference: RezaeeRSaeediAClennellBTight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance dataJ. Pet. Sci. Eng.201288–8992991:CAS:528:DC%2BC38Xos1Cntb4%3D10.1016/j.petrol.2011.12.014 – reference: ClarksonCRPore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusionFuels20131036066161:CAS:528:DC%2BC38XhslKnurnL10.1016/j.fuel.2012.06.119 – reference: WhiteJABorjaRIFredrichJTCalculating the effective permeability of sandstone multiscale lattice Boltzmann/finite element simulationsActa Geotech.20061419520910.1007/s11440-006-0018-4 – reference: Rao, V. R. Subsurface stratigraphy tectonic setting and petroleum prospects of the Jaisalmer area, Rajasthan, India. In Proc. IV Symposium of Development in Petroleum Resources of Asia and the Far East, Camberra, Australia, Series, Vol. 41, 366–371 (1972). – reference: KalkanEAkbulutSTortumACelikSPrediction of the unconfined compressive strength of compacted granular soils by using inference systemsEnviron. Geol.2009587142914402009EnGeo..58.1429K1:CAS:528:DC%2BD1MXhtlSkt7bI10.1007/s00254-008-1645-x – reference: BluntMJJacksonMDPiriMValvatnePHDetailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flowAdv. Water Resour.2002258–12106910892002AdWR...25.1069B1:CAS:528:DC%2BD38XptFGrtbk%3D10.1016/S0309-1708(02)00049-0 – reference: OldhamRPPreliminary note on the geology of northern JaisalmerRec. Geol. Surv. India188619157160 – reference: RabbaniABabaeiMHybrid pore network and lattice Boltzmann permeability modelling accelerated by machine learningAdv. Water Resour.20191261161282019AdWR..126..116R10.1016/j.advwatres.2019.02.012 – reference: WangSQinCFengQJavadpourFRuiZA framework for predicting the production performance of unconventional resources using deep learningAppl. Energy202129511701610.1016/j.apenergy.2021.117016 – reference: TixierMPEvaluation of permeability from electric-log resistivity gradientsOil Gas J.194987590 – reference: SunZLogéREBernackiM3D finite element model of semi-solid permeability in an equiaxed granular structureComput. Mater. Sci.201049115817010.1016/j.commatsci.2010.04.042 – reference: AnovitzLMColeDRCharacterization and analysis of porosity and pore structuresRev. Mineral. Geochem.20158016116410.2138/rmg.2015.80.04 – reference: LiuCProduction analysis in shale gas reservoirs based on fracturing-enhanced permeability areasSci. China Phys. Mech. Astron.201962101046112019SCPMA..6204611L400922110.1007/s11433-019-9427-x – reference: ChengYPore structure and permeability characterization of tight sandstone reservoirs: From a multiscale perspectiveEnergy Fuels202337139185919644390301:CAS:528:DC%2BB3sXht1Cqs7nO10.1021/acs.energyfuels.3c01693 – reference: YinYQuZGZhangJFPore-scale prediction of effective mass diffusivity of heterogeneous shale structure using the lattice Boltzmann methodInt. J. Heat Mass Transf.201913397698510.1016/j.ijheatmasstransfer.2018.12.184 – reference: HuangLKWangMJJImage thresholding by minimizing the measures of fuzzinessPattern Recogn.19952841511995PatRe..28...41H10.1016/0031-3203(94)E0043-K – reference: GoswamiSAnitescuCChakrabortySRabczukTTransfer learning enhanced physics informed neural network for phase-field modelling of fractureTheor. Appl. Fract. Mech.202010610244710.1016/j.tafmec.2019.102447 – reference: KamathJEvaluation of accuracy of estimation air permeability from mercury injection dataSPE Form. Eval.1992743043101:CAS:528:DyaK3sXmt1OmsQ%3D%3D10.2118/18181-PA – reference: ChenLPore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitationInt. J. Heat Mass Transf.2015859359491:CAS:528:DC%2BC2MXjs1Omsrg%3D10.1016/j.ijheatmasstransfer.2015.02.035 – reference: KachharaRPJodhawatRLPaliwaiBSBivalve biostratigraphy of the Jaisalmer formation, western Rajasthan, IndiaGeological Evolution of Northwestern India1999Scientific Publishers109117 – reference: PazdniakouAAdlerPMDynamic permeability of porous media by the lattice Boltzmann methodAdv. Water Resour.2013622923022013AdWR...62..292P10.1016/j.advwatres.2013.06.001 – reference: RabbaniAJamshidiSSalehiSAn automated simple algorithm for realistic pore network extraction from micro-tomography imagesJ. Pet. Sci. Eng.20141231641711:CAS:528:DC%2BC2cXhsVGju7jJ10.1016/j.petrol.2014.08.020 – reference: SrisutthiyakornNMavkoGComputation of grain size distribution in 2-D and 3-D binary imagesComput. Geosci.201912621302019CG....126...21S10.1016/j.cageo.2019.01.019 – reference: MustafaATariqZMahmoudMAbdulraheemAMachine learning accelerated approach to infer nuclear magnetic resonance porosity for middle eastern carbonate reservoirSci. Rep.202313139562023NatSR..13.3956M1:CAS:528:DC%2BB3sXlsVSntLc%3D10.1038/s41598-023-30708-7368945539998858 – reference: MostaghimiPBluntMJBijeljicBComputation of absolute permeability on micro-CT imagesMath. Geosci.2013451103125301875210.1007/s11004-012-9431-4 – reference: GauthierTDDetecting trends using Spearman’s rank correlation coefficientEnviron. Forens.2001243593621:CAS:528:DC%2BD38XivVOqsb4%3D10.1006/enfo.2001.0061 – reference: AwasthiAMGeophysical exploration in Jaisalmer Basin—A case historyGeohorizons2002116 – reference: ChehraziARezaeeRA systematic method for permeability prediction, a Petro-Facies approachJ. Pet. Sci. Eng.2012828311610.1016/j.petrol.2011.12.004 – reference: TranHKashaASakhaee-PourAHusseinIPredicting carbonate formation permeability using machine learningJ. Pet. Sci. Eng.20201951075811:CAS:528:DC%2BB3cXhtlKkt73J10.1016/j.petrol.2020.107581 – reference: SongYSChungKKangTJYounJRPrediction of permeability tensor for three-dimensional circular braided preform by applying a finite volume method to a unit cellCompos. Sci. Technol.20046410–11162916361:CAS:528:DC%2BD2cXkt1agtb0%3D10.1016/j.compscitech.2003.11.008 – reference: RostamiABaghbanAMohammadiAHHemmatiASHabibzadehSRigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: Smart modelling and correlation developmentFuel20192361101231:CAS:528:DC%2BC1cXhs1OltLrI10.1016/j.fuel.2018.08.136 – reference: HakimovNZolfaghariAKalantari-DahaghiANegahbanSGunterGPore-scale network modelling of microporosity in low resistivity pay zones of carbonate reservoirJ. Nat. Gas Sci. Eng.20197110300510.1016/j.jngse.2019.103005 – reference: SahimiMFlow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches2012Wiley – reference: PanCHilpertMMillerCTLattice-Boltzmann simulation of two-phase flow in porous media: LBM simulation of two-phase flowWater Resour. Res.2004401212010.1029/2003WR002120 – reference: GordanBArmaghaniDJHajihassaniMMonjeziMPrediction of seismic slope stability through combination of particle swarm optimization and neural networkEng. Comput.2016321859710.1007/s00366-015-0400-7 – reference: AlipourMEsatyanaESakhaee-PourASadooniFNAl-KuwariHACharacterizing fracture toughness using machine learningJ. Pet. Sci. Eng.20212001082021:CAS:528:DC%2BB3MXpsVaisA%3D%3D10.1016/j.petrol.2020.108202 – reference: WuYPore-scale 3D dynamic modelling and characterization of shale samples: Considering the effects of thermal maturationJ. Geophys. Res. Solid Earth20201251e2019JB0183092020JGRB..12518309W443914510.1029/2019JB018309 – reference: AkanjiLTNasrGGBageriMCore-scale characterization of flow in tight Arabian formationsJ. Pet. Explor. Prod. Technol.20133423324110.1007/s13202-013-0062-1 – reference: GhassemiAPakAPore-scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann methodInt. J. Numer. Anal. Methods Geomech.201135888690110.1002/nag.932 – volume: 71 start-page: 7301 issue: 5 year: 2005 ident: 51479_CR87 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.057301 – volume: 295 start-page: 117016 year: 2021 ident: 51479_CR42 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.117016 – volume: 9 start-page: 663 issue: 7 year: 1989 ident: 51479_CR39 publication-title: EPL doi: 10.1209/0295-5075/9/7/009 – volume: 4 start-page: 284 issue: 4 year: 2004 ident: 51479_CR21 publication-title: Geofluids doi: 10.1111/j.1468-8123.2004.00093.x – volume: 236 start-page: 110 year: 2019 ident: 51479_CR52 publication-title: Fuel doi: 10.1016/j.fuel.2018.08.136 – volume: 29 start-page: 273 issue: 3 year: 1985 ident: 51479_CR70 publication-title: Comput. Vis. Graph. Image Process. doi: 10.1016/0734-189X(85)90125-2 – volume: 197 start-page: 4505 issue: 51–52 year: 2008 ident: 51479_CR86 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.04.002 – volume: 1 start-page: 195 issue: 4 year: 2006 ident: 51479_CR26 publication-title: Acta Geotech. doi: 10.1007/s11440-006-0018-4 – volume: 71 start-page: 103005 year: 2019 ident: 51479_CR35 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.103005 – volume: 82 start-page: 1 issue: 83 year: 2012 ident: 51479_CR40 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2011.12.004 – volume: 94 start-page: 511 issue: 3 year: 1954 ident: 51479_CR85 publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.511 – volume: 106 start-page: 102447 year: 2020 ident: 51479_CR46 publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2019.102447 – ident: 51479_CR96 – volume: 95 start-page: 301 year: 2020 ident: 51479_CR63 publication-title: J. Geol. Soc. India doi: 10.1007/s12594-020-1429-9 – volume: 203 start-page: 108576 year: 2021 ident: 51479_CR15 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.108576 – volume: 13 start-page: 3956 issue: 1 year: 2023 ident: 51479_CR44 publication-title: Sci. Rep. doi: 10.1038/s41598-023-30708-7 – volume: 86 start-page: 118 issue: 87 year: 2012 ident: 51479_CR41 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2012.03.019 – volume: 58 start-page: 5 issue: 1–2 year: 2005 ident: 51479_CR36 publication-title: Transp. Porous Media doi: 10.1007/s11242-004-5466-4 – volume: 15 start-page: 445 issue: 6 year: 2000 ident: 51479_CR98 publication-title: Comput. Aided. Civil Infrastruct. Eng. doi: 10.1111/0885-9507.00206 – volume: 195 start-page: 107581 year: 2020 ident: 51479_CR54 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107581 – volume: 2021 start-page: 8876679 year: 2021 ident: 51479_CR49 publication-title: Geofluids doi: 10.1155/2021/8876679 – volume: 133 start-page: 976 year: 2019 ident: 51479_CR28 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.12.184 – volume: 8 start-page: 75 year: 1949 ident: 51479_CR89 publication-title: Oil Gas J. – volume: 184 start-page: 106577 year: 2020 ident: 51479_CR18 publication-title: J. Pet. Sci. Eng doi: 10.1016/j.petrol.2019.106577 – volume: 9 start-page: 3 issue: 4 year: 1968 ident: 51479_CR90 publication-title: Log Anal. – ident: 51479_CR12 doi: 10.2118/171613-MS – volume: 88 start-page: 927 year: 1997 ident: 51479_CR84 publication-title: J. Stat. Phys. doi: 10.1023/B:JOSS.0000015179.12689.e4 – volume: 19 start-page: 1340 issue: 6 year: 2022 ident: 51479_CR58 publication-title: J. Geophys. Eng. doi: 10.1093/jge/gxac087 – volume: 96 start-page: 023307 year: 2017 ident: 51479_CR74 publication-title: Phys. Rev. E doi: 10.1103/PhysrevE.96.023307 – volume-title: Digital Image Processing Using MATLAB year: 2004 ident: 51479_CR79 – volume: 181 start-page: 79 issue: 1 year: 1996 ident: 51479_CR75 publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0358 – volume: 7 start-page: 304 issue: 4 year: 1992 ident: 51479_CR14 publication-title: SPE Form. Eval. doi: 10.2118/18181-PA – ident: 51479_CR60 – volume: 304 start-page: 546 year: 2016 ident: 51479_CR7 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2016.02.020 – volume: 4 start-page: 42 year: 1965 ident: 51479_CR92 publication-title: J. Can. Pet. Technol. doi: 10.2118/65-01-07 – ident: 51479_CR32 doi: 10.13140/RG.2.2.11248.40961 – volume-title: The Nature of Statistical Learning Theory. Information Science and Statistics Series year: 1995 ident: 51479_CR99 – ident: 51479_CR68 – volume: 94 start-page: 264 year: 2016 ident: 51479_CR81 publication-title: Adv. Water Resour. doi: 10.1016/j.advwaters.2016.05.020 – volume: 3 start-page: 233 issue: 4 year: 2013 ident: 51479_CR17 publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-013-0062-1 – volume: 49 start-page: 158 issue: 1 year: 2010 ident: 51479_CR24 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.04.042 – ident: 51479_CR1 doi: 10.2118/191193-MS – volume: 6 start-page: 11693 issue: 7 year: 2021 ident: 51479_CR43 publication-title: ACS Omega doi: 10.1021/acsomega.1c01015 – volume: 9 start-page: 62 year: 1979 ident: 51479_CR71 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/tsmc.1979.4310076 – ident: 51479_CR77 – volume: 178 start-page: 1825 year: 2021 ident: 51479_CR57 publication-title: Pure Appl. Geophys. doi: 10.1007/s00024-021-02733-y – volume: 58 start-page: 1429 issue: 7 year: 2009 ident: 51479_CR94 publication-title: Environ. Geol. doi: 10.1007/s00254-008-1645-x – volume: 88–89 start-page: 92 year: 2012 ident: 51479_CR13 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2011.12.014 – volume: 67 start-page: 160 year: 2019 ident: 51479_CR5 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2019.05.003 – volume: 88 start-page: 753 year: 2013 ident: 51479_CR23 publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.05.019 – volume: 126 start-page: 116 year: 2019 ident: 51479_CR29 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2019.02.012 – volume: 6 start-page: 321 issue: 4 year: 2021 ident: 51479_CR51 publication-title: Pet. Res. – volume: 62 start-page: 104611 issue: 10 year: 2019 ident: 51479_CR11 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-019-9427-x – volume: 31 start-page: L04606 issue: 4 year: 2004 ident: 51479_CR30 publication-title: Geophys. Res. Lett. doi: 10.1029/2003GL018761 – volume: 47 start-page: 3129 issue: 12 year: 2014 ident: 51479_CR25 publication-title: J. Biomech. doi: 10.1016/j.biomech.2014.06.024 – volume: 56 start-page: 1505 year: 1986 ident: 51479_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.56.1505 – volume: 25 start-page: 1069 issue: 8–12 year: 2002 ident: 51479_CR6 publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(02)00049-0 – start-page: 170 volume-title: Image Processing, Analysis, and Machine Vision year: 2014 ident: 51479_CR78 – volume: 35 start-page: 886 issue: 8 year: 2011 ident: 51479_CR37 publication-title: Int. J. Numer. Anal. Methods Geomech. doi: 10.1002/nag.932 – volume-title: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches year: 2012 ident: 51479_CR3 – volume: 197 start-page: 107933 year: 2021 ident: 51479_CR48 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.107933 – start-page: 109 volume-title: Geological Evolution of Northwestern India year: 1999 ident: 51479_CR66 – volume: 123 start-page: 164 year: 2014 ident: 51479_CR80 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2014.08.020 – volume: 200 start-page: 108202 year: 2021 ident: 51479_CR45 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2020.108202 – volume: 29 start-page: 1328 issue: 9 year: 2006 ident: 51479_CR31 publication-title: Adv. Water Resour. doi: 10.1016/j.advwaters.2005.10.012 – volume: 80 start-page: 61 issue: 1 year: 2015 ident: 51479_CR9 publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2015.80.04 – volume: 45 start-page: 103 issue: 1 year: 2013 ident: 51479_CR20 publication-title: Math. Geosci. doi: 10.1007/s11004-012-9431-4 – volume: 188 start-page: 116077 year: 2019 ident: 51479_CR101 publication-title: Energy doi: 10.1016/j.energy.2019.116077 – volume: 4 start-page: 370 year: 1995 ident: 51479_CR73 publication-title: IEEE Trans. Image Process. doi: 10.1109/83.366472 – volume: 62 start-page: 292 year: 2013 ident: 51479_CR88 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2013.06.001 – volume: 42 start-page: 1170 issue: 4 year: 2019 ident: 51479_CR100 publication-title: Int. J. Coal Prep. Util. doi: 10.1016/j.advwaters.2013.06.001 – ident: 51479_CR61 – volume: 1 start-page: 1 year: 2002 ident: 51479_CR59 publication-title: Geohorizons – volume: 20 start-page: 801 issue: 9 year: 2006 ident: 51479_CR95 publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat2005.01.047 – volume: 32 start-page: 85 issue: 1 year: 2016 ident: 51479_CR97 publication-title: Eng. Comput. doi: 10.1007/s00366-015-0400-7 – volume: 69 start-page: 1 year: 2021 ident: 51479_CR55 publication-title: Acta Geophys. doi: 10.1007/s11600-020-00510-4 – volume: 40 start-page: 2120 issue: 1 year: 2004 ident: 51479_CR83 publication-title: Water Resour. Res. doi: 10.1029/2003WR002120 – volume: 116 start-page: 127 year: 2018 ident: 51479_CR56 publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2018.04.001 – volume: 80 start-page: 036307 year: 2009 ident: 51479_CR8 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.036307 – volume: 88 start-page: 170 year: 2017 ident: 51479_CR19 publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2017.08.005 – volume: 28 start-page: 41 year: 1995 ident: 51479_CR72 publication-title: Pattern Recogn. doi: 10.1016/0031-3203(94)E0043-K – ident: 51479_CR93 – volume: 208 start-page: 109589 year: 2022 ident: 51479_CR53 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2021.109589 – volume: 91 start-page: 4059 issue: 12 year: 2008 ident: 51479_CR16 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2008.02736.x – volume: 9 start-page: 676 issue: 7 year: 2012 ident: 51479_CR76 publication-title: Nat. Methods doi: 10.1038/nmeth.2019 – volume: 100 start-page: 053314 year: 2019 ident: 51479_CR4 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.100.053314 – volume: 3 start-page: 37 issue: 8 year: 2015 ident: 51479_CR62 publication-title: Int. Res. J. Earth Sci. – volume: 15 start-page: 17 year: 1974 ident: 51479_CR91 publication-title: Log Anal. – volume: 125 start-page: e2019JB018309 issue: 1 year: 2020 ident: 51479_CR33 publication-title: J. Geophys. Res. Solid Earth doi: 10.1029/2019JB018309 – ident: 51479_CR64 – volume: 23 start-page: 1159 year: 2020 ident: 51479_CR2 publication-title: SPE Res. Eval. Eng. doi: 10.2118/199335-PA – volume: 37 start-page: 9185 issue: 13 year: 2023 ident: 51479_CR50 publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c01693 – volume: 126 start-page: 21 year: 2019 ident: 51479_CR82 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2019.01.019 – volume: 2 start-page: 359 issue: 4 year: 2001 ident: 51479_CR102 publication-title: Environ. Forens. doi: 10.1006/enfo.2001.0061 – volume: 897 start-page: 381 year: 2020 ident: 51479_CR34 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.381 – volume: 42 start-page: 85 year: 2017 ident: 51479_CR47 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2017.02.045 – volume: 103 start-page: 606 year: 2013 ident: 51479_CR10 publication-title: Fuels doi: 10.1016/j.fuel.2012.06.119 – volume: 2 start-page: 77 issue: 1 year: 1975 ident: 51479_CR67 publication-title: Indian J. Earth Sci. – volume: 61 start-page: 249 issue: 2 year: 2016 ident: 51479_CR69 publication-title: J. Palaeontol. Soc. India doi: 10.1177/0971102320160207 – volume: 64 start-page: 1629 issue: 10–11 year: 2004 ident: 51479_CR22 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2003.11.008 – volume: 19 start-page: 157 year: 1886 ident: 51479_CR65 publication-title: Rec. Geol. Surv. India – volume: 85 start-page: 935 year: 2015 ident: 51479_CR27 publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2015.02.035 |
| SSID | ssj0000529419 |
| Score | 2.5164616 |
| Snippet | Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the... Abstract Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 930 |
| SubjectTerms | 639/4077/4082 704/2151/2809 Algorithms Flow characteristics Fluid flow Humanities and Social Sciences Learning algorithms Machine learning Membrane permeability multidisciplinary Neural networks Permeability Petrography Pore size Porosity Reservoirs Scanning electron microscopy Science Science (multidisciplinary) Size distribution Support vector machines Well logs |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - DOAJ (NTUSG) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSgg4IN4bWJCROIBotIkfiX0E1NWyolxgpb1FfnYjdZOqD1D_Dr-UcZyGVqCFA7eqcRPX803m82O-QeiVyYQGGlumuS1EygA0aVBRS5kjhoRERqnDOuTkc3F6zs4u-MVOqa9wJizKA8eBOwa80dLkphClYJZx6YHgZFo74lnJfDfxyYTcmUxFVW8iWS77LJmMiuMlRKqQTUZYChyhlKnci0SdYP-fWObvhyWHHdM76Na6mavNdzWb7QSlk3vobs8m8bv4L-6jG655gG7G-pKbh-jHGBw45ibi1mOg2g5Hwdg1fFKNxXN4Mbso1b3BdYNXYa6OjVrosKrucEhOWnxr6wUO4c5iuNFVd_zS4b7exBS_nnx6g9Vs2i7q1eUVDifpp_jLeILh0VO3DE8-U_WyK9SCl2udwq3qZoQ_NoDNR-j8ZPz1w2naF2VIDWf5KiVMZcKD3Z33njNVmNyJQLs0c5SWENysVIoZocFG2hSe5tbnXDhhmc-UpY_RQdM27hBh5QUjljmujWNceGF0yVVGjCVWMpElKN8aqDK9YnkonDGrup1zKqpo1AqMWnVGrWSC3g6_mUe9jmtbvw92H1oGre3uC0Bg1SOw-hsCE3S0RU3VvwCWFZE5CVSU8gS9HC6D64b9GNW4dt21ocDIOCUJehJBNvQkTKQ5eE2CxB789rq6f6WpLzt58DwoNBUlTdBoi9Rf_bpuLEYDmv9h6J7-j6F7hm6T4JFhSUseoQPwAPccSN5Kv-j8-Se1YUvw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFlEfxLvRKiP4oLihyWSSTB5ErGypxV1ELfQtzDVd2CbrXpT9O_5Sz8mtLsriW0gmyWTOdy6ZmfMdQl7qQCgIY1M_NInwOYDGRxY1n1umGSYyZgrnIceT5OSMn57H53tk0uXC4LbKzibWhtpUGufID1kWMvTtUfxu_t3HqlG4utqV0JBtaQXztqYYu0b2GTJjDcj-0Wjy-Us_64LrWjzM2uyZIBKHS_BgmGXGuA-xQ5r52ZaHqon8_xV9_r2Jsl9JvUVurMu53PyUs9kfzur4DrndRpn0fQOLu2TPlvfI9abu5OY--TUCxW5yFmnlKITgljZEsms4kqWhczDYtqHw3tBpSVf4D0-1XCicbbcUk5YWP6rpgqIbNBQedFlvy7S0rUNR0FfjT6-pnBUwiquLS4o77Av6dTSm8OrCLvHNp3K6rAu40OVa-fCoaTmkH0vA7ANydjz69uHEb4s1-Drm4cpnXAbCAR6scy7mMtGhFRiOKW6jKAWnZzIpuRZKKat04qLQuDAWVhjuAmmih2RQVqV9TKh0gjPDbay05bFwQqs0lgHThpmMi8AjYSegXLdM5lhQY5bXK-qRyBuh5iDUvBZqnnnkTX_PvOHx2Nn6COXet0QO7vpEtSjyVqVzsIRRqkOdiFRww-PMQegdwNcxx1PuQo8cdKjJW8OwzK9g7JEX_WVQaVynkaWt1nWbCCK1OGIeedSArO8J_mDHoE0eEVvw2-rq9pVyelHThofI3JSkkUeGHVKv-rVrLIY9mv9j6J7s_uqn5CZDXcNJrOyADADb9hmEdSv1vNXV3xNHSu8 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHggHgTWJCROIBotLHjJM6xoK6WinJZVtpb5Gc3Ujep-gD17_BLGSdpoFq0gluU2I6T-SYz8Xi-AXirI6HQjc1CalIRcgRN6FnUQm6ZZj6RMVd-HXL6NT0955OL5OIAhrtcmL34fUPdvUIT49PAGA_RuGd5mN-CQ4HAFAM4HI0mZ5N-TcVHrTjNu9wY7H58vfOe_Wlo-v_mW17fItnHSe_BnU21kNsfcj7_wxSdPID7nQ9JRq3QH8KBrR7B7baq5PYx_Byj2rYZiaR2BB1sS1qa2A0eycqQBX6ObUvQvSVlRdb-D51ouVR-Ld0Sn5K0_F6XS-KNnCE40FWz6dKSrsrEjLybfnlP5HxWL8v15RXx--dn5Gw8JXjrmV35O09kuWrKs5DVRoU4VFkNyecKEfkEzk_G3z6dhl0phlAnnK5DxmUkHErbOucSLlNNrfDOluI2jjM0aSaXkmuhlLJKpy6mxtFEWGG4i6SJn8Kgqiv7HIh0gjPDbaK05YlwQqsskRHThpmciygAuhNQoTuecl8uY1408fJYFK1QCxRq0Qi1yAP40PdZtCwdN7b-6OXet_QM280JBF7RKWyB37k401SnIhPc8CR36FhH-HTM8Yw7GsDRDjVFp_arguWUeQc0TgJ4019GhfVRGFnZetO0QeyioWEBPGtB1s_E_z4nqCsBiD347U11_0pVXjak4NTzMqVZHMBwh9Tf87rpXQx7NP_Dq3vxf6O_hLvM655fssqPYIBYt6_QiVur153u_gLgMT9K priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVgh44CxtoCAj8QBisySOnTiPBW1VKrZCghXlKfK5jdgmqz1Ay8_hlzLOBQtVRV-TSXxkPPPFnvkGoecq4BJgbOKHOuY-BaXxHYuaTw1RxCUyptLtQ45O4qMxPT5lp1sobnNhqqD9itKyMtNtdNjrBTgalwxGqA8uPkn9dDDT9hrajhlg8B7aHp98OPjiKskBRvEBJpAmQyaI-AUPb3ihiqz_IoT5b6Bkd1p6C91YFTOx_i6m0z8c0uEd9LkdSh2H8nWwWsqB-vEXy-PVx3oX3W4wKj6oJe-hLVPcR9frqpXrB-jnEMxCnfGIS4sBwBtc09BCG1gUGs_A3JuaAHyN8wIv3Q4AVmIu3V69wS7laf6tzOfYOVGN4UXnVVCnwU0Viwl-MXr_EovppJzny7Nz7OLzJ_jjcISh6YlZuJaPRb6oyr_gxUr68Kq86ON3BWj8DhofDj-9PfKbUg--YjRc-oSKgFvQJmOtZVTEKjTcgTlJTRQl4DJ1KgRVXEpppIptFGobMm64pjYQOnqIekVZmD2EheWUaGqYVIYybrmSCRMBUZrolPLAQ2H76TPV8KC7chzTrDqPj3hWz38G859V85-lHnrVPTOrWUAulX7jNKqTdAze1YVyPsmar5yBHY0SFaqYJ5xqylILwD2A0RFLE2pDD-23-pg1ZmWRkTQkDuBGzEPPuttgENwpjyhMuapkIsB5LCIe2q3Vt-uJ-z1nsBY9xDcUe6Orm3eK_KwiHQ8d71OcRB7qt2vgd78um4t-t07-Y-oeXU38MbpJ3DJxW2LpPuqBrpsnABKX8mljEX4BH09h5Q priority: 102 providerName: Unpaywall |
| Title | Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India |
| URI | https://link.springer.com/article/10.1038/s41598-024-51479-9 https://www.ncbi.nlm.nih.gov/pubmed/38195867 https://www.proquest.com/docview/2912143535 https://www.proquest.com/docview/2913081532 https://pubmed.ncbi.nlm.nih.gov/PMC10776673 https://www.nature.com/articles/s41598-024-51479-9.pdf https://doaj.org/article/22537c1c68784d459f0200bbe2f474f1 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Complete customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELb2IoT4gHgnMCojIQSihsRxEucDQl3VaVS0mhiVyqfIceyuUpd2fQH6d_il3CVpoKKa9qlR7DqO_VzufPY9R8gr7coUzNiIeVkomQDQMGRRY8JwzTGQMU7RD9nrh6cD0R0Gwz2yOW5bDeBi59IO80kN5pP3v67Wn0DgP5Yh4_LDApQQBopxwUD9RzGLX8-uGCaWwg3YKsvGPjkE5RVjdodetQIo6b95LIr0H8jLzsC-4FVoze6Wt9RXwfK_yzT9_4Rlvc16h9xe5TO1_qkmk3802ck9crcyQWmrxMx9smfyB-RWmZRy_ZD87oDUlwGNdGopDI2hJcvsCq5UntEZfM1Nye-9puOcLnGBT7Wap-iKNxQjmuY_puM5RR2ZUWjosjizaWiVpGJE3_S-vKVqMoLxW15cUjx-P6LnnR6FR4_MAp_cVeNFkd2FLlYpg6bGeZN-zgHQj8jgpPOtfcqqTA5MB8JbMi6UKy2AxVhrA6FC7RmJtloqjO9HoBGzWCmhZZqmJtWh9b3MeoE0MhPWVZn_mBzk09w8JVRZKXgmTJBqIwJppU6jQLlcZzyLhXQd4m0mKNEVzTlm25gkxXa7L5NyUhOY1KSY1CR2yLv6P7OS5OPa2sc473VNJOgubkzno6SS9wQ-k36kPR3KSIpMBLEFu9yFt-NWRMJ6DjnaoCbZgD7hscfRfvUDh7ysi0HecRNH5Wa6Kur4YMYFPnfIkxJkdU9w9R2AqDlEbsFvq6vbJfn4ouAU95DWKYx8hzQ3SP3br-vGolmj-QZD9-wGr_UcXSeVmys-IgcAcPMCDL9l2iD70TBqkMNWq3vehd_jTv_sK9xth-1G4UxpFMINJYP-Wev7H_cVWps |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFVaocID4sZQYJFAAjVW7fU6Xj9UiEKqpE0iBK3UN7PeI42U2iEHVX6HD-HbmLEdlwgU8dI3y17vNefO7MwQ8lp5IgU1NnJ93RQuB6RxMYuayw1TDAMZ4xTtkL1-s33Kj87Csw3yaxkLg9cqlzyxYNQ6V2gj32Oxz1C2B-H78XcXq0ahd3VZQkNWpRX0fpFirArsODaLSzjCTfc7nwDebxg7bJ18bLtVlQFXhdyfuYxLT1hYiLHWhlw2lW8E6hEpN0EQAbfWsZRciTRNTaqaNvC19UNhhObWkzqAfm-QLR7wGA5_Wwet_ucvtZUH_Wjcj6toHS8Qe1OQmBjVxrgLY0SxG69IxKJwwL-03b8vbdae29tke56N5eJSjkZ_CMfDu-ROpdXSDyUa3iMbJrtPbpZ1LhcPyM8WMJIyRpLmloLKb2iZuHYOTzLTdAwCwpQpwxd0mNEZ2gyokpMUrfuGYpDU5Ec-nFAUu5pCRxfFNVBDq7oXA_q2131H5WgAUJudX1C80T-gX1s9CkMPzBRHPpLDaVEwhk7nqQtdDbMG7WRAIw_J6bWA7RHZzPLMPCFUWsGZ5iZMleGhsEKlUSg9pjTTMReeQ_wlgBJVZU7HAh6jpPDgByIpgZoAUJMCqEnskN36n3GZN2Rt6wOEe90Sc34XL_LJIKlYSAKcN4iUr5oiElzzMLag6nuwOmZ5xK3vkJ0l1iQVI5omV2TjkFf1Z2Ah6BeSmcnnRZsANMMwYA55XCJZPRM80IdAvQ4RK-i3MtXVL9nwvEhT7mOmqGYUOKSxxNSrea3bi0aNzf-xdU_Xr_ol2W6f9LpJt9M_fkZuMaQ7Dy2uO2QT8Nw8B5Vylr6o6JaSb9fNKn4Dgh2Knw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpD3B4QdwIDjAQSiEZNbCdxHhAC1mrd1gmJTepbcBy7q9SlpWmZ-jt8Bl_HOUmaUYEqXvYWJY4vOdecKyGvtCdTUGMj189C6QpAGherqLnCMM0wkTFO0Q7ZPwr3TsT-IBhskV-rXBgMq1zxxJJRZxONNvI2i32Gsp0HbVuHRXzZ7X6YfnexgxR6WlftNCoUOTDLc_h9K973dgHWrxnrdo4_77l1hwFXB8Kfu0woT1o4hLHWBkKF2jcSdYhUGM4j4NRZrJTQMk1Tk-rQcj-zfiCNzIT1VMZh3ivkasR5jOGE0SBq7DvoQRN-XOfpeFy2C5CVmM_GhAsrRLEbr8nCsmXAv_Tcv8M1G5_tLXJjkU_V8lyNx3-Ixe4dcrvWZ-nHCgHvki2T3yPXqg6Xy_vkZwdYSJUdSSeWgrJvaFWydgFXKs_oFESDqYqFL-kop3O0FlCtZina9Q3F9KjZj8loRlHgZhQmOisDQA2tO14M6Zv-4VuqxkOA0fz0jGIs_5B-7fQpLD00Ba68r0ZF2SqGFovUhalGeYv2cqCOB-TkUoD2kGznk9w8JlRZKVgmTJBqIwJppU6jQHlMZyyLhfQc4q8AlOi6Zjq27hgnpe-ey6QCagJATUqgJrFD3jXvTKuKIRtHf0K4NyOx2nd5YzIbJjXzSIDn8kj7OpSRFJkIYgtKvgenY1ZEwvoO2VlhTVKzoCK5IBiHvGweA_NAj5DKzWRRjuGgEwacOeRRhWTNTvBXPgC6dYhcQ7-1ra4_yUenZYFyH2tEhRF3SGuFqRf72vQtWg02_8ene7L51C_IdWAQyWHv6OApucmQ7NByFu-QbUBz8wx0yXn6vCRaSr5dNpf4DcUAiD8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVgh44CxtoCAj8QBisySOnTiPBW1VKrZCghXlKfK5jdgmqz1Ay8_hlzLOBQtVRV-TSXxkPPPFnvkGoecq4BJgbOKHOuY-BaXxHYuaTw1RxCUyptLtQ45O4qMxPT5lp1sobnNhqqD9itKyMtNtdNjrBTgalwxGqA8uPkn9dDDT9hrajhlg8B7aHp98OPjiKskBRvEBJpAmQyaI-AUPb3ihiqz_IoT5b6Bkd1p6C91YFTOx_i6m0z8c0uEd9LkdSh2H8nWwWsqB-vEXy-PVx3oX3W4wKj6oJe-hLVPcR9frqpXrB-jnEMxCnfGIS4sBwBtc09BCG1gUGs_A3JuaAHyN8wIv3Q4AVmIu3V69wS7laf6tzOfYOVGN4UXnVVCnwU0Viwl-MXr_EovppJzny7Nz7OLzJ_jjcISh6YlZuJaPRb6oyr_gxUr68Kq86ON3BWj8DhofDj-9PfKbUg--YjRc-oSKgFvQJmOtZVTEKjTcgTlJTRQl4DJ1KgRVXEpppIptFGobMm64pjYQOnqIekVZmD2EheWUaGqYVIYybrmSCRMBUZrolPLAQ2H76TPV8KC7chzTrDqPj3hWz38G859V85-lHnrVPTOrWUAulX7jNKqTdAze1YVyPsmar5yBHY0SFaqYJ5xqylILwD2A0RFLE2pDD-23-pg1ZmWRkTQkDuBGzEPPuttgENwpjyhMuapkIsB5LCIe2q3Vt-uJ-z1nsBY9xDcUe6Orm3eK_KwiHQ8d71OcRB7qt2vgd78um4t-t07-Y-oeXU38MbpJ3DJxW2LpPuqBrpsnABKX8mljEX4BH09h5Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+pore+structure+and+permeability+in+tight+carbonate+reservoir+based+on+machine+learning+%28ML%29+algorithm+using+SEM+images+of+Jaisalmer+sub-basin%2C+India&rft.jtitle=Scientific+reports&rft.au=Yalamanchi%2C+Pydiraju&rft.au=Datta+Gupta%2C+Saurabh&rft.date=2024-01-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=930&rft_id=info:doi/10.1038%2Fs41598-024-51479-9&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |