Spatio-temporal mRNA tracking in the early zebrafish embryo
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 3358 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.06.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-23834-1 |
Cover
Abstract | Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two
xenopus
species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.
Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process. |
---|---|
AbstractList | Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process. Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs. Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process. Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs. Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs. Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs. Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process. |
ArticleNumber | 3358 |
Author | Arsiè, Roberto Ohler, Uwe Mintcheva, Janita Drewe-Boß, Philipp Landthaler, Markus Spanjaard, Bastiaan Holler, Karoline Junker, Jan Philipp Neuschulz, Anika |
Author_xml | – sequence: 1 givenname: Karoline orcidid: 0000-0002-5159-9223 surname: Holler fullname: Holler, Karoline organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine – sequence: 2 givenname: Anika orcidid: 0000-0001-6163-3344 surname: Neuschulz fullname: Neuschulz, Anika organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine – sequence: 3 givenname: Philipp surname: Drewe-Boß fullname: Drewe-Boß, Philipp organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine – sequence: 4 givenname: Janita surname: Mintcheva fullname: Mintcheva, Janita organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine – sequence: 5 givenname: Bastiaan surname: Spanjaard fullname: Spanjaard, Bastiaan organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine – sequence: 6 givenname: Roberto orcidid: 0000-0002-7869-7624 surname: Arsiè fullname: Arsiè, Roberto organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine – sequence: 7 givenname: Uwe orcidid: 0000-0002-0881-3116 surname: Ohler fullname: Ohler, Uwe organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Department of Biology, Humboldt University – sequence: 8 givenname: Markus orcidid: 0000-0002-1075-8734 surname: Landthaler fullname: Landthaler, Markus organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, IRI Life Science, Institute of Biology, Humboldt University – sequence: 9 givenname: Jan Philipp orcidid: 0000-0002-2826-8290 surname: Junker fullname: Junker, Jan Philipp email: janphilipp.junker@mdc-berlin.de organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34099733$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UktvFSEYJabG1to_4MJM4sbNKM8BYmLSNFabNJr4WBOGx71cZ-AKc02uv75Mp9W2i7IAAuccDt93noODmKID4CWCbxEk4l2hiHa8hRi1mAhCW_QEHGFIUYs4Jgd39ofgpJQNrINIJCh9Bg4JhVJyQo7A--9bPYXUTm7cpqyHZvz25bSZsja_Qlw1ITbT2jVO52Hf_HV91j6UdePGPu_TC_DU66G4k5v1GPw8__jj7HN7-fXTxdnpZWsYhVPrGaTSdNhLaDXW0HqGrbbCC061NZAyyaHmFHNpTI-55UTyTjLYM8brTI7BxaJrk96obQ6jznuVdFDXBymvlM5TMINTxljHvfR9hyQ1hEuGOMPOk84x46WsWh8Wre2uH501Lta_DvdE79_EsFar9EeJWjouRBV4cyOQ0--dK5MaQzFuGHR0aVcUZkRihOv7Ffr6AXSTdjnWUs0oLjrIxYx6ddfRPyu3PaoAsQBMTqVk55UJ09y02WAYFIJqToRaEqFqItR1IhSqVPyAeqv-KIkspFLBceXyf9uPsK4Av4bGjA |
CitedBy_id | crossref_primary_10_15252_msb_202211147 crossref_primary_10_1093_humupd_dmad017 crossref_primary_10_1016_j_semcdb_2025_01_002 crossref_primary_10_1016_j_isci_2023_107309 crossref_primary_10_1016_j_cub_2022_07_078 crossref_primary_10_1186_s13059_024_03197_8 crossref_primary_10_1016_j_bioana_2024_06_002 crossref_primary_10_1038_s41556_024_01389_9 crossref_primary_10_1038_s41592_024_02303_9 crossref_primary_10_1042_BST20210135 crossref_primary_10_1038_s41467_024_47290_9 crossref_primary_10_1016_j_devcel_2022_04_009 crossref_primary_10_1038_s43586_022_00157_z crossref_primary_10_1111_apha_13848 crossref_primary_10_3390_ijms252312845 crossref_primary_10_3389_fcell_2021_744982 crossref_primary_10_1016_j_stemcr_2023_10_018 crossref_primary_10_1038_s41576_024_00792_0 crossref_primary_10_1016_j_cell_2021_12_045 crossref_primary_10_1038_s44320_024_00022_z crossref_primary_10_1002_jez_b_23287 crossref_primary_10_1038_s42004_025_01411_7 crossref_primary_10_1002_VIW_20220034 crossref_primary_10_1016_j_celrep_2023_112070 crossref_primary_10_1002_smtd_202401171 crossref_primary_10_3390_cimb45030120 crossref_primary_10_1371_journal_pcbi_1012606 crossref_primary_10_1016_j_ydbio_2022_06_013 |
Cites_doi | 10.1002/aja.1002030302 10.1242/dev.108.2.289 10.1038/s41467-020-15968-5 10.1016/j.ydbio.2017.06.029 10.1038/nmeth.2930 10.1007/978-3-319-46095-6_5 10.1038/328080a0 10.1016/S0960-9822(02)01220-4 10.1016/j.cell.2019.05.027 10.1016/j.cell.2015.04.044 10.1093/bioinformatics/btr261 10.1073/pnas.0803169105 10.1126/science.aan2399 10.1242/dev.119.4.1161 10.1242/dev.139220 10.1038/nrg1154 10.5281/zenodo.4738464 10.1126/science.aar4362 10.1038/s41586-018-0414-6 10.1091/mbc.E15-02-0115 10.1126/science.aaq1723 10.1093/nar/gky1270 10.1016/j.cell.2014.09.038 10.1101/sqb.2015.80.027201 10.1101/696724 10.1016/j.cell.2015.05.002 10.1242/dev.124.16.3157 10.1093/nar/gkz813 10.5281/zenodo.4738513 10.1038/s41586-019-1049-y 10.1038/s41586-019-0969-x 10.1242/dev.01283 10.1091/mbc.e04-03-0265 10.1016/j.molcel.2016.01.020 10.1146/annurev-genet-110410-132517 10.1016/j.molcel.2019.07.030 10.1038/nmeth.2772 10.1073/pnas.1912459116 10.1016/j.molcel.2017.11.014 10.1038/s41592-018-0175-z 10.1016/j.mod.2007.01.003 10.1038/s41592-020-0935-4 10.1038/s41467-017-00690-6 10.1016/j.celrep.2013.12.030 10.1038/nature17150 10.1126/science.aar3131 10.1126/science.aan6827 10.1038/nmeth.4435 10.1186/s13059-016-0938-8 10.1038/s41586-019-1369-y 10.1016/j.ymeth.2010.02.016 10.1007/978-1-4939-9009-2_9 10.1042/BC20040067 10.1038/s41467-019-11028-9 10.1126/science.aaw1219 10.1002/dvdy.21967 10.1080/19490992.2015.1080891 10.1016/j.cell.2009.01.044 10.1007/BF00337288 10.1261/rna.262607 10.1038/s41586-019-1773-3 10.1038/s41587-020-0480-9 10.1146/annurev.genet.37.110801.143752 10.1038/nmeth.4121 10.1038/s41596-020-0292-x 10.1016/j.copbio.2017.02.004 10.1038/nprot.2007.514 10.1038/s41467-021-21246-9 10.1016/S0960-9822(02)00723-6 10.1038/s41598-018-26592-1 10.1038/nbt.1621 10.1016/j.ydbio.2013.05.028 10.1126/science.aax3072 10.1016/j.cell.2007.08.003 10.7554/eLife.05003 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-23834-1 |
DatabaseName | Springer Nature OA Free Journals (Selected full-text) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_ccde7f9fb6194c37951752ef36e5cf99 PMC8184788 34099733 10_1038_s41467_021_23834_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: ERC-StG 715361 SPACEVAR funderid: https://doi.org/10.13039/100010663 – fundername: Helmholtz Association grantid: Sparse2Big ZT-I-0007 funderid: https://doi.org/10.13039/501100009318 – fundername: ; grantid: Sparse2Big ZT-I-0007 – fundername: ; grantid: ERC-StG 715361 SPACEVAR |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-f5049c62f90da2a0df52dad8f874adc045970a74279ccb27d73976950b55750b3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:12 EDT 2025 Thu Aug 21 18:33:48 EDT 2025 Fri Sep 05 10:48:56 EDT 2025 Wed Aug 13 08:09:19 EDT 2025 Wed Feb 19 02:06:20 EST 2025 Tue Jul 01 04:17:27 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Fri Feb 21 02:39:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f5049c62f90da2a0df52dad8f874adc045970a74279ccb27d73976950b55750b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5159-9223 0000-0002-2826-8290 0000-0001-6163-3344 0000-0002-0881-3116 0000-0002-1075-8734 0000-0002-7869-7624 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-23834-1 |
PMID | 34099733 |
PQID | 2537860789 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ccde7f9fb6194c37951752ef36e5cf99 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8184788 proquest_miscellaneous_2539212619 proquest_journals_2537860789 pubmed_primary_34099733 crossref_citationtrail_10_1038_s41467_021_23834_1 crossref_primary_10_1038_s41467_021_23834_1 springer_journals_10_1038_s41467_021_23834_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-07 |
PublicationDateYYYYMMDD | 2021-06-07 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KimmelCBBallardWWKimmelSRUllmannBSchillingTFStages of embryonic development of the zebrafishDev. Dyn.19952032533101:STN:280:DyaK287nt12qsw%3D%3D858942710.1002/aja.1002030302 Ciolli MattioliCAlternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartmentsNucleic Acids Res.201947256025733059074510.1093/nar/gky12701:CAS:528:DC%2BC1MXhs1KrtL7O WheelerGNBrändliAWSimple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and XenopusDev. Dyn.2009238128713081:CAS:528:DC%2BD1MXnsF2itr0%3D1944106010.1002/dvdy.21967 Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. tomo-seq, https://doi.org/10.5281/zenodo.4738513 (2021). WagnerDESingle-cell mapping of gene expression landscapes and lineage in the zebrafish embryoScience20183609819872018Sci...360..981W1:CAS:528:DC%2BC1cXhtVags77J29700229608344510.1126/science.aar4362 FazalFMAtlas of subcellular RNA localization revealed by APEX-SeqCell2019178473490.e261:CAS:528:DC%2BC1MXht1Wqt7jJ31230715678677310.1016/j.cell.2019.05.027 KuMMeltonDAXwnt-11: a maternally expressed Xenopus wnt geneDevelopment1993119116111731:CAS:528:DyaK2cXmtVWhsLg%3D830688010.1242/dev.119.4.1161 SchierAFTalbotWSMolecular genetics of axis formation in zebrafishAnnu. Rev. Genet.2005395616131:CAS:528:DC%2BD28Xlt1WqsA%3D%3D1628587210.1146/annurev.genet.37.110801.143752 HashimshonyTCEL-Seq2: sensitive highly-multiplexed single-cell RNA-SeqGenome Biol.20161727121950484878210.1186/s13059-016-0938-81:CAS:528:DC%2BC28XhsVert7jN LeinEBormLELinnarssonSThe promise of spatial transcriptomics for neuroscience in the era of molecular cell typingScience201735864692017Sci...358...64L1:CAS:528:DC%2BC2sXhsF2jtLrJ2898304410.1126/science.aan6827 ClaussenMPielerTIdentification of vegetal RNA-localization elements in Xenopus oocytesMethods2010511461511:CAS:528:DC%2BC3cXlvVaqt78%3D2017884510.1016/j.ymeth.2010.02.016 CaoJZhouWSteemersFTrapnellCShendureJSci-fate characterizes the dynamics of gene expression in single cellsNat. Biotechnol.2020389809881:CAS:528:DC%2BB3cXmvFylu7k%3D32284584741649010.1038/s41587-020-0480-9 RothschildSCCaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signalingDev. Biol.20133811791881:CAS:528:DC%2BC3sXhtVWgurrN2374759910.1016/j.ydbio.2013.05.028 Qiu, X. et al. Mapping vector field of single cells. Preprint at bioRxiv, https://doi.org/10.1101/696724 (2021). KosakaKKawakamiKSakamotoHInoueKSpatiotemporal localization of germ plasm RNAs during zebrafish oogenesisMech. Dev.20071242792891:CAS:528:DC%2BD2sXjtVahu7k%3D1729309410.1016/j.mod.2007.01.003 BaileyTLDREME: motif discovery in transcription factor ChIP-seq dataBioinformatics201127165316591:CAS:528:DC%2BC3MXntFGkurg%3D21543442310619910.1093/bioinformatics/btr261 ZappuloARNA localization is a key determinant of neurite-enriched proteomeNat. Commun.201782017NatCo...8..583Z28928394560562710.1038/s41467-017-00690-61:CAS:528:DC%2BC1cXos1KqtLc%3D TaliaferroJMDistal alternative last exons localize mRNAs to neural projectionsMol. Cell2016618218331:CAS:528:DC%2BC28XivFOqt70%3D26907613479890010.1016/j.molcel.2016.01.020 HollerKJunkerJPRNA tomography for spatially resolved transcriptomics (Tomo-Seq)Methods Mol. Biol.201919201291411:CAS:528:DC%2BC1MXitVyrsrnM3073769010.1007/978-1-4939-9009-2_9 NitzanMKaraiskosNFriedmanNRajewskyNGene expression cartographyNature20195761321372019Natur.576..132N1:CAS:528:DC%2BC1MXitF2qt7nF3174874810.1038/s41586-019-1773-3 ClaußenMGlobal analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus speciesMol. Biol. Cell2015263777378726337391462606310.1091/mbc.E15-02-01151:CAS:528:DC%2BC28XmsVOmsLs%3D ElkoubyYMMullinsMCCoordination of cellular differentiation, polarity, mitosis and meiosis – new findings from early vertebrate oogenesisDev. Biol.20174302752871:CAS:528:DC%2BC2sXhtFChtL3L28666956562361710.1016/j.ydbio.2017.06.029 ErhardFscSLAM-seq reveals core features of transcription dynamics in single cellsNature20195714194231:CAS:528:DC%2BC1MXhtl2qsLjO3129254510.1038/s41586-019-1369-y CangZNieQInferring spatial and signaling relationships between cells from single cell transcriptomic dataNat. Commun.2020112020NatCo..11.2084C1:CAS:528:DC%2BB3cXosVOmu7k%3D32350282719065910.1038/s41467-020-15968-5 ColemanRAImaging transcription: past, present, and futureCold Spring Harb. Symp. Quant. Biol.201580182676398410.1101/sqb.2015.80.027201 KnautHSteinbeisserHSchwarzHNüsslein-VolhardCAn evolutionary conserved region in the vasa 3’UTR targets RNA translation to the germ cells in the zebrafishCurr. Biol.2002124544661:CAS:528:DC%2BD38XitlGgur4%3D1190953010.1016/S0960-9822(02)00723-6 KohonenTSelf-organized formation of topologically correct feature mapsBiol. Cybern.19824359696678890466.9200210.1007/BF00337288 EngC-HLTranscriptome-scale super-resolved imaging in tissues by RNA seqFISHNature20195682352392019Natur.568..235E1:CAS:528:DC%2BC1MXmslKksrg%3D30911168654402310.1038/s41586-019-1049-y BetleyJNFrithMCGraberJHChooSDeshlerJOA ubiquitous and conserved signal for RNA localization in chordatesCurr. Biol.200212175617611:CAS:528:DC%2BD38Xot1ags7g%3D1240117010.1016/S0960-9822(02)01220-4 HendriksG-JNASC-seq monitors RNA synthesis in single cellsNat. Commun.2019102019NatCo..10.3138H31316066663724010.1038/s41467-019-11028-91:CAS:528:DC%2BC1MXhsVWlt7zL JambhekarADerisiJLCis-acting determinants of asymmetric, cytoplasmic RNA transportRNA2007136256421:CAS:528:DC%2BD2sXltVaktbY%3D17449729185281110.1261/rna.262607 CaoJThe single-cell transcriptional landscape of mammalian organogenesisNature20195664965022019Natur.566..496C1:CAS:528:DC%2BC1MXnslOmtr4%3D30787437643495210.1038/s41586-019-0969-x XiaCFanJEmanuelGHaoJZhuangXSpatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expressionProc. Natl Acad. Sci. USA201911619490194991:CAS:528:DC%2BC1MXhvVGnsr3N3150133110.1073/pnas.19124591166765259 La MannoGRNA velocity of single cellsNature20185604944982018Natur.560..494L30089906613080110.1038/s41586-018-0414-61:CAS:528:DC%2BC1cXhsVynsrrL ChangPLocalization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulumMol. Biol. Cell200415466946811:CAS:528:DC%2BD2cXosVOitLc%3D1529245251915810.1091/mbc.e04-03-0265 RabaniMPieperLChewG-LSchierAFA massively parallel reporter assay of 3’ UTR sequences identifies in vivo rules for mRNA degradationMol. Cell20176810831094.e51:CAS:528:DC%2BC2sXhvFCisrvO29225039599490710.1016/j.molcel.2017.11.014 YartsevaVTakacsCMVejnarCELeeMTGiraldezAJRESA identifies mRNA-regulatory sequences at high resolutionNat. Methods2017142012071:CAS:528:DC%2BC28XitFGhs7bJ2802416010.1038/nmeth.4121 MoorAEGlobal mRNA polarization regulates translation efficiency in the intestinal epitheliumScience2017357129913032017Sci...357.1299M1:CAS:528:DC%2BC2sXhsFWhurfM28798045595521510.1126/science.aan2399 LangdonYGMullinsMCMaternal and zygotic control of zebrafish dorsoventral axial patterningAnnu. Rev. Genet.2011453573771:CAS:528:DC%2BC3MXhs1ahtrrL2194236710.1146/annurev-genet-110410-132517 Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. scSLAM-seq, https://doi.org/10.5281/zenodo.4738464 (2021). OwensDAHigh-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migrationDevelopment20171442923041:CAS:528:DC%2BC2sXhtF2gsr7E28096217539475510.1242/dev.139220 IslamSQuantitative single-cell RNA-seq with unique molecular identifiersNat. Methods2014111631661:CAS:528:DC%2BC3sXhvFOls7zK2436302310.1038/nmeth.2772 ClaussenMHorvayKPielerTEvidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytesDevelopment2004131426342731:CAS:528:DC%2BD2cXotVyju7c%3D1529486310.1242/dev.01283 YoonCKawakamiKHopkinsNZebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cellsDevelopment1997124315731651:CAS:528:DyaK2sXlvVehs7Y%3D927295610.1242/dev.124.16.3157 HerzogVAThiol-linked alkylation of RNA to assess expression dynamicsNat. Methods201714119812041:CAS:528:DC%2BC2sXhsFGjs73L28945705571221810.1038/nmeth.4435 PadrónAIwasakiSIngoliaNTProximity RNA labeling by APEX-seq reveals the organization of translation initiation complexes and repressive RNA granulesMol. Cell201975875887.e531442426683436210.1016/j.molcel.2019.07.0301:CAS:528:DC%2BC1MXhs1emsr7O YisraeliJKSokolSMeltonDAA two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNADevelopment19901082892981:CAS:528:DyaK3cXhvFGntLc%3D235107110.1242/dev.108.2.289 KingMLMessittTJMowryKLPutting RNAs in the right place at the right time: RNA localization in the frog oocyteBiol. Cell20059719331:CAS:528:DC%2BD2MXhtlSrtL8%3D1560125510.1042/BC20040067 Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science360, eaaq1723 (2018). MartinKCEphrussiAmRNA localization: gene expression in the spatial dimensionCell20091367197301:CAS:528:DC%2BD1MXkvFGksbY%3D19239891281992410.1016/j.cell.2009.01.044 ThisseCThisseBHigh-resolution in situ hybridization to whole-mount zebrafish embryosNat. Protoc.2008359691:CAS:528:DC%2BD1cXlsVOjtw%3D%3D1819302210.1038/nprot.2007.514 MeltonDATranslocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytesNature198732880821987Natur.328...80M1:CAS:528:DyaL2sXkslCksbs%3D360077710.1038/328080a0 JinSInference and analysis of cell-cell communication using CellChatNat. Commun.2021122021NatCo..12.1088J1:CAS:528:DC%2BB3MXksFSms7c%3D33597522788987110.1038/s41467-021-21246-9 Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science360, eaar3131 (2018). SindelkaRAsymmetric distribution of biomol P Heyn (23834_CR36) 2014; 6 GN Wheeler (23834_CR74) 2009; 238 C Xia (23834_CR17) 2019; 116 Z Cang (23834_CR56) 2020; 11 23834_CR8 AM Klein (23834_CR5) 2015; 161 E Lécuyer (23834_CR59) 2007; 131 C Yoon (23834_CR37) 1997; 124 FM Fazal (23834_CR20) 2019; 178 T Kohonen (23834_CR29) 1982; 43 A Vourekas (23834_CR65) 2016; 531 M Claussen (23834_CR40) 2004; 131 V Yartseva (23834_CR51) 2017; 14 T Hashimshony (23834_CR3) 2016; 17 A Padrón (23834_CR19) 2019; 75 The Alliance of Genome Resources Consortium. (23834_CR72) 2019; 48 F Erhard (23834_CR23) 2019; 571 AE Moor (23834_CR12) 2017; 46 R Sindelka (23834_CR45) 2018; 8 KC Martin (23834_CR64) 2009; 136 E Welch (23834_CR33) 2014; 5 VA Herzog (23834_CR35) 2017; 14 JM Taliaferro (23834_CR49) 2016; 61 EZ Macosko (23834_CR6) 2015; 161 C Thisse (23834_CR67) 2008; 3 C Trapnell (23834_CR50) 2010; 28 E Raz (23834_CR38) 2003; 4 K Kosaka (23834_CR48) 2007; 124 23834_CR68 JP Junker (23834_CR14) 2014; 159 J Cao (23834_CR28) 2020; 38 23834_CR69 23834_CR26 S Islam (23834_CR4) 2014; 11 M Ku (23834_CR41) 1993; 119 SC Rothschild (23834_CR75) 2013; 381 TL Bailey (23834_CR52) 2011; 27 C-HL Eng (23834_CR16) 2019; 568 H Knaut (23834_CR39) 2002; 12 M Efremova (23834_CR70) 2020; 15 D Grün (23834_CR73) 2014; 11 23834_CR1 JN Betley (23834_CR46) 2002; 12 RA Coleman (23834_CR21) 2015; 80 AE Moor (23834_CR60) 2017; 357 23834_CR10 ML King (23834_CR55) 2005; 97 AF Schier (23834_CR34) 2005; 39 DA Melton (23834_CR42) 1987; 328 23834_CR58 Q Qiu (23834_CR27) 2020; 17 M Claußen (23834_CR43) 2015; 26 JK Yisraeli (23834_CR31) 1990; 108 YM Elkouby (23834_CR2) 2017; 430 A Jambhekar (23834_CR47) 2007; 13 S Codeluppi (23834_CR18) 2018; 15 M Rabani (23834_CR63) 2008; 105 C Ciolli Mattioli (23834_CR61) 2019; 47 G-J Hendriks (23834_CR24) 2019; 10 M Nitzan (23834_CR57) 2019; 576 M Rabani (23834_CR53) 2017; 68 M Claussen (23834_CR66) 2010; 51 CB Kimmel (23834_CR30) 1995; 203 G La Manno (23834_CR22) 2018; 560 DE Wagner (23834_CR7) 2018; 360 N Battich (23834_CR25) 2020; 367 A Zappulo (23834_CR62) 2017; 8 K Holler (23834_CR15) 2019; 1920 P Chang (23834_CR54) 2004; 15 E Lein (23834_CR11) 2017; 358 S Jin (23834_CR71) 2021; 12 DA Owens (23834_CR44) 2017; 144 J Cao (23834_CR9) 2019; 566 SG Rodriques (23834_CR13) 2019; 363 YG Langdon (23834_CR32) 2011; 45 |
References_xml | – reference: YartsevaVTakacsCMVejnarCELeeMTGiraldezAJRESA identifies mRNA-regulatory sequences at high resolutionNat. Methods2017142012071:CAS:528:DC%2BC28XitFGhs7bJ2802416010.1038/nmeth.4121 – reference: QiuQMassively parallel and time-resolved RNA sequencing in single cells with scNT-seqNat. Methods20201799110011:CAS:528:DC%2BB3cXhslWgtLvE32868927810379710.1038/s41592-020-0935-4 – reference: ClaussenMPielerTIdentification of vegetal RNA-localization elements in Xenopus oocytesMethods2010511461511:CAS:528:DC%2BC3cXlvVaqt78%3D2017884510.1016/j.ymeth.2010.02.016 – reference: SindelkaRAsymmetric distribution of biomolecules of maternal origin in the Xenopuslaevis egg and their impact on the developmental planSci. Rep.201882018NatSR...8.8315S29844480597432010.1038/s41598-018-26592-11:CAS:528:DC%2BC1cXhslOgtLvF – reference: RabaniMKerteszMSegalEComputational prediction of RNA structural motifs involved in posttranscriptional regulatory processesProc. Natl Acad. Sci. USA200810514885148902008PNAS..10514885R1:CAS:528:DC%2BD1cXht1aqur7K1881537610.1073/pnas.08031691052567462 – reference: HashimshonyTCEL-Seq2: sensitive highly-multiplexed single-cell RNA-SeqGenome Biol.20161727121950484878210.1186/s13059-016-0938-81:CAS:528:DC%2BC28XhsVert7jN – reference: LeinEBormLELinnarssonSThe promise of spatial transcriptomics for neuroscience in the era of molecular cell typingScience201735864692017Sci...358...64L1:CAS:528:DC%2BC2sXhsF2jtLrJ2898304410.1126/science.aan6827 – reference: Jambor, H. et al. Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. Elife4, e05003 (2015). – reference: TaliaferroJMDistal alternative last exons localize mRNAs to neural projectionsMol. Cell2016618218331:CAS:528:DC%2BC28XivFOqt70%3D26907613479890010.1016/j.molcel.2016.01.020 – reference: MartinKCEphrussiAmRNA localization: gene expression in the spatial dimensionCell20091367197301:CAS:528:DC%2BD1MXkvFGksbY%3D19239891281992410.1016/j.cell.2009.01.044 – reference: RazEPrimordial germ-cell development: the zebrafish perspectiveNat. Rev. Genet.200346907001:CAS:528:DC%2BD3sXmvVWlsrk%3D1295157010.1038/nrg1154 – reference: TrapnellCTranscript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNat. Biotechnol.2010285115151:CAS:528:DC%2BC3cXlsVyitLY%3D20436464314604310.1038/nbt.1621 – reference: LangdonYGMullinsMCMaternal and zygotic control of zebrafish dorsoventral axial patterningAnnu. Rev. Genet.2011453573771:CAS:528:DC%2BC3MXhs1ahtrrL2194236710.1146/annurev-genet-110410-132517 – reference: ThisseCThisseBHigh-resolution in situ hybridization to whole-mount zebrafish embryosNat. Protoc.2008359691:CAS:528:DC%2BD1cXlsVOjtw%3D%3D1819302210.1038/nprot.2007.514 – reference: ElkoubyYMMullinsMCCoordination of cellular differentiation, polarity, mitosis and meiosis – new findings from early vertebrate oogenesisDev. Biol.20174302752871:CAS:528:DC%2BC2sXhtFChtL3L28666956562361710.1016/j.ydbio.2017.06.029 – reference: CaoJThe single-cell transcriptional landscape of mammalian organogenesisNature20195664965022019Natur.566..496C1:CAS:528:DC%2BC1MXnslOmtr4%3D30787437643495210.1038/s41586-019-0969-x – reference: WelchEPelegriFCortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryoBioarchitecture2014513262652872910.1080/19490992.2015.1080891 – reference: OwensDAHigh-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migrationDevelopment20171442923041:CAS:528:DC%2BC2sXhtF2gsr7E28096217539475510.1242/dev.139220 – reference: ErhardFscSLAM-seq reveals core features of transcription dynamics in single cellsNature20195714194231:CAS:528:DC%2BC1MXhtl2qsLjO3129254510.1038/s41586-019-1369-y – reference: LécuyerEGlobal analysis of mRNA localization reveals a prominent role in organizing cellular architecture and functionCell20071311741871792309610.1016/j.cell.2007.08.0031:CAS:528:DC%2BD2sXht1CntLbM – reference: JunkerJPGenome-wide RNA tomography in the zebrafish embryoCell20141596626751:CAS:528:DC%2BC2cXhvVanur7E2541711310.1016/j.cell.2014.09.038 – reference: Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science360, eaaq1723 (2018). – reference: XiaCFanJEmanuelGHaoJZhuangXSpatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expressionProc. Natl Acad. Sci. USA201911619490194991:CAS:528:DC%2BC1MXhvVGnsr3N3150133110.1073/pnas.19124591166765259 – reference: BattichNSequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategiesScience2020367115111562020Sci...367.1151B1:CAS:528:DC%2BB3cXktlOisLg%3D3213954710.1126/science.aax3072 – reference: YisraeliJKSokolSMeltonDAA two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNADevelopment19901082892981:CAS:528:DyaK3cXhvFGntLc%3D235107110.1242/dev.108.2.289 – reference: KuMMeltonDAXwnt-11: a maternally expressed Xenopus wnt geneDevelopment1993119116111731:CAS:528:DyaK2cXmtVWhsLg%3D830688010.1242/dev.119.4.1161 – reference: HerzogVAThiol-linked alkylation of RNA to assess expression dynamicsNat. Methods201714119812041:CAS:528:DC%2BC2sXhsFGjs73L28945705571221810.1038/nmeth.4435 – reference: Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. tomo-seq, https://doi.org/10.5281/zenodo.4738513 (2021). – reference: KnautHSteinbeisserHSchwarzHNüsslein-VolhardCAn evolutionary conserved region in the vasa 3’UTR targets RNA translation to the germ cells in the zebrafishCurr. Biol.2002124544661:CAS:528:DC%2BD38XitlGgur4%3D1190953010.1016/S0960-9822(02)00723-6 – reference: The Alliance of Genome Resources Consortium.Alliance of Genome Resources Portal: unified model organism research platformNucleic Acids Res.201948D650D65810.1093/nar/gkz8131:CAS:528:DC%2BB3cXhslWltrjO – reference: ColemanRAImaging transcription: past, present, and futureCold Spring Harb. Symp. Quant. Biol.201580182676398410.1101/sqb.2015.80.027201 – reference: MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D26000488448113910.1016/j.cell.2015.05.002 – reference: La MannoGRNA velocity of single cellsNature20185604944982018Natur.560..494L30089906613080110.1038/s41586-018-0414-61:CAS:528:DC%2BC1cXhsVynsrrL – reference: BaileyTLDREME: motif discovery in transcription factor ChIP-seq dataBioinformatics201127165316591:CAS:528:DC%2BC3MXntFGkurg%3D21543442310619910.1093/bioinformatics/btr261 – reference: MeltonDATranslocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytesNature198732880821987Natur.328...80M1:CAS:528:DyaL2sXkslCksbs%3D360077710.1038/328080a0 – reference: PadrónAIwasakiSIngoliaNTProximity RNA labeling by APEX-seq reveals the organization of translation initiation complexes and repressive RNA granulesMol. Cell201975875887.e531442426683436210.1016/j.molcel.2019.07.0301:CAS:528:DC%2BC1MXhs1emsr7O – reference: KingMLMessittTJMowryKLPutting RNAs in the right place at the right time: RNA localization in the frog oocyteBiol. Cell20059719331:CAS:528:DC%2BD2MXhtlSrtL8%3D1560125510.1042/BC20040067 – reference: Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science360, eaar3131 (2018). – reference: SchierAFTalbotWSMolecular genetics of axis formation in zebrafishAnnu. Rev. Genet.2005395616131:CAS:528:DC%2BD28Xlt1WqsA%3D%3D1628587210.1146/annurev.genet.37.110801.143752 – reference: RodriquesSGSlide-seq: a scalable technology for measuring genome-wide expression at high spatial resolutionScience2019363146314672019Sci...363.1463R1:CAS:528:DC%2BC1MXlvVSmsLw%3D30923225692720910.1126/science.aaw1219 – reference: RothschildSCCaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signalingDev. Biol.20133811791881:CAS:528:DC%2BC3sXhtVWgurrN2374759910.1016/j.ydbio.2013.05.028 – reference: EfremovaMVento-TormoMTeichmannSAVento-TormoRCellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexesNat. Protoc.202015148415061:CAS:528:DC%2BB3cXjvFynsL0%3D3210320410.1038/s41596-020-0292-x – reference: GrünDKesterLvan OudenaardenAValidation of noise models for single-cell transcriptomicsNat. Methods2014116376402474781410.1038/nmeth.29301:CAS:528:DC%2BC2cXmsVKlsLc%3D – reference: Qiu, X. et al. Mapping vector field of single cells. Preprint at bioRxiv, https://doi.org/10.1101/696724 (2021). – reference: CaoJZhouWSteemersFTrapnellCShendureJSci-fate characterizes the dynamics of gene expression in single cellsNat. Biotechnol.2020389809881:CAS:528:DC%2BB3cXmvFylu7k%3D32284584741649010.1038/s41587-020-0480-9 – reference: KimmelCBBallardWWKimmelSRUllmannBSchillingTFStages of embryonic development of the zebrafishDev. Dyn.19952032533101:STN:280:DyaK287nt12qsw%3D%3D858942710.1002/aja.1002030302 – reference: ClaußenMGlobal analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus speciesMol. Biol. Cell2015263777378726337391462606310.1091/mbc.E15-02-01151:CAS:528:DC%2BC28XmsVOmsLs%3D – reference: Escobar-Aguirre, M., Elkouby, Y. M. & Mullins, M. C. Localization in oogenesis of maternal regulators of embryonic development. Adv. Exp. Med. Biolo.953, 173–207 (2017). – reference: ClaussenMHorvayKPielerTEvidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytesDevelopment2004131426342731:CAS:528:DC%2BD2cXotVyju7c%3D1529486310.1242/dev.01283 – reference: EngC-HLTranscriptome-scale super-resolved imaging in tissues by RNA seqFISHNature20195682352392019Natur.568..235E1:CAS:528:DC%2BC1MXmslKksrg%3D30911168654402310.1038/s41586-019-1049-y – reference: ZappuloARNA localization is a key determinant of neurite-enriched proteomeNat. Commun.201782017NatCo...8..583Z28928394560562710.1038/s41467-017-00690-61:CAS:528:DC%2BC1cXos1KqtLc%3D – reference: YoonCKawakamiKHopkinsNZebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cellsDevelopment1997124315731651:CAS:528:DyaK2sXlvVehs7Y%3D927295610.1242/dev.124.16.3157 – reference: MoorAEGlobal mRNA polarization regulates translation efficiency in the intestinal epitheliumScience2017357129913032017Sci...357.1299M1:CAS:528:DC%2BC2sXhsFWhurfM28798045595521510.1126/science.aan2399 – reference: FazalFMAtlas of subcellular RNA localization revealed by APEX-SeqCell2019178473490.e261:CAS:528:DC%2BC1MXht1Wqt7jJ31230715678677310.1016/j.cell.2019.05.027 – reference: RabaniMPieperLChewG-LSchierAFA massively parallel reporter assay of 3’ UTR sequences identifies in vivo rules for mRNA degradationMol. Cell20176810831094.e51:CAS:528:DC%2BC2sXhvFCisrvO29225039599490710.1016/j.molcel.2017.11.014 – reference: NitzanMKaraiskosNFriedmanNRajewskyNGene expression cartographyNature20195761321372019Natur.576..132N1:CAS:528:DC%2BC1MXitF2qt7nF3174874810.1038/s41586-019-1773-3 – reference: CodeluppiSSpatial organization of the somatosensory cortex revealed by osmFISHNat. Methods2018159329351:CAS:528:DC%2BC1cXitVCks7nK3037736410.1038/s41592-018-0175-z – reference: KohonenTSelf-organized formation of topologically correct feature mapsBiol. Cybern.19824359696678890466.9200210.1007/BF00337288 – reference: VourekasAAlexiouPVrettosNMaragkakisMMourelatosZSequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasmNature20165313903942016Natur.531..390V1:CAS:528:DC%2BC28XjvVGnur0%3D26950602479596310.1038/nature17150 – reference: KosakaKKawakamiKSakamotoHInoueKSpatiotemporal localization of germ plasm RNAs during zebrafish oogenesisMech. Dev.20071242792891:CAS:528:DC%2BD2sXjtVahu7k%3D1729309410.1016/j.mod.2007.01.003 – reference: CangZNieQInferring spatial and signaling relationships between cells from single cell transcriptomic dataNat. Commun.2020112020NatCo..11.2084C1:CAS:528:DC%2BB3cXosVOmu7k%3D32350282719065910.1038/s41467-020-15968-5 – reference: Ciolli MattioliCAlternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartmentsNucleic Acids Res.201947256025733059074510.1093/nar/gky12701:CAS:528:DC%2BC1MXhs1KrtL7O – reference: IslamSQuantitative single-cell RNA-seq with unique molecular identifiersNat. Methods2014111631661:CAS:528:DC%2BC3sXhvFOls7zK2436302310.1038/nmeth.2772 – reference: JinSInference and analysis of cell-cell communication using CellChatNat. Commun.2021122021NatCo..12.1088J1:CAS:528:DC%2BB3MXksFSms7c%3D33597522788987110.1038/s41467-021-21246-9 – reference: HeynPThe earliest transcribed zygotic genes are short, newly evolved, and different across speciesCell Rep.201462852921:CAS:528:DC%2BC2cXhs1Khsbo%3D2444071910.1016/j.celrep.2013.12.030 – reference: Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. scSLAM-seq, https://doi.org/10.5281/zenodo.4738464 (2021). – reference: JambhekarADerisiJLCis-acting determinants of asymmetric, cytoplasmic RNA transportRNA2007136256421:CAS:528:DC%2BD2sXltVaktbY%3D17449729185281110.1261/rna.262607 – reference: HendriksG-JNASC-seq monitors RNA synthesis in single cellsNat. Commun.2019102019NatCo..10.3138H31316066663724010.1038/s41467-019-11028-91:CAS:528:DC%2BC1MXhsVWlt7zL – reference: ChangPLocalization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulumMol. Biol. Cell200415466946811:CAS:528:DC%2BD2cXosVOitLc%3D1529245251915810.1091/mbc.e04-03-0265 – reference: WheelerGNBrändliAWSimple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and XenopusDev. Dyn.2009238128713081:CAS:528:DC%2BD1MXnsF2itr0%3D1944106010.1002/dvdy.21967 – reference: WagnerDESingle-cell mapping of gene expression landscapes and lineage in the zebrafish embryoScience20183609819872018Sci...360..981W1:CAS:528:DC%2BC1cXhtVags77J29700229608344510.1126/science.aar4362 – reference: MoorAEItzkovitzSSpatial transcriptomics: paving the way for tissue-level systems biologyCurr. Opin. Biotechnol.2017461261331:CAS:528:DC%2BC2sXktlyqt7s%3D2834689110.1016/j.copbio.2017.02.004 – reference: BetleyJNFrithMCGraberJHChooSDeshlerJOA ubiquitous and conserved signal for RNA localization in chordatesCurr. Biol.200212175617611:CAS:528:DC%2BD38Xot1ags7g%3D1240117010.1016/S0960-9822(02)01220-4 – reference: KleinAMDroplet barcoding for single-cell transcriptomics applied to embryonic stem cellsCell2015161118712011:CAS:528:DC%2BC2MXpt1SgtL0%3D26000487444176810.1016/j.cell.2015.04.044 – reference: HollerKJunkerJPRNA tomography for spatially resolved transcriptomics (Tomo-Seq)Methods Mol. Biol.201919201291411:CAS:528:DC%2BC1MXitVyrsrnM3073769010.1007/978-1-4939-9009-2_9 – volume: 203 start-page: 253 year: 1995 ident: 23834_CR30 publication-title: Dev. Dyn. doi: 10.1002/aja.1002030302 – volume: 108 start-page: 289 year: 1990 ident: 23834_CR31 publication-title: Development doi: 10.1242/dev.108.2.289 – volume: 11 year: 2020 ident: 23834_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15968-5 – volume: 430 start-page: 275 year: 2017 ident: 23834_CR2 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2017.06.029 – volume: 11 start-page: 637 year: 2014 ident: 23834_CR73 publication-title: Nat. Methods doi: 10.1038/nmeth.2930 – ident: 23834_CR1 doi: 10.1007/978-3-319-46095-6_5 – volume: 328 start-page: 80 year: 1987 ident: 23834_CR42 publication-title: Nature doi: 10.1038/328080a0 – volume: 12 start-page: 1756 year: 2002 ident: 23834_CR46 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01220-4 – volume: 178 start-page: 473 year: 2019 ident: 23834_CR20 publication-title: Cell doi: 10.1016/j.cell.2019.05.027 – volume: 161 start-page: 1187 year: 2015 ident: 23834_CR5 publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 27 start-page: 1653 year: 2011 ident: 23834_CR52 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr261 – volume: 105 start-page: 14885 year: 2008 ident: 23834_CR63 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0803169105 – volume: 357 start-page: 1299 year: 2017 ident: 23834_CR60 publication-title: Science doi: 10.1126/science.aan2399 – volume: 119 start-page: 1161 year: 1993 ident: 23834_CR41 publication-title: Development doi: 10.1242/dev.119.4.1161 – volume: 144 start-page: 292 year: 2017 ident: 23834_CR44 publication-title: Development doi: 10.1242/dev.139220 – volume: 4 start-page: 690 year: 2003 ident: 23834_CR38 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1154 – ident: 23834_CR69 doi: 10.5281/zenodo.4738464 – volume: 360 start-page: 981 year: 2018 ident: 23834_CR7 publication-title: Science doi: 10.1126/science.aar4362 – volume: 560 start-page: 494 year: 2018 ident: 23834_CR22 publication-title: Nature doi: 10.1038/s41586-018-0414-6 – volume: 26 start-page: 3777 year: 2015 ident: 23834_CR43 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E15-02-0115 – ident: 23834_CR10 doi: 10.1126/science.aaq1723 – volume: 47 start-page: 2560 year: 2019 ident: 23834_CR61 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1270 – volume: 159 start-page: 662 year: 2014 ident: 23834_CR14 publication-title: Cell doi: 10.1016/j.cell.2014.09.038 – volume: 80 start-page: 1 year: 2015 ident: 23834_CR21 publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2015.80.027201 – ident: 23834_CR26 doi: 10.1101/696724 – volume: 161 start-page: 1202 year: 2015 ident: 23834_CR6 publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 124 start-page: 3157 year: 1997 ident: 23834_CR37 publication-title: Development doi: 10.1242/dev.124.16.3157 – volume: 48 start-page: D650 year: 2019 ident: 23834_CR72 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz813 – ident: 23834_CR68 doi: 10.5281/zenodo.4738513 – volume: 568 start-page: 235 year: 2019 ident: 23834_CR16 publication-title: Nature doi: 10.1038/s41586-019-1049-y – volume: 566 start-page: 496 year: 2019 ident: 23834_CR9 publication-title: Nature doi: 10.1038/s41586-019-0969-x – volume: 131 start-page: 4263 year: 2004 ident: 23834_CR40 publication-title: Development doi: 10.1242/dev.01283 – volume: 15 start-page: 4669 year: 2004 ident: 23834_CR54 publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-03-0265 – volume: 61 start-page: 821 year: 2016 ident: 23834_CR49 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.01.020 – volume: 45 start-page: 357 year: 2011 ident: 23834_CR32 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132517 – volume: 75 start-page: 875 year: 2019 ident: 23834_CR19 publication-title: Mol. Cell doi: 10.1016/j.molcel.2019.07.030 – volume: 11 start-page: 163 year: 2014 ident: 23834_CR4 publication-title: Nat. Methods doi: 10.1038/nmeth.2772 – volume: 116 start-page: 19490 year: 2019 ident: 23834_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1912459116 – volume: 68 start-page: 1083 year: 2017 ident: 23834_CR53 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.11.014 – volume: 15 start-page: 932 year: 2018 ident: 23834_CR18 publication-title: Nat. Methods doi: 10.1038/s41592-018-0175-z – volume: 124 start-page: 279 year: 2007 ident: 23834_CR48 publication-title: Mech. Dev. doi: 10.1016/j.mod.2007.01.003 – volume: 17 start-page: 991 year: 2020 ident: 23834_CR27 publication-title: Nat. Methods doi: 10.1038/s41592-020-0935-4 – volume: 8 year: 2017 ident: 23834_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00690-6 – volume: 6 start-page: 285 year: 2014 ident: 23834_CR36 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.12.030 – volume: 531 start-page: 390 year: 2016 ident: 23834_CR65 publication-title: Nature doi: 10.1038/nature17150 – ident: 23834_CR8 doi: 10.1126/science.aar3131 – volume: 358 start-page: 64 year: 2017 ident: 23834_CR11 publication-title: Science doi: 10.1126/science.aan6827 – volume: 14 start-page: 1198 year: 2017 ident: 23834_CR35 publication-title: Nat. Methods doi: 10.1038/nmeth.4435 – volume: 17 year: 2016 ident: 23834_CR3 publication-title: Genome Biol. doi: 10.1186/s13059-016-0938-8 – volume: 571 start-page: 419 year: 2019 ident: 23834_CR23 publication-title: Nature doi: 10.1038/s41586-019-1369-y – volume: 51 start-page: 146 year: 2010 ident: 23834_CR66 publication-title: Methods doi: 10.1016/j.ymeth.2010.02.016 – volume: 1920 start-page: 129 year: 2019 ident: 23834_CR15 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-9009-2_9 – volume: 97 start-page: 19 year: 2005 ident: 23834_CR55 publication-title: Biol. Cell doi: 10.1042/BC20040067 – volume: 10 year: 2019 ident: 23834_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11028-9 – volume: 363 start-page: 1463 year: 2019 ident: 23834_CR13 publication-title: Science doi: 10.1126/science.aaw1219 – volume: 238 start-page: 1287 year: 2009 ident: 23834_CR74 publication-title: Dev. Dyn. doi: 10.1002/dvdy.21967 – volume: 5 start-page: 13 year: 2014 ident: 23834_CR33 publication-title: Bioarchitecture doi: 10.1080/19490992.2015.1080891 – volume: 136 start-page: 719 year: 2009 ident: 23834_CR64 publication-title: Cell doi: 10.1016/j.cell.2009.01.044 – volume: 43 start-page: 59 year: 1982 ident: 23834_CR29 publication-title: Biol. Cybern. doi: 10.1007/BF00337288 – volume: 13 start-page: 625 year: 2007 ident: 23834_CR47 publication-title: RNA doi: 10.1261/rna.262607 – volume: 576 start-page: 132 year: 2019 ident: 23834_CR57 publication-title: Nature doi: 10.1038/s41586-019-1773-3 – volume: 38 start-page: 980 year: 2020 ident: 23834_CR28 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0480-9 – volume: 39 start-page: 561 year: 2005 ident: 23834_CR34 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev.genet.37.110801.143752 – volume: 14 start-page: 201 year: 2017 ident: 23834_CR51 publication-title: Nat. Methods doi: 10.1038/nmeth.4121 – volume: 15 start-page: 1484 year: 2020 ident: 23834_CR70 publication-title: Nat. Protoc. doi: 10.1038/s41596-020-0292-x – volume: 46 start-page: 126 year: 2017 ident: 23834_CR12 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2017.02.004 – volume: 3 start-page: 59 year: 2008 ident: 23834_CR67 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.514 – volume: 12 year: 2021 ident: 23834_CR71 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21246-9 – volume: 12 start-page: 454 year: 2002 ident: 23834_CR39 publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)00723-6 – volume: 8 year: 2018 ident: 23834_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-018-26592-1 – volume: 28 start-page: 511 year: 2010 ident: 23834_CR50 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 381 start-page: 179 year: 2013 ident: 23834_CR75 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2013.05.028 – volume: 367 start-page: 1151 year: 2020 ident: 23834_CR25 publication-title: Science doi: 10.1126/science.aax3072 – volume: 131 start-page: 174 year: 2007 ident: 23834_CR59 publication-title: Cell doi: 10.1016/j.cell.2007.08.003 – ident: 23834_CR58 doi: 10.7554/eLife.05003 |
SSID | ssj0000391844 |
Score | 2.499559 |
Snippet | Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by... Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3358 |
SubjectTerms | 38 38/91 631/136/756 631/1647/2217/2218 631/1647/334/1874/763 631/61/212/2019 631/80/85/2361 64/116 Animals Cell Tracking - methods Conserved sequence Danio rerio Embryo, Nonmammalian - cytology Embryo, Nonmammalian - embryology Embryo, Nonmammalian - metabolism Embryogenesis Embryonic growth stage Embryos Evolutionary conservation Female Gastrulation Gene expression Gene Expression Regulation, Developmental Gene sequencing Germ cells Humanities and Social Sciences Labeling Localization multidisciplinary Oocytes - cytology Oocytes - metabolism Ribonucleic acid RNA RNA transport RNA, Messenger - genetics RNA, Messenger - metabolism Science Science (multidisciplinary) Single-Cell Analysis - methods Spatial analysis Spatial discrimination Spatio-Temporal Analysis Species Specificity Tracking Transcriptome - genetics Transcriptomes Transcriptomics Wildlife conservation Xenopus - embryology Xenopus - genetics Xenopus laevis - embryology Xenopus laevis - genetics Zebrafish Zebrafish - embryology Zebrafish - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBRmJG1j1Zuw4FqeCqCokegAq9WY5jq2u1GZRd3sov54ZJ7t0eV64xg9Zn8eeb2L7G4CXaFQmU8ky9FFJ7bCXoXEoKW5LbXCqR8MPhT8eNYfH-sOJObmW6ovvhI3ywCNwezH2yWaXOw63I1piBNbUKWOTTMyuPN1TTl0LpsoejI5CFz29klHY7i112RP4RgJ5KdRytuWJimD_71jmr5clfzoxLY7o4A7cnhik2B9HfhdupOEe3BxzSl7dhzefyx1pOWlOnYnzT0f7gvqM_FNczAdBlE8k1jUW3_jUOM-XpyKddxdXiwdwfPD-y7tDOWVIkJGY1kpmQwQ_NnUmUEMdVJ9N3Ye-za3VDL6mcEEFin6ti7GrbW-ZfjijOkM0TXX4EHaGxZAeg2gptjEOncHsNLntzqG22AZqlhozwwpma7R8nOTDOYvFmS_H2Nj6EWFPCPuCsJ9V8GrT5usonvHX2m95EjY1Wfi6fCBz8JM5-H-ZQwW76yn002pc-tqgbRsW1q_gxaaY1hEfjoQhLS5LHUdunLqt4NE445uRoOb3xUgY2C1b2BrqdskwPy1a3cSHOEFBBa_XVvNjWH-G4sn_gOIp3KrZ3PmXkd2FndXFZXpGDGrVPS-L5Tu0lBRA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSt91kxYXemtFvJZkWZRSkpIQCl1K2kBuQpalZCGx093NIfn1nZEfYfvI1Xogj0bSpxnNNwDvuMwCqkpgtnYZE5rXzBaaM7y3-dLqrOaSAoW_zYrDY_H1RJ5swGyIhaFnlcOeGDfqunVkI9_JJVdlQeTony9_McoaRd7VIYWG7VMr1J8ixdg92MQtWWYT2Nzbn30_Gq0uxIdeCtFHz2S83FmKuFfQSwU8vbhg07UTKhL5_wt9_v2I8g9PajygDh7Bwx5ZprudKjyGDd88gftdrsnrp_DxR3w7zXouqvP04mi2m2Kfjozl6bxJEQqmnviO0xvyJof58iz1F9Xiun0Gxwf7P78csj5zAnOIwFYsSAT-rsgDCtvmNquDzGtbl6FUgiZF4DUis3grVtq5Kle1IliiZVZJhG9ZxZ_DpGkb_xLSEu88UnMtedACj_NKc6F4abGZL-SUJzAdpGVcTytO2S3OTXRv89J0EjYoYRMlbKYJvB_bXHakGnfW3qNJGGsSIXb80C5OTb--jHO1V0GHiqwyjisEjkrmPvDCSxe0TmB7mELTr9KludWpBN6Oxbi-yGliG99exToadQm7TeBFN-PjSLiguGOOMlBrurA21PWSZn4WObwRJ1HiggQ-DFpzO6z_i-LV3X-xBQ9yUmQyEqltmKwWV_41YqZV9aZfCL8BlGoRqw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (Selected full-text) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lIvgifrtaJYJvGtzbSTYJPtXDUgT7oBb6FrLZxB60e-Xu-tD-9Z3JfshpFXzdfBAmMzu_SSa_YewtqDKhqiTh21AKaaEVvrYgMG6LxtuyBUUPhb8e1YfH8suJOtlh1fgWJiftZ0rL_Jses8M-rGU2aUooQCcDUmDEc8doUKTV83o-nasQ47mRcngfU4K5ZeiWD8pU_bfhyz_TJH-7K80u6OABuz9gR77fr_Yh24ndI3a3ryZ59Zh9_J6zo8XANnXGz78d7XOcM9BxOF90HMEej8RozK_pvjgt1qc8njerq-UTdnzw-cf8UAy1EURAjLURSSG0D3WVUJy-8mWbVNX61iSjJYldYqBQeox7tQ2hqXSrCXhYVTYKAVrZwFO22y27-Jxxg1GNsmAVJCvRYTcWpAbjcVis1QwKNhul5cJAHE71K85cvsAG43oJO5SwyxJ2s4K9m8Zc9LQZ_-z9iTZh6kmU1_nDcvXTDSrgQmijTjY1dO4SQCM01KqKCeqoQrK2YHvjFrrBDteuUqBNTZT6BXszNaMF0bWI7-LyMvex6MBx2oI963d8WglIelkMKAO9pQtbS91u6RanmaUbkRCVJijY-1Frfi3r76J48X_dX7J7FSk2HQvpPba7WV3GV4iSNs3rbBY3u8EIxA priority: 102 providerName: Springer Nature |
Title | Spatio-temporal mRNA tracking in the early zebrafish embryo |
URI | https://link.springer.com/article/10.1038/s41467-021-23834-1 https://www.ncbi.nlm.nih.gov/pubmed/34099733 https://www.proquest.com/docview/2537860789 https://www.proquest.com/docview/2539212619 https://pubmed.ncbi.nlm.nih.gov/PMC8184788 https://doaj.org/article/ccde7f9fb6194c37951752ef36e5cf99 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTaC9IL7JGFWQeINAGttxLIRQV61MlajQRqW-WYljs0pdytpOovz13DlJUaHjJZH8EZ3Od7nf-ew7gNdMxA5FxUV5aeKIK1ZGeapYhH6bzXIVl0zQReEvo_RszIcTMdmDttxRw8DlTteO6kmNF7N3P6_Xn1DhP9ZXxrP3S-7VnQ4boAFiPEJv6MDHi-goXwP3_Z-ZKXRoeHN3ZvfUQ7jHOF0nZWzLVPmM_rtg6L-nKf8KqXpLNXgA9xuIGfZqmXgIe7Z6BHfropPrx_Dhwh-ijpqkVLPw6nzUC_GbhnbNw2kVIiYMLSU-Dn9RWNlNl5ehvSoW6_kTGA9Ov_XPoqaEQmQQiq0iJ9ADMGnikOt5kselE0mZl5nLJKfV4ehPxDm6x1IZUySylIRPlIgLgTguLthT2K_mlX0OYYbOj1BMCeYUR7teKMYly3KcZlPRZQF0W25p0-QXpzIXM-3j3CzTNbM1Mlt7ZutuAG82c37U2TX-O_qEFmEzkjJj-4b54rtuFE0bU1rplCtoe8YwiQhSisQ6llphnFIBHLdLqFtp04lgMksp834ArzbdqGgUPckrO7_xYxTaefxsAM_qFd9Q0kpMAHJLFrZI3e6pppc-mTcCJqpgEMDbVmr-kHU7K45uJeEFHCYkzrRRJI9hf7W4sS8RN62KDtyRE4nPbPC5Awe93vBiiO-T09HXc2ztp_2O35HoeKX5DS06FMs |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYIEJ4iaje04FqpQC622tF2h0kq9uYlj05XapOxuhZYfx29jxkm2Wh699Ro_5IzH9ucZzzcAr5mIHaqKi_LSxBFXrIzyVLEI7202y1VcMkGBwnvDdHDIPx-JoyX41cXC0LPKbk_0G3VZG7KRryaCySwlcvQP598jyhpF3tUuhUbeplYo1zzFWBvYsWNnP_AKN1nb_oTz_SZJtjYPPg6iNstAZBCtTCMnECSbNHE4sDzJ49KJpMzLzGWS0w9whNxxjjdIqYwpEllKOsKViAuBUCcuGPZ7A5Y5GVB6sLyxOfyyP7fyEP96xnkbrROzbHXC_d5ELyPwtGQ86i-ciD5xwL_Q7t-PNv_w3PoDcesu3GmRbLjeqN49WLLVfbjZ5LacPYD3X_1b7ajlvjoNz_aH6yH2acg4H46qEKFnaIlfOfxJ3ms3mpyE9qwYz-qHcHgtMnwEvaqu7BMIM7xjCcWUYE5xhA-FYlyyLMdmNhV9FkC_k5Y2LY05ZdM41d6dzjLdSFijhLWXsO4H8Hbe5rwh8biy9gZNwrwmEXD7D_X4m27XszamtNIpV5AVyDCJQFWKxDqWWmGcUgGsdFOo211hoi91OIBX82Jcz-SkyStbX_g6CuEEdhvA42bG5yNhnOKcGcpALujCwlAXS6rRiecMR1xGiRICeNdpzeWw_i-Kp1f_xUu4NTjY29W728OdZ3A7IaUmA5Vcgd50fGGfI16bFi_aRRHC8XWvw99yIk2s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTSBeEN9kDAgSPEHUNLbjWGhCG1u1MaimwaS9mcSxt0pbOtpOqPyJ_FXcuU6n8rG3vSaO5Zzv7N99A7xiInXIKi4pa5MmXLE6KXPFEtTbbFGqtGaCEoU_9_OdQ_7xSBwtwa82F4bCKtsz0R_U9dCQjbyTCSaLnIqjd1wIi9jf6r0__55QBynytLbtNMrQZqFe9-XGQpLHnp3-QHVuvL67hXv_Ost6218_7CSh40BiELlMEicQMJs8c7jIMivT2omsLuvCFZLTz3CE32mJ2qRUxlSZrCVd50qklUDYk1YM570BK_hUoSK4srnd3z-YW3yoFnvBecjcSVnRGXN_TlGUBN6cjCfdhdvRNxH4F_L9O4DzDy-uvxx7d-FOQLXxxowN78GSbe7DzVmfy-kDePfFx20noQ7WaXx20N-IcU5Dhvp40MQIQ2NLtZbjn-TJdoPxSWzPqtF0-BAOr4WGj2C5GTb2CcQF6ltCMSWYUxyhRKUYl6wo8TObiy6LoNtSS5tQ0pw6a5xq71pnhZ5RWCOFtaew7kbwZv7N-aygx5WjN2kT5iOpGLd_MBwd6yDb2pjaSqdcRRYhwySCViky61huhXFKRbDWbqEOJ8RYX_JzBC_nr1G2yWFTNnZ44ccohBY4bQSPZzs-XwnjlPPMkAZygRcWlrr4phmc-PrhiNGoaUIEb1uuuVzW_0mxevVfvIBbKI_6025_7ynczoinyVYl12B5MrqwzxC6TarnQSZi-HbdYvgbdHlR8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+mRNA+tracking+in+the+early+zebrafish+embryo&rft.jtitle=Nature+communications&rft.au=Holler%2C+Karoline&rft.au=Neuschulz%2C+Anika&rft.au=Drewe-Bo%C3%9F%2C+Philipp&rft.au=Mintcheva%2C+Janita&rft.date=2021-06-07&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=3358&rft_id=info:doi/10.1038%2Fs41467-021-23834-1&rft_id=info%3Apmid%2F34099733&rft.externalDocID=34099733 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |