Discrete Train Speed Profile Optimization for Urban Rail Transit: A Data-Driven Model and Integrated Algorithms Based on Machine Learning

Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equ...

Full description

Saved in:
Bibliographic Details
Published inJournal of advanced transportation Vol. 2019; no. 2019; pp. 1 - 17
Main Authors Liu, Feng, Ziyou, Gao, Yang, Xin, Wu, Jianjun, Huang, Kang, Zhu, Yu-Ting
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN0197-6729
2042-3195
2042-3195
DOI10.1155/2019/7258986

Cover

Abstract Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equations to derive the speed profile and calculate the energy consumption, which caused the possible errors due to some assumptions used in the empirical equations. To fill this gap, according to the actual speed and energy data collected from the real-world urban rail system, this paper proposes a data-driven model and integrated heuristic algorithm based on machine learning to determine the optimal speed profile with minimum energy consumption. Firstly, a data-driven optimization model (DDOM) is proposed to describe the relationship between energy consumption and discrete speed profile processed from actual data. Then, two typical machine learning algorithms, random forest regression (RFR) algorithm and support vector machine regression (SVR) algorithm, are used to identify the importance degree of velocity in the different positions of profile and calculate the traction energy consumption. Results show that the calculation average error is less than 0.1 kwh, and the energy consumption can be reduced by about 2.84% in a case study of Beijing Changping Line.
AbstractList Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement of reducing operation cost and protecting the environment. Traditional methods on this problem mainly focused on formulating kinematical equations to derive the speed profile and calculate the energy consumption, which caused the possible errors due to some assumptions used in the empirical equations. To fill this gap, according to the actual speed and energy data collected from the real-world urban rail system, this paper proposes a data-driven model and integrated heuristic algorithm based on machine learning to determine the optimal speed profile with minimum energy consumption. Firstly, a data-driven optimization model (DDOM) is proposed to describe the relationship between energy consumption and discrete speed profile processed from actual data. Then, two typical machine learning algorithms, random forest regression (RFR) algorithm and support vector machine regression (SVR) algorithm, are used to identify the importance degree of velocity in the different positions of profile and calculate the traction energy consumption. Results show that the calculation average error is less than 0.1 kwh, and the energy consumption can be reduced by about 2.84% in a case study of Beijing Changping Line.
Audience Academic
Author Yang, Xin
Liu, Feng
Wu, Jianjun
Zhu, Yu-Ting
Ziyou, Gao
Huang, Kang
Author_xml – sequence: 1
  fullname: Liu, Feng
– sequence: 2
  fullname: Ziyou, Gao
– sequence: 3
  fullname: Yang, Xin
– sequence: 4
  fullname: Wu, Jianjun
– sequence: 5
  fullname: Huang, Kang
– sequence: 6
  fullname: Zhu, Yu-Ting
BookMark eNqFkl1rFDEUhgep4LZ657UEvLTTJpnPeLd2_ShsqWh7PZwmJ7NZZpM1yVrqP_Bfm-kUrVIpgQROnvPmnLxnP9uzzmKWvWT0iLGqOuaUieOGV61o6yfZjNOS5wUT1V42SzdNXjdcPMv2Q1hTWohKlLPs58IE6TEiufBgLPm6RVTks3faDEjOt9FszA-IxlminSeX_gos-QJmGHkbTHxL5mQBEfKFN9_RkjOncCBgFTm1EXsPMenNh955E1ebQN5BSIEkdwZyZSySJYK3xvbPs6cahoAv7s6D7PLD-4uTT_ny_OPpyXyZy6qkMdda80K2ohSMopJtKYSWHKSSjShKpjiHSlQUBIOmLkWLLZWSSgVMN5UCXRxkp5OucrDutt5swN90Dkx3G3C-78BHIwfskFaqLhCoKNuyABCVbpjgVNc11oqKpJVPWju7hZtrGIbfgox2oyfd6El350niX0_81rtvOwyxW7udt6ndjpd0rJfye6o9pCKM1S56kD1a9DAkx0drunnNiqKkVTmqHj3Ap6VwY-SDCYf3Eq52IfkQ0hZMv4qhh10If-N8wqV3IXjUnTTxdibSO2b4X6uH_yQ98jNvJjzNhIJr8xj9aqIxMajhD80aSpNXvwBTcvCf
CitedBy_id crossref_primary_10_1016_j_trc_2020_102889
crossref_primary_10_1016_j_epsr_2023_109196
crossref_primary_10_1109_ACCESS_2019_2921758
crossref_primary_10_1007_s11042_023_15051_3
crossref_primary_10_3390_en14165153
crossref_primary_10_1049_itr2_12201
crossref_primary_10_3390_en12142686
crossref_primary_10_1016_j_trc_2024_104993
crossref_primary_10_1109_ACCESS_2023_3261900
crossref_primary_10_1016_j_energy_2022_125599
crossref_primary_10_3390_su12114622
crossref_primary_10_1016_j_trc_2024_104756
crossref_primary_10_1061_JTEPBS_0000546
crossref_primary_10_3390_vibration4020022
crossref_primary_10_1109_ACCESS_2022_3179108
crossref_primary_10_1155_2020_3474020
crossref_primary_10_1109_TTE_2020_2996362
crossref_primary_10_1109_TITS_2023_3319135
Cites_doi 10.1109/TITS.2014.2320757
10.1080/00207543.2018.1542177
10.15302/J-FEM-2017042
10.1016/j.trc.2016.12.004
10.1109/TITS.2015.2447507
10.1016/j.trc.2018.03.010
10.1016/j.cie.2018.09.041
10.1016/j.enconman.2014.01.060
10.1016/j.trb.2017.01.001
10.1016/j.automatica.2013.07.008
10.1049/ip-epa:20040346
10.1016/0005-1098(95)00184-0
10.1016/j.trb.2017.05.012
10.1016/j.trb.2015.07.023
10.1016/j.trc.2016.12.013
10.1016/j.automatica.2009.07.028
10.1016/j.omega.2018.04.003
10.1016/j.trpro.2016.12.008
10.1023/A:1010933404324
10.15302/J-FEM-2017044
10.1016/j.trc.2013.09.007
10.1016/j.cie.2018.11.048
10.1016/j.apm.2017.11.017
10.1016/j.trb.2014.09.014
10.1016/j.trb.2015.07.024
10.1016/j.bdr.2017.07.003
10.1016/j.apm.2019.02.003
10.1109/TITS.2018.2818182
10.1016/j.trb.2014.03.006
10.1016/j.trb.2017.09.012
10.1016/j.jrtpm.2015.10.003
10.1109/9.262051
10.1016/j.trb.2016.10.004
10.1109/MITS.2018.2884492
10.1016/j.ejor.2016.09.044
ContentType Journal Article
Copyright Copyright © 2019 Kang Huang et al.
COPYRIGHT 2019 John Wiley & Sons, Inc.
Copyright © 2019 Kang Huang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright © 2019 Kang Huang et al.
– notice: COPYRIGHT 2019 John Wiley & Sons, Inc.
– notice: Copyright © 2019 Kang Huang et al. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID ADJCN
AHFXO
RHU
RHW
RHX
AAYXX
CITATION
N95
3V.
7ST
7WY
7WZ
7XB
87Z
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
KR7
L.-
L6V
M0C
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
SOI
ADTOC
UNPAY
DOA
DOI 10.1155/2019/7258986
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Environment Abstracts
ABI/INFORM Collection (ProQuest Business/Economics) (LUT)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection (LUT)
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Civil Engineering Abstracts
ABI/INFORM Global
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList



Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (WRLC)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2042-3195
Editor Imine, Hocine
Editor_xml – sequence: 1
  givenname: Hocine
  surname: Imine
  fullname: Imine, Hocine
EndPage 17
ExternalDocumentID oai_doaj_org_article_e05d63ea094843aa95f71920f66e6d09
10.1155/2019/7258986
A613340546
10_1155_2019_7258986
1170084
GeographicLocations China
Beijing China
GeographicLocations_xml – name: China
– name: Beijing China
GrantInformation_xml – fundername: China National Funds for Distinguished Young Scientists
  grantid: 71525002
– fundername: National Natural Science Foundation of China
  grantid: 71890972/71890970; 71771018; 71621001
– fundername: Beijing Municipal Natural Science Foundation
  grantid: L181008
GroupedDBID -~X
..I
05W
0R~
1OC
24P
29J
31~
3SF
4.4
52U
5GY
7WY
8-1
8FL
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
AAZKR
ABDBF
ABDPE
ABJCF
ABUWG
ACBWZ
ACCMX
ACIWK
ACNCT
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADIZJ
ADJCN
ADNMO
AEFGJ
AEIMD
AENEX
AEUYN
AFBPY
AFKRA
AFPKN
AFRAH
AGQPQ
AGXDD
AHFXO
AI.
AIDQK
AIDYY
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ARAPS
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAAKF
BCNDV
BDRZF
BENPR
BEZIV
BGLVJ
BHBCM
BNHUX
BOGZA
BRXPI
CCPQU
DU5
DWQXO
EBS
EJD
ESX
FEDTE
FRNLG
G-S
GODZA
GROUPED_DOAJ
H13
HCIFZ
HVGLF
HZ~
I-F
IAO
IOF
ITC
LITHE
LPU
M0C
M7S
MY~
N95
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
PQGLB
PTHSS
PUEGO
PV9
RIWAO
RJQFR
RZL
SUPJJ
TN5
TUS
VH1
WBKPD
WH7
AAJEY
RHU
RHW
RHX
WIH
XI7
AAYXX
CITATION
3V.
7ST
7XB
8FD
8FE
8FG
8FK
AZQEC
C1K
FR3
K60
K6~
KR7
L.-
L6V
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
SOI
ADTOC
UNPAY
ID FETCH-LOGICAL-c540t-fff23c894910edc8499fc2acdc79341d22a5950a91a76498e80cc0cda1f75daf3
IEDL.DBID UNPAY
ISSN 0197-6729
2042-3195
IngestDate Fri Oct 03 12:51:12 EDT 2025
Sun Oct 26 03:42:11 EDT 2025
Fri Jul 25 10:42:22 EDT 2025
Fri Jun 13 00:05:36 EDT 2025
Mon Oct 20 16:58:46 EDT 2025
Fri May 23 02:36:20 EDT 2025
Wed Oct 01 00:44:32 EDT 2025
Thu Apr 24 23:02:03 EDT 2025
Sun Jun 02 19:16:54 EDT 2024
Thu Sep 25 15:05:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2019
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-fff23c894910edc8499fc2acdc79341d22a5950a91a76498e80cc0cda1f75daf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3422-8057
0000-0002-3762-0065
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/jat/2019/7258986.pdf
PQID 2407649029
PQPubID 1006382
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_e05d63ea094843aa95f71920f66e6d09
unpaywall_primary_10_1155_2019_7258986
proquest_journals_2407649029
gale_infotracgeneralonefile_A613340546
gale_infotracacademiconefile_A613340546
gale_businessinsightsgauss_A613340546
crossref_citationtrail_10_1155_2019_7258986
crossref_primary_10_1155_2019_7258986
hindawi_primary_10_1155_2019_7258986
emarefa_primary_1170084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: London
PublicationTitle Journal of advanced transportation
PublicationYear 2019
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References (33) 2010
22
24
25
26
27
(4) 2017; 4
28
29
(5) 2016; 40
30
(43) 2002; 23
31
32
11
12
13
36
37
(10) 1995
15
16
38
17
39
18
19
(44) 2007; 11
1
(14) 2019; 7
2
(41) 2004; 2
3
6
7
8
9
40
(23) 2017; 4
20
42
21
References_xml – ident: 32
  doi: 10.1109/TITS.2014.2320757
– ident: 1
  doi: 10.1080/00207543.2018.1542177
– volume: 40
  start-page: 20
  issue: 4
  year: 2016
  ident: 5
  publication-title: Journal of BeijingJiaoTong University
– volume: 4
  start-page: 408
  issue: 4
  year: 2017
  ident: 23
  publication-title: Frontiers of Engineering Management
  doi: 10.15302/J-FEM-2017042
– ident: 16
  doi: 10.1016/j.trc.2016.12.004
– ident: 15
  doi: 10.1109/TITS.2015.2447507
– volume-title: Energy-efficient train control
  year: 1995
  ident: 10
– ident: 40
  doi: 10.1016/j.trc.2018.03.010
– volume: 2
  start-page: 110
  issue: 2
  year: 2004
  ident: 41
  publication-title: ACM SIGKDD Explorations Newsletter
– start-page: 1218
  volume-title: Timetable optimization for maximum usage of regenerative energy of braking in electrical railway systems
  year: 2010
  ident: 33
– ident: 30
  doi: 10.1016/j.cie.2018.09.041
– ident: 6
  doi: 10.1016/j.enconman.2014.01.060
– ident: 37
  doi: 10.1016/j.trb.2017.01.001
– ident: 12
  doi: 10.1016/j.automatica.2013.07.008
– ident: 27
  doi: 10.1049/ip-epa:20040346
– ident: 26
  doi: 10.1016/0005-1098(95)00184-0
– ident: 36
  doi: 10.1016/j.trb.2017.05.012
– ident: 28
  doi: 10.1016/j.trb.2015.07.023
– ident: 24
  doi: 10.1016/j.trc.2016.12.013
– ident: 38
  doi: 10.1016/j.automatica.2009.07.028
– ident: 2
  doi: 10.1016/j.omega.2018.04.003
– ident: 39
  doi: 10.1016/j.trpro.2016.12.008
– ident: 42
  doi: 10.1023/A:1010933404324
– volume: 11
  start-page: 203
  issue: 10
  year: 2007
  ident: 44
  publication-title: Statistics and Computing
– volume: 4
  start-page: 418
  issue: 4
  year: 2017
  ident: 4
  publication-title: Frontiers of Engineering Management
  doi: 10.15302/J-FEM-2017044
– ident: 19
  doi: 10.1016/j.trc.2013.09.007
– volume: 7
  start-page: 386
  issue: 1
  year: 2019
  ident: 14
  publication-title: Transportmetrica B: Transport Dynamics
– ident: 18
  doi: 10.1016/j.cie.2018.11.048
– ident: 31
  doi: 10.1016/j.apm.2017.11.017
– ident: 21
  doi: 10.1016/j.trb.2014.09.014
– ident: 29
  doi: 10.1016/j.trb.2015.07.024
– ident: 8
  doi: 10.1016/j.bdr.2017.07.003
– ident: 7
  doi: 10.1016/j.apm.2019.02.003
– ident: 17
  doi: 10.1109/TITS.2018.2818182
– ident: 20
  doi: 10.1016/j.trb.2014.03.006
– ident: 22
  doi: 10.1016/j.trb.2017.09.012
– ident: 13
  doi: 10.1016/j.jrtpm.2015.10.003
– ident: 25
  doi: 10.1109/9.262051
– ident: 11
  doi: 10.1016/j.trb.2016.10.004
– volume: 23
  start-page: 18
  issue: 23
  year: 2002
  ident: 43
  publication-title: R News
– ident: 3
  doi: 10.1109/MITS.2018.2884492
– ident: 9
  doi: 10.1016/j.ejor.2016.09.044
SSID ssj0039594
Score 2.2871907
Snippet Energy-efficient train speed profile optimization problem in urban rail transit systems has attracted much attention in recent years because of the requirement...
SourceID doaj
unpaywall
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Big Data
Data mining
Empirical equations
Energy consumption
Energy efficiency
Environmental protection
Heuristic methods
Integrated approach
Learning algorithms
Light rail transit
Machine learning
Mathematical models
Neural networks
Optimization
Public transportation
Regression analysis
Simulation
Support vector machines
Urban rail
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpQo4oPJeKMiHUg4oqpPYic1ty1IVJB6CrtRbNLGdbaQ0XW2yqvgJ_GvGsXfZlYBeuERKNHIcz2TmG8vzDSEHpowFlAmPTJamEQcjIgXMRKyKKxaXJVrVwPb5OTud8o_n4nyj1Zc7E-bpgf3CHVkmcBgLmIZIngIoUeWISliVZTYzvnSPSbVKprwPTpVQntVb5VGG-HF15F0IzPZjdZQnQipXP70RjAbO_qEwF_Ae1j5698Jlx9f1Fga9vWzn8OMammYjHJ3skXsBR9Kxn_99csu2D8jdDXbBh-TnpEafgKCYnrk-EPT7HCMV_eqbdNMv6CsuQxEmReRKp4sSWvoN6oYOAazu39IxnUAP0WThfCJ1fdMaCq2hH1YkE4aOm9nVou4vLjt6jBHRUBzu03BC09JA3jp7RKYn78_enUah80KkEcH1UVVVSaql4ggmrNES06JKJ6CNxt-ZxyZJQCjBQMWQZ1xJK5nWTBuIq1wYqNLHZKe9au1TQlmeyFgbJsHG3Ji8VGBLIUHEVpR5CiPyZqWCQgdactcdoymG9ESIwimsCAobkVdr6bmn4_iL3LHT5lrGkWgPD9C0imBaxU2mNSJPgi38fpejM5Qcp-FsowiNQvHSua2UbgbLrivGCJFSBMIcp_F6kHPOAj9KQ6h5wKVxqt6SPNySnHnS8T8JHgR7vGEB9lfGWgSv1BUue0d1sQQ_7XBtwP8c59n_WMjn5I4b0-9c7ZOdfrG0LxDL9eXL4bf9BYZ2P8c
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoJQQcEM-yUJAPpRxQhPNwYnPbslQLEg-VrrS3aOLHNlKarjZZVfwE_jXjxFm6vC-RHE0SxzOe-SaxvyHkQBchhyJKAp3GcZCA5oEEpgNmQ8vCokCr6tg-P6bTWfJ-zueeJKn59Rc-RjtMz0P5Kou4kCLdITsidSu3TqbzweHGksuewltmQYpgcVjf_tO1W5GnI-jvduECtmHjkK-fuVT4stwCnDfW9RK-XkJVXYk9x3fIbQ8a6bjX8l1yzdT3yK0rVIL3ybdJiQ4AETA9dUUf6JclhiX6ua_ITT-hYzj3Oy4pwlQ6WxVQ0xMoK9pFq7J9Tcd0Ai0Ek5VzgNQVSaso1Jq-GxglNB1Xi4tV2Z6dN_QIw5-meLsP3XJMQz1T6-IBmR2_PX0zDXyZhUAhXGsDa20UKyETRA5GK4E5kFURKK1w7iahjiLgkjOQIWRpIoURTCmmNIQ24xps_JDs1he1eUQoyyIRKs0EmDDROiskmIIL4KHhRRbDiLwcVJArz0HuSmFUeZeLcJ47heVeYSPyfCO97Lk3_iB35LS5kXGM2d0JtKLcT8DcMI7maADTWZHEAJLbDNEts2lqUs3kiOx5W_jxLMddKBLshrON3FcFxUPjvps0C1g3TT5GPBQj6k2wGy86OecZ8KUU-A0OODRO1VuSh1uSi55h_HeCB94e_zEA-4Ox5t4FNblL1VFdLMJXO9wY8F_v8_j_HveE3HTN_kPUPtltV2vzFKFZWzzrJuZ3Djgtvg
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdGJwR7QHxTGMgPAx5QVOfDSYyEUEs3DSTKNFZpb9HFdrJKWdo1qSb-BP5rzonTtRKMl0iNTk7iO9_9zvX9jpADlbocUi9wVOj7TgCKOwKYcljmZsxNU7Sqhu1zEh5Pg2_n_HyHTLpaGHOssvOJjaNWc2n2yAcm8wgDwTzxeXHlmK5R5t_VroUG2NYK6lNDMXaH7HqGGatHdkeHk5PTzjf7gouW7VtEToi4sjsKz_kAI6EYRB6Phamr3ghSDZd_U7AL-BvWvvvuhcmar2db2PTeqlzAr2soio0wdfSQPLD4kg5bg3hEdnT5mOxtsA4-Ib_HM_QVCJbpmekPQX8uMILRk7Z5N_2BPuTSFmdSRLR0ukyhpKcwK2gT2Gb1RzqkY6jBGS-Nr6Smn1pBoVT0a0c-oeiwyHH66ovLio4wUiqKw31vTm5qakld86dkenR49uXYsR0ZHInIrnayLPN8GYsAQYZWMsZ0KZMeSCVxmQeu8jzggjMQLhhlxTpmUjKpwM0iriDzn5FeOS_1C0JZ5MWuVCwG7QZKRakAnfIYuKt5GvnQJx86FSTS0pWbrhlF0qQtnCdGYYlVWJ-8XUsvWpqOf8iNjDbXMoZcu7kxX-aJXauJZhwtVwNmvnHgAwieRQiEWRaGOlRM9Mlzaws3zzI0h3GAr2FsI7ENRPFSmS2WKodVVSVDhE4-AuQAX-N9I2ecCH6UBFsLgVNjVL0l-W5LMm_JyP8meGDt8T8TsN8Za2K9VZXcrC183NqAbx3n5e3jvCL3jXS7V7VPevVypV8jeqvTN3ZJ_gHXcD5e
  priority: 102
  providerName: ProQuest
Title Discrete Train Speed Profile Optimization for Urban Rail Transit: A Data-Driven Model and Integrated Algorithms Based on Machine Learning
URI https://search.emarefa.net/detail/BIM-1170084
https://dx.doi.org/10.1155/2019/7258986
https://www.proquest.com/docview/2407649029
https://downloads.hindawi.com/journals/jat/2019/7258986.pdf
https://doaj.org/article/e05d63ea094843aa95f71920f66e6d09
UnpaywallVersion publishedVersion
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039594
  issn: 2042-3195
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039594
  issn: 2042-3195
  databaseCode: ABDBF
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039594
  issn: 2042-3195
  databaseCode: BENPR
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Open Access
  customDbUrl:
  eissn: 2042-3195
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039594
  issn: 2042-3195
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zj9MwELZ2WyHggfsoLJUfluUBpZvLOeCppVsKEqVatlJXQoomttMtZNOqSbWCf8C_Zpw4ZYu4xEukRCPHHo_H31iebwjZF7HFILZdQ3iOY7ggmBGCKQwzsRLTimO0qpLtc-QNJ-7bKZvukJd1LoxQFPELEHnnTMWkF_PSW2u95oefQIXrVnjo2ywIA6-zFMkuaXoMgXiDNCejcfe0SpD2Dc8va5TZKgEFDY3V194Z22pia0MqefvL5FzAd9j46Su6N1s49Oo6W8KXC0jTS1vS4Cb5WA-muonyubMu4g7_-hPP43-O9ha5oaEq7Va2dZvsyOwOuX6JwPAu-dafo9tB3E1PVKkJ-mGJmyEdV3XA6Xt0R-c6z5MiOKaTVQwZPYZ5Sss9cl68oF3ahwKM_kq5XapKs6UUMkHf1DwWgnbT2WI1L87Oc9rDTVdQbO5deQlUUs0PO7tHJoOjk1dDQxd3MDiCxMJIksR2eBC6iFek4AFGXgm3gQuOHsO1hG0DC5kJoQW-54aBDEzOTS7ASnwmIHHuk0a2yORDQk3fDiwuzACk5QrhxyHImAXALMli34EWeV7PcMQ187kqwJFGZQTEWKSUHGklt8jTjfSyYvz4jVxPGctGRvF0lx8Wq1mkl30kTYaLQAIG0YHrAIQs8RFTm4nnSU-YYYs80Kb241-KMTFwsRvK9CJdixQfuTqtyWewzvOoiyjMQaztYjeelXLKH-GgOOi0ClSNmuotyYMtyVnFa_4rwX1tjn9RwF69FqLaZCN1QIDTZdo4tIPN-vhjO4_-VfAxuaZeqwOwPdIoVmv5BCFhEbfJbjB43SbN3tFofNwuD1bweTyctrVT-A7w315R
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJjR4QNwGhQF-2OABRc3NSYw0oZZuatlWptFKewsnttNV6trSpKr2E_hT_DaOE6drJRhPe6mU6sRxc47PxfX5PkL2ZOIwSFzfkoHnWT5IZnGwpWWnTmo7SYJWVaB9doN23_96wS42yO-qF0Yfq6x8YuGo5UToPfK6rjwCn9su_zz9aWnWKP3vakWhAYZaQR4UEGOmseNYXS-whMsOOi3U977rHh32vrQtwzJgCcxWcitNU9cTEfcxcCopIiwBUuGCkAJN13ek6wLjzAbugJ5ApCJbCFtIcNKQSUg9HPce2fI9n2Pxt9U87J6dV7HA44yX6OI8tALMY6uj94zVMfLyeuiyiOs-7pWgWHAHFA3CgNewjBX3L3WVvhiu5cLb8_EUrhcwGq2ExaPH5JHJZ2mjNMAnZEONn5KHKyiHz8iv1hB9EybntKf5KOj3KUZMelaShdNv6LOuTDMoxQya9mcJjOk5DEe0CKTD_BNt0BbkYLVm2jdTzd82ojCWtFOBXUjaGA1QXfnlVUabGJklxeFOi5OiihoQ2cFz0r8T3eyQzfFkrF4Saodu5AhpR6AcX8ow4aASFgFzFEtCD2rkY6WCWBh4dM3SMYqLMomxWCssNgqrkf2l9LSEBfmHXFNrcymjwbyLLyazQWx8Q6xshitFAVbake8BcJaGmHjbaRCoQNq8Rl4YW7h5loZVjHychraN2BCW4kemt3SyAcyzLG5gquZhQu7jND4Uctpp4Y8SYHov8NVoVa9Jvl-THJTg538T3DP2-J8XsFsZa2y8YxbfrGV83NKAbx3n1e3jvCPb7d7pSXzS6R6_Jg_0neU-2S7ZzGdz9QYzxzx5a5YnJT_u2iP8AUSwfFQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEF8PiG8KA_ywwQOK6nw4iZEQ6ihlZTAmWKW9hYvtdJWytDStqv0J_Ev8dZwTp2slGE97qZTqYqe5893vXN_vCNlWqcsh9QJHhb7vBKC4I4Aph2Vuxtw0Rauq2D4Pwr1B8OmYH2-Q300tjDlW2fjEylGrsTR75G2TeYSBYJ5oZ_ZYxGG3927y0zEdpMw_rU07jdpE9vXZAtO38m2_i7re8bzeh6P3e47tMOBIRCozJ8syz5exCDBoaiVjhP-Z9EAqiWYbuMrzgAvOQLhgJo91zKRkUoGbRVxB5uO4V8jVyLC4myr13scmCviCi5pXXEROiAi2OXTPeRtjrmhHHo-FqeBeCYdV14CqNBjwGpZR4tqJyc8XozUUfGNeTOBsAXm-EhB7d8hti2Rppza9u2RDF_fIrRV-w_vkV3eEXglhOT0ynSjo9wnGSnpYtwmnX9FbndoyUIrYmQ6mKRT0G4xyWoXQ0ewN7dAuzMDpTo1XpqZzW06hULTf0Fwo2smHqJzZyWlJdzEmK4rDfanOiGpq6WOHD8jgUjTzkGwW40I_JpRFXuxKxWLQbqBUlArQKY-Bu5qnkQ8t8rpRQSItMbrpz5EnVYLEeWIUlliFtcjOUnpSE4L8Q27XaHMpY2i8qy_G02FivUKiGcc1ogFz7DjwAQTPIoTcLAtDHSomWuSRtYXzuQyhYhzgYxjbSGyrUvwozWZOOYR5WSYdBGk-QvEAH-NVJWfcFf4oCbbqAl-NUfWa5Ms1yWFNe_43wW1rj_95AVuNsSbWL5bJ-SrG6ZYGfOE4Ty4e5wW5jn4g-dw_2H9Kbpob6w2yLbI5m871M4SMs_R5tTYp-XHZzuAPzLV57g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELbKVgh44D4WCvJDKQ8oW-dw4sDTllIVJEoFXalISNHEx3Yhza42WVXwD_jXjBNn6SIu8RIp0cjxMcdny_MNIZsq9znkQeSpOAy9CBT3UmDKY8Y3zM9z1KqG7fMg3h9Fr4_58Rp53uXCKEsRPwVVDU7snvRs0nhrN6_V9iew23U_3U4CLlIRD2bKXCDrMUcg3iPro4PD4Yc2QTrx4qSpURbYBBRUNN5de-d8pYmVgNTw9jfJuYDvsPTTF11vVnDopUU5gy9nUBTnQtLeNfKxG0x7E-XzYFHnA_n1J57H_xztdXLVQVU6bHXrBlnT5U1y5RyB4S3ybXeCbgdxNz2ypSbo-xkGQ3rY1gGnb9Ednbo8T4rgmI7mOZT0HUwK2sTISf2MDuku1ODtzq3bpbY0W0GhVPRVx2Oh6LAYT-eT-uS0ojsYdBXF5t40l0A1dfyw49tktPfy6MW-54o7eBJBYu0ZY4JQijRCvKKVFLjzMjIAqSR6jMhXQQA85QxSH5I4SoUWTEomFfgm4QpMeIf0ymmp7xHKkkD4UjEB2o-USvIUdM4FcF_zPAmhT552K5xJx3xuC3AUWbMD4jyzk5y5Se6Tx0vpWcv48Ru5HassSxnL0918mM7HmTP7TDOORqABN9EiCgFSbhLE1MzEsY4VS_vkrlO1H_-yjIkiwm5Y1ctcLVJ8VPa0phrDoqqyIaKwELF2hN140shZf4SDkuDSKnBq7FKvSG6tSI5bXvNfCW46dfzLBGx0tpB1KpvZAwJcLhbg0LaW9vHHdu7_q-ADctm-tgdgG6RXzxf6IULCOn_kTP87ohRZyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Discrete+Train+Speed+Profile+Optimization+for+Urban+Rail+Transit%3A+A+Data-Driven+Model+and+Integrated+Algorithms+Based+on+Machine+Learning&rft.jtitle=Journal+of+advanced+transportation&rft.au=Huang%2C+Kang&rft.au=Wu%2C+Jianjun&rft.au=Yang%2C+Xin&rft.au=Gao%2C+Ziyou&rft.date=2019-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0197-6729&rft.volume=2019&rft_id=info:doi/10.1155%2F2019%2F7258986&rft.externalDBID=N95&rft.externalDocID=A613340546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0197-6729&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0197-6729&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0197-6729&client=summon