Discrete Train Speed Profile Optimization for Urban Rail Transit: A Data-Driven Model and Integrated Algorithms Based on Machine Learning
Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equ...
Saved in:
| Published in | Journal of advanced transportation Vol. 2019; no. 2019; pp. 1 - 17 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2019
Hindawi John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0197-6729 2042-3195 2042-3195 |
| DOI | 10.1155/2019/7258986 |
Cover
| Abstract | Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equations to derive the speed profile and calculate the energy consumption, which caused the possible errors due to some assumptions used in the empirical equations. To fill this gap, according to the actual speed and energy data collected from the real-world urban rail system, this paper proposes a data-driven model and integrated heuristic algorithm based on machine learning to determine the optimal speed profile with minimum energy consumption. Firstly, a data-driven optimization model (DDOM) is proposed to describe the relationship between energy consumption and discrete speed profile processed from actual data. Then, two typical machine learning algorithms, random forest regression (RFR) algorithm and support vector machine regression (SVR) algorithm, are used to identify the importance degree of velocity in the different positions of profile and calculate the traction energy consumption. Results show that the calculation average error is less than 0.1 kwh, and the energy consumption can be reduced by about 2.84% in a case study of Beijing Changping Line. |
|---|---|
| AbstractList | Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equations to derive the speed profile and calculate the energy consumption, which caused the possible errors due to some assumptions used in the empirical equations. To fill this gap, according to the actual speed and energy data collected from the real-world urban rail system, this paper proposes a data-driven model and integrated heuristic algorithm based on machine learning to determine the optimal speed profile with minimum energy consumption. Firstly, a data-driven optimization model (DDOM) is proposed to describe the relationship between energy consumption and discrete speed profile processed from actual data. Then, two typical machine learning algorithms, random forest regression (RFR) algorithm and support vector machine regression (SVR) algorithm, are used to identify the importance degree of velocity in the different positions of profile and calculate the traction energy consumption. Results show that the calculation average error is less than 0.1 kwh, and the energy consumption can be reduced by about 2.84% in a case study of Beijing Changping Line. |
| Audience | Academic |
| Author | Yang, Xin Liu, Feng Wu, Jianjun Zhu, Yu-Ting Ziyou, Gao Huang, Kang |
| Author_xml | – sequence: 1 fullname: Liu, Feng – sequence: 2 fullname: Ziyou, Gao – sequence: 3 fullname: Yang, Xin – sequence: 4 fullname: Wu, Jianjun – sequence: 5 fullname: Huang, Kang – sequence: 6 fullname: Zhu, Yu-Ting |
| BookMark | eNqFkl1rFDEUhgep4LZ657UEvLTTJpnPeLd2_ShsqWh7PZwmJ7NZZpM1yVrqP_Bfm-kUrVIpgQROnvPmnLxnP9uzzmKWvWT0iLGqOuaUieOGV61o6yfZjNOS5wUT1V42SzdNXjdcPMv2Q1hTWohKlLPs58IE6TEiufBgLPm6RVTks3faDEjOt9FszA-IxlminSeX_gos-QJmGHkbTHxL5mQBEfKFN9_RkjOncCBgFTm1EXsPMenNh955E1ebQN5BSIEkdwZyZSySJYK3xvbPs6cahoAv7s6D7PLD-4uTT_ny_OPpyXyZy6qkMdda80K2ohSMopJtKYSWHKSSjShKpjiHSlQUBIOmLkWLLZWSSgVMN5UCXRxkp5OucrDutt5swN90Dkx3G3C-78BHIwfskFaqLhCoKNuyABCVbpjgVNc11oqKpJVPWju7hZtrGIbfgox2oyfd6El350niX0_81rtvOwyxW7udt6ndjpd0rJfye6o9pCKM1S56kD1a9DAkx0drunnNiqKkVTmqHj3Ap6VwY-SDCYf3Eq52IfkQ0hZMv4qhh10If-N8wqV3IXjUnTTxdibSO2b4X6uH_yQ98jNvJjzNhIJr8xj9aqIxMajhD80aSpNXvwBTcvCf |
| CitedBy_id | crossref_primary_10_1016_j_trc_2020_102889 crossref_primary_10_1016_j_epsr_2023_109196 crossref_primary_10_1109_ACCESS_2019_2921758 crossref_primary_10_1007_s11042_023_15051_3 crossref_primary_10_3390_en14165153 crossref_primary_10_1049_itr2_12201 crossref_primary_10_3390_en12142686 crossref_primary_10_1016_j_trc_2024_104993 crossref_primary_10_1109_ACCESS_2023_3261900 crossref_primary_10_1016_j_energy_2022_125599 crossref_primary_10_3390_su12114622 crossref_primary_10_1016_j_trc_2024_104756 crossref_primary_10_1061_JTEPBS_0000546 crossref_primary_10_3390_vibration4020022 crossref_primary_10_1109_ACCESS_2022_3179108 crossref_primary_10_1155_2020_3474020 crossref_primary_10_1109_TTE_2020_2996362 crossref_primary_10_1109_TITS_2023_3319135 |
| Cites_doi | 10.1109/TITS.2014.2320757 10.1080/00207543.2018.1542177 10.15302/J-FEM-2017042 10.1016/j.trc.2016.12.004 10.1109/TITS.2015.2447507 10.1016/j.trc.2018.03.010 10.1016/j.cie.2018.09.041 10.1016/j.enconman.2014.01.060 10.1016/j.trb.2017.01.001 10.1016/j.automatica.2013.07.008 10.1049/ip-epa:20040346 10.1016/0005-1098(95)00184-0 10.1016/j.trb.2017.05.012 10.1016/j.trb.2015.07.023 10.1016/j.trc.2016.12.013 10.1016/j.automatica.2009.07.028 10.1016/j.omega.2018.04.003 10.1016/j.trpro.2016.12.008 10.1023/A:1010933404324 10.15302/J-FEM-2017044 10.1016/j.trc.2013.09.007 10.1016/j.cie.2018.11.048 10.1016/j.apm.2017.11.017 10.1016/j.trb.2014.09.014 10.1016/j.trb.2015.07.024 10.1016/j.bdr.2017.07.003 10.1016/j.apm.2019.02.003 10.1109/TITS.2018.2818182 10.1016/j.trb.2014.03.006 10.1016/j.trb.2017.09.012 10.1016/j.jrtpm.2015.10.003 10.1109/9.262051 10.1016/j.trb.2016.10.004 10.1109/MITS.2018.2884492 10.1016/j.ejor.2016.09.044 |
| ContentType | Journal Article |
| Copyright | Copyright © 2019 Kang Huang et al. COPYRIGHT 2019 John Wiley & Sons, Inc. Copyright © 2019 Kang Huang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright © 2019 Kang Huang et al. – notice: COPYRIGHT 2019 John Wiley & Sons, Inc. – notice: Copyright © 2019 Kang Huang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | ADJCN AHFXO RHU RHW RHX AAYXX CITATION N95 3V. 7ST 7WY 7WZ 7XB 87Z 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ KR7 L.- L6V M0C M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U SOI ADTOC UNPAY DOA |
| DOI | 10.1155/2019/7258986 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Gale Business: Insights ProQuest Central (Corporate) Environment Abstracts ABI/INFORM Collection (ProQuest Business/Economics) (LUT) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection (LUT) Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection Civil Engineering Abstracts ABI/INFORM Global Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (WRLC) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2042-3195 |
| Editor | Imine, Hocine |
| Editor_xml | – sequence: 1 givenname: Hocine surname: Imine fullname: Imine, Hocine |
| EndPage | 17 |
| ExternalDocumentID | oai_doaj_org_article_e05d63ea094843aa95f71920f66e6d09 10.1155/2019/7258986 A613340546 10_1155_2019_7258986 1170084 |
| GeographicLocations | China Beijing China |
| GeographicLocations_xml | – name: China – name: Beijing China |
| GrantInformation_xml | – fundername: China National Funds for Distinguished Young Scientists grantid: 71525002 – fundername: National Natural Science Foundation of China grantid: 71890972/71890970; 71771018; 71621001 – fundername: Beijing Municipal Natural Science Foundation grantid: L181008 |
| GroupedDBID | -~X ..I 05W 0R~ 1OC 24P 29J 31~ 3SF 4.4 52U 5GY 7WY 8-1 8FL AAESR AAEVG AAFWJ AAMMB AANHP AAONW AAZKR ABDBF ABDPE ABJCF ABUWG ACBWZ ACCMX ACIWK ACNCT ACRPL ACUHS ACXQS ACYXJ ADBBV ADIZJ ADJCN ADNMO AEFGJ AEIMD AENEX AEUYN AFBPY AFKRA AFPKN AFRAH AGQPQ AGXDD AHFXO AI. AIDQK AIDYY AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR ARAPS ASPBG ATUGU AVWKF AZFZN AZVAB BAAKF BCNDV BDRZF BENPR BEZIV BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU DU5 DWQXO EBS EJD ESX FEDTE FRNLG G-S GODZA GROUPED_DOAJ H13 HCIFZ HVGLF HZ~ I-F IAO IOF ITC LITHE LPU M0C M7S MY~ N95 O9- OK1 P2P PHGZM PHGZT PIMPY PQBIZ PQBZA PQGLB PTHSS PUEGO PV9 RIWAO RJQFR RZL SUPJJ TN5 TUS VH1 WBKPD WH7 AAJEY RHU RHW RHX WIH XI7 AAYXX CITATION 3V. 7ST 7XB 8FD 8FE 8FG 8FK AZQEC C1K FR3 K60 K6~ KR7 L.- L6V P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U SOI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c540t-fff23c894910edc8499fc2acdc79341d22a5950a91a76498e80cc0cda1f75daf3 |
| IEDL.DBID | UNPAY |
| ISSN | 0197-6729 2042-3195 |
| IngestDate | Fri Oct 03 12:51:12 EDT 2025 Sun Oct 26 03:42:11 EDT 2025 Fri Jul 25 10:42:22 EDT 2025 Fri Jun 13 00:05:36 EDT 2025 Mon Oct 20 16:58:46 EDT 2025 Fri May 23 02:36:20 EDT 2025 Wed Oct 01 00:44:32 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Sun Jun 02 19:16:54 EDT 2024 Thu Sep 25 15:05:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2019 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c540t-fff23c894910edc8499fc2acdc79341d22a5950a91a76498e80cc0cda1f75daf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3422-8057 0000-0002-3762-0065 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/jat/2019/7258986.pdf |
| PQID | 2407649029 |
| PQPubID | 1006382 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e05d63ea094843aa95f71920f66e6d09 unpaywall_primary_10_1155_2019_7258986 proquest_journals_2407649029 gale_infotracgeneralonefile_A613340546 gale_infotracacademiconefile_A613340546 gale_businessinsightsgauss_A613340546 crossref_citationtrail_10_1155_2019_7258986 crossref_primary_10_1155_2019_7258986 hindawi_primary_10_1155_2019_7258986 emarefa_primary_1170084 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-01-01 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: London |
| PublicationTitle | Journal of advanced transportation |
| PublicationYear | 2019 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | (33) 2010 22 24 25 26 27 (4) 2017; 4 28 29 (5) 2016; 40 30 (43) 2002; 23 31 32 11 12 13 36 37 (10) 1995 15 16 38 17 39 18 19 (44) 2007; 11 1 (14) 2019; 7 2 (41) 2004; 2 3 6 7 8 9 40 (23) 2017; 4 20 42 21 |
| References_xml | – ident: 32 doi: 10.1109/TITS.2014.2320757 – ident: 1 doi: 10.1080/00207543.2018.1542177 – volume: 40 start-page: 20 issue: 4 year: 2016 ident: 5 publication-title: Journal of BeijingJiaoTong University – volume: 4 start-page: 408 issue: 4 year: 2017 ident: 23 publication-title: Frontiers of Engineering Management doi: 10.15302/J-FEM-2017042 – ident: 16 doi: 10.1016/j.trc.2016.12.004 – ident: 15 doi: 10.1109/TITS.2015.2447507 – volume-title: Energy-efficient train control year: 1995 ident: 10 – ident: 40 doi: 10.1016/j.trc.2018.03.010 – volume: 2 start-page: 110 issue: 2 year: 2004 ident: 41 publication-title: ACM SIGKDD Explorations Newsletter – start-page: 1218 volume-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems year: 2010 ident: 33 – ident: 30 doi: 10.1016/j.cie.2018.09.041 – ident: 6 doi: 10.1016/j.enconman.2014.01.060 – ident: 37 doi: 10.1016/j.trb.2017.01.001 – ident: 12 doi: 10.1016/j.automatica.2013.07.008 – ident: 27 doi: 10.1049/ip-epa:20040346 – ident: 26 doi: 10.1016/0005-1098(95)00184-0 – ident: 36 doi: 10.1016/j.trb.2017.05.012 – ident: 28 doi: 10.1016/j.trb.2015.07.023 – ident: 24 doi: 10.1016/j.trc.2016.12.013 – ident: 38 doi: 10.1016/j.automatica.2009.07.028 – ident: 2 doi: 10.1016/j.omega.2018.04.003 – ident: 39 doi: 10.1016/j.trpro.2016.12.008 – ident: 42 doi: 10.1023/A:1010933404324 – volume: 11 start-page: 203 issue: 10 year: 2007 ident: 44 publication-title: Statistics and Computing – volume: 4 start-page: 418 issue: 4 year: 2017 ident: 4 publication-title: Frontiers of Engineering Management doi: 10.15302/J-FEM-2017044 – ident: 19 doi: 10.1016/j.trc.2013.09.007 – volume: 7 start-page: 386 issue: 1 year: 2019 ident: 14 publication-title: Transportmetrica B: Transport Dynamics – ident: 18 doi: 10.1016/j.cie.2018.11.048 – ident: 31 doi: 10.1016/j.apm.2017.11.017 – ident: 21 doi: 10.1016/j.trb.2014.09.014 – ident: 29 doi: 10.1016/j.trb.2015.07.024 – ident: 8 doi: 10.1016/j.bdr.2017.07.003 – ident: 7 doi: 10.1016/j.apm.2019.02.003 – ident: 17 doi: 10.1109/TITS.2018.2818182 – ident: 20 doi: 10.1016/j.trb.2014.03.006 – ident: 22 doi: 10.1016/j.trb.2017.09.012 – ident: 13 doi: 10.1016/j.jrtpm.2015.10.003 – ident: 25 doi: 10.1109/9.262051 – ident: 11 doi: 10.1016/j.trb.2016.10.004 – volume: 23 start-page: 18 issue: 23 year: 2002 ident: 43 publication-title: R News – ident: 3 doi: 10.1109/MITS.2018.2884492 – ident: 9 doi: 10.1016/j.ejor.2016.09.044 |
| SSID | ssj0039594 |
| Score | 2.2871907 |
| Snippet | Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement... |
| SourceID | doaj unpaywall proquest gale crossref hindawi emarefa |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis Big Data Data mining Empirical equations Energy consumption Energy efficiency Environmental protection Heuristic methods Integrated approach Learning algorithms Light rail transit Machine learning Mathematical models Neural networks Optimization Public transportation Regression analysis Simulation Support vector machines Urban rail |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpQo4oPJeKMiHUg4oqpPYic1ty1IVJB6CrtRbNLGdbaQ0XW2yqvgJ_GvGsXfZlYBeuERKNHIcz2TmG8vzDSEHpowFlAmPTJamEQcjIgXMRKyKKxaXJVrVwPb5OTud8o_n4nyj1Zc7E-bpgf3CHVkmcBgLmIZIngIoUeWISliVZTYzvnSPSbVKprwPTpVQntVb5VGG-HF15F0IzPZjdZQnQipXP70RjAbO_qEwF_Ae1j5698Jlx9f1Fga9vWzn8OMammYjHJ3skXsBR9Kxn_99csu2D8jdDXbBh-TnpEafgKCYnrk-EPT7HCMV_eqbdNMv6CsuQxEmReRKp4sSWvoN6oYOAazu39IxnUAP0WThfCJ1fdMaCq2hH1YkE4aOm9nVou4vLjt6jBHRUBzu03BC09JA3jp7RKYn78_enUah80KkEcH1UVVVSaql4ggmrNES06JKJ6CNxt-ZxyZJQCjBQMWQZ1xJK5nWTBuIq1wYqNLHZKe9au1TQlmeyFgbJsHG3Ji8VGBLIUHEVpR5CiPyZqWCQgdactcdoymG9ESIwimsCAobkVdr6bmn4_iL3LHT5lrGkWgPD9C0imBaxU2mNSJPgi38fpejM5Qcp-FsowiNQvHSua2UbgbLrivGCJFSBMIcp_F6kHPOAj9KQ6h5wKVxqt6SPNySnHnS8T8JHgR7vGEB9lfGWgSv1BUue0d1sQQ_7XBtwP8c59n_WMjn5I4b0-9c7ZOdfrG0LxDL9eXL4bf9BYZ2P8c priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJQQcEM-yUJAPpRxQhPNwYnPbslQLEg-VrrS3aOLHNlKarjZZVfwE_jXjxFm6vC-RHE0SxzOe-SaxvyHkQBchhyJKAp3GcZCA5oEEpgNmQ8vCokCr6tg-P6bTWfJ-zueeJKn59Rc-RjtMz0P5Kou4kCLdITsidSu3TqbzweHGksuewltmQYpgcVjf_tO1W5GnI-jvduECtmHjkK-fuVT4stwCnDfW9RK-XkJVXYk9x3fIbQ8a6bjX8l1yzdT3yK0rVIL3ybdJiQ4AETA9dUUf6JclhiX6ua_ITT-hYzj3Oy4pwlQ6WxVQ0xMoK9pFq7J9Tcd0Ai0Ek5VzgNQVSaso1Jq-GxglNB1Xi4tV2Z6dN_QIw5-meLsP3XJMQz1T6-IBmR2_PX0zDXyZhUAhXGsDa20UKyETRA5GK4E5kFURKK1w7iahjiLgkjOQIWRpIoURTCmmNIQ24xps_JDs1he1eUQoyyIRKs0EmDDROiskmIIL4KHhRRbDiLwcVJArz0HuSmFUeZeLcJ47heVeYSPyfCO97Lk3_iB35LS5kXGM2d0JtKLcT8DcMI7maADTWZHEAJLbDNEts2lqUs3kiOx5W_jxLMddKBLshrON3FcFxUPjvps0C1g3TT5GPBQj6k2wGy86OecZ8KUU-A0OODRO1VuSh1uSi55h_HeCB94e_zEA-4Ox5t4FNblL1VFdLMJXO9wY8F_v8_j_HveE3HTN_kPUPtltV2vzFKFZWzzrJuZ3Djgtvg priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwR7QHxTGMgPAx5QVOfDSYyEUEs3DSTKNFZpb9HFdrJKWdo1qSb-BP5rzonTtRKMl0iNTk7iO9_9zvX9jpADlbocUi9wVOj7TgCKOwKYcljmZsxNU7Sqhu1zEh5Pg2_n_HyHTLpaGHOssvOJjaNWc2n2yAcm8wgDwTzxeXHlmK5R5t_VroUG2NYK6lNDMXaH7HqGGatHdkeHk5PTzjf7gouW7VtEToi4sjsKz_kAI6EYRB6Phamr3ghSDZd_U7AL-BvWvvvuhcmar2db2PTeqlzAr2soio0wdfSQPLD4kg5bg3hEdnT5mOxtsA4-Ib_HM_QVCJbpmekPQX8uMILRk7Z5N_2BPuTSFmdSRLR0ukyhpKcwK2gT2Gb1RzqkY6jBGS-Nr6Smn1pBoVT0a0c-oeiwyHH66ovLio4wUiqKw31vTm5qakld86dkenR49uXYsR0ZHInIrnayLPN8GYsAQYZWMsZ0KZMeSCVxmQeu8jzggjMQLhhlxTpmUjKpwM0iriDzn5FeOS_1C0JZ5MWuVCwG7QZKRakAnfIYuKt5GvnQJx86FSTS0pWbrhlF0qQtnCdGYYlVWJ-8XUsvWpqOf8iNjDbXMoZcu7kxX-aJXauJZhwtVwNmvnHgAwieRQiEWRaGOlRM9Mlzaws3zzI0h3GAr2FsI7ENRPFSmS2WKodVVSVDhE4-AuQAX-N9I2ecCH6UBFsLgVNjVL0l-W5LMm_JyP8meGDt8T8TsN8Za2K9VZXcrC183NqAbx3n5e3jvCL3jXS7V7VPevVypV8jeqvTN3ZJ_gHXcD5e priority: 102 providerName: ProQuest |
| Title | Discrete Train Speed Profile Optimization for Urban Rail Transit: A Data-Driven Model and Integrated Algorithms Based on Machine Learning |
| URI | https://search.emarefa.net/detail/BIM-1170084 https://dx.doi.org/10.1155/2019/7258986 https://www.proquest.com/docview/2407649029 https://downloads.hindawi.com/journals/jat/2019/7258986.pdf https://doaj.org/article/e05d63ea094843aa95f71920f66e6d09 |
| UnpaywallVersion | publishedVersion |
| Volume | 2019 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: ABDBF dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: BENPR dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Open Access customDbUrl: eissn: 2042-3195 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039594 issn: 2042-3195 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZ2WyHggfsoLJUfluUBpZvLOeCppVsKEqVatlJXQoomttMtZNOqSbWCf8C_Zpw4ZYu4xEukRCPHHo_H31iebwjZF7HFILZdQ3iOY7ggmBGCKQwzsRLTimO0qpLtc-QNJ-7bKZvukJd1LoxQFPELEHnnTMWkF_PSW2u95oefQIXrVnjo2ywIA6-zFMkuaXoMgXiDNCejcfe0SpD2Dc8va5TZKgEFDY3V194Z22pia0MqefvL5FzAd9j46Su6N1s49Oo6W8KXC0jTS1vS4Cb5WA-muonyubMu4g7_-hPP43-O9ha5oaEq7Va2dZvsyOwOuX6JwPAu-dafo9tB3E1PVKkJ-mGJmyEdV3XA6Xt0R-c6z5MiOKaTVQwZPYZ5Sss9cl68oF3ahwKM_kq5XapKs6UUMkHf1DwWgnbT2WI1L87Oc9rDTVdQbO5deQlUUs0PO7tHJoOjk1dDQxd3MDiCxMJIksR2eBC6iFek4AFGXgm3gQuOHsO1hG0DC5kJoQW-54aBDEzOTS7ASnwmIHHuk0a2yORDQk3fDiwuzACk5QrhxyHImAXALMli34EWeV7PcMQ187kqwJFGZQTEWKSUHGklt8jTjfSyYvz4jVxPGctGRvF0lx8Wq1mkl30kTYaLQAIG0YHrAIQs8RFTm4nnSU-YYYs80Kb241-KMTFwsRvK9CJdixQfuTqtyWewzvOoiyjMQaztYjeelXLKH-GgOOi0ClSNmuotyYMtyVnFa_4rwX1tjn9RwF69FqLaZCN1QIDTZdo4tIPN-vhjO4_-VfAxuaZeqwOwPdIoVmv5BCFhEbfJbjB43SbN3tFofNwuD1bweTyctrVT-A7w315R |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwGhQF-2OABRc3NSYw0oZZuatlWptFKewsnttNV6trSpKr2E_hT_DaOE6drJRhPe6mU6sRxc47PxfX5PkL2ZOIwSFzfkoHnWT5IZnGwpWWnTmo7SYJWVaB9doN23_96wS42yO-qF0Yfq6x8YuGo5UToPfK6rjwCn9su_zz9aWnWKP3vakWhAYZaQR4UEGOmseNYXS-whMsOOi3U977rHh32vrQtwzJgCcxWcitNU9cTEfcxcCopIiwBUuGCkAJN13ek6wLjzAbugJ5ApCJbCFtIcNKQSUg9HPce2fI9n2Pxt9U87J6dV7HA44yX6OI8tALMY6uj94zVMfLyeuiyiOs-7pWgWHAHFA3CgNewjBX3L3WVvhiu5cLb8_EUrhcwGq2ExaPH5JHJZ2mjNMAnZEONn5KHKyiHz8iv1hB9EybntKf5KOj3KUZMelaShdNv6LOuTDMoxQya9mcJjOk5DEe0CKTD_BNt0BbkYLVm2jdTzd82ojCWtFOBXUjaGA1QXfnlVUabGJklxeFOi5OiihoQ2cFz0r8T3eyQzfFkrF4Saodu5AhpR6AcX8ow4aASFgFzFEtCD2rkY6WCWBh4dM3SMYqLMomxWCssNgqrkf2l9LSEBfmHXFNrcymjwbyLLyazQWx8Q6xshitFAVbake8BcJaGmHjbaRCoQNq8Rl4YW7h5loZVjHychraN2BCW4kemt3SyAcyzLG5gquZhQu7jND4Uctpp4Y8SYHov8NVoVa9Jvl-THJTg538T3DP2-J8XsFsZa2y8YxbfrGV83NKAbx3n1e3jvCPb7d7pSXzS6R6_Jg_0neU-2S7ZzGdz9QYzxzx5a5YnJT_u2iP8AUSwfFQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEF8PiG8KA_ywwQOK6nw4iZEQ6ihlZTAmWKW9hYvtdJWytDStqv0J_Ev8dZwTp2slGE97qZTqYqe5893vXN_vCNlWqcsh9QJHhb7vBKC4I4Aph2Vuxtw0Rauq2D4Pwr1B8OmYH2-Q300tjDlW2fjEylGrsTR75G2TeYSBYJ5oZ_ZYxGG3927y0zEdpMw_rU07jdpE9vXZAtO38m2_i7re8bzeh6P3e47tMOBIRCozJ8syz5exCDBoaiVjhP-Z9EAqiWYbuMrzgAvOQLhgJo91zKRkUoGbRVxB5uO4V8jVyLC4myr13scmCviCi5pXXEROiAi2OXTPeRtjrmhHHo-FqeBeCYdV14CqNBjwGpZR4tqJyc8XozUUfGNeTOBsAXm-EhB7d8hti2Rppza9u2RDF_fIrRV-w_vkV3eEXglhOT0ynSjo9wnGSnpYtwmnX9FbndoyUIrYmQ6mKRT0G4xyWoXQ0ewN7dAuzMDpTo1XpqZzW06hULTf0Fwo2smHqJzZyWlJdzEmK4rDfanOiGpq6WOHD8jgUjTzkGwW40I_JpRFXuxKxWLQbqBUlArQKY-Bu5qnkQ8t8rpRQSItMbrpz5EnVYLEeWIUlliFtcjOUnpSE4L8Q27XaHMpY2i8qy_G02FivUKiGcc1ogFz7DjwAQTPIoTcLAtDHSomWuSRtYXzuQyhYhzgYxjbSGyrUvwozWZOOYR5WSYdBGk-QvEAH-NVJWfcFf4oCbbqAl-NUfWa5Ms1yWFNe_43wW1rj_95AVuNsSbWL5bJ-SrG6ZYGfOE4Ty4e5wW5jn4g-dw_2H9Kbpob6w2yLbI5m871M4SMs_R5tTYp-XHZzuAPzLV57g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELbKVgh44D4WCvJDKQ8oW-dw4sDTllIVJEoFXalISNHEx3Yhza42WVXwD_jXjBNn6SIu8RIp0cjxMcdny_MNIZsq9znkQeSpOAy9CBT3UmDKY8Y3zM9z1KqG7fMg3h9Fr4_58Rp53uXCKEsRPwVVDU7snvRs0nhrN6_V9iew23U_3U4CLlIRD2bKXCDrMUcg3iPro4PD4Yc2QTrx4qSpURbYBBRUNN5de-d8pYmVgNTw9jfJuYDvsPTTF11vVnDopUU5gy9nUBTnQtLeNfKxG0x7E-XzYFHnA_n1J57H_xztdXLVQVU6bHXrBlnT5U1y5RyB4S3ybXeCbgdxNz2ypSbo-xkGQ3rY1gGnb9Ednbo8T4rgmI7mOZT0HUwK2sTISf2MDuku1ODtzq3bpbY0W0GhVPRVx2Oh6LAYT-eT-uS0ojsYdBXF5t40l0A1dfyw49tktPfy6MW-54o7eBJBYu0ZY4JQijRCvKKVFLjzMjIAqSR6jMhXQQA85QxSH5I4SoUWTEomFfgm4QpMeIf0ymmp7xHKkkD4UjEB2o-USvIUdM4FcF_zPAmhT552K5xJx3xuC3AUWbMD4jyzk5y5Se6Tx0vpWcv48Ru5HassSxnL0918mM7HmTP7TDOORqABN9EiCgFSbhLE1MzEsY4VS_vkrlO1H_-yjIkiwm5Y1ctcLVJ8VPa0phrDoqqyIaKwELF2hN140shZf4SDkuDSKnBq7FKvSG6tSI5bXvNfCW46dfzLBGx0tpB1KpvZAwJcLhbg0LaW9vHHdu7_q-ADctm-tgdgG6RXzxf6IULCOn_kTP87ohRZyQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Train+Speed+Profile+Optimization+for+Urban+Rail+Transit%3A+A+Data-Driven+Model+and+Integrated+Algorithms+Based+on+Machine+Learning&rft.jtitle=Journal+of+advanced+transportation&rft.au=Huang%2C+Kang&rft.au=Wu%2C+Jianjun&rft.au=Yang%2C+Xin&rft.au=Gao%2C+Ziyou&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0197-6729&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F7258986&rft.externalDBID=N95&rft.externalDocID=A613340546 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon |