Nanoscale three-dimensional fabrication based on mechanically guided assembly
The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designabili...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 833 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-023-36302-9 |
Cover
Abstract | The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate’s mechanical characteristics. Covalent bonding–based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate’s mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H
2
and NO
2
sensors with high performances stable under external strains of 30%.
3D fabrication via mechanically guided assembly has greatly progressed in the recent years, but has not been applicable for nanodevices. Here the authors suggest a configuration-designable 3D nanofabrication through a nanotransfer printing and design of the substrate’s mechanical characteristics. |
---|---|
AbstractList | 3D fabrication via mechanically guided assembly has greatly progressed in the recent years, but has not been applicable for nanodevices. Here the authors suggest a configuration-designable 3D nanofabrication through a nanotransfer printing and design of the substrate’s mechanical characteristics. The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate’s mechanical characteristics. Covalent bonding–based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate’s mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H 2 and NO 2 sensors with high performances stable under external strains of 30%. The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate's mechanical characteristics. Covalent bonding-based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate's mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H and NO sensors with high performances stable under external strains of 30%. The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate’s mechanical characteristics. Covalent bonding–based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate’s mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H2 and NO2 sensors with high performances stable under external strains of 30%.3D fabrication via mechanically guided assembly has greatly progressed in the recent years, but has not been applicable for nanodevices. Here the authors suggest a configuration-designable 3D nanofabrication through a nanotransfer printing and design of the substrate’s mechanical characteristics. The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate's mechanical characteristics. Covalent bonding-based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate's mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H2 and NO2 sensors with high performances stable under external strains of 30%.The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate's mechanical characteristics. Covalent bonding-based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate's mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H2 and NO2 sensors with high performances stable under external strains of 30%. The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among these techniques, 3D fabrication based on mechanically guided assembly offers the advantages of broad material compatibility, high designability, and structural reversibility under strain but is not applicable for nanoscale device printing because of the bottleneck at nanofabrication and design technique. Herein, a configuration-designable nanoscale 3D fabrication is suggested through a robust nanotransfer methodology and design of substrate’s mechanical characteristics. Covalent bonding–based two-dimensional nanotransfer allowing for nanostructure printing on elastomer substrates is used to address fabrication problems, while the feasibility of configuration design through the modulation of substrate’s mechanical characteristics is examined using analytical calculations and numerical simulations, allowing printing of various 3D nanostructures. The printed nanostructures exhibit strain-independent electrical properties and are therefore used to fabricate stretchable H 2 and NO 2 sensors with high performances stable under external strains of 30%. 3D fabrication via mechanically guided assembly has greatly progressed in the recent years, but has not been applicable for nanodevices. Here the authors suggest a configuration-designable 3D nanofabrication through a nanotransfer printing and design of the substrate’s mechanical characteristics. |
ArticleNumber | 833 |
Author | Ko, Jiwoo Gu, Jimin Ahn, Junseong Park, Jaeho Kang, Kyungnam Cho, Seokjoo Jeon, Sohee Park, Inkyu Kang, Mingu Jeong, Jun-Ho Han, Hyeonseok Jung, Young Ha, Ji-Hwan Hwang, Soon Hyoung Jeong, Yongrok Choi, Jungrak |
Author_xml | – sequence: 1 givenname: Junseong orcidid: 0000-0002-4090-5440 surname: Ahn fullname: Ahn, Junseong organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 2 givenname: Ji-Hwan surname: Ha fullname: Ha, Ji-Hwan organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 3 givenname: Yongrok surname: Jeong fullname: Jeong, Yongrok organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 4 givenname: Young surname: Jung fullname: Jung, Young organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 5 givenname: Jungrak surname: Choi fullname: Choi, Jungrak organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 6 givenname: Jimin surname: Gu fullname: Gu, Jimin organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 7 givenname: Soon Hyoung surname: Hwang fullname: Hwang, Soon Hyoung organization: Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 8 givenname: Mingu orcidid: 0000-0002-0837-7254 surname: Kang fullname: Kang, Mingu organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 9 givenname: Jiwoo surname: Ko fullname: Ko, Jiwoo organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 10 givenname: Seokjoo orcidid: 0000-0001-5499-1266 surname: Cho fullname: Cho, Seokjoo organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 11 givenname: Hyeonseok surname: Han fullname: Han, Hyeonseok organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 12 givenname: Kyungnam surname: Kang fullname: Kang, Kyungnam organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 13 givenname: Jaeho surname: Park fullname: Park, Jaeho organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) – sequence: 14 givenname: Sohee surname: Jeon fullname: Jeon, Sohee organization: Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 15 givenname: Jun-Ho orcidid: 0000-0002-5631-3626 surname: Jeong fullname: Jeong, Jun-Ho email: jhjeong@kimm.re.kr organization: Department of Nano Manufacturing Technology, Korea Institute of Machinery and Materials (KIMM) – sequence: 16 givenname: Inkyu orcidid: 0000-0001-5761-7739 surname: Park fullname: Park, Inkyu email: inkyu@kaist.ac.kr organization: Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36788240$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v3SAQtKpUTZrmD_RQWeqlF7dgMOBLpSrqR6S0veSOFli_xxM2KdiR3r8veU7aJIdwYXeZGY3YeV0dTXHCqnpLyUdKmPqUOeVCNqRlDROMtE3_ojppCacNlS07elAfV2c570g5rKeK81fVMRNSqZaTk-rnL5hithCwnrcJsXF-xCn7OEGoBzDJW5hLVxvI6OpSjGi3MJVxCPt6s3hXxpAzjibs31QvBwgZz-7u0-rq29er8x_N5e_vF-dfLhvbcTI3A3SDtb3FgVFhjaEcOtMpJjvloGPOMGKYsFaYnjMAhkxwgZJRpWzPB3ZaXayyLsJOXyc_QtrrCF4fBjFtNKTZ24BaMQ6CALXEIVcSlHLGUdFJyY0YjCtan1et68WM6CxOc4LwSPTxy-S3ehNvdN-3fUtFEfhwJ5DinwXzrEefLYYAE8Yl61ZKSSihoi_Q90-gu7ik8tMHlGiV6mRXUO8eOvpn5X5pBaBWgE0x54SDtn4-bKkY9EFTom8joteI6BIRfYiIvnXQPqHeqz9LYispF_C0wfTf9jOsv-w1zp4 |
CitedBy_id | crossref_primary_10_1021_acsanm_4c04734 crossref_primary_10_1002_advs_202303704 crossref_primary_10_1002_admt_202301625 crossref_primary_10_46670_JSST_2024_33_6_419 crossref_primary_10_1002_smll_202311736 crossref_primary_10_1016_j_chphi_2023_100325 crossref_primary_10_1134_S0023158424601177 crossref_primary_10_1007_s42765_024_00462_0 crossref_primary_10_1021_acs_nanolett_3c01960 crossref_primary_10_1021_acsnano_3c00025 crossref_primary_10_1002_adfm_202315028 crossref_primary_10_1002_adfm_202502568 crossref_primary_10_1002_marc_202400282 crossref_primary_10_46670_JSST_2024_33_5_344 crossref_primary_10_1021_acsanm_4c04748 crossref_primary_10_1002_adma_202300871 crossref_primary_10_1021_acs_chemrev_3c00335 crossref_primary_10_1016_j_ijmecsci_2024_109786 crossref_primary_10_1007_s10409_024_24130_x crossref_primary_10_1002_advs_202404870 crossref_primary_10_1002_adfm_202401404 crossref_primary_10_1016_j_nanoen_2024_110045 crossref_primary_10_1038_s41467_024_52046_6 crossref_primary_10_1002_advs_202415138 crossref_primary_10_1039_D4NA00578C crossref_primary_10_1038_s41528_024_00370_8 crossref_primary_10_1002_smsc_202300143 crossref_primary_10_1002_advs_202302775 crossref_primary_10_1038_s41378_023_00625_w |
Cites_doi | 10.1126/sciadv.abb7417 10.1002/adma.202108391 10.1038/s41563-017-0011-3 10.1039/C9NR00176J 10.1039/c3sm51476e 10.1021/acsnano.0c05290 10.1038/s41928-018-0189-7 10.1038/s41427-018-0041-6 10.1126/sciadv.abj0694 10.1002/adma.202070207 10.1021/acsami.9b18069 10.1002/aenm.202001424 10.1002/adhm.202001461 10.1126/scitranslmed.abc4327 10.1021/acsnano.8b06623 10.1021/acs.jpcc.1c03919 10.1080/10937404.2014.946164 10.1038/s41467-020-18590-7 10.1002/adma.201908424 10.1016/j.nanoen.2021.106447 10.1088/1361-6528/ab35eb 10.1021/acsami.9b20097 10.1016/j.nanoen.2020.104749 10.1021/acsami.0c18122 10.1126/sciadv.abe1655 10.1126/sciadv.abf9153 10.1016/j.trac.2020.116085 10.1038/s41928-021-00643-4 10.1021/acssensors.0c00211 10.1038/natrevmats.2017.19 10.1038/s43246-021-00146-x 10.1016/j.nantod.2019.100825 10.1039/D1NR07375C |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36302-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health Medical collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_834a60a1c0de487a88dbd165774b6fbd PMC9929216 36788240 10_1038_s41467_023_36302_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Research Foundation of Korea (NRF) grantid: 2021R1A2C3008742 funderid: https://doi.org/10.13039/501100003725 – fundername: National Research Foundation of Korea (NRF) grantid: 2021R1A2C3008742 – fundername: ; grantid: 2021R1A2C3008742 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-fa5fcc9cef316cbb14a5b583758da53db30b36cc6b943aa3e3646e73188c94f3 |
IEDL.DBID | AAJSJ |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:29 EDT 2025 Thu Aug 21 18:37:50 EDT 2025 Thu Sep 04 20:00:07 EDT 2025 Wed Aug 13 08:43:43 EDT 2025 Wed Feb 19 02:25:31 EST 2025 Tue Jul 01 00:58:40 EDT 2025 Thu Apr 24 23:02:03 EDT 2025 Fri Feb 21 02:39:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-fa5fcc9cef316cbb14a5b583758da53db30b36cc6b943aa3e3646e73188c94f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5631-3626 0000-0002-4090-5440 0000-0002-0837-7254 0000-0001-5761-7739 0000-0001-5499-1266 |
OpenAccessLink | https://www.nature.com/articles/s41467-023-36302-9 |
PMID | 36788240 |
PQID | 2776288575 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_834a60a1c0de487a88dbd165774b6fbd pubmedcentral_primary_oai_pubmedcentral_nih_gov_9929216 proquest_miscellaneous_2777010169 proquest_journals_2776288575 pubmed_primary_36788240 crossref_citationtrail_10_1038_s41467_023_36302_9 crossref_primary_10_1038_s41467_023_36302_9 springer_journals_10_1038_s41467_023_36302_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-14 |
PublicationDateYYYYMMDD | 2023-02-14 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li, Li, Su, Song, Ni (CR21) 2013; 9 Choi (CR23) 2020; 12 Xu (CR20) 2021; 125 Park (CR4) 2021; 7 Kim (CR1) 2021; 4 Mackanic, Kao, Bao (CR2) 2020; 10 Zhang (CR9) 2017; 2 Choi (CR28) 2021; 7 Fu (CR12) 2018; 17 Kweon, Lee, Oh (CR6) 2018; 10 Hwang (CR19) 2019; 11 Ahn (CR27) 2019; 30 Han (CR11) 2019; 2 Zhao (CR33) 2021; 13 Zhao (CR34) 2021; 15 Gu, Kwon, Ahn, Park (CR26) 2020; 12 Chen (CR7) 2020; 11 Zhao (CR5) 2020; 5 Liu, Zou, Zheng, Jin (CR17) 2019; 13 Yi, Shen, Erdely, Cheng (CR29) 2020; 133 Taylor (CR3) 2022; 34 Lim (CR13) 2020; 32 Kwak (CR14) 2020; 12 Jeong (CR24) 2021; 10 Gu (CR25) 2021; 89 Choi (CR22) 2020; 74 Cheng, Zhang (CR10) 2019; 31 Park (CR15) 2020; 6 Zhao (CR18) 2020; 30 Cho, Takahashi, Fukuda, Yoshida, Ozaki (CR8) 2021; 2 Zhao (CR30) 2022; 14 Bai (CR16) 2020; 6 Costa (CR31) 2014; 17 Fan (CR32) 2020; 32 K Bai (36302_CR16) 2020; 6 Y Jeong (36302_CR24) 2021; 10 Y Zhang (36302_CR9) 2017; 2 R Li (36302_CR21) 2013; 9 DC Kim (36302_CR1) 2021; 4 N Chen (36302_CR7) 2020; 11 X Cheng (36302_CR10) 2019; 31 J Choi (36302_CR28) 2021; 7 J Choi (36302_CR22) 2020; 74 J Choi (36302_CR23) 2020; 12 J Gu (36302_CR26) 2020; 12 SH Hwang (36302_CR19) 2019; 11 J Xu (36302_CR20) 2021; 125 ZJ Zhao (36302_CR33) 2021; 13 J Gu (36302_CR25) 2021; 89 J Ahn (36302_CR27) 2019; 30 DG Mackanic (36302_CR2) 2020; 10 JM Taylor (36302_CR3) 2022; 34 Y Park (36302_CR4) 2021; 7 OY Kweon (36302_CR6) 2018; 10 Z Fan (36302_CR32) 2020; 32 H Fu (36302_CR12) 2018; 17 S Lim (36302_CR13) 2020; 32 N Yi (36302_CR29) 2020; 133 W Liu (36302_CR17) 2019; 13 S Costa (36302_CR31) 2014; 17 M Han (36302_CR11) 2019; 2 H Zhao (36302_CR18) 2020; 30 ZJ Zhao (36302_CR5) 2020; 5 SY Cho (36302_CR8) 2021; 2 ZJ Zhao (36302_CR34) 2021; 15 ZJ Zhao (36302_CR30) 2022; 14 Y Park (36302_CR15) 2020; 6 JW Kwak (36302_CR14) 2020; 12 |
References_xml | – volume: 6 start-page: 1 year: 2020 end-page: 12 ident: CR16 article-title: Geometrically reconfigurable 3D mesostructures and electromagnetic devices through a rational bottom-up design strategy publication-title: Sci. Adv. doi: 10.1126/sciadv.abb7417 – volume: 34 start-page: 1 year: 2022 end-page: 19 ident: CR3 article-title: Biomimetic and biologically compliant soft architectures via 3D and 4D assembly methods: a perspective publication-title: Adv. Mater. doi: 10.1002/adma.202108391 – volume: 17 start-page: 268 year: 2018 end-page: 276 ident: CR12 article-title: Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics publication-title: Nat. Mater. doi: 10.1038/s41563-017-0011-3 – volume: 11 start-page: 11128 year: 2019 end-page: 11137 ident: CR19 article-title: Repeatable and metal-independent nanotransfer printing based on metal oxidation for plasmonic color filters publication-title: Nanoscale doi: 10.1039/C9NR00176J – volume: 9 start-page: 8476 year: 2013 end-page: 8482 ident: CR21 article-title: An analytical mechanics model for the island-bridge structure of stretchable electronics publication-title: Soft Matter doi: 10.1039/c3sm51476e – volume: 15 start-page: 503 year: 2021 end-page: 514 ident: CR34 article-title: Large-area nanogap-controlled 3D nanoarchitectures fabricated via layer-by-layer nanoimprint publication-title: ACS Nano doi: 10.1021/acsnano.0c05290 – volume: 2 start-page: 26 year: 2019 end-page: 35 ident: CR11 article-title: Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants publication-title: Nat. Electron. doi: 10.1038/s41928-018-0189-7 – volume: 10 start-page: 540 year: 2018 end-page: 551 ident: CR6 article-title: Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0041-6 – volume: 7 start-page: eabj0694 year: 2021 ident: CR28 article-title: Customizable, conformal, and stretchable 3D electronics via predistorted pattern generation and thermoforming publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0694 – volume: 32 start-page: 2070207 year: 2020 ident: CR13 article-title: Assembly of foldable 3D microstructures using graphene hinges publication-title: Adv. Mater. doi: 10.1002/adma.202070207 – volume: 12 start-page: 10908 year: 2020 end-page: 10917 ident: CR26 article-title: Wearable strain sensors using light transmittance change of carbon nanotube-embedded elastomers with microcracks publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18069 – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: CR2 article-title: Enabling deformable and stretchable batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001424 – volume: 10 start-page: 2001461 year: 2021 ident: CR24 article-title: Ultra‐wide range pressure sensor based on a microstructured conductive nanocomposite for wearable workout monitoring publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001461 – volume: 12 start-page: 1 year: 2020 end-page: 14 ident: CR14 article-title: Wireless sensors for continuous, multimodal measurements at the skin interface with lower limb prostheses publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abc4327 – volume: 31 start-page: 1 year: 2019 end-page: 27 ident: CR10 article-title: Micro/nanoscale 3D assembly by rolling, folding, curving, and buckling approaches publication-title: Adv. Mater. – volume: 13 start-page: 440 year: 2019 end-page: 448 ident: CR17 article-title: Metal-assisted transfer strategy for construction of 2D and 3D nanostructures on an elastic substrate publication-title: ACS Nano doi: 10.1021/acsnano.8b06623 – volume: 125 start-page: 16711 year: 2021 end-page: 16718 ident: CR20 article-title: Different etching mechanisms of diamond by oxygen and hydrogen plasma: a reactive molecular dynamics study publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c03919 – volume: 17 start-page: 307 year: 2014 end-page: 340 ident: CR31 article-title: Integrating health on air quality assessment—review report on health risks of two major European outdoor air pollutants: PM and NO2 publication-title: J. Toxicol. Environ. Health B Crit. Rev. doi: 10.1080/10937404.2014.946164 – volume: 11 start-page: 1 year: 2020 end-page: 8 ident: CR7 article-title: Porous carbon nanowire array for surface-enhanced Raman spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-020-18590-7 – volume: 32 start-page: 1908424 year: 2020 ident: CR32 article-title: Inverse design strategies for 3D surfaces formed by mechanically guided assembly publication-title: Adv. Mater. doi: 10.1002/adma.201908424 – volume: 89 start-page: 106447 year: 2021 ident: CR25 article-title: Self-powered strain sensor based on the piezo-transmittance of a mechanical metamaterial publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106447 – volume: 30 start-page: 455707 year: 2019 ident: CR27 article-title: Printed fabric heater based on Ag nanowire/carbon nanotube composites publication-title: Nanotechnology doi: 10.1088/1361-6528/ab35eb – volume: 12 start-page: 1698 year: 2020 end-page: 1706 ident: CR23 article-title: Synergetic effect of porous elastomer and percolation of carbon nanotube filler toward high performance capacitive pressure sensors publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20097 – volume: 74 start-page: 104749 year: 2020 ident: CR22 article-title: Wearable self-powered pressure sensor by integration of piezo-transmittance microporous elastomer with organic solar cell publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104749 – volume: 13 start-page: 3358 year: 2021 end-page: 3368 ident: CR33 article-title: Shape-controlled and well-arrayed heterogeneous nanostructures via melting point modulation at the nanoscale publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18122 – volume: 6 start-page: 1 year: 2020 end-page: 10 ident: CR15 article-title: Wireless, skin-interfaced sensors for compression therapy publication-title: Sci. Adv. doi: 10.1126/sciadv.abe1655 – volume: 7 start-page: eabf9153 year: 2021 ident: CR4 article-title: Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids publication-title: Sci. Adv. doi: 10.1126/sciadv.abf9153 – volume: 133 start-page: 116085 year: 2020 ident: CR29 article-title: Stretchable gas sensors for detecting biomarkers from humans and exposed environments publication-title: Trends Analyt. Chem. doi: 10.1016/j.trac.2020.116085 – volume: 4 start-page: 671 year: 2021 end-page: 680 ident: CR1 article-title: Three-dimensional foldable quantum dot light-emitting diodes publication-title: Nat. Electron. doi: 10.1038/s41928-021-00643-4 – volume: 5 start-page: 2367 year: 2020 end-page: 2377 ident: CR5 article-title: 3D layer-by-layer Pd-containing nanocomposite platforms for enhancing the performance of hydrogen sensors publication-title: ACS Sens. doi: 10.1021/acssensors.0c00211 – volume: 2 start-page: 17019 year: 2017 ident: CR9 article-title: Printing, folding and assembly methods for forming 3D mesostructures in advanced materials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.19 – volume: 2 start-page: 1 year: 2021 end-page: 9 ident: CR8 article-title: Directed self-assembly of soft 3D photonic crystals for holograms with omnidirectional circular-polarization selectivity publication-title: Commun. Mater. doi: 10.1038/s43246-021-00146-x – volume: 30 start-page: 100825 year: 2020 ident: CR18 article-title: Nanofabrication approaches for functional three-dimensional architectures publication-title: Nano Today doi: 10.1016/j.nantod.2019.100825 – volume: 14 start-page: 1136 year: 2022 end-page: 1143 ident: CR30 article-title: Wafer-scale, highly uniform, and well-arrayed suspended nanostructures for enhancing the performance of electronic devices publication-title: Nanoscale doi: 10.1039/D1NR07375C – volume: 89 start-page: 106447 year: 2021 ident: 36302_CR25 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106447 – volume: 15 start-page: 503 year: 2021 ident: 36302_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.0c05290 – volume: 32 start-page: 1908424 year: 2020 ident: 36302_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201908424 – volume: 17 start-page: 307 year: 2014 ident: 36302_CR31 publication-title: J. Toxicol. Environ. Health B Crit. Rev. doi: 10.1080/10937404.2014.946164 – volume: 10 start-page: 1 year: 2020 ident: 36302_CR2 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001424 – volume: 2 start-page: 1 year: 2021 ident: 36302_CR8 publication-title: Commun. Mater. doi: 10.1038/s43246-021-00146-x – volume: 11 start-page: 11128 year: 2019 ident: 36302_CR19 publication-title: Nanoscale doi: 10.1039/C9NR00176J – volume: 10 start-page: 540 year: 2018 ident: 36302_CR6 publication-title: NPG Asia Mater. doi: 10.1038/s41427-018-0041-6 – volume: 30 start-page: 455707 year: 2019 ident: 36302_CR27 publication-title: Nanotechnology doi: 10.1088/1361-6528/ab35eb – volume: 125 start-page: 16711 year: 2021 ident: 36302_CR20 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.1c03919 – volume: 12 start-page: 1698 year: 2020 ident: 36302_CR23 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b20097 – volume: 7 start-page: eabj0694 year: 2021 ident: 36302_CR28 publication-title: Sci. Adv. doi: 10.1126/sciadv.abj0694 – volume: 14 start-page: 1136 year: 2022 ident: 36302_CR30 publication-title: Nanoscale doi: 10.1039/D1NR07375C – volume: 32 start-page: 2070207 year: 2020 ident: 36302_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.202070207 – volume: 12 start-page: 10908 year: 2020 ident: 36302_CR26 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b18069 – volume: 13 start-page: 3358 year: 2021 ident: 36302_CR33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18122 – volume: 11 start-page: 1 year: 2020 ident: 36302_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18590-7 – volume: 6 start-page: 1 year: 2020 ident: 36302_CR16 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb7417 – volume: 13 start-page: 440 year: 2019 ident: 36302_CR17 publication-title: ACS Nano doi: 10.1021/acsnano.8b06623 – volume: 2 start-page: 26 year: 2019 ident: 36302_CR11 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0189-7 – volume: 133 start-page: 116085 year: 2020 ident: 36302_CR29 publication-title: Trends Analyt. Chem. doi: 10.1016/j.trac.2020.116085 – volume: 12 start-page: 1 year: 2020 ident: 36302_CR14 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abc4327 – volume: 34 start-page: 1 year: 2022 ident: 36302_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202108391 – volume: 30 start-page: 100825 year: 2020 ident: 36302_CR18 publication-title: Nano Today doi: 10.1016/j.nantod.2019.100825 – volume: 2 start-page: 17019 year: 2017 ident: 36302_CR9 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.19 – volume: 74 start-page: 104749 year: 2020 ident: 36302_CR22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104749 – volume: 10 start-page: 2001461 year: 2021 ident: 36302_CR24 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202001461 – volume: 4 start-page: 671 year: 2021 ident: 36302_CR1 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00643-4 – volume: 6 start-page: 1 year: 2020 ident: 36302_CR15 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe1655 – volume: 17 start-page: 268 year: 2018 ident: 36302_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-017-0011-3 – volume: 7 start-page: eabf9153 year: 2021 ident: 36302_CR4 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf9153 – volume: 9 start-page: 8476 year: 2013 ident: 36302_CR21 publication-title: Soft Matter doi: 10.1039/c3sm51476e – volume: 5 start-page: 2367 year: 2020 ident: 36302_CR5 publication-title: ACS Sens. doi: 10.1021/acssensors.0c00211 – volume: 31 start-page: 1 year: 2019 ident: 36302_CR10 publication-title: Adv. Mater. |
SSID | ssj0000391844 |
Score | 2.5478694 |
Snippet | The growing demand for complex three-dimensional (3D) micro-/nanostructures has inspired the development of the corresponding manufacturing techniques. Among... 3D fabrication via mechanically guided assembly has greatly progressed in the recent years, but has not been applicable for nanodevices. Here the authors... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 833 |
SubjectTerms | 142/126 147/135 639/925/927 639/925/930 Adhesion Adhesives Assembly Configuration management Design Elastomers Electrical properties Fabrication Humanities and Social Sciences Manufacturing Mechanical properties multidisciplinary Nanofabrication Nanostructure Nanotechnology devices Nitrogen dioxide Printing Robustness (mathematics) Scanning electron microscopy Science Science (multidisciplinary) Screen printing Sensors Substrates Three dimensional printing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSJV6QdAHpNAqlXqDiGTHcewjVEWoEj1RiZs1fgSQlizax2H_fcdOdssW2l56ixxHGn0znvkmtmcAPqP2FCoMhRfxSg41siD2lIULTtW-1eTTdsHld3nxQ3y7rq8ftfqKZ8L68sA9cCcKBcmSKlf6wOSalPLWV7Jm2mJla330vqUuHyVTyQej5tRFDLdkSlQnM5F8AoeoAiWyG9AbkSgV7H-OZT49LPnbjmkKROc7sD0wyPy0l3wXXoTuNbzse0ou38Al-8vJjJEP-Zz1xPDE-v197Y28JTsdftLlMX75nB_uQ7z9G5U1XuY3izvPw0ypw70dL9_C1fnXqy8XxdAzoXDMveZFS3XrnHahxUo6aytBta05C62Vpxq9xdKidE5aLZAIA0ohQ8MrWzktWnwHW92kC_uQsyvUltmZt4SCk0ZFgkiPOIWpKOoig2oFn3FDPfHY1mJs0r42KtNDbhhykyA3OoOj9TcPfTWNv84-i1pZz4yVsNMA24cZ7MP8yz4yOFzp1AzLc2ZGTRPbLDNVzeDT-jUvrLhbQl2YLNKcJhXgYzn2ehNYS4Ic4hVzoQyaDePYEHXzTXd3m4p3a-ajo0pmcLwyo19i_RmK9_8DigN4NYr2H9vZiEPYmk8X4QNTqrn9mFbPT2DGHNg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9wwEB7SDYW-lN51kxYX-taa2CtZlh5KaUpCKGQpJYW8idHhJLCx0z0e9t9nJB9he-TN2DKMR3N80ljfAHxgyqEvmM8cD0dysBIZUqTMrLeydLVCF8sFpzNx8ot_Py_Pd2A2nIUJv1UOMTEGatfasEd-MK2q0BmX0MWXm99Z6BoVqqtDCw3sWyu4z5Fi7AHsUkgu8wnsHh7Nfvwcd10CH7rkvD89kzN5sOQxVlDqyphgFB7UVoaKRP7_Qp9__0T5RyU1JqjjJ_C4R5bp184UnsKOb57Bw67X5OY5nFIcbZc0Iz5d0fyR2gKvf8fJkdZoFv3mXRrymkvp4tqHU8FhEueb9GJ95eg2QW1_beabF3B2fHT27STreylkljDZKquxrK1V1tesENaYgmNpSlqdltJhyZxhuWHCWmEUZ4jMM8GFr8jjpVW8Zi9h0rSNfw0phUhlCLU5g4zTYlIiR1RTWtoUmDvPEygG9Wnb84yHdhdzHevdTOpO5ZpUrqPKtUrg4_jOTceyce_owzAr48jAkB1vtIsL3TucloyjyLGwQSZZoZTOuEKUBHeNqI1LYH-YU9277VLfGVkC78fH5HChioKNb9dxTBWJ-UiOV50JjJIwSv2SMFIC1ZZxbIm6_aS5uoyk3opw6rQQCXwazOhOrP-r4s39X7EHj6bBskMDG74Pk9Vi7d8SiFqZd71n3AJBmxqH priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxRBEC5iJOBFfEUnRhnBm47Z2erp6T6IqBiCEE8J5NZUPyYGNrO6D8j-e6t7ZlY2roK3oR9Q1KPrq6nuKoDXqD2FEkPhRXySQ7UsiE_KwgWnKt9o8ildcPpNnpyLrxfVxQ4M7Y56Bs63hnaxn9T5bPLu5ufqAxv8--7JuDqai2Tu7H0KlMgWru_A3ZQvilf5erifTmbUHNCI_u3M9q0b_imV8d-GPf-8Qnkrj5rc0_EDuN_jyvxjpwgPYSe0j2Cv6zS5egynfIpO5yyPkC9Yesy0WNW_q8iRN2Rn_a-7PHo1n_PHdYhvgqMIJ6v8cnnleZiBdri2k9UTODv-cvb5pOg7KRSOEdmiaKhqnNMuNFhKZ20pqLIVx6aV8lShtziyKJ2TVgskwoBSyFCzvSunRYP7sNtO2_AMcj4gtWXM5i2h4FBSkSDSYw5sShr5IDIoB_YZ11cZj80uJiZlu1GZjuWGWW4Sy43O4M16z4-uxsY_V3-KUlmvjPWx08B0dml6czMKBckRlS7SpGpSyltfyorBrpWN9RkcDjI1g86ZcV3H5ssMYDN4tZ5mc4s5FGrDdJnW1KksH9PxtFOBNSXIjl8xQsqg3lCODVI3Z9qr76mkt2aUOi5lBm8HNfpN1t9ZcfB_y5_DvXHU9NjORhzC7mK2DC8YUi3sy2QnvwAKIRs9 priority: 102 providerName: Scholars Portal |
Title | Nanoscale three-dimensional fabrication based on mechanically guided assembly |
URI | https://link.springer.com/article/10.1038/s41467-023-36302-9 https://www.ncbi.nlm.nih.gov/pubmed/36788240 https://www.proquest.com/docview/2776288575 https://www.proquest.com/docview/2777010169 https://pubmed.ncbi.nlm.nih.gov/PMC9929216 https://doaj.org/article/834a60a1c0de487a88dbd165774b6fbd |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxNBFD60KYIv4t3VGlbwTRezO7NzeUxDYwmkiFbI2zC3bQvpRnJ5yL_3zOxFolXwZRNmZ-Fw5ly-uX0H4D2RTvuc-MzRcCVHc5ZpjJSZ9VaUrpLaxe2C-SW7-E5ni3JxBEV3FyYe2o-UljFMd6fDPm1odGnMMBlhBL1YHsOJ4Bh-B3AyHs--zfqVlcB5Lihtb8iMiLjn44MsFMn670OYfx6U_G23NCah6WN41KLHdNzI-wSOfP0UHjT1JPfPYI6xcrVBrft0i2OEqgnc_Q3vRlpps24X6NKQu1yKf-58uPkbBmq5T693tw6bEU77O7PcP4er6fnV5CJr6yVkFnHXNqt0WVkrra9IzqwxOdWlKXEGWgqnS-IMGRnCrGVGUqI18YRR5jl6tbCSVuQFDOpV7V9BimFQGkRmzmhCccIoNNVaFjh9yfXIeZpA3qlP2ZZLPJS0WKq4p02EalSuUOUqqlzJBD703_xomDT-2fssjErfM7Bgx4bV-lq1VqEEoZqNdG6DTIJrIZxxOSsR0hpWGZfAaTemqnXNjSo4DyWWEaYm8K5_jU4Vdkp07Ve72IdH8j2U42VjAr0kBNO7QByUAD8wjgNRD9_UtzeRuFsiFi1ylsDHzox-ifV3Vbz-v-5v4GERLD0UraGnMNiud_4tAqetGcIxX3B8iunnYes1-Ht2fvnlK7ZO2GQYlyTwOafiJ9a5GRI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SCgQJThB1EzuOc6gQhVZb2l0htEi9WX6lVNom7T6E9sfx3xg7zlbLo7feosQbzY5nxp89mfkA3pDSSJsSmxjqSnJkwRKJkTLRVvPcVKU0Pl0wHLHBd_rlJD_ZgF9dLYz7rLKLiT5Qm0a7M_KdrCgcMy6iiw8Xl4ljjXLZ1Y5CQwZqBbPrW4yFwo4ju_yJW7jZ7uFnnO-3WXawP_40SALLQKIRrcyTSuaV1qW2FUmZViqlMlc57ttybmROjCJ9RZjWTJWUSEksYZTZAn2B65JWBF97CzapOz_pwebe_ujrt9Uhj2u_zikNxTp9wndm1IcmXCkTwghGo3JtQfS8Af8Cu39_s_lH4tavhwf34V4AsvHH1vIewIatH8Ltltpy-QiGGLabGRqAjedoLjhLjkagbQESV1JNw1lh7JZRE-PFuXVFyM5mJsv4dHFm8DYie3uuJsvHML4JpT6BXt3U9hnEGJFLhSDRKEko7l25pFKWGe6kUtk3lkaQduoTOrQ1d-waE-HT64SLVuUCVS68ykUZwbvVby7aph7Xjt5zs7Ia6Rpy-xvN9FQE_xacUMn6MtVOJl5Izo0yKcsRXStWKRPBdjenIkSJmbiy6Qherx6jf7ukjaxts_BjCt8HEOV42prAShKCSIMjJIugWDOONVHXn9RnP3wP8RJhcZayCN53ZnQl1v9VsXX9v3gFdwbj4bE4PhwdPYe7mbNyx51Dt6E3ny7sC8Rvc_UyeEkM4ob98jdXEFfq |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiGcJFAgSnCDaTew4zqFClHbVUrqqUJF6s_xKqbRNyj6E9ifyrxg7Tqrl0Vtvq8S7mh3P4xuPZwbgDSmNtCmxiaGuJEcWLJFoKRNtNc9NVUrj0wVHY7b_jX4-zU_X4FdXC-OuVXY20Rtq02h3Rj7IisJNxkV0MajCtYjj3dGHyx-JmyDlMq3dOA0ZxiyYbd9uLBR5HNrlTwznZtsHu7j3b7NstHfyaT8JEwcSjchlnlQyr7Quta1IyrRSKZW5yjGGy7mROTGKDBVhWjNVUiIlsYRRZgvUC65LWhH82VuwUaDTxzhwY2dvfPy1P_Bxrdg5paFwZ0j4YEa9mUKvmRBG0DKVK87RzxD4F_D9-_7mH0lc7xtH9-FeALXxx1YKH8CarR_C7XbM5fIRHKEJb2YoDDaeo-jgjrmRAm07kLiSahrODWPnUk2MHy6sK0h28jNZxmeLc4OPEeXbCzVZPoaTm2DqE1ivm9o-hRitc6kQMBolCcU4lksqZZlhVJXKobE0grRjn9ChxbmbtDERPtVOuGhZLpDlwrNclBG8679z2Tb4uHb1jtuVfqVrzu0fNNMzEXRdcEIlG8pUO5p4ITk3yqQsR6StWKVMBFvdnopgMWbiSr4jeN2_Rl13CRxZ22bh1xS-JyDSsdmKQE8JQdTBEZ5FUKwIxwqpq2_q8---n3iJEDlLWQTvOzG6Iuv_rHh2_b94BXdQP8WXg_Hhc7ibOSF3Y3ToFqzPpwv7AqHcXL0MShKDuGG1_A2YLVwu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+three-dimensional+fabrication+based+on+mechanically+guided+assembly&rft.jtitle=Nature+communications&rft.au=Ahn%2C+Junseong&rft.au=Ha%2C+Ji-Hwan&rft.au=Jeong%2C+Yongrok&rft.au=Jung%2C+Young&rft.date=2023-02-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36302-9&rft.externalDocID=10_1038_s41467_023_36302_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |