CAVE: Cerebral artery–vein segmentation in digital subtraction angiography

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis wit...

Full description

Saved in:
Bibliographic Details
Published inComputerized medical imaging and graphics Vol. 115; p. 102392
Main Authors Su, Ruisheng, van der Sluijs, P. Matthijs, Chen, Yuan, Cornelissen, Sandra, van den Broek, Ruben, van Zwam, Wim H., van der Lugt, Aad, Niessen, Wiro J., Ruijters, Danny, van Walsum, Theo
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2024
Subjects
Online AccessGet full text
ISSN0895-6111
1879-0771
1879-0771
DOI10.1016/j.compmedimag.2024.102392

Cover

Abstract Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA. [Display omitted] •The first automatic deep learning-based method for artery–vein segmentation in DSA is proposed.•CAVE generates artery–vein segmentations from 2D+time DSA series with variable frame lengths.•CAVE simultaneously harnesses spatial vasculature and temporal contrast flow characteristics.•CAVE promises to facilitate fast, accurate, and objective vasculature interpretation in DSA.
AbstractList Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA. [Display omitted] •The first automatic deep learning-based method for artery–vein segmentation in DSA is proposed.•CAVE generates artery–vein segmentations from 2D+time DSA series with variable frame lengths.•CAVE simultaneously harnesses spatial vasculature and temporal contrast flow characteristics.•CAVE promises to facilitate fast, accurate, and objective vasculature interpretation in DSA.
Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.
Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.
AbstractCerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 ( ±0.04) and an artery–vein segmentation Dice of 0.79 ( ±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.
ArticleNumber 102392
Author van den Broek, Ruben
van Zwam, Wim H.
van Walsum, Theo
van der Sluijs, P. Matthijs
Chen, Yuan
Cornelissen, Sandra
Ruijters, Danny
van der Lugt, Aad
Su, Ruisheng
Niessen, Wiro J.
Author_xml – sequence: 1
  givenname: Ruisheng
  orcidid: 0000-0002-5013-1370
  surname: Su
  fullname: Su, Ruisheng
  email: r.su@erasmusmc.nl
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 2
  givenname: P. Matthijs
  surname: van der Sluijs
  fullname: van der Sluijs, P. Matthijs
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 3
  givenname: Yuan
  surname: Chen
  fullname: Chen, Yuan
  organization: Department of Radiology & Nuclear Medicine, UMass Chan Medical School, Worcester, USA
– sequence: 4
  givenname: Sandra
  surname: Cornelissen
  fullname: Cornelissen, Sandra
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 5
  givenname: Ruben
  surname: van den Broek
  fullname: van den Broek, Ruben
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 6
  givenname: Wim H.
  surname: van Zwam
  fullname: van Zwam, Wim H.
  organization: Department of Radiology & Nuclear Medicine, Maastricht UMC, Cardiovascular Research Institute Maastricht, The Netherlands
– sequence: 7
  givenname: Aad
  surname: van der Lugt
  fullname: van der Lugt, Aad
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 8
  givenname: Wiro J.
  surname: Niessen
  fullname: Niessen, Wiro J.
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
– sequence: 9
  givenname: Danny
  surname: Ruijters
  fullname: Ruijters, Danny
  organization: Philips Healthcare, Best, The Netherlands
– sequence: 10
  givenname: Theo
  surname: van Walsum
  fullname: van Walsum, Theo
  organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38714020$$D View this record in MEDLINE/PubMed
BookMark eNqVksuO1DAQRS00iOkZ-AXU7Nikcdl5eRagVjQ8pJZY8NhajlMJbhIn2Mmg7PgH_pAvwSEDQiMhNSurSvdel4_rgpzZ3iIhT4DugEL67LjTfTd0WJlONTtGWRz6jAt2j2wgz0REswzOyIbmIolSADgnF94fKaWMZvCAnPM8gzgUG3Io9h-vr7YFOiydarfKjejmH9--36CxW49Nh3ZUo-ntNtSVacwYVH4qR6f0r7ayjekbp4ZP80Nyv1atx0e35yX58PL6ffE6Orx99abYHyKdxDBGDLK6BKQVB85LoUUNEGqdgmIZKKRZrHIOmCdVKRIl6kRzjiXlLIhTVfJLcrXmTnZQ81fVtnJwgYWbJVC5IJJH-RciuSCSK6JgfrqaB9d_mdCPsjNeY9sqi_3kJacJS0TM6SJ9fCudyhD155Lf-ILgxSrQrvfeYS21WWkFPKY9aRpxJ-F_XlKsXgysbww66bVBq4PUoR5l1ZuTUp7fSdGtsUar9jPO6I_95Gz4TAnSM0nlu2Wplp1icdinVGQhYP_vgBOH-AnS1uKo
CitedBy_id crossref_primary_10_1088_1361_6560_ad94ca
crossref_primary_10_1016_j_isprsjprs_2024_12_015
crossref_primary_10_1109_JBHI_2023_3342195
crossref_primary_10_1016_j_bspc_2024_106652
crossref_primary_10_1016_j_media_2025_103496
Cites_doi 10.1109/CVPR42600.2020.00982
10.1038/s41467-020-18606-2
10.1088/0031-9155/58/17/R187
10.1109/TMI.2020.2966921
10.1016/j.cmpb.2018.04.010
10.1002/mp.12560
10.1016/j.compbiomed.2023.106718
10.1142/S0218488598000094
10.3174/ajnr.A7103
10.1016/j.cmpb.2018.02.001
10.1016/j.engappai.2023.106069
10.1016/j.jacc.2020.11.010
10.1109/TMI.2021.3062280
10.1016/j.cmpb.2019.105159
10.1609/aaai.v36i3.20144
10.1109/WACV51458.2022.00328
10.1109/TBME.2017.2759730
10.1016/j.media.2016.03.006
10.1016/j.cmpb.2012.03.009
10.1109/TMI.2021.3077113
10.1109/TMI.2005.862753
10.1038/s41592-020-01008-z
10.1016/j.compmedimag.2019.05.004
ContentType Journal Article
Copyright 2024 The Author(s)
The Author(s)
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2024 The Author(s)
– notice: The Author(s)
– notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.compmedimag.2024.102392
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0771
EndPage 102392
ExternalDocumentID 10.1016/j.compmedimag.2024.102392
38714020
10_1016_j_compmedimag_2024_102392
S0895611124000697
1_s2_0_S0895611124000697
Genre Journal Article
GrantInformation_xml – fundername: Health-Holland (TKI Life Sciences and Health)
  grantid: EMCLSH19006
– fundername: Philips Healthcare (Best, The Netherlands)
GroupedDBID ---
--K
--M
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HEI
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LX9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
WUQ
Z5R
ZGI
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
6I.
AAFTH
AAIAV
ABLVK
AAYXX
CITATION
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c541t-217fb1e0d3133b9c9f11b1ec61a271ae074a831e85db95a9f5c33eb032b9c6ab3
IEDL.DBID UNPAY
ISSN 0895-6111
1879-0771
IngestDate Sun Oct 26 04:10:17 EDT 2025
Thu Oct 02 11:01:33 EDT 2025
Wed Feb 19 02:10:47 EST 2025
Wed Oct 01 02:27:06 EDT 2025
Thu Apr 24 23:12:24 EDT 2025
Sat Jun 01 15:42:19 EDT 2024
Tue Feb 25 19:59:05 EST 2025
Tue Oct 14 19:38:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Temporal transformer
Spatio-temporal
Stroke
Vessel segmentation
RNN
Biomarkers
Brain vessels
Language English
License This is an open access article under the CC BY license.
Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c541t-217fb1e0d3133b9c9f11b1ec61a271ae074a831e85db95a9f5c33eb032b9c6ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5013-1370
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0895611124000697-ga1_lrg.jpg
PMID 38714020
PQID 3052594302
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compmedimag_2024_102392
proquest_miscellaneous_3052594302
pubmed_primary_38714020
crossref_citationtrail_10_1016_j_compmedimag_2024_102392
crossref_primary_10_1016_j_compmedimag_2024_102392
elsevier_sciencedirect_doi_10_1016_j_compmedimag_2024_102392
elsevier_clinicalkeyesjournals_1_s2_0_S0895611124000697
elsevier_clinicalkey_doi_10_1016_j_compmedimag_2024_102392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computerized medical imaging and graphics
PublicationTitleAlternate Comput Med Imaging Graph
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tan, Zhou, Li, Yang, Chen, Yang (b35) 2021
Wang, H., Cao, P., Wang, J., Zaiane, O.R., 2022. Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, (3), pp. 2441–2449.
Meijs, Pegge, Vos, Patel, van de Leemput, Koschmieder, Prokop, Meijer, Manniesing (b21) 2020; 2
Su, Wolff, van Es, Van Zwam, Majoie, Dippel, Van Der Lugt, Niessen, Van Walsum (b34) 2020; 39
Roth, Mensah, Johnson, Addolorato, Ammirati, Baddour, Barengo, Beaton, Benjamin, Benziger (b30) 2020; 76
Hochreiter (b12) 1998; 6
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b23) 2019
Vepa, A., Choi, A., Nakhaei, N., Lee, W., Stier, N., Vu, A., Jenkins, G., Yang, X., Shergill, M., Desphy, M., et al., 2022. Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 585–594.
Phellan, Forkert (b24) 2017; 44
Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b42) 2018
Lea, Vidal, Reiter, Hager (b19) 2016
Van Rikxoort, Van Ginneken (b37) 2013; 58
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b38) 2017; 30
Heckel, Schwier, Peitgen (b8) 2009
Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b15) 2021; 18
Zhang, Zhang, Wu, Cao, Young, Chen, Xu (b41) 2020; 185
Moccia, De Momi, El Hadji, Mattos (b22) 2018; 158
Phellan, Lindner, Helle, Falcao, Forkert (b25) 2017; 65
Raz, Shapiro, Mir, Nossek, Nelson (b27) 2021; 42
Ronneberger, Fischer, Brox (b29) 2015
Liu, Jiang, Liu, Wang, Zhang, Zhang, Zhang, Yue (b20) 2018; 161
Hinton, Srivastava, Swersky (b11) 2012
Chen, Chuah, Raza, Wang (b2) 2021
Huang, Jia, Ren, Wang, Liu (b13) 2023; 121
Ballas, Yao, Pal, Courville (b1) 2015
Sluimer, Schilham, Prokop, van Ginneken (b32) 2006; 25
Dai, Yang, Yang, Carbonell, Le, Salakhutdinov (b4) 2019
Van Asperen, Van Den Berg, Lycklama, Marting, Cornelissen, Van Zwam, Hofmeijer, Van Der Lugt, Van Walsum, Van Der Sluijs (b36) 2022; Vol. 12034
Hemelings, Elen, Stalmans, Van Keer, De Boever, Blaschko (b9) 2019; 76
Kervadec, de Bruijne (b17) 2023
Qin, Zheng, Gu, Huang, Yang, Wang, Yao, Zhu, Yang (b26) 2021; 40
Shi, Chen, Wang, Yeung, Wong, Woo (b31) 2015; 2015
Fu, Wei, Zhang, Yu, Xiao, Rong, Shan, Li, Zhao, Liao (b7) 2020; 11
Jansen, Mulder, Goldhoorn (b16) 2018; 360
Kirillov, A., Wu, Y., He, K., Girshick, R., 2020. Pointrend: Image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9799–9808.
Fraz, Remagnino, Hoppe, Uyyanonvara, Rudnicka, Owen, Barman (b6) 2012; 108
Huang, Zhao, Ren, Wang, Liu, Wang (b14) 2023; 156
Robben, Türetken, Sunaert, Thijs, Wilms, Fua, Maes, Suetens (b28) 2016; 32
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b3) 2021
Devlin, Chang, Lee, Toutanova (b5) 2018
Su, Cornelissen, van der Sluijs, van Es, van Zwam, Dippel, Lycklama, van Doormaal, Niessen, van der Lugt, van Walsum (b33) 2021; 40
Hilbert, Madai, Akay, Aydin, Behland, Sobesky, Galinovic, Khalil, Taha, Wuerfel (b10) 2020
Ronneberger (10.1016/j.compmedimag.2024.102392_b29) 2015
Liu (10.1016/j.compmedimag.2024.102392_b20) 2018; 161
Van Rikxoort (10.1016/j.compmedimag.2024.102392_b37) 2013; 58
Huang (10.1016/j.compmedimag.2024.102392_b14) 2023; 156
Paszke (10.1016/j.compmedimag.2024.102392_b23) 2019
Devlin (10.1016/j.compmedimag.2024.102392_b5) 2018
Fraz (10.1016/j.compmedimag.2024.102392_b6) 2012; 108
Su (10.1016/j.compmedimag.2024.102392_b33) 2021; 40
Lea (10.1016/j.compmedimag.2024.102392_b19) 2016
Sluimer (10.1016/j.compmedimag.2024.102392_b32) 2006; 25
Tan (10.1016/j.compmedimag.2024.102392_b35) 2021
Hilbert (10.1016/j.compmedimag.2024.102392_b10) 2020
Zhang (10.1016/j.compmedimag.2024.102392_b41) 2020; 185
Hochreiter (10.1016/j.compmedimag.2024.102392_b12) 1998; 6
Chen (10.1016/j.compmedimag.2024.102392_b3) 2021
Huang (10.1016/j.compmedimag.2024.102392_b13) 2023; 121
Moccia (10.1016/j.compmedimag.2024.102392_b22) 2018; 158
Phellan (10.1016/j.compmedimag.2024.102392_b25) 2017; 65
Hinton (10.1016/j.compmedimag.2024.102392_b11) 2012
Kervadec (10.1016/j.compmedimag.2024.102392_b17) 2023
Hemelings (10.1016/j.compmedimag.2024.102392_b9) 2019; 76
Ballas (10.1016/j.compmedimag.2024.102392_b1) 2015
Qin (10.1016/j.compmedimag.2024.102392_b26) 2021; 40
Van Asperen (10.1016/j.compmedimag.2024.102392_b36) 2022; Vol. 12034
Fu (10.1016/j.compmedimag.2024.102392_b7) 2020; 11
Isensee (10.1016/j.compmedimag.2024.102392_b15) 2021; 18
10.1016/j.compmedimag.2024.102392_b40
Meijs (10.1016/j.compmedimag.2024.102392_b21) 2020; 2
Su (10.1016/j.compmedimag.2024.102392_b34) 2020; 39
Heckel (10.1016/j.compmedimag.2024.102392_b8) 2009
Roth (10.1016/j.compmedimag.2024.102392_b30) 2020; 76
Phellan (10.1016/j.compmedimag.2024.102392_b24) 2017; 44
Robben (10.1016/j.compmedimag.2024.102392_b28) 2016; 32
10.1016/j.compmedimag.2024.102392_b18
Vaswani (10.1016/j.compmedimag.2024.102392_b38) 2017; 30
Zhou (10.1016/j.compmedimag.2024.102392_b42) 2018
10.1016/j.compmedimag.2024.102392_b39
Shi (10.1016/j.compmedimag.2024.102392_b31) 2015; 2015
Dai (10.1016/j.compmedimag.2024.102392_b4) 2019
Jansen (10.1016/j.compmedimag.2024.102392_b16) 2018; 360
Raz (10.1016/j.compmedimag.2024.102392_b27) 2021; 42
Chen (10.1016/j.compmedimag.2024.102392_b2) 2021
References_xml – volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: b15
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. methods
– volume: 360
  year: 2018
  ident: b16
  article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN registry)
  publication-title: bmj
– volume: 76
  start-page: 2982
  year: 2020
  end-page: 3021
  ident: b30
  article-title: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study
  publication-title: J. Am. Coll. Cardiol.
– reference: Wang, H., Cao, P., Wang, J., Zaiane, O.R., 2022. Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, (3), pp. 2441–2449.
– volume: 40
  start-page: 1603
  year: 2021
  end-page: 1617
  ident: b26
  article-title: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
  publication-title: IEEE Trans. Med. Imaging
– volume: 156
  year: 2023
  ident: b14
  article-title: NAG-Net: Nested attention-guided learning for segmentation of carotid lumen-intima interface and media-adventitia interface
  publication-title: Comput. Biol. Med.
– volume: 58
  start-page: R187
  year: 2013
  ident: b37
  article-title: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review
  publication-title: Phys. Med. Biol.
– start-page: 47
  year: 2016
  end-page: 54
  ident: b19
  article-title: Temporal convolutional networks: A unified approach to action segmentation
  publication-title: Computer Vision–ECCV 2016 Workshops: Amsterdam, the Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14
– year: 2015
  ident: b1
  article-title: Delving deeper into convolutional networks for learning video representations
– volume: 11
  start-page: 1
  year: 2020
  end-page: 12
  ident: b7
  article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
  publication-title: Nat. Commun.
– reference: Vepa, A., Choi, A., Nakhaei, N., Lee, W., Stier, N., Vu, A., Jenkins, G., Yang, X., Shergill, M., Desphy, M., et al., 2022. Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 585–594.
– year: 2009
  ident: b8
  article-title: Object-oriented application development with MeVisLab and Python
  publication-title: Informatik 2009–Im Focus das Leben
– volume: 2015
  start-page: 802
  year: 2015
  end-page: 810
  ident: b31
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 39
  start-page: 2190
  year: 2020
  end-page: 2200
  ident: b34
  article-title: Automatic collateral scoring from 3D CTA images
  publication-title: IEEE Trans. Med. Imaging
– year: 2018
  ident: b5
  article-title: Bert: Pre-training of deep bidirectional transformers for language understanding
– volume: 30
  year: 2017
  ident: b38
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: Vol. 12034
  start-page: 366
  year: 2022
  end-page: 377
  ident: b36
  article-title: Automatic artery/vein classification in 2D-DSA images of stroke patients
  publication-title: Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling
– year: 2023
  ident: b17
  article-title: On the dice loss variants and sub-patching
  publication-title: Medical Imaging with Deep Learning, Short Paper Track
– year: 2021
  ident: b3
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– volume: 25
  start-page: 385
  year: 2006
  end-page: 405
  ident: b32
  article-title: Computer analysis of computed tomography scans of the lung: a survey
  publication-title: IEEE Trans. Med. Imaging
– volume: 108
  start-page: 407
  year: 2012
  end-page: 433
  ident: b6
  article-title: Blood vessel segmentation methodologies in retinal images–a survey
  publication-title: Comput. Methods Programs Biomed.
– volume: 42
  start-page: 1282
  year: 2021
  end-page: 1284
  ident: b27
  article-title: Arterial and venous 3D fusion AV-3D-DSA: a novel approach to cerebrovascular neuroimaging
  publication-title: Am. J. Neuroradiol.
– volume: 44
  start-page: 5901
  year: 2017
  end-page: 5915
  ident: b24
  article-title: Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation
  publication-title: Med. Phys.
– volume: 185
  year: 2020
  ident: b41
  article-title: A neural network approach to segment brain blood vessels in digital subtraction angiography
  publication-title: Comput. Methods Programs Biomed.
– year: 2012
  ident: b11
  article-title: Neural networks for machine learning—Lecture 6e—rmsprop: Divide the gradient by a running average of its recent magnitude
– year: 2019
  ident: b4
  article-title: Transformer-xl: Attentive language models beyond a fixed-length context
– start-page: 234
  year: 2015
  end-page: 241
  ident: b29
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 158
  start-page: 71
  year: 2018
  end-page: 91
  ident: b22
  article-title: Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics
  publication-title: Comput. Methods Programs Biomed.
– volume: 121
  year: 2023
  ident: b13
  article-title: Extraction of vascular wall in carotid ultrasound via a novel boundary-delineation network
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2021
  end-page: 15
  ident: b35
  article-title: Automated vessel segmentation in lung CT and CTA images via deep neural networks
  publication-title: J. X-ray Sci. Technol.
– volume: 76
  year: 2019
  ident: b9
  article-title: Artery–vein segmentation in fundus images using a fully convolutional network
  publication-title: Comput. Med. Imaging Graph.
– start-page: 3
  year: 2018
  end-page: 11
  ident: b42
  article-title: Unet++: A nested u-net architecture for medical image segmentation
  publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4
– volume: 65
  start-page: 1486
  year: 2017
  end-page: 1494
  ident: b25
  article-title: Automatic temporal segmentation of vessels of the brain using 4D ASL MRA images
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 161
  start-page: 55
  year: 2018
  end-page: 72
  ident: b20
  article-title: A vessel segmentation method for serialized cerebralvascular DSA images based on spatial feature point set of rotating coordinate system
  publication-title: Comput. Methods Programs Biomed.
– start-page: 8026
  year: 2019
  end-page: 8037
  ident: b23
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 32
  start-page: 201
  year: 2016
  end-page: 215
  ident: b28
  article-title: Simultaneous segmentation and anatomical labeling of the cerebral vasculature
  publication-title: Med. Image Anal.
– volume: 6
  start-page: 107
  year: 1998
  end-page: 116
  ident: b12
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems
– volume: 2
  year: 2020
  ident: b21
  article-title: Cerebral artery and vein segmentation in four-dimensional CT angiography using convolutional neural networks
  publication-title: Radiol.: Artif. Intell.
– year: 2021
  ident: b2
  article-title: Retinal vessel segmentation using deep learning: A review
  publication-title: IEEE Access
– start-page: 78
  year: 2020
  ident: b10
  article-title: BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Artif. Intell.
– volume: 40
  start-page: 2380
  year: 2021
  end-page: 2391
  ident: b33
  article-title: Autotici: Automatic brain tissue reperfusion scoring on 2D DSA images of acute ischemic stroke patients
  publication-title: IEEE Trans. Med. Imaging
– reference: Kirillov, A., Wu, Y., He, K., Girshick, R., 2020. Pointrend: Image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9799–9808.
– ident: 10.1016/j.compmedimag.2024.102392_b18
  doi: 10.1109/CVPR42600.2020.00982
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102392_b7
  article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18606-2
– start-page: 3
  year: 2018
  ident: 10.1016/j.compmedimag.2024.102392_b42
  article-title: Unet++: A nested u-net architecture for medical image segmentation
– start-page: 78
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102392_b10
  article-title: BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease
  publication-title: Front. Artif. Intell.
– volume: 58
  start-page: R187
  issue: 17
  year: 2013
  ident: 10.1016/j.compmedimag.2024.102392_b37
  article-title: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/R187
– year: 2023
  ident: 10.1016/j.compmedimag.2024.102392_b17
  article-title: On the dice loss variants and sub-patching
– volume: 39
  start-page: 2190
  issue: 6
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102392_b34
  article-title: Automatic collateral scoring from 3D CTA images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2966921
– volume: 161
  start-page: 55
  year: 2018
  ident: 10.1016/j.compmedimag.2024.102392_b20
  article-title: A vessel segmentation method for serialized cerebralvascular DSA images based on spatial feature point set of rotating coordinate system
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.04.010
– start-page: 234
  year: 2015
  ident: 10.1016/j.compmedimag.2024.102392_b29
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 44
  start-page: 5901
  issue: 11
  year: 2017
  ident: 10.1016/j.compmedimag.2024.102392_b24
  article-title: Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation
  publication-title: Med. Phys.
  doi: 10.1002/mp.12560
– volume: 156
  year: 2023
  ident: 10.1016/j.compmedimag.2024.102392_b14
  article-title: NAG-Net: Nested attention-guided learning for segmentation of carotid lumen-intima interface and media-adventitia interface
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106718
– volume: 6
  start-page: 107
  issue: 02
  year: 1998
  ident: 10.1016/j.compmedimag.2024.102392_b12
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems
  doi: 10.1142/S0218488598000094
– volume: 30
  year: 2017
  ident: 10.1016/j.compmedimag.2024.102392_b38
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2019
  ident: 10.1016/j.compmedimag.2024.102392_b4
– volume: 42
  start-page: 1282
  issue: 7
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b27
  article-title: Arterial and venous 3D fusion AV-3D-DSA: a novel approach to cerebrovascular neuroimaging
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A7103
– start-page: 1
  issue: Preprint
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b35
  article-title: Automated vessel segmentation in lung CT and CTA images via deep neural networks
  publication-title: J. X-ray Sci. Technol.
– volume: 2
  issue: 4
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102392_b21
  article-title: Cerebral artery and vein segmentation in four-dimensional CT angiography using convolutional neural networks
  publication-title: Radiol.: Artif. Intell.
– volume: 158
  start-page: 71
  year: 2018
  ident: 10.1016/j.compmedimag.2024.102392_b22
  article-title: Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.02.001
– volume: 121
  year: 2023
  ident: 10.1016/j.compmedimag.2024.102392_b13
  article-title: Extraction of vascular wall in carotid ultrasound via a novel boundary-delineation network
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106069
– volume: 76
  start-page: 2982
  issue: 25
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102392_b30
  article-title: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.11.010
– volume: 2015
  start-page: 802
  year: 2015
  ident: 10.1016/j.compmedimag.2024.102392_b31
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2018
  ident: 10.1016/j.compmedimag.2024.102392_b5
– start-page: 47
  year: 2016
  ident: 10.1016/j.compmedimag.2024.102392_b19
  article-title: Temporal convolutional networks: A unified approach to action segmentation
– volume: 40
  start-page: 1603
  issue: 6
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b26
  article-title: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3062280
– volume: 185
  year: 2020
  ident: 10.1016/j.compmedimag.2024.102392_b41
  article-title: A neural network approach to segment brain blood vessels in digital subtraction angiography
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.105159
– ident: 10.1016/j.compmedimag.2024.102392_b40
  doi: 10.1609/aaai.v36i3.20144
– year: 2015
  ident: 10.1016/j.compmedimag.2024.102392_b1
– year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b2
  article-title: Retinal vessel segmentation using deep learning: A review
  publication-title: IEEE Access
– volume: Vol. 12034
  start-page: 366
  year: 2022
  ident: 10.1016/j.compmedimag.2024.102392_b36
  article-title: Automatic artery/vein classification in 2D-DSA images of stroke patients
– year: 2009
  ident: 10.1016/j.compmedimag.2024.102392_b8
  article-title: Object-oriented application development with MeVisLab and Python
  publication-title: Informatik 2009–Im Focus das Leben
– ident: 10.1016/j.compmedimag.2024.102392_b39
  doi: 10.1109/WACV51458.2022.00328
– volume: 360
  year: 2018
  ident: 10.1016/j.compmedimag.2024.102392_b16
  article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN registry)
  publication-title: bmj
– year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b3
– volume: 65
  start-page: 1486
  issue: 7
  year: 2017
  ident: 10.1016/j.compmedimag.2024.102392_b25
  article-title: Automatic temporal segmentation of vessels of the brain using 4D ASL MRA images
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2759730
– volume: 32
  start-page: 201
  year: 2016
  ident: 10.1016/j.compmedimag.2024.102392_b28
  article-title: Simultaneous segmentation and anatomical labeling of the cerebral vasculature
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.03.006
– volume: 108
  start-page: 407
  issue: 1
  year: 2012
  ident: 10.1016/j.compmedimag.2024.102392_b6
  article-title: Blood vessel segmentation methodologies in retinal images–a survey
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.03.009
– volume: 40
  start-page: 2380
  issue: 9
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b33
  article-title: Autotici: Automatic brain tissue reperfusion scoring on 2D DSA images of acute ischemic stroke patients
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2021.3077113
– volume: 25
  start-page: 385
  issue: 4
  year: 2006
  ident: 10.1016/j.compmedimag.2024.102392_b32
  article-title: Computer analysis of computed tomography scans of the lung: a survey
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2005.862753
– start-page: 8026
  year: 2019
  ident: 10.1016/j.compmedimag.2024.102392_b23
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2012
  ident: 10.1016/j.compmedimag.2024.102392_b11
– volume: 18
  start-page: 203
  issue: 2
  year: 2021
  ident: 10.1016/j.compmedimag.2024.102392_b15
  article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. methods
  doi: 10.1038/s41592-020-01008-z
– volume: 76
  year: 2019
  ident: 10.1016/j.compmedimag.2024.102392_b9
  article-title: Artery–vein segmentation in fundus images using a fully convolutional network
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.05.004
SSID ssj0002071
Score 2.4524329
Snippet Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow...
AbstractCerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102392
SubjectTerms Biomarkers
Brain vessels
Deep learning
Internal Medicine
Other
RNN
Spatio-temporal
Stroke
Temporal transformer
Vessel segmentation
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Eg4-D-HZ9UcFr3TZJt414kUURUS8-8BaSNl0qa122u4oX8T_4D_0lZtp0VVRY8Jgy05avk8lM5wWwS7gOWCi1azwv5aKQuFxJ7iY41oGEPOUafw2cX7ROrtnpbXA7Ae26FgbTKq3ur3R6qa3tlaZFs9nLsualF2FRprEXGOpcjhXljIU4xWDv5TPNg3il04XELlJPwc5njhembWMM-152jKtIWNnIgJO_zqifNugsTA_znnx-kt3ul3PpeB7mrEHpHFbvvAATOl-EqXMbMl-Cs_bhzdG-09Z9DBF3nTKH8_n99e1RZ7lT6M69rT7KHbNOsg5OEXGKoRr0q5oHR-adzDa2Xobr46Or9olrRyi4ccD8gWscjlT52kuo8UUVj3nq-2Ydt3xJQl9qY0DIiPo6ChLFA8nTIKZUK48SQ9ySiq7AZP6Q6zVwPBqnBmalkpCxmCQqSpXHFSPmhiQhugFRDZqIbX9xHHPRFXUi2Z34grdAvEWFdwPIiLVXNdkYh2m__jKiriI1ek-Yo2Ac5vA3Zl3YHVwIXxREeOKHlDXgYMT5TVDHffBOLUTCbGSMzshcPwwLQXGiIDbDNzSrlXSNwKAR9lUkXgPoSNzGR2r9f6-8ATO4qnKUN2Fy0B_qLWOJDdR2udU-ACmRMio
  priority: 102
  providerName: Elsevier
Title CAVE: Cerebral artery–vein segmentation in digital subtraction angiography
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0895611124000697
https://www.clinicalkey.es/playcontent/1-s2.0-S0895611124000697
https://dx.doi.org/10.1016/j.compmedimag.2024.102392
https://www.ncbi.nlm.nih.gov/pubmed/38714020
https://www.proquest.com/docview/3052594302
https://ars.els-cdn.com/content/image/1-s2.0-S0895611124000697-ga1_lrg.jpg
UnpaywallVersion publishedVersion
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0771
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002071
  issn: 1879-0771
  databaseCode: AKRWK
  dateStart: 19880101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5irTTggeuAcqkyiVdnsZM08cRLVW0ql1VIUDSeLDtxom6ZVzUpaDwg_gP_kF_CcZOUiYFUIR4t-cSyz_Hxd3JuAM8Z12EQSU3Q8lLECgnhSnKS2rYOLOIZ1_bXwNFkMJ4Gr47D4yb-yebCoDXn4qNAktTUGQ22RpOp9mZneL32KCmZ65F3XmzzMREqBFbd8ojkkopikbsn83wLuoMQcXkHutPJ2-HHFYzkIbHzrfUVRzZrJ6LbsPsr2MvGb1tnNq6CNiMLVhUNOPvbY3UVjN6E60szlxefZVFceqAOb8Npu7U6LuXUXVbKTb78VvXx_-z9DtxqcKwzrAXvLlzT5h5sHzWe-vvwZjT8cLDvjPTCeqYLZxU6evHj2_dPemacUudnTdKTcXCcznLbvMQpl6pa1KkWjjT5rKmnvQPTw4P3ozFpOjeQJAxoRdDOyRTVXuqjCax4wjNKcZwMqGQRlRpxi4x9quMwVTyUPAsT39fK8xlOHkjlP4COOTf6ETien2S4TaXSKAgSlqo4Ux5XAcMPspTpHsQti0TSlDW33TUK0cavnYhL3BWWu6Lmbg_YmnRe1_bYhGi_lQPRJq-iuhX4Am1CHP2JWJeN4igFFSUTnrjC5R68WFM22KjGPJsuvNuKrED9YZ1C0ujzZSl828jQ1uDHOQ9rWV4fhh_bco7M64G_Fu7NT-rxP1E9gRt2VEdEP4VOtVjqZ4j7KtWHLfcr7UN3-PL1eNJvrvdPAuhWxQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BlaA9oPJqt7yCxDVsYjubGHFBK9AWdrnwEDfLTpxVqiWsNrutuFT9D_2H_SV4EmehAqSVODqZSawv4_FMPA-AfcJ1wEKpXeN5KReFxOVKcjfBtg4k5CnX-Gugd9HqXLOz2-B2Dtp1LgyGVVrdX-n0UlvbK02LZnOYZc1LL8KkTGMvMNS5PJyHDywgIXpgB7-f4jyIV3pdSO0i-SLsPQV5Ydw2HmLfyb7xFQkrKxlw8tYm9dII_QRLk3woH37JweDZxnT6GZatRekcV5NegTmdr8Jiz56Zr0G3fXxzcui09QjPiAdOGcT58O_P3586y51C9-9s-lHumHGS9bGNiFNM1HhUJT04Mu9ntrL1Olyfnly1O67toeDGAfPHrvE4UuVrL6HGGVU85qnvm3Hc8iUJfamNBSEj6usoSBQPJE-DmFKtPEoMcUsqugEL-X2uv4Lj0Tg1OCuVhIzFJFFRqjyuGDEPJAnRDYhq0ERsC4xjn4uBqCPJfohneAvEW1R4N4BMWYdVlY1ZmA7rLyPqNFKj-ITZC2ZhDl9j1oVdwoXwRUGEJ16IWQOOppz_SeqsL96rhUiYlYzHMzLX95NCUGwpiNXwDc2XSrqmYNAICysSrwF0Km6zI_XtfVPehaXOVa8rut8vzjfhI96pApa3YGE8muhtY5aN1U657B4Bjw81TQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgKxV64A1dXkolrk5jO9nEFZfVqlWFaIUEi8rJshMn2jZNV5sEVE78B_4hv4SZjbNUFKQV4mjJE8ue8fibzIuQV1zaKIy1pWB5GYpCQqXRkmbY1oHHMpcWfw0cHY8Op-Gbk-jExT9hLgxYcz48CjTNqi6jAWs0Vc3u7Byu1y6jNfcD-j5IMB8ToEKI6lbGtNBMlYvCP50XN8nGKAJcPiAb0-N3409LGCkjivPR-kpizNqJ2SbZ-RXshfHb6MyGVcBm5OGyooHkf3usroPRLXKrreb68osuyysP1MFdctZvrYtLOfPbxvjp19-qPv6fvd8jdxyO9cad4N0nN2z1gGweOU_9Q_J2Mv64v-dN7AI906W3DB29_PHt-2c7q7zaFucu6anyYJzNCmxe4tWtaRZdqoWnq2Lm6mk_ItOD_Q-TQ-o6N9A0CllDwc7JDbNBJsAENjKVOWMwTkdM85hpC7hFJ4LZJMqMjLTMo1QIawLBYfJIG_GYDKqLym4TLxBpDts0JovDMOWZSXITSBNy-CDPuB2SpGeRSl1Zc-yuUao-fu1UXeGuQu6qjrtDwlek8662xzpEe70cqD55FdStghdoHeL4T8S2doqjVkzVXAXqGpeH5PWK0mGjDvOsu_BOL7IK9Ac6hXRlL9paCWxkiDX4Yc6TTpZXhyESLOfIgyERK-Fe_6Se_hPVM3IbR11E9HMyaBatfQG4rzEv3YX-CVsiVDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAVE%3A+Cerebral+artery-vein+segmentation+in+digital+subtraction+angiography&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Su%2C+Ruisheng&rft.au=van+der+Sluijs%2C+P+Matthijs&rft.au=Chen%2C+Yuan&rft.au=Cornelissen%2C+Sandra&rft.date=2024-07-01&rft.issn=1879-0771&rft.eissn=1879-0771&rft.volume=115&rft.spage=102392&rft_id=info:doi/10.1016%2Fj.compmedimag.2024.102392&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611124X0004X%2Fcov150h.gif