Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India

Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 930 - 27
Main Authors Yalamanchi, Pydiraju, Datta Gupta, Saurabh
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.01.2024
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-024-51479-9

Cover

Abstract Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R 2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R 2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
AbstractList Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ([Formula: see text]) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ([Formula: see text]) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R 2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R 2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( $${R}^{2}$$ R2) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ([Formula: see text]) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( $${R}^{2}$$ R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R 2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R 2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
Abstract Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination ( $${R}^{2}$$ R 2 ) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the study was to use machine learning techniques for pore structure analysis and estimation of permeability in carbonate reservoirs. We implemented these algorithms by examining 2D scanning electron microscope (SEM) images of carbonate samples from the Jaisalmer sub-basin captured at various magnifications. In the initial stage of the analysis, various binarization algorithms were applied to determine carbonate sample porosity. Among these algorithms, the MaxEntropy algorithm gave a porosity value closely aligned with those obtained through petrography analysis. We employed the watershed algorithm to find the pore network parameters of carbonate samples at various magnifications. We observed that changes in magnification affected pore network parameters, resulting in a reduction in pore size distribution, throat radius, and grain size. Subsequently, we employed the numerical lattice Boltzmann method (LBM) to estimate the permeability of carbonate samples and compared to values derived from well logs. We employed machine learning (ML) algorithms, specifically Artificial Neural Network (ANN) and Support Vector Machine (SVM), to predict the permeability of carbonate samples. The input features for these models were the pore network parameters, while the LBM permeability values served as the output. We examine the prediction performance of these methods against the measured LBM permeability by conducting the error analysis and the coefficient of determination (R2) calculation. Our findings revealed that the ANN models outperformed the SVM models. Specifically, the ANN model displayed an impressive R2 value of 0.892, along with root mean square error (RMSE), mean squared error (MSE) and, mean absolute error (MAE) values of 1.927, 3.716 and 1.580, respectively. In contrast, the SVM model yielded an R2 value of 0.849, with RMSE, MSE and, MAE values of 2.324, 5.401 and, 2.166 respectively, when assessed on testing data of measured permeability. This study found that ANN is more dependable, robust, and precise than SVM in forecasting carbonate sample permeability.
ArticleNumber 930
Author Datta Gupta, Saurabh
Yalamanchi, Pydiraju
Author_xml – sequence: 1
  givenname: Pydiraju
  surname: Yalamanchi
  fullname: Yalamanchi, Pydiraju
  organization: Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines)
– sequence: 2
  givenname: Saurabh
  surname: Datta Gupta
  fullname: Datta Gupta, Saurabh
  email: sdattagupta237@gmail.com
  organization: Department of Applied Geophysics, Indian Institute of Technology (Indian School of Mines)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38195867$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNUREvpC7BAltgUiYB_J86qQlWBoqlYAGvrxrEzrhJ7sJ2ivg5PiqczlLaLimQRyznnu8f3-nm154M3VfWS4HcEM_k-cSJaWWPKa0F409btk-qAYi5qyijdu7Per45SusTlEbTlpH1W7TNJWiEXzUH1-yxlN0F2waNg0TpEg1KOs85zWYHv0drEyUDnRpevkfMou2GVkYbYBQ_ZoGiSiVfBRdRBMj0qoAn0ynmDRgPROz-g44vlGwTjEKLLqwnNabP57ewCldKDSZvKX8AlGCcTUZq7uqCcf4vOfe_gRfXUwpjM0e57WP34ePb99HO9_Prp_PTDstaCk1xTDlharcFYawWHhSZGitKbjhvGmrbFfQvAtey6znR6YRnpLRHSyJ5bDD07rM633D7ApVrHki1eqwBO3WyEOCiI2enRKEoFazTRC9lI3nPRWkwxLlxqecMtKSy2Zc1-Dde_YBxvgQSrzQDVdoCqDFDdDFC1xXWyda3nbjK9Nj5HGO9Fuf_Hu5UawlUBNs1i0bBCON4RYvg5m5TV5JI24wjehDkp2hKGJRGMFunrB9LLMEdfOrxRUcKZKO9h9epupNssf29QEdCtQMeQUjT2_w4qH5i0yzeXsBzLjY9bd51NpY4fTPwX-xHXHx2W_a8
CitedBy_id crossref_primary_10_1016_j_jappgeo_2025_105702
crossref_primary_10_3390_ma17143521
crossref_primary_10_1016_j_apt_2024_104586
crossref_primary_10_1007_s11600_024_01523_z
crossref_primary_10_1016_j_jgsce_2025_205602
crossref_primary_10_1016_j_rineng_2024_103421
crossref_primary_10_1007_s13369_024_09418_3
crossref_primary_10_1007_s11053_024_10402_9
crossref_primary_10_1016_j_rineng_2024_102263
crossref_primary_10_2118_221498_PA
crossref_primary_10_3390_min14080799
Cites_doi 10.1103/PhysRevE.71.057301
10.1016/j.apenergy.2021.117016
10.1209/0295-5075/9/7/009
10.1111/j.1468-8123.2004.00093.x
10.1016/j.fuel.2018.08.136
10.1016/0734-189X(85)90125-2
10.1016/j.cma.2008.04.002
10.1007/s11440-006-0018-4
10.1016/j.jngse.2019.103005
10.1016/j.petrol.2011.12.004
10.1103/PhysRev.94.511
10.1016/j.tafmec.2019.102447
10.1007/s12594-020-1429-9
10.1016/j.petrol.2021.108576
10.1038/s41598-023-30708-7
10.1016/j.petrol.2012.03.019
10.1007/s11242-004-5466-4
10.1111/0885-9507.00206
10.1016/j.petrol.2020.107581
10.1155/2021/8876679
10.1016/j.ijheatmasstransfer.2018.12.184
10.1016/j.petrol.2019.106577
10.2118/171613-MS
10.1023/B:JOSS.0000015179.12689.e4
10.1093/jge/gxac087
10.1103/PhysrevE.96.023307
10.1006/jcis.1996.0358
10.2118/18181-PA
10.1016/j.cma.2016.02.020
10.2118/65-01-07
10.13140/RG.2.2.11248.40961
10.1016/j.advwaters.2016.05.020
10.1007/s13202-013-0062-1
10.1016/j.commatsci.2010.04.042
10.2118/191193-MS
10.1021/acsomega.1c01015
10.1109/tsmc.1979.4310076
10.1007/s00024-021-02733-y
10.1007/s00254-008-1645-x
10.1016/j.petrol.2011.12.014
10.1016/j.jngse.2019.05.003
10.1016/j.compfluid.2013.05.019
10.1016/j.advwatres.2019.02.012
10.1007/s11433-019-9427-x
10.1029/2003GL018761
10.1016/j.biomech.2014.06.024
10.1103/PhysRevLett.56.1505
10.1016/S0309-1708(02)00049-0
10.1002/nag.932
10.1016/j.petrol.2020.107933
10.1016/j.petrol.2014.08.020
10.1016/j.petrol.2020.108202
10.1016/j.advwaters.2005.10.012
10.2138/rmg.2015.80.04
10.1007/s11004-012-9431-4
10.1016/j.energy.2019.116077
10.1109/83.366472
10.1016/j.advwatres.2013.06.001
10.1016/j.advwaters.2013.06.001
10.1016/j.conbuildmat2005.01.047
10.1007/s00366-015-0400-7
10.1007/s11600-020-00510-4
10.1029/2003WR002120
10.1016/j.advwatres.2018.04.001
10.1103/PhysRevE.80.036307
10.1016/j.marpetgeo.2017.08.005
10.1016/0031-3203(94)E0043-K
10.1016/j.petrol.2021.109589
10.1111/j.1551-2916.2008.02736.x
10.1038/nmeth.2019
10.1103/PhysRevE.100.053314
10.1029/2019JB018309
10.2118/199335-PA
10.1021/acs.energyfuels.3c01693
10.1016/j.cageo.2019.01.019
10.1006/enfo.2001.0061
10.1017/jfm.2020.381
10.1016/j.jngse.2017.02.045
10.1016/j.fuel.2012.06.119
10.1177/0971102320160207
10.1016/j.compscitech.2003.11.008
10.1016/j.ijheatmasstransfer.2015.02.035
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-024-51479-9
DatabaseName Springer Nature Open Access Journals (NTUSG)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals - DOAJ (NTUSG)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


PubMed
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: Proquest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 27
ExternalDocumentID oai_doaj_org_article_22537c1c68784d459f0200bbe2f474f1
10.1038/s41598-024-51479-9
PMC10776673
38195867
10_1038_s41598_024_51479_9
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c541t-24a08fccaefff54a6c1e85514b4e337990d9aa4c8bbbebc6f31df158e8d4f0ad3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Oct 14 18:25:55 EDT 2025
Sun Oct 26 03:16:45 EDT 2025
Tue Sep 30 17:10:29 EDT 2025
Wed Oct 01 14:46:46 EDT 2025
Tue Oct 07 07:48:39 EDT 2025
Thu Jan 02 22:31:12 EST 2025
Wed Oct 01 01:31:23 EDT 2025
Thu Apr 24 23:11:52 EDT 2025
Fri Feb 21 02:39:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-24a08fccaefff54a6c1e85514b4e337990d9aa4c8bbbebc6f31df158e8d4f0ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.nature.com/articles/s41598-024-51479-9.pdf
PMID 38195867
PQID 2912143535
PQPubID 2041939
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_22537c1c68784d459f0200bbe2f474f1
unpaywall_primary_10_1038_s41598_024_51479_9
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10776673
proquest_miscellaneous_2913081532
proquest_journals_2912143535
pubmed_primary_38195867
crossref_primary_10_1038_s41598_024_51479_9
crossref_citationtrail_10_1038_s41598_024_51479_9
springer_journals_10_1038_s41598_024_51479_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-09
PublicationDateYYYYMMDD 2024-01-09
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References RabbaniABabaeiMHybrid pore network and lattice Boltzmann permeability modelling accelerated by machine learningAdv. Water Resour.20191261161282019AdWR..126..116R10.1016/j.advwatres.2019.02.012
TranHKashaASakhaee-PourAHusseinIPredicting carbonate formation permeability using machine learningJ. Pet. Sci. Eng.20201951075811:CAS:528:DC%2BB3cXhtlKkt73J10.1016/j.petrol.2020.107581
YinYQuZGZhangJFPore-scale prediction of effective mass diffusivity of heterogeneous shale structure using the lattice Boltzmann methodInt. J. Heat Mass Transf.201913397698510.1016/j.ijheatmasstransfer.2018.12.184
ClarksonCRPore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusionFuels20131036066161:CAS:528:DC%2BC38XhslKnurnL10.1016/j.fuel.2012.06.119
MustafaATariqZMahmoudMAbdulraheemAMachine learning accelerated approach to infer nuclear magnetic resonance porosity for middle eastern carbonate reservoirSci. Rep.202313139562023NatSR..13.3956M1:CAS:528:DC%2BB3sXlsVSntLc%3D10.1038/s41598-023-30708-7368945539998858
SongYSChungKKangTJYounJRPrediction of permeability tensor for three-dimensional circular braided preform by applying a finite volume method to a unit cellCompos. Sci. Technol.20046410–11162916361:CAS:528:DC%2BD2cXkt1agtb0%3D10.1016/j.compscitech.2003.11.008
SongSBPore structure characterization and permeability prediction of coal samples based on SEM imagesJ. Nat. Gas Sci. Eng.20196716017110.1016/j.jngse.2019.05.003
Holmes, M., Holmes, A. & Holmes, D. Relationship between porosity and water saturation: Methodology to distinguish mobile from capillary bound water. In Adapted from Oral Presentation at AAPG Annual Convention, Denver, Colorado, 7–10 June 2009 AAPG National Meeting (2009).
BasheerIASelection of methodology for neural network modelling of constitutive hystereses behavior of soilsComput. Aided. Civil Infrastruct. Eng.200015644546310.1111/0885-9507.00206
KachharaRPJodhawatRLPaliwaiBSBivalve biostratigraphy of the Jaisalmer formation, western Rajasthan, IndiaGeological Evolution of Northwestern India1999Scientific Publishers109117
OnifadeMLawalAIAladejareAEBadaSIdrisMAPrediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysisInt. J. Coal Prep. Util.20194241170118410.1016/j.advwaters.2013.06.001
PazdniakouAAdlerPMDynamic permeability of porous media by the lattice Boltzmann methodAdv. Water Resour.2013622923022013AdWR...62..292P10.1016/j.advwatres.2013.06.001
ZhangLLuSXiaoDLiBPore structure characteristics of tight sandstone in the northern Songliao Basin, ChinaMar. Pet. Geol.2017881701801:CAS:528:DC%2BC2sXhtl2gsbfL10.1016/j.marpetgeo.2017.08.005
ChenLPore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitationInt. J. Heat Mass Transf.2015859359491:CAS:528:DC%2BC2MXjs1Omsrg%3D10.1016/j.ijheatmasstransfer.2015.02.035
Wang, Y. D., Chung, T., Armstrong, R. T. & Mostaghimi, P. ML-LBM: Machine Learning Aided Flow Simulation in Porous Media. https://doi.org/10.13140/RG.2.2.11248.40961 (2020).
PandeyRMauryaASHydrocarbon uncertainty based on facies analysis: Middle Jurassic sequence (Jaisalmer Formation), Jaisalmer Basin, RajasthanJ. Geol. Soc. India2020953013071:CAS:528:DC%2BB3cXltFChs7s%3D10.1007/s12594-020-1429-9
KapurJNSahooPKWongAKCA new method for gray-level picture thresholding using the entropy of histogramComput. Vis. Graph. Image Process.198529327328510.1016/0734-189X(85)90125-2
RostamiABaghbanAMohammadiAHHemmatiASHabibzadehSRigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: Smart modelling and correlation developmentFuel20192361101231:CAS:528:DC%2BC1cXhs1OltLrI10.1016/j.fuel.2018.08.136
SrisutthiyakornNMavkoGComputation of grain size distribution in 2-D and 3-D binary imagesComput. Geosci.201912621302019CG....126...21S10.1016/j.cageo.2019.01.019
HeXLuoLSLattice Boltzmann for the incompressible Naiver–Stokes equationJ. Stat. Phys.1997889279441997JSP....88..927H10.1023/B:JOSS.0000015179.12689.e4
AlipourMEsatyanaESakhaee-PourASadooniFNAl-KuwariHACharacterizing fracture toughness using machine learningJ. Pet. Sci. Eng.20212001082021:CAS:528:DC%2BB3MXpsVaisA%3D%3D10.1016/j.petrol.2020.108202
BorujeniATLaneNMThompsonKTyagiMEffects of image resolution and numerical resolution on computed permeability of consolidated packing using LBM and FEM pore-scale simulationsComput. Fluids201388753763313123010.1016/j.compfluid.2013.05.019
FrischUHasslacherBPomeauYLattice gas automata for the Navier–Stokes equationPhys. Rev. Lett.19865615051986PhRvL..56.1505F1:CAS:528:DyaL28XitlSlurg%3D10.1103/PhysRevLett.56.150510032689
KamathJEvaluation of accuracy of estimation air permeability from mercury injection dataSPE Form. Eval.1992743043101:CAS:528:DyaK3sXmt1OmsQ%3D%3D10.2118/18181-PA
GohariMSJNiriMEGhiasi-FreezJImproving permeability estimation of carbonate rocks using extracted pore network parameters: A gas field case studyActa Geophys.202169119
RabbaniAAyatollahiSKharratRDashtiNEstimation of 3D pore network coordination number of rocks from watershed segmentation of a single 2-D imageAdv. Water Resour.2016942642772016AdWR...94..264R10.1016/j.advwaters.2016.05.020
KalkanEAkbulutSTortumACelikSPrediction of the unconfined compressive strength of compacted granular soils by using inference systemsEnviron. Geol.2009587142914402009EnGeo..58.1429K1:CAS:528:DC%2BD1MXhtlSkt7bI10.1007/s00254-008-1645-x
LuYLiuKPore structure characterization of eocene low-permeability sandstone via fractal analysis and machine learning: An example from Dongying depression, Bohai Bay Basin, ChinaACS Omega20216711693117101:CAS:528:DC%2BB3MXptlWhurk%3D10.1021/acsomega.1c01015340563248154024
GauthierTDDetecting trends using Spearman’s rank correlation coefficientEnviron. Forens.2001243593621:CAS:528:DC%2BD38XivVOqsb4%3D10.1006/enfo.2001.0061
BhatnagarPLGrossEPKrookMA model for collision process in gases. I. Small amplitude processes in charged and neutral one-component systemsPhys. Rev.19549435115251954PhRv...94..511B1:CAS:528:DyaG2cXksVKhtg%3D%3D10.1103/PhysRev.94.511
CoatsGRDumanoirJLA new approach to improved log-derived permeabilityLog Anal.1974151731
BaldwinCASedermanAJMantleMDAlexanderPGladdenLFDetermination and characterization of the structure of a pore space from 3D volume imagesJ. Colloid Interface Sci.1996181179921996JCIS..181...79B1:CAS:528:DyaK28XktVens7w%3D10.1006/jcis.1996.0358
BluntMJJacksonMDPiriMValvatnePHDetailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flowAdv. Water Resour.2002258–12106910892002AdWR...25.1069B1:CAS:528:DC%2BD38XptFGrtbk%3D10.1016/S0309-1708(02)00049-0
OtsuNA threshold selection method from grey-level histogramsIEEE Trans. Syst. Man Cybern.19799626610.1109/tsmc.1979.4310076
Das GuptaSKA revision of the mesozoic-tertiary stratigraphy of the Jaisalmer Basin, Rajasthan, IndiaIndian J. Earth Sci.1975217794
HakimovNZolfaghariAKalantari-DahaghiANegahbanSGunterGPore-scale network modelling of microporosity in low resistivity pay zones of carbonate reservoirJ. Nat. Gas Sci. Eng.20197110300510.1016/j.jngse.2019.103005
AnovitzLMColeDRCharacterization and analysis of porosity and pore structuresRev. Mineral. Geochem.20158016116410.2138/rmg.2015.80.04
MortensenNACocklesFBruusHRe-examination of Hagen–Poiseuille flow: Shape dependence of the hydraulic resistance in microchannelPhys. Rev. E200571573012005PhRvE..71E7301M1:CAS:528:DC%2BD2MXltVOqt7w%3D10.1103/PhysRevE.71.057301
HuangLKWangMJJImage thresholding by minimizing the measures of fuzzinessPattern Recogn.19952841511995PatRe..28...41H10.1016/0031-3203(94)E0043-K
AlessaSSakhaee-PourASadooniFNAl-KuwariHAComprehensive pore size characterization of Midra shaleJ. Pet. Sci. Eng.20212031085761:CAS:528:DC%2BB3MXmslahurk%3D10.1016/j.petrol.2021.108576
ChehraziARezaeeRA systematic method for permeability prediction, a Petro-Facies approachJ. Pet. Sci. Eng.2012828311610.1016/j.petrol.2011.12.004
RezaeeRSaeediAClennellBTight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance dataJ. Pet. Sci. Eng.201288–8992991:CAS:528:DC%2BC38Xos1Cntb4%3D10.1016/j.petrol.2011.12.014
ChengYPore structure and permeability characterization of tight sandstone reservoirs: From a multiscale perspectiveEnergy Fuels202337139185919644390301:CAS:528:DC%2BB3sXht1Cqs7nO10.1021/acs.energyfuels.3c01693
SandinoCKroliczekPMcErlainDDBoydSKPredicting the permeability of trabecular bone by micro-computed tomography and finite element modellingJ. Biomech.201447123129313410.1016/j.biomech.2014.06.02425016487
FagbemiSTahmasebiPCoupling pore network and finite element methods for rapid modelling of deformationJ. Fluid Mech.2020897381411264810.1017/jfm.2020.381
AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr. Build. Mater.200620980181110.1016/j.conbuildmat2005.01.047
GosticksJTVersatile and efficient pore network extraction method using marker-based watershed segmentationPhys. Rev. E2017960233072017PhRvE..96b3307G10.1103/PhysrevE.96.023307
Zamirian, M., Aminian, K., Ameri, S. & Fathi, E. New steady-state technique for measuring shale core plug permeability. In SPE/CSUR Unconventional Resources Conference, Calgary, Canada. https://doi.org/10.2118/171613-MS (2014).
GhassemiAPakAPore-scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann methodInt. J. Numer. Anal. Methods Geomech.201135888690110.1002/nag.932
TahmasebiPHezarkhaniAA fast and independent architecture of artificial neural network for permeability predictionJ. Pet. Sci. Eng.2012868711812610.1016/j.petrol.2012.03.019
AkanjiLTNasrGGBageriMCore-scale characterization of flow in tight Arabian formationsJ. Pet. Explor. Prod. Technol.20133423324110.1007/s13202-013-0062-1
WangSQinCFengQJavadpourFRuiZA framework for predicting the production performance of unconventional resources using deep learningAppl. Energy202129511701610.
ML Stewart (51479_CR31) 2006; 29
JA White (51479_CR26) 2006; 1
P Tahmasebi (51479_CR41) 2012; 86
S Goswami (51479_CR46) 2020; 106
BB Adhikary (51479_CR95) 2006; 20
51479_CR32
R Rezaee (51479_CR13) 2012; 88–89
JT Gosticks (51479_CR74) 2017; 96
A Timur (51479_CR90) 1968; 9
N Hakimov (51479_CR35) 2019; 71
LK Huang (51479_CR72) 1995; 28
LT Akanji (51479_CR17) 2013; 3
U Frisch (51479_CR38) 1986; 56
RS Buckles (51479_CR92) 1965; 4
R Pandey (51479_CR63) 2020; 95
P Mostaghimi (51479_CR20) 2013; 45
MSJ Gohari (51479_CR55) 2021; 69
P Yalamanchi (51479_CR57) 2021; 178
RC Gonzales (51479_CR79) 2004
K Zadan (51479_CR62) 2015; 3
H Dong (51479_CR8) 2009; 80
N Otsu (51479_CR71) 1979; 9
Y Yin (51479_CR28) 2019; 133
Y Lu (51479_CR43) 2021; 6
PL Bhatnagar (51479_CR85) 1954; 94
M Sahimi (51479_CR3) 2012
Y Wu (51479_CR33) 2020; 125
SK Das Gupta (51479_CR67) 1975; 2
A Rabbani (51479_CR80) 2014; 123
IA Basheer (51479_CR98) 2000; 15
J Xing (51479_CR101) 2019; 188
JN Kapur (51479_CR70) 1985; 29
T Chung (51479_CR18) 2020; 184
M Onifade (51479_CR100) 2019; 42
A Rabbani (51479_CR47) 2017; 42
A Ghassemi (51479_CR37) 2011; 35
H Lu (51479_CR49) 2021; 2021
N Srisutthiyakorn (51479_CR82) 2019; 126
NA Mortensen (51479_CR87) 2005; 71
RP Oldham (51479_CR65) 1886; 19
GR Coats (51479_CR91) 1974; 15
S Song (51479_CR4) 2019; 100
LM Anovitz (51479_CR9) 2015; 80
M Alipour (51479_CR45) 2021; 200
SB Song (51479_CR5) 2019; 67
M Roostaei (51479_CR2) 2020; 23
J Kamath (51479_CR14) 1992; 7
FJ Higuera (51479_CR39) 1989; 9
S Zhang (51479_CR58) 2022; 19
C Pan (51479_CR83) 2004; 40
C Liu (51479_CR11) 2019; 62
F Alzubaidi (51479_CR48) 2021; 197
N Saxena (51479_CR56) 2018; 116
L Zhang (51479_CR19) 2017; 88
JC Yen (51479_CR73) 1995; 4
TD Gauthier (51479_CR102) 2001; 2
A Mustafa (51479_CR44) 2023; 13
CA Baldwin (51479_CR75) 1996; 181
51479_CR77
AT Borujeni (51479_CR23) 2013; 88
Z Sun (51479_CR24) 2010; 49
IW Haslam (51479_CR86) 2008; 197
S Alessa (51479_CR15) 2021; 203
JK Sharma (51479_CR69) 2016; 61
HK Dahle (51479_CR36) 2005; 58
A Chehrazi (51479_CR40) 2012; 82
B Munch (51479_CR16) 2008; 91
51479_CR60
51479_CR61
51479_CR64
E Kalkan (51479_CR94) 2009; 58
X He (51479_CR84) 1997; 88
51479_CR68
C Sandino (51479_CR25) 2014; 47
H Tran (51479_CR54) 2020; 195
YS Song (51479_CR22) 2004; 64
AM Awasthi (51479_CR59) 2002; 1
MP Tixier (51479_CR89) 1949; 8
MJ Blunt (51479_CR6) 2002; 25
Y Keehm (51479_CR30) 2004; 31
L Chen (51479_CR27) 2015; 85
S Fagbemi (51479_CR34) 2020; 897
51479_CR93
Y Cheng (51479_CR50) 2023; 37
51479_CR96
B Gordan (51479_CR97) 2016; 32
51479_CR12
J Schindelin (51479_CR76) 2012; 9
A Rabbani (51479_CR29) 2019; 126
A Rabbani (51479_CR81) 2016; 94
A Rostami (51479_CR52) 2019; 236
M Sonka (51479_CR78) 2014
S Wang (51479_CR42) 2021; 295
S Geiger (51479_CR21) 2004; 4
RP Kachhara (51479_CR66) 1999
51479_CR1
A Pazdniakou (51479_CR88) 2013; 62
JO Adegbite (51479_CR51) 2021; 6
K Wang (51479_CR7) 2016; 304
CR Clarkson (51479_CR10) 2013; 103
H Zhang (51479_CR53) 2022; 208
VN Vapnik (51479_CR99) 1995
References_xml – reference: FagbemiSTahmasebiPCoupling pore network and finite element methods for rapid modelling of deformationJ. Fluid Mech.2020897381411264810.1017/jfm.2020.381
– reference: RoostaeiMComparison of various particle size distribution measurement methodsSPE Res. Eval. Eng.202023115911791:CAS:528:DC%2BB3MXhtFemtbY%3D10.2118/199335-PA
– reference: GonzalesRCWoodsREEddinsSLDigital Image Processing Using MATLAB2004Pearson Prentice Hall
– reference: PandeyRMauryaASHydrocarbon uncertainty based on facies analysis: Middle Jurassic sequence (Jaisalmer Formation), Jaisalmer Basin, RajasthanJ. Geol. Soc. India2020953013071:CAS:528:DC%2BB3cXltFChs7s%3D10.1007/s12594-020-1429-9
– reference: LuHPore structure characteristics and permeability prediction model in a cretaceous carbonate reservoir, North Persian Gulf BasinGeofluids20212021887667910.1155/2021/8876679
– reference: ZadanKArbabKAA review on Lithostratigraphy and Biostratigraphy of Jaisalmer basin, western Rajasthan, IndiaInt. Res. J. Earth Sci.2015383745
– reference: AdhikaryBBMutsuyoshiHPrediction of shear strength of steel fiber RC beams using neural networksConstr. Build. Mater.200620980181110.1016/j.conbuildmat2005.01.047
– reference: MunchBHolzerLContradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusionJ. Am. Ceram. Soc.20089112405940671:CAS:528:DC%2BD1MXosV2n10.1111/j.1551-2916.2008.02736.x
– reference: Ghasemi, K. et al. Determination of particle shape and size distribution from micro–X-ray CT Scans for petrophysical evaluation and sand control design. In SPE Trinidad and Tobago Section Energy Resources Conference, Port of Spain. One Petro (2018).
– reference: TimurAAn investigation of permeability, porosity, and residual water saturation relationships for sandstone reservoirsLog Anal.19689435
– reference: VapnikVNThe Nature of Statistical Learning Theory. Information Science and Statistics Series1995Springer
– reference: Pandey, D. K., Fursich, F. T. & Baron-Szabo, R. Jurassic corals from the Jaisalmer Basin, western Rajasthan, India. In Zitteliana 13–37 (2009).
– reference: Das GuptaSKA revision of the mesozoic-tertiary stratigraphy of the Jaisalmer Basin, Rajasthan, IndiaIndian J. Earth Sci.1975217794
– reference: SongSDingQWeiJImproved algorithm for estimating pore size distribution from pore space images of porous mediaPhys. Rev. E20191000533142019PhRvE.100e3314S1:CAS:528:DC%2BB3cXoslWktg%3D%3D10.1103/PhysRevE.100.05331431869964
– reference: OtsuNA threshold selection method from grey-level histogramsIEEE Trans. Syst. Man Cybern.19799626610.1109/tsmc.1979.4310076
– reference: SongSBPore structure characterization and permeability prediction of coal samples based on SEM imagesJ. Nat. Gas Sci. Eng.20196716017110.1016/j.jngse.2019.05.003
– reference: CoatsGRDumanoirJLA new approach to improved log-derived permeabilityLog Anal.1974151731
– reference: WangKSunWA semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strainComput. Methods Appl. Mech. Eng.20163045465832016CMAME.304..546W348632910.1016/j.cma.2016.02.020
– reference: BhatnagarPLGrossEPKrookMA model for collision process in gases. I. Small amplitude processes in charged and neutral one-component systemsPhys. Rev.19549435115251954PhRv...94..511B1:CAS:528:DyaG2cXksVKhtg%3D%3D10.1103/PhysRev.94.511
– reference: ZhangSZouCPengCYanLWuXPore structure and its effect on acoustic velocity and permeability of reef-shoal carbonates in the Tarim Basin, Northwest ChinaJ. Geophys. Eng.20221961340135410.1093/jge/gxac087
– reference: AlzubaidiFMostaghimiPSwietojanskiPClarkSArmstrongRTAutomated lithology classification from drill core images using conventional neural networksJ. Pet. Sci. Eng.20211971079331:CAS:528:DC%2BB3cXitVSitrnN10.1016/j.petrol.2020.107933
– reference: DongHBluntMJPore-network extraction from micro-computerized-tomography imagesPhys. Rev. E2009800363072009PhRvE..80c6307D10.1103/PhysRevE.80.036307
– reference: BasheerIASelection of methodology for neural network modelling of constitutive hystereses behavior of soilsComput. Aided. Civil Infrastruct. Eng.200015644546310.1111/0885-9507.00206
– reference: SandinoCKroliczekPMcErlainDDBoydSKPredicting the permeability of trabecular bone by micro-computed tomography and finite element modellingJ. Biomech.201447123129313410.1016/j.biomech.2014.06.02425016487
– reference: Zamirian, M., Aminian, K., Ameri, S. & Fathi, E. New steady-state technique for measuring shale core plug permeability. In SPE/CSUR Unconventional Resources Conference, Calgary, Canada. https://doi.org/10.2118/171613-MS (2014).
– reference: MortensenNACocklesFBruusHRe-examination of Hagen–Poiseuille flow: Shape dependence of the hydraulic resistance in microchannelPhys. Rev. E200571573012005PhRvE..71E7301M1:CAS:528:DC%2BD2MXltVOqt7w%3D10.1103/PhysRevE.71.057301
– reference: SonkaMHlavacVBoyleRImage Processing, Analysis, and Machine Vision20144Cengage Learning170232
– reference: HeXLuoLSLattice Boltzmann for the incompressible Naiver–Stokes equationJ. Stat. Phys.1997889279441997JSP....88..927H10.1023/B:JOSS.0000015179.12689.e4
– reference: SchindelinJFiji: An open-source platform for biological-image analysisNat. Methods2012976766821:CAS:528:DC%2BC38XhtVKnurbJ10.1038/nmeth.201922743772
– reference: HigueraFJJimenezJBoltzmann approach to lattice gas simulationsEPL1989976636681989EL......9..663H10.1209/0295-5075/9/7/009
– reference: GohariMSJNiriMEGhiasi-FreezJImproving permeability estimation of carbonate rocks using extracted pore network parameters: A gas field case studyActa Geophys.202169119
– reference: KeehmYMukerjiTNurAPermeability prediction from thin sections: 3D reconstruction and lattice-Boltzmann flow simulationGeophys. Res. Lett.2004314L046062004GeoRL..31.4606K10.1029/2003GL018761
– reference: DahleHKCeliaMAHassanizadehSMBundle of tubes model for calculating dynamic effects in the capillary pressure saturation relationshipTransp. Porous Media2005581–252210.1007/s11242-004-5466-4
– reference: LuYLiuKPore structure characterization of eocene low-permeability sandstone via fractal analysis and machine learning: An example from Dongying depression, Bohai Bay Basin, ChinaACS Omega20216711693117101:CAS:528:DC%2BB3MXptlWhurk%3D10.1021/acsomega.1c01015340563248154024
– reference: KapurJNSahooPKWongAKCA new method for gray-level picture thresholding using the entropy of histogramComput. Vis. Graph. Image Process.198529327328510.1016/0734-189X(85)90125-2
– reference: Holmes, M., Holmes, A. & Holmes, D. Relationship between porosity and water saturation: Methodology to distinguish mobile from capillary bound water. In Adapted from Oral Presentation at AAPG Annual Convention, Denver, Colorado, 7–10 June 2009 AAPG National Meeting (2009).
– reference: SaxenaNImaging and computational considerations for image computed permeability: Operating envelope of digital rock physicsAdv. Water Resour.20181161271442018AdWR..116..127S10.1016/j.advwatres.2018.04.001
– reference: TahmasebiPHezarkhaniAA fast and independent architecture of artificial neural network for permeability predictionJ. Pet. Sci. Eng.2012868711812610.1016/j.petrol.2012.03.019
– reference: ZhangHPermeability prediction of low-resolution porous media images using autoencoder-based conventional neural networkJ. Pet. Sci. Eng.20222081095892022mcfp.book.....Z1:CAS:528:DC%2BB3MXitF2ns7bN10.1016/j.petrol.2021.109589
– reference: BorujeniATLaneNMThompsonKTyagiMEffects of image resolution and numerical resolution on computed permeability of consolidated packing using LBM and FEM pore-scale simulationsComput. Fluids201388753763313123010.1016/j.compfluid.2013.05.019
– reference: RabbaniAAssadiAKharratRDashtiNAyatollahiSEstimation of carbonates permeability using pore network parameters extracted from thin section images and comparison with experimental dataJ. Nat. Gas Sci. Eng.201742859810.1016/j.jngse.2017.02.045
– reference: Wang, Y. D., Chung, T., Armstrong, R. T. & Mostaghimi, P. ML-LBM: Machine Learning Aided Flow Simulation in Porous Media. https://doi.org/10.13140/RG.2.2.11248.40961 (2020).
– reference: OnifadeMLawalAIAladejareAEBadaSIdrisMAPrediction of gross calorific value of solid fuels from their proximate analysis using soft computing and regression analysisInt. J. Coal Prep. Util.20194241170118410.1016/j.advwaters.2013.06.001
– reference: BaldwinCASedermanAJMantleMDAlexanderPGladdenLFDetermination and characterization of the structure of a pore space from 3D volume imagesJ. Colloid Interface Sci.1996181179921996JCIS..181...79B1:CAS:528:DyaK28XktVens7w%3D10.1006/jcis.1996.0358
– reference: Ham, F. & Kostanic, I. Fundamental neurocomputing concepts. Princ. Neurocomput. Sci. Eng. (2001).
– reference: FrischUHasslacherBPomeauYLattice gas automata for the Navier–Stokes equationPhys. Rev. Lett.19865615051986PhRvL..56.1505F1:CAS:528:DyaL28XitlSlurg%3D10.1103/PhysRevLett.56.150510032689
– reference: GeigerSRobertsSGMatthäiSKZoppouCBurriACombining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic mediaGeofluids20044428429910.1111/j.1468-8123.2004.00093.x
– reference: AdegbiteJOBelhajHBeraAInvestigations on the relationship among the porosity, permeability and pore throat size of transition zone samples in carbonate reservoirs using multiple regression analysis, artificial neural network and adaptive neuro-fuzzy interface systemPet. Res.202164321332
– reference: BucklesRSCorrelating and averaging connate water saturation dataJ. Can. Pet. Technol.1965442521:CAS:528:DyaF2sXoslKksA%3D%3D10.2118/65-01-07
– reference: YenJCChangFJChangSA new criterion for automatic multilevel thresholdingIEEE Trans. Image Process.199543703781995ITIP....4..370Y1:STN:280:DC%2BD1c7ivF2itg%3D%3D10.1109/83.36647218289986
– reference: XingJLuoKWangHGaoZFanJA comprehensive study on estimating heating value of biomass proximate and ultimate analysis with machine learning approachesEnergy201918811607710.1016/j.energy.2019.116077
– reference: YalamanchiPDatta GuptaSSelection of a suitable rock mixing method for computing Gardner’s constant through machine learning (ML) approach to estimate the compressional velocity: A study from Jaisalmer sub basin, IndiaPure Appl. Geophys.2021178182518442021PApGe.178.1825Y10.1007/s00024-021-02733-y
– reference: MATLAB Version: 9.13.0, R2022b. https://www.mathworks.com (The MathWorks Inc.).
– reference: Wandrey, C. J., Law, B. E. & Shah H. A. Sembar Goru/Ghaij total petroleum system Indus Sulaiman–Kirthar geologic province, Palistan and India. In USGC, 2208C 1-23 (2004).
– reference: StewartMLWardALRectorDRA study of pore geometry effects on anisotropy in hydraulic permeability using the lattice-Boltzmann methodAdv. Water Resour.2006299132813402006AdWR...29.1328S10.1016/j.advwaters.2005.10.012
– reference: RabbaniAAyatollahiSKharratRDashtiNEstimation of 3D pore network coordination number of rocks from watershed segmentation of a single 2-D imageAdv. Water Resour.2016942642772016AdWR...94..264R10.1016/j.advwaters.2016.05.020
– reference: ChungTWangYDArmstrongRTMostaghimiPVoxel agglomeration for accelerated estimation of permeability from micro-CT imagesJ. Pet. Sci. Eng20201841065771:CAS:528:DC%2BC1MXitFSgs77M10.1016/j.petrol.2019.106577
– reference: ZhangLLuSXiaoDLiBPore structure characteristics of tight sandstone in the northern Songliao Basin, ChinaMar. Pet. Geol.2017881701801:CAS:528:DC%2BC2sXhtl2gsbfL10.1016/j.marpetgeo.2017.08.005
– reference: AlessaSSakhaee-PourASadooniFNAl-KuwariHAComprehensive pore size characterization of Midra shaleJ. Pet. Sci. Eng.20212031085761:CAS:528:DC%2BB3MXmslahurk%3D10.1016/j.petrol.2021.108576
– reference: Narayanan, K., Subrahmanyan, M. & Srinivasan, N. Geology of Jaisalmer. Unpublished Report ONGC (1961).
– reference: SharmaJKPandeyDKTaxonomy of late Bathonian–Oxfordian ammonites from the Jaisalmer Basin: Implications for intrabasinal litho-and biostratigraphic correlationsJ. Palaeontol. Soc. India2016612249266
– reference: HaslamIWCrouchRSSeaidMCoupled finite element-lattice Boltzmann analysisComput. Methods Appl. Mech. Eng.200819751–52450545112008CMAME.197.4505H10.1016/j.cma.2008.04.002
– reference: GosticksJTVersatile and efficient pore network extraction method using marker-based watershed segmentationPhys. Rev. E2017960233072017PhRvE..96b3307G10.1103/PhysrevE.96.023307
– reference: RezaeeRSaeediAClennellBTight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance dataJ. Pet. Sci. Eng.201288–8992991:CAS:528:DC%2BC38Xos1Cntb4%3D10.1016/j.petrol.2011.12.014
– reference: ClarksonCRPore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusionFuels20131036066161:CAS:528:DC%2BC38XhslKnurnL10.1016/j.fuel.2012.06.119
– reference: WhiteJABorjaRIFredrichJTCalculating the effective permeability of sandstone multiscale lattice Boltzmann/finite element simulationsActa Geotech.20061419520910.1007/s11440-006-0018-4
– reference: Rao, V. R. Subsurface stratigraphy tectonic setting and petroleum prospects of the Jaisalmer area, Rajasthan, India. In Proc. IV Symposium of Development in Petroleum Resources of Asia and the Far East, Camberra, Australia, Series, Vol. 41, 366–371 (1972).
– reference: KalkanEAkbulutSTortumACelikSPrediction of the unconfined compressive strength of compacted granular soils by using inference systemsEnviron. Geol.2009587142914402009EnGeo..58.1429K1:CAS:528:DC%2BD1MXhtlSkt7bI10.1007/s00254-008-1645-x
– reference: BluntMJJacksonMDPiriMValvatnePHDetailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flowAdv. Water Resour.2002258–12106910892002AdWR...25.1069B1:CAS:528:DC%2BD38XptFGrtbk%3D10.1016/S0309-1708(02)00049-0
– reference: OldhamRPPreliminary note on the geology of northern JaisalmerRec. Geol. Surv. India188619157160
– reference: RabbaniABabaeiMHybrid pore network and lattice Boltzmann permeability modelling accelerated by machine learningAdv. Water Resour.20191261161282019AdWR..126..116R10.1016/j.advwatres.2019.02.012
– reference: WangSQinCFengQJavadpourFRuiZA framework for predicting the production performance of unconventional resources using deep learningAppl. Energy202129511701610.1016/j.apenergy.2021.117016
– reference: TixierMPEvaluation of permeability from electric-log resistivity gradientsOil Gas J.194987590
– reference: SunZLogéREBernackiM3D finite element model of semi-solid permeability in an equiaxed granular structureComput. Mater. Sci.201049115817010.1016/j.commatsci.2010.04.042
– reference: AnovitzLMColeDRCharacterization and analysis of porosity and pore structuresRev. Mineral. Geochem.20158016116410.2138/rmg.2015.80.04
– reference: LiuCProduction analysis in shale gas reservoirs based on fracturing-enhanced permeability areasSci. China Phys. Mech. Astron.201962101046112019SCPMA..6204611L400922110.1007/s11433-019-9427-x
– reference: ChengYPore structure and permeability characterization of tight sandstone reservoirs: From a multiscale perspectiveEnergy Fuels202337139185919644390301:CAS:528:DC%2BB3sXht1Cqs7nO10.1021/acs.energyfuels.3c01693
– reference: YinYQuZGZhangJFPore-scale prediction of effective mass diffusivity of heterogeneous shale structure using the lattice Boltzmann methodInt. J. Heat Mass Transf.201913397698510.1016/j.ijheatmasstransfer.2018.12.184
– reference: HuangLKWangMJJImage thresholding by minimizing the measures of fuzzinessPattern Recogn.19952841511995PatRe..28...41H10.1016/0031-3203(94)E0043-K
– reference: GoswamiSAnitescuCChakrabortySRabczukTTransfer learning enhanced physics informed neural network for phase-field modelling of fractureTheor. Appl. Fract. Mech.202010610244710.1016/j.tafmec.2019.102447
– reference: KamathJEvaluation of accuracy of estimation air permeability from mercury injection dataSPE Form. Eval.1992743043101:CAS:528:DyaK3sXmt1OmsQ%3D%3D10.2118/18181-PA
– reference: ChenLPore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitationInt. J. Heat Mass Transf.2015859359491:CAS:528:DC%2BC2MXjs1Omsrg%3D10.1016/j.ijheatmasstransfer.2015.02.035
– reference: KachharaRPJodhawatRLPaliwaiBSBivalve biostratigraphy of the Jaisalmer formation, western Rajasthan, IndiaGeological Evolution of Northwestern India1999Scientific Publishers109117
– reference: PazdniakouAAdlerPMDynamic permeability of porous media by the lattice Boltzmann methodAdv. Water Resour.2013622923022013AdWR...62..292P10.1016/j.advwatres.2013.06.001
– reference: RabbaniAJamshidiSSalehiSAn automated simple algorithm for realistic pore network extraction from micro-tomography imagesJ. Pet. Sci. Eng.20141231641711:CAS:528:DC%2BC2cXhsVGju7jJ10.1016/j.petrol.2014.08.020
– reference: SrisutthiyakornNMavkoGComputation of grain size distribution in 2-D and 3-D binary imagesComput. Geosci.201912621302019CG....126...21S10.1016/j.cageo.2019.01.019
– reference: MustafaATariqZMahmoudMAbdulraheemAMachine learning accelerated approach to infer nuclear magnetic resonance porosity for middle eastern carbonate reservoirSci. Rep.202313139562023NatSR..13.3956M1:CAS:528:DC%2BB3sXlsVSntLc%3D10.1038/s41598-023-30708-7368945539998858
– reference: MostaghimiPBluntMJBijeljicBComputation of absolute permeability on micro-CT imagesMath. Geosci.2013451103125301875210.1007/s11004-012-9431-4
– reference: GauthierTDDetecting trends using Spearman’s rank correlation coefficientEnviron. Forens.2001243593621:CAS:528:DC%2BD38XivVOqsb4%3D10.1006/enfo.2001.0061
– reference: AwasthiAMGeophysical exploration in Jaisalmer Basin—A case historyGeohorizons2002116
– reference: ChehraziARezaeeRA systematic method for permeability prediction, a Petro-Facies approachJ. Pet. Sci. Eng.2012828311610.1016/j.petrol.2011.12.004
– reference: TranHKashaASakhaee-PourAHusseinIPredicting carbonate formation permeability using machine learningJ. Pet. Sci. Eng.20201951075811:CAS:528:DC%2BB3cXhtlKkt73J10.1016/j.petrol.2020.107581
– reference: SongYSChungKKangTJYounJRPrediction of permeability tensor for three-dimensional circular braided preform by applying a finite volume method to a unit cellCompos. Sci. Technol.20046410–11162916361:CAS:528:DC%2BD2cXkt1agtb0%3D10.1016/j.compscitech.2003.11.008
– reference: RostamiABaghbanAMohammadiAHHemmatiASHabibzadehSRigorous prognostication of permeability of heterogeneous carbonate oil reservoirs: Smart modelling and correlation developmentFuel20192361101231:CAS:528:DC%2BC1cXhs1OltLrI10.1016/j.fuel.2018.08.136
– reference: HakimovNZolfaghariAKalantari-DahaghiANegahbanSGunterGPore-scale network modelling of microporosity in low resistivity pay zones of carbonate reservoirJ. Nat. Gas Sci. Eng.20197110300510.1016/j.jngse.2019.103005
– reference: SahimiMFlow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches2012Wiley
– reference: PanCHilpertMMillerCTLattice-Boltzmann simulation of two-phase flow in porous media: LBM simulation of two-phase flowWater Resour. Res.2004401212010.1029/2003WR002120
– reference: GordanBArmaghaniDJHajihassaniMMonjeziMPrediction of seismic slope stability through combination of particle swarm optimization and neural networkEng. Comput.2016321859710.1007/s00366-015-0400-7
– reference: AlipourMEsatyanaESakhaee-PourASadooniFNAl-KuwariHACharacterizing fracture toughness using machine learningJ. Pet. Sci. Eng.20212001082021:CAS:528:DC%2BB3MXpsVaisA%3D%3D10.1016/j.petrol.2020.108202
– reference: WuYPore-scale 3D dynamic modelling and characterization of shale samples: Considering the effects of thermal maturationJ. Geophys. Res. Solid Earth20201251e2019JB0183092020JGRB..12518309W443914510.1029/2019JB018309
– reference: AkanjiLTNasrGGBageriMCore-scale characterization of flow in tight Arabian formationsJ. Pet. Explor. Prod. Technol.20133423324110.1007/s13202-013-0062-1
– reference: GhassemiAPakAPore-scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann methodInt. J. Numer. Anal. Methods Geomech.201135888690110.1002/nag.932
– volume: 71
  start-page: 7301
  issue: 5
  year: 2005
  ident: 51479_CR87
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.057301
– volume: 295
  start-page: 117016
  year: 2021
  ident: 51479_CR42
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117016
– volume: 9
  start-page: 663
  issue: 7
  year: 1989
  ident: 51479_CR39
  publication-title: EPL
  doi: 10.1209/0295-5075/9/7/009
– volume: 4
  start-page: 284
  issue: 4
  year: 2004
  ident: 51479_CR21
  publication-title: Geofluids
  doi: 10.1111/j.1468-8123.2004.00093.x
– volume: 236
  start-page: 110
  year: 2019
  ident: 51479_CR52
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.08.136
– volume: 29
  start-page: 273
  issue: 3
  year: 1985
  ident: 51479_CR70
  publication-title: Comput. Vis. Graph. Image Process.
  doi: 10.1016/0734-189X(85)90125-2
– volume: 197
  start-page: 4505
  issue: 51–52
  year: 2008
  ident: 51479_CR86
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.04.002
– volume: 1
  start-page: 195
  issue: 4
  year: 2006
  ident: 51479_CR26
  publication-title: Acta Geotech.
  doi: 10.1007/s11440-006-0018-4
– volume: 71
  start-page: 103005
  year: 2019
  ident: 51479_CR35
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2019.103005
– volume: 82
  start-page: 1
  issue: 83
  year: 2012
  ident: 51479_CR40
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2011.12.004
– volume: 94
  start-page: 511
  issue: 3
  year: 1954
  ident: 51479_CR85
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.511
– volume: 106
  start-page: 102447
  year: 2020
  ident: 51479_CR46
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2019.102447
– ident: 51479_CR96
– volume: 95
  start-page: 301
  year: 2020
  ident: 51479_CR63
  publication-title: J. Geol. Soc. India
  doi: 10.1007/s12594-020-1429-9
– volume: 203
  start-page: 108576
  year: 2021
  ident: 51479_CR15
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.108576
– volume: 13
  start-page: 3956
  issue: 1
  year: 2023
  ident: 51479_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-30708-7
– volume: 86
  start-page: 118
  issue: 87
  year: 2012
  ident: 51479_CR41
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2012.03.019
– volume: 58
  start-page: 5
  issue: 1–2
  year: 2005
  ident: 51479_CR36
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-004-5466-4
– volume: 15
  start-page: 445
  issue: 6
  year: 2000
  ident: 51479_CR98
  publication-title: Comput. Aided. Civil Infrastruct. Eng.
  doi: 10.1111/0885-9507.00206
– volume: 195
  start-page: 107581
  year: 2020
  ident: 51479_CR54
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107581
– volume: 2021
  start-page: 8876679
  year: 2021
  ident: 51479_CR49
  publication-title: Geofluids
  doi: 10.1155/2021/8876679
– volume: 133
  start-page: 976
  year: 2019
  ident: 51479_CR28
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.12.184
– volume: 8
  start-page: 75
  year: 1949
  ident: 51479_CR89
  publication-title: Oil Gas J.
– volume: 184
  start-page: 106577
  year: 2020
  ident: 51479_CR18
  publication-title: J. Pet. Sci. Eng
  doi: 10.1016/j.petrol.2019.106577
– volume: 9
  start-page: 3
  issue: 4
  year: 1968
  ident: 51479_CR90
  publication-title: Log Anal.
– ident: 51479_CR12
  doi: 10.2118/171613-MS
– volume: 88
  start-page: 927
  year: 1997
  ident: 51479_CR84
  publication-title: J. Stat. Phys.
  doi: 10.1023/B:JOSS.0000015179.12689.e4
– volume: 19
  start-page: 1340
  issue: 6
  year: 2022
  ident: 51479_CR58
  publication-title: J. Geophys. Eng.
  doi: 10.1093/jge/gxac087
– volume: 96
  start-page: 023307
  year: 2017
  ident: 51479_CR74
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysrevE.96.023307
– volume-title: Digital Image Processing Using MATLAB
  year: 2004
  ident: 51479_CR79
– volume: 181
  start-page: 79
  issue: 1
  year: 1996
  ident: 51479_CR75
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0358
– volume: 7
  start-page: 304
  issue: 4
  year: 1992
  ident: 51479_CR14
  publication-title: SPE Form. Eval.
  doi: 10.2118/18181-PA
– ident: 51479_CR60
– volume: 304
  start-page: 546
  year: 2016
  ident: 51479_CR7
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2016.02.020
– volume: 4
  start-page: 42
  year: 1965
  ident: 51479_CR92
  publication-title: J. Can. Pet. Technol.
  doi: 10.2118/65-01-07
– ident: 51479_CR32
  doi: 10.13140/RG.2.2.11248.40961
– volume-title: The Nature of Statistical Learning Theory. Information Science and Statistics Series
  year: 1995
  ident: 51479_CR99
– ident: 51479_CR68
– volume: 94
  start-page: 264
  year: 2016
  ident: 51479_CR81
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwaters.2016.05.020
– volume: 3
  start-page: 233
  issue: 4
  year: 2013
  ident: 51479_CR17
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-013-0062-1
– volume: 49
  start-page: 158
  issue: 1
  year: 2010
  ident: 51479_CR24
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.04.042
– ident: 51479_CR1
  doi: 10.2118/191193-MS
– volume: 6
  start-page: 11693
  issue: 7
  year: 2021
  ident: 51479_CR43
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c01015
– volume: 9
  start-page: 62
  year: 1979
  ident: 51479_CR71
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/tsmc.1979.4310076
– ident: 51479_CR77
– volume: 178
  start-page: 1825
  year: 2021
  ident: 51479_CR57
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-021-02733-y
– volume: 58
  start-page: 1429
  issue: 7
  year: 2009
  ident: 51479_CR94
  publication-title: Environ. Geol.
  doi: 10.1007/s00254-008-1645-x
– volume: 88–89
  start-page: 92
  year: 2012
  ident: 51479_CR13
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2011.12.014
– volume: 67
  start-page: 160
  year: 2019
  ident: 51479_CR5
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2019.05.003
– volume: 88
  start-page: 753
  year: 2013
  ident: 51479_CR23
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2013.05.019
– volume: 126
  start-page: 116
  year: 2019
  ident: 51479_CR29
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2019.02.012
– volume: 6
  start-page: 321
  issue: 4
  year: 2021
  ident: 51479_CR51
  publication-title: Pet. Res.
– volume: 62
  start-page: 104611
  issue: 10
  year: 2019
  ident: 51479_CR11
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-019-9427-x
– volume: 31
  start-page: L04606
  issue: 4
  year: 2004
  ident: 51479_CR30
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2003GL018761
– volume: 47
  start-page: 3129
  issue: 12
  year: 2014
  ident: 51479_CR25
  publication-title: J. Biomech.
  doi: 10.1016/j.biomech.2014.06.024
– volume: 56
  start-page: 1505
  year: 1986
  ident: 51479_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.56.1505
– volume: 25
  start-page: 1069
  issue: 8–12
  year: 2002
  ident: 51479_CR6
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(02)00049-0
– start-page: 170
  volume-title: Image Processing, Analysis, and Machine Vision
  year: 2014
  ident: 51479_CR78
– volume: 35
  start-page: 886
  issue: 8
  year: 2011
  ident: 51479_CR37
  publication-title: Int. J. Numer. Anal. Methods Geomech.
  doi: 10.1002/nag.932
– volume-title: Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches
  year: 2012
  ident: 51479_CR3
– volume: 197
  start-page: 107933
  year: 2021
  ident: 51479_CR48
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.107933
– start-page: 109
  volume-title: Geological Evolution of Northwestern India
  year: 1999
  ident: 51479_CR66
– volume: 123
  start-page: 164
  year: 2014
  ident: 51479_CR80
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2014.08.020
– volume: 200
  start-page: 108202
  year: 2021
  ident: 51479_CR45
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2020.108202
– volume: 29
  start-page: 1328
  issue: 9
  year: 2006
  ident: 51479_CR31
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwaters.2005.10.012
– volume: 80
  start-page: 61
  issue: 1
  year: 2015
  ident: 51479_CR9
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2015.80.04
– volume: 45
  start-page: 103
  issue: 1
  year: 2013
  ident: 51479_CR20
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-012-9431-4
– volume: 188
  start-page: 116077
  year: 2019
  ident: 51479_CR101
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116077
– volume: 4
  start-page: 370
  year: 1995
  ident: 51479_CR73
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.366472
– volume: 62
  start-page: 292
  year: 2013
  ident: 51479_CR88
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2013.06.001
– volume: 42
  start-page: 1170
  issue: 4
  year: 2019
  ident: 51479_CR100
  publication-title: Int. J. Coal Prep. Util.
  doi: 10.1016/j.advwaters.2013.06.001
– ident: 51479_CR61
– volume: 1
  start-page: 1
  year: 2002
  ident: 51479_CR59
  publication-title: Geohorizons
– volume: 20
  start-page: 801
  issue: 9
  year: 2006
  ident: 51479_CR95
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat2005.01.047
– volume: 32
  start-page: 85
  issue: 1
  year: 2016
  ident: 51479_CR97
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-015-0400-7
– volume: 69
  start-page: 1
  year: 2021
  ident: 51479_CR55
  publication-title: Acta Geophys.
  doi: 10.1007/s11600-020-00510-4
– volume: 40
  start-page: 2120
  issue: 1
  year: 2004
  ident: 51479_CR83
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002120
– volume: 116
  start-page: 127
  year: 2018
  ident: 51479_CR56
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2018.04.001
– volume: 80
  start-page: 036307
  year: 2009
  ident: 51479_CR8
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.036307
– volume: 88
  start-page: 170
  year: 2017
  ident: 51479_CR19
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2017.08.005
– volume: 28
  start-page: 41
  year: 1995
  ident: 51479_CR72
  publication-title: Pattern Recogn.
  doi: 10.1016/0031-3203(94)E0043-K
– ident: 51479_CR93
– volume: 208
  start-page: 109589
  year: 2022
  ident: 51479_CR53
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109589
– volume: 91
  start-page: 4059
  issue: 12
  year: 2008
  ident: 51479_CR16
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2008.02736.x
– volume: 9
  start-page: 676
  issue: 7
  year: 2012
  ident: 51479_CR76
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2019
– volume: 100
  start-page: 053314
  year: 2019
  ident: 51479_CR4
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.100.053314
– volume: 3
  start-page: 37
  issue: 8
  year: 2015
  ident: 51479_CR62
  publication-title: Int. Res. J. Earth Sci.
– volume: 15
  start-page: 17
  year: 1974
  ident: 51479_CR91
  publication-title: Log Anal.
– volume: 125
  start-page: e2019JB018309
  issue: 1
  year: 2020
  ident: 51479_CR33
  publication-title: J. Geophys. Res. Solid Earth
  doi: 10.1029/2019JB018309
– ident: 51479_CR64
– volume: 23
  start-page: 1159
  year: 2020
  ident: 51479_CR2
  publication-title: SPE Res. Eval. Eng.
  doi: 10.2118/199335-PA
– volume: 37
  start-page: 9185
  issue: 13
  year: 2023
  ident: 51479_CR50
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c01693
– volume: 126
  start-page: 21
  year: 2019
  ident: 51479_CR82
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2019.01.019
– volume: 2
  start-page: 359
  issue: 4
  year: 2001
  ident: 51479_CR102
  publication-title: Environ. Forens.
  doi: 10.1006/enfo.2001.0061
– volume: 897
  start-page: 381
  year: 2020
  ident: 51479_CR34
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.381
– volume: 42
  start-page: 85
  year: 2017
  ident: 51479_CR47
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2017.02.045
– volume: 103
  start-page: 606
  year: 2013
  ident: 51479_CR10
  publication-title: Fuels
  doi: 10.1016/j.fuel.2012.06.119
– volume: 2
  start-page: 77
  issue: 1
  year: 1975
  ident: 51479_CR67
  publication-title: Indian J. Earth Sci.
– volume: 61
  start-page: 249
  issue: 2
  year: 2016
  ident: 51479_CR69
  publication-title: J. Palaeontol. Soc. India
  doi: 10.1177/0971102320160207
– volume: 64
  start-page: 1629
  issue: 10–11
  year: 2004
  ident: 51479_CR22
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2003.11.008
– volume: 19
  start-page: 157
  year: 1886
  ident: 51479_CR65
  publication-title: Rec. Geol. Surv. India
– volume: 85
  start-page: 935
  year: 2015
  ident: 51479_CR27
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2015.02.035
SSID ssj0000529419
Score 2.5164616
Snippet Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal of the...
Abstract Analyzing the pore structure in carbonate reservoirs plays a crucial role in predicting fluid flow characteristics within these formations. The goal...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 930
SubjectTerms 639/4077/4082
704/2151/2809
Algorithms
Flow characteristics
Fluid flow
Humanities and Social Sciences
Learning algorithms
Machine learning
Membrane permeability
multidisciplinary
Neural networks
Permeability
Petrography
Pore size
Porosity
Reservoirs
Scanning electron microscopy
Science
Science (multidisciplinary)
Size distribution
Support vector machines
Well logs
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - DOAJ (NTUSG)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQSgg4IN4bWJCROIBotIkfiX0E1NWyolxgpb1FfnYjdZOqD1D_Dr-UcZyGVqCFA7eqcRPX803m82O-QeiVyYQGGlumuS1EygA0aVBRS5kjhoRERqnDOuTkc3F6zs4u-MVOqa9wJizKA8eBOwa80dLkphClYJZx6YHgZFo74lnJfDfxyYTcmUxFVW8iWS77LJmMiuMlRKqQTUZYChyhlKnci0SdYP-fWObvhyWHHdM76Na6mavNdzWb7QSlk3vobs8m8bv4L-6jG655gG7G-pKbh-jHGBw45ibi1mOg2g5Hwdg1fFKNxXN4Mbso1b3BdYNXYa6OjVrosKrucEhOWnxr6wUO4c5iuNFVd_zS4b7exBS_nnx6g9Vs2i7q1eUVDifpp_jLeILh0VO3DE8-U_WyK9SCl2udwq3qZoQ_NoDNR-j8ZPz1w2naF2VIDWf5KiVMZcKD3Z33njNVmNyJQLs0c5SWENysVIoZocFG2hSe5tbnXDhhmc-UpY_RQdM27hBh5QUjljmujWNceGF0yVVGjCVWMpElKN8aqDK9YnkonDGrup1zKqpo1AqMWnVGrWSC3g6_mUe9jmtbvw92H1oGre3uC0Bg1SOw-hsCE3S0RU3VvwCWFZE5CVSU8gS9HC6D64b9GNW4dt21ocDIOCUJehJBNvQkTKQ5eE2CxB789rq6f6WpLzt58DwoNBUlTdBoi9Rf_bpuLEYDmv9h6J7-j6F7hm6T4JFhSUseoQPwAPccSN5Kv-j8-Se1YUvw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ba9RAFB7qFlEfxLvRKiP4oLihyWSSTB5ErGypxV1ELfQtzDVd2CbrXpT9O_5Sz8mtLsriW0gmyWTOdy6ZmfMdQl7qQCgIY1M_NInwOYDGRxY1n1umGSYyZgrnIceT5OSMn57H53tk0uXC4LbKzibWhtpUGufID1kWMvTtUfxu_t3HqlG4utqV0JBtaQXztqYYu0b2GTJjDcj-0Wjy-Us_64LrWjzM2uyZIBKHS_BgmGXGuA-xQ5r52ZaHqon8_xV9_r2Jsl9JvUVurMu53PyUs9kfzur4DrndRpn0fQOLu2TPlvfI9abu5OY--TUCxW5yFmnlKITgljZEsms4kqWhczDYtqHw3tBpSVf4D0-1XCicbbcUk5YWP6rpgqIbNBQedFlvy7S0rUNR0FfjT6-pnBUwiquLS4o77Av6dTSm8OrCLvHNp3K6rAu40OVa-fCoaTmkH0vA7ANydjz69uHEb4s1-Drm4cpnXAbCAR6scy7mMtGhFRiOKW6jKAWnZzIpuRZKKat04qLQuDAWVhjuAmmih2RQVqV9TKh0gjPDbay05bFwQqs0lgHThpmMi8AjYSegXLdM5lhQY5bXK-qRyBuh5iDUvBZqnnnkTX_PvOHx2Nn6COXet0QO7vpEtSjyVqVzsIRRqkOdiFRww-PMQegdwNcxx1PuQo8cdKjJW8OwzK9g7JEX_WVQaVynkaWt1nWbCCK1OGIeedSArO8J_mDHoE0eEVvw2-rq9pVyelHThofI3JSkkUeGHVKv-rVrLIY9mv9j6J7s_uqn5CZDXcNJrOyADADb9hmEdSv1vNXV3xNHSu8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB4tXSHggHgTWJCROIBotLHjJM6xoK6WinJZVtpb5Gc3Ujep-gD17_BLGSdpoFq0gluU2I6T-SYz8Xi-AXirI6HQjc1CalIRcgRN6FnUQm6ZZj6RMVd-HXL6NT0955OL5OIAhrtcmL34fUPdvUIT49PAGA_RuGd5mN-CQ4HAFAM4HI0mZ5N-TcVHrTjNu9wY7H58vfOe_Wlo-v_mW17fItnHSe_BnU21kNsfcj7_wxSdPID7nQ9JRq3QH8KBrR7B7baq5PYx_Byj2rYZiaR2BB1sS1qa2A0eycqQBX6ObUvQvSVlRdb-D51ouVR-Ld0Sn5K0_F6XS-KNnCE40FWz6dKSrsrEjLybfnlP5HxWL8v15RXx--dn5Gw8JXjrmV35O09kuWrKs5DVRoU4VFkNyecKEfkEzk_G3z6dhl0phlAnnK5DxmUkHErbOucSLlNNrfDOluI2jjM0aSaXkmuhlLJKpy6mxtFEWGG4i6SJn8Kgqiv7HIh0gjPDbaK05YlwQqsskRHThpmciygAuhNQoTuecl8uY1408fJYFK1QCxRq0Qi1yAP40PdZtCwdN7b-6OXet_QM280JBF7RKWyB37k401SnIhPc8CR36FhH-HTM8Yw7GsDRDjVFp_arguWUeQc0TgJ4019GhfVRGFnZetO0QeyioWEBPGtB1s_E_z4nqCsBiD347U11_0pVXjak4NTzMqVZHMBwh9Tf87rpXQx7NP_Dq3vxf6O_hLvM655fssqPYIBYt6_QiVur153u_gLgMT9K
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVgh44CxtoCAj8QBisySOnTiPBW1VKrZCghXlKfK5jdgmqz1Ay8_hlzLOBQtVRV-TSXxkPPPFnvkGoecq4BJgbOKHOuY-BaXxHYuaTw1RxCUyptLtQ45O4qMxPT5lp1sobnNhqqD9itKyMtNtdNjrBTgalwxGqA8uPkn9dDDT9hrajhlg8B7aHp98OPjiKskBRvEBJpAmQyaI-AUPb3ihiqz_IoT5b6Bkd1p6C91YFTOx_i6m0z8c0uEd9LkdSh2H8nWwWsqB-vEXy-PVx3oX3W4wKj6oJe-hLVPcR9frqpXrB-jnEMxCnfGIS4sBwBtc09BCG1gUGs_A3JuaAHyN8wIv3Q4AVmIu3V69wS7laf6tzOfYOVGN4UXnVVCnwU0Viwl-MXr_EovppJzny7Nz7OLzJ_jjcISh6YlZuJaPRb6oyr_gxUr68Kq86ON3BWj8DhofDj-9PfKbUg--YjRc-oSKgFvQJmOtZVTEKjTcgTlJTRQl4DJ1KgRVXEpppIptFGobMm64pjYQOnqIekVZmD2EheWUaGqYVIYybrmSCRMBUZrolPLAQ2H76TPV8KC7chzTrDqPj3hWz38G859V85-lHnrVPTOrWUAulX7jNKqTdAze1YVyPsmar5yBHY0SFaqYJ5xqylILwD2A0RFLE2pDD-23-pg1ZmWRkTQkDuBGzEPPuttgENwpjyhMuapkIsB5LCIe2q3Vt-uJ-z1nsBY9xDcUe6Orm3eK_KwiHQ8d71OcRB7qt2vgd78um4t-t07-Y-oeXU38MbpJ3DJxW2LpPuqBrpsnABKX8mljEX4BH09h5Q
  priority: 102
  providerName: Unpaywall
Title Estimation of pore structure and permeability in tight carbonate reservoir based on machine learning (ML) algorithm using SEM images of Jaisalmer sub-basin, India
URI https://link.springer.com/article/10.1038/s41598-024-51479-9
https://www.ncbi.nlm.nih.gov/pubmed/38195867
https://www.proquest.com/docview/2912143535
https://www.proquest.com/docview/2913081532
https://pubmed.ncbi.nlm.nih.gov/PMC10776673
https://www.nature.com/articles/s41598-024-51479-9.pdf
https://doaj.org/article/22537c1c68784d459f0200bbe2f474f1
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Complete
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELb2IoT4gHgnMCojIQSihsRxEucDQl3VaVS0mhiVyqfIceyuUpd2fQH6d_il3CVpoKKa9qlR7DqO_VzufPY9R8gr7coUzNiIeVkomQDQMGRRY8JwzTGQMU7RD9nrh6cD0R0Gwz2yOW5bDeBi59IO80kN5pP3v67Wn0DgP5Yh4_LDApQQBopxwUD9RzGLX8-uGCaWwg3YKsvGPjkE5RVjdodetQIo6b95LIr0H8jLzsC-4FVoze6Wt9RXwfK_yzT9_4Rlvc16h9xe5TO1_qkmk3802ck9crcyQWmrxMx9smfyB-RWmZRy_ZD87oDUlwGNdGopDI2hJcvsCq5UntEZfM1Nye-9puOcLnGBT7Wap-iKNxQjmuY_puM5RR2ZUWjosjizaWiVpGJE3_S-vKVqMoLxW15cUjx-P6LnnR6FR4_MAp_cVeNFkd2FLlYpg6bGeZN-zgHQj8jgpPOtfcqqTA5MB8JbMi6UKy2AxVhrA6FC7RmJtloqjO9HoBGzWCmhZZqmJtWh9b3MeoE0MhPWVZn_mBzk09w8JVRZKXgmTJBqIwJppU6jQLlcZzyLhXQd4m0mKNEVzTlm25gkxXa7L5NyUhOY1KSY1CR2yLv6P7OS5OPa2sc473VNJOgubkzno6SS9wQ-k36kPR3KSIpMBLEFu9yFt-NWRMJ6DjnaoCbZgD7hscfRfvUDh7ysi0HecRNH5Wa6Kur4YMYFPnfIkxJkdU9w9R2AqDlEbsFvq6vbJfn4ouAU95DWKYx8hzQ3SP3br-vGolmj-QZD9-wGr_UcXSeVmys-IgcAcPMCDL9l2iD70TBqkMNWq3vehd_jTv_sK9xth-1G4UxpFMINJYP-Wev7H_cVWps
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFVaocID4sZQYJFAAjVW7fU6Xj9UiEKqpE0iBK3UN7PeI42U2iEHVX6HD-HbmLEdlwgU8dI3y17vNefO7MwQ8lp5IgU1NnJ93RQuB6RxMYuayw1TDAMZ4xTtkL1-s33Kj87Csw3yaxkLg9cqlzyxYNQ6V2gj32Oxz1C2B-H78XcXq0ahd3VZQkNWpRX0fpFirArsODaLSzjCTfc7nwDebxg7bJ18bLtVlQFXhdyfuYxLT1hYiLHWhlw2lW8E6hEpN0EQAbfWsZRciTRNTaqaNvC19UNhhObWkzqAfm-QLR7wGA5_Wwet_ucvtZUH_Wjcj6toHS8Qe1OQmBjVxrgLY0SxG69IxKJwwL-03b8vbdae29tke56N5eJSjkZ_CMfDu-ROpdXSDyUa3iMbJrtPbpZ1LhcPyM8WMJIyRpLmloLKb2iZuHYOTzLTdAwCwpQpwxd0mNEZ2gyokpMUrfuGYpDU5Ec-nFAUu5pCRxfFNVBDq7oXA_q2131H5WgAUJudX1C80T-gX1s9CkMPzBRHPpLDaVEwhk7nqQtdDbMG7WRAIw_J6bWA7RHZzPLMPCFUWsGZ5iZMleGhsEKlUSg9pjTTMReeQ_wlgBJVZU7HAh6jpPDgByIpgZoAUJMCqEnskN36n3GZN2Rt6wOEe90Sc34XL_LJIKlYSAKcN4iUr5oiElzzMLag6nuwOmZ5xK3vkJ0l1iQVI5omV2TjkFf1Z2Ah6BeSmcnnRZsANMMwYA55XCJZPRM80IdAvQ4RK-i3MtXVL9nwvEhT7mOmqGYUOKSxxNSrea3bi0aNzf-xdU_Xr_ol2W6f9LpJt9M_fkZuMaQ7Dy2uO2QT8Nw8B5Vylr6o6JaSb9fNKn4Dgh2Knw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpD3B4QdwIDjAQSiEZNbCdxHhAC1mrd1gmJTepbcBy7q9SlpWmZ-jt8Bl_HOUmaUYEqXvYWJY4vOdecKyGvtCdTUGMj189C6QpAGherqLnCMM0wkTFO0Q7ZPwr3TsT-IBhskV-rXBgMq1zxxJJRZxONNvI2i32Gsp0HbVuHRXzZ7X6YfnexgxR6WlftNCoUOTDLc_h9K973dgHWrxnrdo4_77l1hwFXB8Kfu0woT1o4hLHWBkKF2jcSdYhUGM4j4NRZrJTQMk1Tk-rQcj-zfiCNzIT1VMZh3ivkasR5jOGE0SBq7DvoQRN-XOfpeFy2C5CVmM_GhAsrRLEbr8nCsmXAv_Tcv8M1G5_tLXJjkU_V8lyNx3-Ixe4dcrvWZ-nHCgHvki2T3yPXqg6Xy_vkZwdYSJUdSSeWgrJvaFWydgFXKs_oFESDqYqFL-kop3O0FlCtZina9Q3F9KjZj8loRlHgZhQmOisDQA2tO14M6Zv-4VuqxkOA0fz0jGIs_5B-7fQpLD00Ba68r0ZF2SqGFovUhalGeYv2cqCOB-TkUoD2kGznk9w8JlRZKVgmTJBqIwJppU6jQHlMZyyLhfQc4q8AlOi6Zjq27hgnpe-ey6QCagJATUqgJrFD3jXvTKuKIRtHf0K4NyOx2nd5YzIbJjXzSIDn8kj7OpSRFJkIYgtKvgenY1ZEwvoO2VlhTVKzoCK5IBiHvGweA_NAj5DKzWRRjuGgEwacOeRRhWTNTvBXPgC6dYhcQ7-1ra4_yUenZYFyH2tEhRF3SGuFqRf72vQtWg02_8ene7L51C_IdWAQyWHv6OApucmQ7NByFu-QbUBz8wx0yXn6vCRaSr5dNpf4DcUAiD8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVgh44CxtoCAj8QBisySOnTiPBW1VKrZCghXlKfK5jdgmqz1Ay8_hlzLOBQtVRV-TSXxkPPPFnvkGoecq4BJgbOKHOuY-BaXxHYuaTw1RxCUyptLtQ45O4qMxPT5lp1sobnNhqqD9itKyMtNtdNjrBTgalwxGqA8uPkn9dDDT9hrajhlg8B7aHp98OPjiKskBRvEBJpAmQyaI-AUPb3ihiqz_IoT5b6Bkd1p6C91YFTOx_i6m0z8c0uEd9LkdSh2H8nWwWsqB-vEXy-PVx3oX3W4wKj6oJe-hLVPcR9frqpXrB-jnEMxCnfGIS4sBwBtc09BCG1gUGs_A3JuaAHyN8wIv3Q4AVmIu3V69wS7laf6tzOfYOVGN4UXnVVCnwU0Viwl-MXr_EovppJzny7Nz7OLzJ_jjcISh6YlZuJaPRb6oyr_gxUr68Kq86ON3BWj8DhofDj-9PfKbUg--YjRc-oSKgFvQJmOtZVTEKjTcgTlJTRQl4DJ1KgRVXEpppIptFGobMm64pjYQOnqIekVZmD2EheWUaGqYVIYybrmSCRMBUZrolPLAQ2H76TPV8KC7chzTrDqPj3hWz38G859V85-lHnrVPTOrWUAulX7jNKqTdAze1YVyPsmar5yBHY0SFaqYJ5xqylILwD2A0RFLE2pDD-23-pg1ZmWRkTQkDuBGzEPPuttgENwpjyhMuapkIsB5LCIe2q3Vt-uJ-z1nsBY9xDcUe6Orm3eK_KwiHQ8d71OcRB7qt2vgd78um4t-t07-Y-oeXU38MbpJ3DJxW2LpPuqBrpsnABKX8mljEX4BH09h5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+pore+structure+and+permeability+in+tight+carbonate+reservoir+based+on+machine+learning+%28ML%29+algorithm+using+SEM+images+of+Jaisalmer+sub-basin%2C+India&rft.jtitle=Scientific+reports&rft.au=Yalamanchi%2C+Pydiraju&rft.au=Datta+Gupta%2C+Saurabh&rft.date=2024-01-09&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=930&rft_id=info:doi/10.1038%2Fs41598-024-51479-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon