CAVE: Cerebral artery–vein segmentation in digital subtraction angiography
Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis wit...
Saved in:
| Published in | Computerized medical imaging and graphics Vol. 115; p. 102392 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0895-6111 1879-0771 1879-0771 |
| DOI | 10.1016/j.compmedimag.2024.102392 |
Cover
| Abstract | Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.
[Display omitted]
•The first automatic deep learning-based method for artery–vein segmentation in DSA is proposed.•CAVE generates artery–vein segmentations from 2D+time DSA series with variable frame lengths.•CAVE simultaneously harnesses spatial vasculature and temporal contrast flow characteristics.•CAVE promises to facilitate fast, accurate, and objective vasculature interpretation in DSA. |
|---|---|
| AbstractList | Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery–vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.
[Display omitted]
•The first automatic deep learning-based method for artery–vein segmentation in DSA is proposed.•CAVE generates artery–vein segmentations from 2D+time DSA series with variable frame lengths.•CAVE simultaneously harnesses spatial vasculature and temporal contrast flow characteristics.•CAVE promises to facilitate fast, accurate, and objective vasculature interpretation in DSA. Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA. Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA. AbstractCerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery–vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 ( ±0.04) and an artery–vein segmentation Dice of 0.79 ( ±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery–vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA. |
| ArticleNumber | 102392 |
| Author | van den Broek, Ruben van Zwam, Wim H. van Walsum, Theo van der Sluijs, P. Matthijs Chen, Yuan Cornelissen, Sandra Ruijters, Danny van der Lugt, Aad Su, Ruisheng Niessen, Wiro J. |
| Author_xml | – sequence: 1 givenname: Ruisheng orcidid: 0000-0002-5013-1370 surname: Su fullname: Su, Ruisheng email: r.su@erasmusmc.nl organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 2 givenname: P. Matthijs surname: van der Sluijs fullname: van der Sluijs, P. Matthijs organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 3 givenname: Yuan surname: Chen fullname: Chen, Yuan organization: Department of Radiology & Nuclear Medicine, UMass Chan Medical School, Worcester, USA – sequence: 4 givenname: Sandra surname: Cornelissen fullname: Cornelissen, Sandra organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 5 givenname: Ruben surname: van den Broek fullname: van den Broek, Ruben organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 6 givenname: Wim H. surname: van Zwam fullname: van Zwam, Wim H. organization: Department of Radiology & Nuclear Medicine, Maastricht UMC, Cardiovascular Research Institute Maastricht, The Netherlands – sequence: 7 givenname: Aad surname: van der Lugt fullname: van der Lugt, Aad organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 8 givenname: Wiro J. surname: Niessen fullname: Niessen, Wiro J. organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands – sequence: 9 givenname: Danny surname: Ruijters fullname: Ruijters, Danny organization: Philips Healthcare, Best, The Netherlands – sequence: 10 givenname: Theo surname: van Walsum fullname: van Walsum, Theo organization: Biomedical Imaging Group Rotterdam, Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, The Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38714020$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVksuO1DAQRS00iOkZ-AXU7Nikcdl5eRagVjQ8pJZY8NhajlMJbhIn2Mmg7PgH_pAvwSEDQiMhNSurSvdel4_rgpzZ3iIhT4DugEL67LjTfTd0WJlONTtGWRz6jAt2j2wgz0REswzOyIbmIolSADgnF94fKaWMZvCAnPM8gzgUG3Io9h-vr7YFOiydarfKjejmH9--36CxW49Nh3ZUo-ntNtSVacwYVH4qR6f0r7ayjekbp4ZP80Nyv1atx0e35yX58PL6ffE6Orx99abYHyKdxDBGDLK6BKQVB85LoUUNEGqdgmIZKKRZrHIOmCdVKRIl6kRzjiXlLIhTVfJLcrXmTnZQ81fVtnJwgYWbJVC5IJJH-RciuSCSK6JgfrqaB9d_mdCPsjNeY9sqi_3kJacJS0TM6SJ9fCudyhD155Lf-ILgxSrQrvfeYS21WWkFPKY9aRpxJ-F_XlKsXgysbww66bVBq4PUoR5l1ZuTUp7fSdGtsUar9jPO6I_95Gz4TAnSM0nlu2Wplp1icdinVGQhYP_vgBOH-AnS1uKo |
| CitedBy_id | crossref_primary_10_1088_1361_6560_ad94ca crossref_primary_10_1016_j_isprsjprs_2024_12_015 crossref_primary_10_1109_JBHI_2023_3342195 crossref_primary_10_1016_j_bspc_2024_106652 crossref_primary_10_1016_j_media_2025_103496 |
| Cites_doi | 10.1109/CVPR42600.2020.00982 10.1038/s41467-020-18606-2 10.1088/0031-9155/58/17/R187 10.1109/TMI.2020.2966921 10.1016/j.cmpb.2018.04.010 10.1002/mp.12560 10.1016/j.compbiomed.2023.106718 10.1142/S0218488598000094 10.3174/ajnr.A7103 10.1016/j.cmpb.2018.02.001 10.1016/j.engappai.2023.106069 10.1016/j.jacc.2020.11.010 10.1109/TMI.2021.3062280 10.1016/j.cmpb.2019.105159 10.1609/aaai.v36i3.20144 10.1109/WACV51458.2022.00328 10.1109/TBME.2017.2759730 10.1016/j.media.2016.03.006 10.1016/j.cmpb.2012.03.009 10.1109/TMI.2021.3077113 10.1109/TMI.2005.862753 10.1038/s41592-020-01008-z 10.1016/j.compmedimag.2019.05.004 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s) The Author(s) Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2024 The Author(s) – notice: The Author(s) – notice: Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.compmedimag.2024.102392 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-0771 |
| EndPage | 102392 |
| ExternalDocumentID | 10.1016/j.compmedimag.2024.102392 38714020 10_1016_j_compmedimag_2024_102392 S0895611124000697 1_s2_0_S0895611124000697 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Health-Holland (TKI Life Sciences and Health) grantid: EMCLSH19006 – fundername: Philips Healthcare (Best, The Netherlands) |
| GroupedDBID | --- --K --M .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HEI HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LX9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ T5K WUQ Z5R ZGI ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG 6I. AAFTH AAIAV ABLVK AAYXX CITATION NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c541t-217fb1e0d3133b9c9f11b1ec61a271ae074a831e85db95a9f5c33eb032b9c6ab3 |
| IEDL.DBID | UNPAY |
| ISSN | 0895-6111 1879-0771 |
| IngestDate | Sun Oct 26 04:10:17 EDT 2025 Thu Oct 02 11:01:33 EDT 2025 Wed Feb 19 02:10:47 EST 2025 Wed Oct 01 02:27:06 EDT 2025 Thu Apr 24 23:12:24 EDT 2025 Sat Jun 01 15:42:19 EDT 2024 Tue Feb 25 19:59:05 EST 2025 Tue Oct 14 19:38:00 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Temporal transformer Spatio-temporal Stroke Vessel segmentation RNN Biomarkers Brain vessels |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c541t-217fb1e0d3133b9c9f11b1ec61a271ae074a831e85db95a9f5c33eb032b9c6ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5013-1370 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ars.els-cdn.com/content/image/1-s2.0-S0895611124000697-ga1_lrg.jpg |
| PMID | 38714020 |
| PQID | 3052594302 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compmedimag_2024_102392 proquest_miscellaneous_3052594302 pubmed_primary_38714020 crossref_citationtrail_10_1016_j_compmedimag_2024_102392 crossref_primary_10_1016_j_compmedimag_2024_102392 elsevier_sciencedirect_doi_10_1016_j_compmedimag_2024_102392 elsevier_clinicalkeyesjournals_1_s2_0_S0895611124000697 elsevier_clinicalkey_doi_10_1016_j_compmedimag_2024_102392 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Computerized medical imaging and graphics |
| PublicationTitleAlternate | Comput Med Imaging Graph |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tan, Zhou, Li, Yang, Chen, Yang (b35) 2021 Wang, H., Cao, P., Wang, J., Zaiane, O.R., 2022. Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, (3), pp. 2441–2449. Meijs, Pegge, Vos, Patel, van de Leemput, Koschmieder, Prokop, Meijer, Manniesing (b21) 2020; 2 Su, Wolff, van Es, Van Zwam, Majoie, Dippel, Van Der Lugt, Niessen, Van Walsum (b34) 2020; 39 Roth, Mensah, Johnson, Addolorato, Ammirati, Baddour, Barengo, Beaton, Benjamin, Benziger (b30) 2020; 76 Hochreiter (b12) 1998; 6 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b23) 2019 Vepa, A., Choi, A., Nakhaei, N., Lee, W., Stier, N., Vu, A., Jenkins, G., Yang, X., Shergill, M., Desphy, M., et al., 2022. Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 585–594. Phellan, Forkert (b24) 2017; 44 Zhou, Rahman Siddiquee, Tajbakhsh, Liang (b42) 2018 Lea, Vidal, Reiter, Hager (b19) 2016 Van Rikxoort, Van Ginneken (b37) 2013; 58 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b38) 2017; 30 Heckel, Schwier, Peitgen (b8) 2009 Isensee, Jaeger, Kohl, Petersen, Maier-Hein (b15) 2021; 18 Zhang, Zhang, Wu, Cao, Young, Chen, Xu (b41) 2020; 185 Moccia, De Momi, El Hadji, Mattos (b22) 2018; 158 Phellan, Lindner, Helle, Falcao, Forkert (b25) 2017; 65 Raz, Shapiro, Mir, Nossek, Nelson (b27) 2021; 42 Ronneberger, Fischer, Brox (b29) 2015 Liu, Jiang, Liu, Wang, Zhang, Zhang, Zhang, Yue (b20) 2018; 161 Hinton, Srivastava, Swersky (b11) 2012 Chen, Chuah, Raza, Wang (b2) 2021 Huang, Jia, Ren, Wang, Liu (b13) 2023; 121 Ballas, Yao, Pal, Courville (b1) 2015 Sluimer, Schilham, Prokop, van Ginneken (b32) 2006; 25 Dai, Yang, Yang, Carbonell, Le, Salakhutdinov (b4) 2019 Van Asperen, Van Den Berg, Lycklama, Marting, Cornelissen, Van Zwam, Hofmeijer, Van Der Lugt, Van Walsum, Van Der Sluijs (b36) 2022; Vol. 12034 Hemelings, Elen, Stalmans, Van Keer, De Boever, Blaschko (b9) 2019; 76 Kervadec, de Bruijne (b17) 2023 Qin, Zheng, Gu, Huang, Yang, Wang, Yao, Zhu, Yang (b26) 2021; 40 Shi, Chen, Wang, Yeung, Wong, Woo (b31) 2015; 2015 Fu, Wei, Zhang, Yu, Xiao, Rong, Shan, Li, Zhao, Liao (b7) 2020; 11 Jansen, Mulder, Goldhoorn (b16) 2018; 360 Kirillov, A., Wu, Y., He, K., Girshick, R., 2020. Pointrend: Image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9799–9808. Fraz, Remagnino, Hoppe, Uyyanonvara, Rudnicka, Owen, Barman (b6) 2012; 108 Huang, Zhao, Ren, Wang, Liu, Wang (b14) 2023; 156 Robben, Türetken, Sunaert, Thijs, Wilms, Fua, Maes, Suetens (b28) 2016; 32 Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b3) 2021 Devlin, Chang, Lee, Toutanova (b5) 2018 Su, Cornelissen, van der Sluijs, van Es, van Zwam, Dippel, Lycklama, van Doormaal, Niessen, van der Lugt, van Walsum (b33) 2021; 40 Hilbert, Madai, Akay, Aydin, Behland, Sobesky, Galinovic, Khalil, Taha, Wuerfel (b10) 2020 Ronneberger (10.1016/j.compmedimag.2024.102392_b29) 2015 Liu (10.1016/j.compmedimag.2024.102392_b20) 2018; 161 Van Rikxoort (10.1016/j.compmedimag.2024.102392_b37) 2013; 58 Huang (10.1016/j.compmedimag.2024.102392_b14) 2023; 156 Paszke (10.1016/j.compmedimag.2024.102392_b23) 2019 Devlin (10.1016/j.compmedimag.2024.102392_b5) 2018 Fraz (10.1016/j.compmedimag.2024.102392_b6) 2012; 108 Su (10.1016/j.compmedimag.2024.102392_b33) 2021; 40 Lea (10.1016/j.compmedimag.2024.102392_b19) 2016 Sluimer (10.1016/j.compmedimag.2024.102392_b32) 2006; 25 Tan (10.1016/j.compmedimag.2024.102392_b35) 2021 Hilbert (10.1016/j.compmedimag.2024.102392_b10) 2020 Zhang (10.1016/j.compmedimag.2024.102392_b41) 2020; 185 Hochreiter (10.1016/j.compmedimag.2024.102392_b12) 1998; 6 Chen (10.1016/j.compmedimag.2024.102392_b3) 2021 Huang (10.1016/j.compmedimag.2024.102392_b13) 2023; 121 Moccia (10.1016/j.compmedimag.2024.102392_b22) 2018; 158 Phellan (10.1016/j.compmedimag.2024.102392_b25) 2017; 65 Hinton (10.1016/j.compmedimag.2024.102392_b11) 2012 Kervadec (10.1016/j.compmedimag.2024.102392_b17) 2023 Hemelings (10.1016/j.compmedimag.2024.102392_b9) 2019; 76 Ballas (10.1016/j.compmedimag.2024.102392_b1) 2015 Qin (10.1016/j.compmedimag.2024.102392_b26) 2021; 40 Van Asperen (10.1016/j.compmedimag.2024.102392_b36) 2022; Vol. 12034 Fu (10.1016/j.compmedimag.2024.102392_b7) 2020; 11 Isensee (10.1016/j.compmedimag.2024.102392_b15) 2021; 18 10.1016/j.compmedimag.2024.102392_b40 Meijs (10.1016/j.compmedimag.2024.102392_b21) 2020; 2 Su (10.1016/j.compmedimag.2024.102392_b34) 2020; 39 Heckel (10.1016/j.compmedimag.2024.102392_b8) 2009 Roth (10.1016/j.compmedimag.2024.102392_b30) 2020; 76 Phellan (10.1016/j.compmedimag.2024.102392_b24) 2017; 44 Robben (10.1016/j.compmedimag.2024.102392_b28) 2016; 32 10.1016/j.compmedimag.2024.102392_b18 Vaswani (10.1016/j.compmedimag.2024.102392_b38) 2017; 30 Zhou (10.1016/j.compmedimag.2024.102392_b42) 2018 10.1016/j.compmedimag.2024.102392_b39 Shi (10.1016/j.compmedimag.2024.102392_b31) 2015; 2015 Dai (10.1016/j.compmedimag.2024.102392_b4) 2019 Jansen (10.1016/j.compmedimag.2024.102392_b16) 2018; 360 Raz (10.1016/j.compmedimag.2024.102392_b27) 2021; 42 Chen (10.1016/j.compmedimag.2024.102392_b2) 2021 |
| References_xml | – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: b15 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. methods – volume: 360 year: 2018 ident: b16 article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN registry) publication-title: bmj – volume: 76 start-page: 2982 year: 2020 end-page: 3021 ident: b30 article-title: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study publication-title: J. Am. Coll. Cardiol. – reference: Wang, H., Cao, P., Wang, J., Zaiane, O.R., 2022. Uctransnet: rethinking the skip connections in u-net from a channel-wise perspective with transformer. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36, (3), pp. 2441–2449. – volume: 40 start-page: 1603 year: 2021 end-page: 1617 ident: b26 article-title: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT publication-title: IEEE Trans. Med. Imaging – volume: 156 year: 2023 ident: b14 article-title: NAG-Net: Nested attention-guided learning for segmentation of carotid lumen-intima interface and media-adventitia interface publication-title: Comput. Biol. Med. – volume: 58 start-page: R187 year: 2013 ident: b37 article-title: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review publication-title: Phys. Med. Biol. – start-page: 47 year: 2016 end-page: 54 ident: b19 article-title: Temporal convolutional networks: A unified approach to action segmentation publication-title: Computer Vision–ECCV 2016 Workshops: Amsterdam, the Netherlands, October 8-10 and 15-16, 2016, Proceedings, Part III 14 – year: 2015 ident: b1 article-title: Delving deeper into convolutional networks for learning video representations – volume: 11 start-page: 1 year: 2020 end-page: 12 ident: b7 article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network publication-title: Nat. Commun. – reference: Vepa, A., Choi, A., Nakhaei, N., Lee, W., Stier, N., Vu, A., Jenkins, G., Yang, X., Shergill, M., Desphy, M., et al., 2022. Weakly-Supervised Convolutional Neural Networks for Vessel Segmentation in Cerebral Angiography. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. pp. 585–594. – year: 2009 ident: b8 article-title: Object-oriented application development with MeVisLab and Python publication-title: Informatik 2009–Im Focus das Leben – volume: 2015 start-page: 802 year: 2015 end-page: 810 ident: b31 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 39 start-page: 2190 year: 2020 end-page: 2200 ident: b34 article-title: Automatic collateral scoring from 3D CTA images publication-title: IEEE Trans. Med. Imaging – year: 2018 ident: b5 article-title: Bert: Pre-training of deep bidirectional transformers for language understanding – volume: 30 year: 2017 ident: b38 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – volume: Vol. 12034 start-page: 366 year: 2022 end-page: 377 ident: b36 article-title: Automatic artery/vein classification in 2D-DSA images of stroke patients publication-title: Medical Imaging 2022: Image-Guided Procedures, Robotic Interventions, and Modeling – year: 2023 ident: b17 article-title: On the dice loss variants and sub-patching publication-title: Medical Imaging with Deep Learning, Short Paper Track – year: 2021 ident: b3 article-title: Transunet: Transformers make strong encoders for medical image segmentation – volume: 25 start-page: 385 year: 2006 end-page: 405 ident: b32 article-title: Computer analysis of computed tomography scans of the lung: a survey publication-title: IEEE Trans. Med. Imaging – volume: 108 start-page: 407 year: 2012 end-page: 433 ident: b6 article-title: Blood vessel segmentation methodologies in retinal images–a survey publication-title: Comput. Methods Programs Biomed. – volume: 42 start-page: 1282 year: 2021 end-page: 1284 ident: b27 article-title: Arterial and venous 3D fusion AV-3D-DSA: a novel approach to cerebrovascular neuroimaging publication-title: Am. J. Neuroradiol. – volume: 44 start-page: 5901 year: 2017 end-page: 5915 ident: b24 article-title: Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation publication-title: Med. Phys. – volume: 185 year: 2020 ident: b41 article-title: A neural network approach to segment brain blood vessels in digital subtraction angiography publication-title: Comput. Methods Programs Biomed. – year: 2012 ident: b11 article-title: Neural networks for machine learning—Lecture 6e—rmsprop: Divide the gradient by a running average of its recent magnitude – year: 2019 ident: b4 article-title: Transformer-xl: Attentive language models beyond a fixed-length context – start-page: 234 year: 2015 end-page: 241 ident: b29 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 158 start-page: 71 year: 2018 end-page: 91 ident: b22 article-title: Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics publication-title: Comput. Methods Programs Biomed. – volume: 121 year: 2023 ident: b13 article-title: Extraction of vascular wall in carotid ultrasound via a novel boundary-delineation network publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2021 end-page: 15 ident: b35 article-title: Automated vessel segmentation in lung CT and CTA images via deep neural networks publication-title: J. X-ray Sci. Technol. – volume: 76 year: 2019 ident: b9 article-title: Artery–vein segmentation in fundus images using a fully convolutional network publication-title: Comput. Med. Imaging Graph. – start-page: 3 year: 2018 end-page: 11 ident: b42 article-title: Unet++: A nested u-net architecture for medical image segmentation publication-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4 – volume: 65 start-page: 1486 year: 2017 end-page: 1494 ident: b25 article-title: Automatic temporal segmentation of vessels of the brain using 4D ASL MRA images publication-title: IEEE Trans. Biomed. Eng. – volume: 161 start-page: 55 year: 2018 end-page: 72 ident: b20 article-title: A vessel segmentation method for serialized cerebralvascular DSA images based on spatial feature point set of rotating coordinate system publication-title: Comput. Methods Programs Biomed. – start-page: 8026 year: 2019 end-page: 8037 ident: b23 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – volume: 32 start-page: 201 year: 2016 end-page: 215 ident: b28 article-title: Simultaneous segmentation and anatomical labeling of the cerebral vasculature publication-title: Med. Image Anal. – volume: 6 start-page: 107 year: 1998 end-page: 116 ident: b12 article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems – volume: 2 year: 2020 ident: b21 article-title: Cerebral artery and vein segmentation in four-dimensional CT angiography using convolutional neural networks publication-title: Radiol.: Artif. Intell. – year: 2021 ident: b2 article-title: Retinal vessel segmentation using deep learning: A review publication-title: IEEE Access – start-page: 78 year: 2020 ident: b10 article-title: BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease publication-title: Front. Artif. Intell. – volume: 40 start-page: 2380 year: 2021 end-page: 2391 ident: b33 article-title: Autotici: Automatic brain tissue reperfusion scoring on 2D DSA images of acute ischemic stroke patients publication-title: IEEE Trans. Med. Imaging – reference: Kirillov, A., Wu, Y., He, K., Girshick, R., 2020. Pointrend: Image segmentation as rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 9799–9808. – ident: 10.1016/j.compmedimag.2024.102392_b18 doi: 10.1109/CVPR42600.2020.00982 – volume: 11 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.compmedimag.2024.102392_b7 article-title: Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network publication-title: Nat. Commun. doi: 10.1038/s41467-020-18606-2 – start-page: 3 year: 2018 ident: 10.1016/j.compmedimag.2024.102392_b42 article-title: Unet++: A nested u-net architecture for medical image segmentation – start-page: 78 year: 2020 ident: 10.1016/j.compmedimag.2024.102392_b10 article-title: BRAVE-NET: fully automated arterial brain vessel segmentation in patients with cerebrovascular disease publication-title: Front. Artif. Intell. – volume: 58 start-page: R187 issue: 17 year: 2013 ident: 10.1016/j.compmedimag.2024.102392_b37 article-title: Automated segmentation of pulmonary structures in thoracic computed tomography scans: a review publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/R187 – year: 2023 ident: 10.1016/j.compmedimag.2024.102392_b17 article-title: On the dice loss variants and sub-patching – volume: 39 start-page: 2190 issue: 6 year: 2020 ident: 10.1016/j.compmedimag.2024.102392_b34 article-title: Automatic collateral scoring from 3D CTA images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2966921 – volume: 161 start-page: 55 year: 2018 ident: 10.1016/j.compmedimag.2024.102392_b20 article-title: A vessel segmentation method for serialized cerebralvascular DSA images based on spatial feature point set of rotating coordinate system publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.04.010 – start-page: 234 year: 2015 ident: 10.1016/j.compmedimag.2024.102392_b29 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 44 start-page: 5901 issue: 11 year: 2017 ident: 10.1016/j.compmedimag.2024.102392_b24 article-title: Comparison of vessel enhancement algorithms applied to time-of-flight MRA images for cerebrovascular segmentation publication-title: Med. Phys. doi: 10.1002/mp.12560 – volume: 156 year: 2023 ident: 10.1016/j.compmedimag.2024.102392_b14 article-title: NAG-Net: Nested attention-guided learning for segmentation of carotid lumen-intima interface and media-adventitia interface publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106718 – volume: 6 start-page: 107 issue: 02 year: 1998 ident: 10.1016/j.compmedimag.2024.102392_b12 article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions publication-title: Internat. J. Uncertain. Fuzziness Knowledge-Based Systems doi: 10.1142/S0218488598000094 – volume: 30 year: 2017 ident: 10.1016/j.compmedimag.2024.102392_b38 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – year: 2019 ident: 10.1016/j.compmedimag.2024.102392_b4 – volume: 42 start-page: 1282 issue: 7 year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b27 article-title: Arterial and venous 3D fusion AV-3D-DSA: a novel approach to cerebrovascular neuroimaging publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A7103 – start-page: 1 issue: Preprint year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b35 article-title: Automated vessel segmentation in lung CT and CTA images via deep neural networks publication-title: J. X-ray Sci. Technol. – volume: 2 issue: 4 year: 2020 ident: 10.1016/j.compmedimag.2024.102392_b21 article-title: Cerebral artery and vein segmentation in four-dimensional CT angiography using convolutional neural networks publication-title: Radiol.: Artif. Intell. – volume: 158 start-page: 71 year: 2018 ident: 10.1016/j.compmedimag.2024.102392_b22 article-title: Blood vessel segmentation algorithms—review of methods, datasets and evaluation metrics publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.02.001 – volume: 121 year: 2023 ident: 10.1016/j.compmedimag.2024.102392_b13 article-title: Extraction of vascular wall in carotid ultrasound via a novel boundary-delineation network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.106069 – volume: 76 start-page: 2982 issue: 25 year: 2020 ident: 10.1016/j.compmedimag.2024.102392_b30 article-title: Global burden of cardiovascular diseases and risk factors, 1990–2019: update from the GBD 2019 study publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.11.010 – volume: 2015 start-page: 802 year: 2015 ident: 10.1016/j.compmedimag.2024.102392_b31 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Adv. Neural Inf. Process. Syst. – year: 2018 ident: 10.1016/j.compmedimag.2024.102392_b5 – start-page: 47 year: 2016 ident: 10.1016/j.compmedimag.2024.102392_b19 article-title: Temporal convolutional networks: A unified approach to action segmentation – volume: 40 start-page: 1603 issue: 6 year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b26 article-title: Learning tubule-sensitive CNNs for pulmonary airway and artery-vein segmentation in CT publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3062280 – volume: 185 year: 2020 ident: 10.1016/j.compmedimag.2024.102392_b41 article-title: A neural network approach to segment brain blood vessels in digital subtraction angiography publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.105159 – ident: 10.1016/j.compmedimag.2024.102392_b40 doi: 10.1609/aaai.v36i3.20144 – year: 2015 ident: 10.1016/j.compmedimag.2024.102392_b1 – year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b2 article-title: Retinal vessel segmentation using deep learning: A review publication-title: IEEE Access – volume: Vol. 12034 start-page: 366 year: 2022 ident: 10.1016/j.compmedimag.2024.102392_b36 article-title: Automatic artery/vein classification in 2D-DSA images of stroke patients – year: 2009 ident: 10.1016/j.compmedimag.2024.102392_b8 article-title: Object-oriented application development with MeVisLab and Python publication-title: Informatik 2009–Im Focus das Leben – ident: 10.1016/j.compmedimag.2024.102392_b39 doi: 10.1109/WACV51458.2022.00328 – volume: 360 year: 2018 ident: 10.1016/j.compmedimag.2024.102392_b16 article-title: Endovascular treatment for acute ischaemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN registry) publication-title: bmj – year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b3 – volume: 65 start-page: 1486 issue: 7 year: 2017 ident: 10.1016/j.compmedimag.2024.102392_b25 article-title: Automatic temporal segmentation of vessels of the brain using 4D ASL MRA images publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2759730 – volume: 32 start-page: 201 year: 2016 ident: 10.1016/j.compmedimag.2024.102392_b28 article-title: Simultaneous segmentation and anatomical labeling of the cerebral vasculature publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.03.006 – volume: 108 start-page: 407 issue: 1 year: 2012 ident: 10.1016/j.compmedimag.2024.102392_b6 article-title: Blood vessel segmentation methodologies in retinal images–a survey publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.03.009 – volume: 40 start-page: 2380 issue: 9 year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b33 article-title: Autotici: Automatic brain tissue reperfusion scoring on 2D DSA images of acute ischemic stroke patients publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2021.3077113 – volume: 25 start-page: 385 issue: 4 year: 2006 ident: 10.1016/j.compmedimag.2024.102392_b32 article-title: Computer analysis of computed tomography scans of the lung: a survey publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2005.862753 – start-page: 8026 year: 2019 ident: 10.1016/j.compmedimag.2024.102392_b23 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inf. Process. Syst. – year: 2012 ident: 10.1016/j.compmedimag.2024.102392_b11 – volume: 18 start-page: 203 issue: 2 year: 2021 ident: 10.1016/j.compmedimag.2024.102392_b15 article-title: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. methods doi: 10.1038/s41592-020-01008-z – volume: 76 year: 2019 ident: 10.1016/j.compmedimag.2024.102392_b9 article-title: Artery–vein segmentation in fundus images using a fully convolutional network publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.05.004 |
| SSID | ssj0002071 |
| Score | 2.4524329 |
| Snippet | Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow... AbstractCerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102392 |
| SubjectTerms | Biomarkers Brain vessels Deep learning Internal Medicine Other RNN Spatio-temporal Stroke Temporal transformer Vessel segmentation |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB7Eg4-D-HZ9UcFr3TZJt414kUURUS8-8BaSNl0qa122u4oX8T_4D_0lZtp0VVRY8Jgy05avk8lM5wWwS7gOWCi1azwv5aKQuFxJ7iY41oGEPOUafw2cX7ROrtnpbXA7Ae26FgbTKq3ur3R6qa3tlaZFs9nLsualF2FRprEXGOpcjhXljIU4xWDv5TPNg3il04XELlJPwc5njhembWMM-152jKtIWNnIgJO_zqifNugsTA_znnx-kt3ul3PpeB7mrEHpHFbvvAATOl-EqXMbMl-Cs_bhzdG-09Z9DBF3nTKH8_n99e1RZ7lT6M69rT7KHbNOsg5OEXGKoRr0q5oHR-adzDa2Xobr46Or9olrRyi4ccD8gWscjlT52kuo8UUVj3nq-2Ydt3xJQl9qY0DIiPo6ChLFA8nTIKZUK48SQ9ySiq7AZP6Q6zVwPBqnBmalkpCxmCQqSpXHFSPmhiQhugFRDZqIbX9xHHPRFXUi2Z34grdAvEWFdwPIiLVXNdkYh2m__jKiriI1ek-Yo2Ac5vA3Zl3YHVwIXxREeOKHlDXgYMT5TVDHffBOLUTCbGSMzshcPwwLQXGiIDbDNzSrlXSNwKAR9lUkXgPoSNzGR2r9f6-8ATO4qnKUN2Fy0B_qLWOJDdR2udU-ACmRMio priority: 102 providerName: Elsevier |
| Title | CAVE: Cerebral artery–vein segmentation in digital subtraction angiography |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0895611124000697 https://www.clinicalkey.es/playcontent/1-s2.0-S0895611124000697 https://dx.doi.org/10.1016/j.compmedimag.2024.102392 https://www.ncbi.nlm.nih.gov/pubmed/38714020 https://www.proquest.com/docview/3052594302 https://ars.els-cdn.com/content/image/1-s2.0-S0895611124000697-ga1_lrg.jpg |
| UnpaywallVersion | publishedVersion |
| Volume | 115 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 1879-0771 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 1879-0771 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 1879-0771 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 1879-0771 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0771 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002071 issn: 1879-0771 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5irTTggeuAcqkyiVdnsZM08cRLVW0ql1VIUDSeLDtxom6ZVzUpaDwg_gP_kF_CcZOUiYFUIR4t-cSyz_Hxd3JuAM8Z12EQSU3Q8lLECgnhSnKS2rYOLOIZ1_bXwNFkMJ4Gr47D4yb-yebCoDXn4qNAktTUGQ22RpOp9mZneL32KCmZ65F3XmzzMREqBFbd8ojkkopikbsn83wLuoMQcXkHutPJ2-HHFYzkIbHzrfUVRzZrJ6LbsPsr2MvGb1tnNq6CNiMLVhUNOPvbY3UVjN6E60szlxefZVFceqAOb8Npu7U6LuXUXVbKTb78VvXx_-z9DtxqcKwzrAXvLlzT5h5sHzWe-vvwZjT8cLDvjPTCeqYLZxU6evHj2_dPemacUudnTdKTcXCcznLbvMQpl6pa1KkWjjT5rKmnvQPTw4P3ozFpOjeQJAxoRdDOyRTVXuqjCax4wjNKcZwMqGQRlRpxi4x9quMwVTyUPAsT39fK8xlOHkjlP4COOTf6ETien2S4TaXSKAgSlqo4Ux5XAcMPspTpHsQti0TSlDW33TUK0cavnYhL3BWWu6Lmbg_YmnRe1_bYhGi_lQPRJq-iuhX4Am1CHP2JWJeN4igFFSUTnrjC5R68WFM22KjGPJsuvNuKrED9YZ1C0ujzZSl828jQ1uDHOQ9rWV4fhh_bco7M64G_Fu7NT-rxP1E9gRt2VEdEP4VOtVjqZ4j7KtWHLfcr7UN3-PL1eNJvrvdPAuhWxQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BlaA9oPJqt7yCxDVsYjubGHFBK9AWdrnwEDfLTpxVqiWsNrutuFT9D_2H_SV4EmehAqSVODqZSawv4_FMPA-AfcJ1wEKpXeN5KReFxOVKcjfBtg4k5CnX-Gugd9HqXLOz2-B2Dtp1LgyGVVrdX-n0UlvbK02LZnOYZc1LL8KkTGMvMNS5PJyHDywgIXpgB7-f4jyIV3pdSO0i-SLsPQV5Ydw2HmLfyb7xFQkrKxlw8tYm9dII_QRLk3woH37JweDZxnT6GZatRekcV5NegTmdr8Jiz56Zr0G3fXxzcui09QjPiAdOGcT58O_P3586y51C9-9s-lHumHGS9bGNiFNM1HhUJT04Mu9ntrL1Olyfnly1O67toeDGAfPHrvE4UuVrL6HGGVU85qnvm3Hc8iUJfamNBSEj6usoSBQPJE-DmFKtPEoMcUsqugEL-X2uv4Lj0Tg1OCuVhIzFJFFRqjyuGDEPJAnRDYhq0ERsC4xjn4uBqCPJfohneAvEW1R4N4BMWYdVlY1ZmA7rLyPqNFKj-ITZC2ZhDl9j1oVdwoXwRUGEJ16IWQOOppz_SeqsL96rhUiYlYzHMzLX95NCUGwpiNXwDc2XSrqmYNAICysSrwF0Km6zI_XtfVPehaXOVa8rut8vzjfhI96pApa3YGE8muhtY5aN1U657B4Bjw81TQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgKxV64A1dXkolrk5jO9nEFZfVqlWFaIUEi8rJshMn2jZNV5sEVE78B_4hv4SZjbNUFKQV4mjJE8ue8fibzIuQV1zaKIy1pWB5GYpCQqXRkmbY1oHHMpcWfw0cHY8Op-Gbk-jExT9hLgxYcz48CjTNqi6jAWs0Vc3u7Byu1y6jNfcD-j5IMB8ToEKI6lbGtNBMlYvCP50XN8nGKAJcPiAb0-N3409LGCkjivPR-kpizNqJ2SbZ-RXshfHb6MyGVcBm5OGyooHkf3usroPRLXKrreb68osuyysP1MFdctZvrYtLOfPbxvjp19-qPv6fvd8jdxyO9cad4N0nN2z1gGweOU_9Q_J2Mv64v-dN7AI906W3DB29_PHt-2c7q7zaFucu6anyYJzNCmxe4tWtaRZdqoWnq2Lm6mk_ItOD_Q-TQ-o6N9A0CllDwc7JDbNBJsAENjKVOWMwTkdM85hpC7hFJ4LZJMqMjLTMo1QIawLBYfJIG_GYDKqLym4TLxBpDts0JovDMOWZSXITSBNy-CDPuB2SpGeRSl1Zc-yuUao-fu1UXeGuQu6qjrtDwlek8662xzpEe70cqD55FdStghdoHeL4T8S2doqjVkzVXAXqGpeH5PWK0mGjDvOsu_BOL7IK9Ac6hXRlL9paCWxkiDX4Yc6TTpZXhyESLOfIgyERK-Fe_6Se_hPVM3IbR11E9HMyaBatfQG4rzEv3YX-CVsiVDk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CAVE%3A+Cerebral+artery-vein+segmentation+in+digital+subtraction+angiography&rft.jtitle=Computerized+medical+imaging+and+graphics&rft.au=Su%2C+Ruisheng&rft.au=van+der+Sluijs%2C+P+Matthijs&rft.au=Chen%2C+Yuan&rft.au=Cornelissen%2C+Sandra&rft.date=2024-07-01&rft.issn=1879-0771&rft.eissn=1879-0771&rft.volume=115&rft.spage=102392&rft_id=info:doi/10.1016%2Fj.compmedimag.2024.102392&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F08956111%2FS0895611124X0004X%2Fcov150h.gif |