Spatio-temporal mRNA tracking in the early zebrafish embryo

Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 3358 - 13
Main Authors Holler, Karoline, Neuschulz, Anika, Drewe-Boß, Philipp, Mintcheva, Janita, Spanjaard, Bastiaan, Arsiè, Roberto, Ohler, Uwe, Landthaler, Markus, Junker, Jan Philipp
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.06.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-23834-1

Cover

Abstract Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs. Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process.
AbstractList Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process.
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs. Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process.
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a lack of methods for tracking of RNA. Here the authors combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development, revealing insights into this process.
ArticleNumber 3358
Author Arsiè, Roberto
Ohler, Uwe
Mintcheva, Janita
Drewe-Boß, Philipp
Landthaler, Markus
Spanjaard, Bastiaan
Holler, Karoline
Junker, Jan Philipp
Neuschulz, Anika
Author_xml – sequence: 1
  givenname: Karoline
  orcidid: 0000-0002-5159-9223
  surname: Holler
  fullname: Holler, Karoline
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
– sequence: 2
  givenname: Anika
  orcidid: 0000-0001-6163-3344
  surname: Neuschulz
  fullname: Neuschulz, Anika
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
– sequence: 3
  givenname: Philipp
  surname: Drewe-Boß
  fullname: Drewe-Boß, Philipp
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
– sequence: 4
  givenname: Janita
  surname: Mintcheva
  fullname: Mintcheva, Janita
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
– sequence: 5
  givenname: Bastiaan
  surname: Spanjaard
  fullname: Spanjaard, Bastiaan
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
– sequence: 6
  givenname: Roberto
  orcidid: 0000-0002-7869-7624
  surname: Arsiè
  fullname: Arsiè, Roberto
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
– sequence: 7
  givenname: Uwe
  orcidid: 0000-0002-0881-3116
  surname: Ohler
  fullname: Ohler, Uwe
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Department of Biology, Humboldt University
– sequence: 8
  givenname: Markus
  orcidid: 0000-0002-1075-8734
  surname: Landthaler
  fullname: Landthaler, Markus
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, IRI Life Science, Institute of Biology, Humboldt University
– sequence: 9
  givenname: Jan Philipp
  orcidid: 0000-0002-2826-8290
  surname: Junker
  fullname: Junker, Jan Philipp
  email: janphilipp.junker@mdc-berlin.de
  organization: Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34099733$$D View this record in MEDLINE/PubMed
BookMark eNp9UktvFSEYJabG1to_4MJM4sbNKM8BYmLSNFabNJr4WBOGx71cZ-AKc02uv75Mp9W2i7IAAuccDt93noODmKID4CWCbxEk4l2hiHa8hRi1mAhCW_QEHGFIUYs4Jgd39ofgpJQNrINIJCh9Bg4JhVJyQo7A--9bPYXUTm7cpqyHZvz25bSZsja_Qlw1ITbT2jVO52Hf_HV91j6UdePGPu_TC_DU66G4k5v1GPw8__jj7HN7-fXTxdnpZWsYhVPrGaTSdNhLaDXW0HqGrbbCC061NZAyyaHmFHNpTI-55UTyTjLYM8brTI7BxaJrk96obQ6jznuVdFDXBymvlM5TMINTxljHvfR9hyQ1hEuGOMPOk84x46WsWh8Wre2uH501Lta_DvdE79_EsFar9EeJWjouRBV4cyOQ0--dK5MaQzFuGHR0aVcUZkRihOv7Ffr6AXSTdjnWUs0oLjrIxYx6ddfRPyu3PaoAsQBMTqVk55UJ09y02WAYFIJqToRaEqFqItR1IhSqVPyAeqv-KIkspFLBceXyf9uPsK4Av4bGjA
CitedBy_id crossref_primary_10_15252_msb_202211147
crossref_primary_10_1093_humupd_dmad017
crossref_primary_10_1016_j_semcdb_2025_01_002
crossref_primary_10_1016_j_isci_2023_107309
crossref_primary_10_1016_j_cub_2022_07_078
crossref_primary_10_1186_s13059_024_03197_8
crossref_primary_10_1016_j_bioana_2024_06_002
crossref_primary_10_1038_s41556_024_01389_9
crossref_primary_10_1038_s41592_024_02303_9
crossref_primary_10_1042_BST20210135
crossref_primary_10_1038_s41467_024_47290_9
crossref_primary_10_1016_j_devcel_2022_04_009
crossref_primary_10_1038_s43586_022_00157_z
crossref_primary_10_1111_apha_13848
crossref_primary_10_3390_ijms252312845
crossref_primary_10_3389_fcell_2021_744982
crossref_primary_10_1016_j_stemcr_2023_10_018
crossref_primary_10_1038_s41576_024_00792_0
crossref_primary_10_1016_j_cell_2021_12_045
crossref_primary_10_1038_s44320_024_00022_z
crossref_primary_10_1002_jez_b_23287
crossref_primary_10_1038_s42004_025_01411_7
crossref_primary_10_1002_VIW_20220034
crossref_primary_10_1016_j_celrep_2023_112070
crossref_primary_10_1002_smtd_202401171
crossref_primary_10_3390_cimb45030120
crossref_primary_10_1371_journal_pcbi_1012606
crossref_primary_10_1016_j_ydbio_2022_06_013
Cites_doi 10.1002/aja.1002030302
10.1242/dev.108.2.289
10.1038/s41467-020-15968-5
10.1016/j.ydbio.2017.06.029
10.1038/nmeth.2930
10.1007/978-3-319-46095-6_5
10.1038/328080a0
10.1016/S0960-9822(02)01220-4
10.1016/j.cell.2019.05.027
10.1016/j.cell.2015.04.044
10.1093/bioinformatics/btr261
10.1073/pnas.0803169105
10.1126/science.aan2399
10.1242/dev.119.4.1161
10.1242/dev.139220
10.1038/nrg1154
10.5281/zenodo.4738464
10.1126/science.aar4362
10.1038/s41586-018-0414-6
10.1091/mbc.E15-02-0115
10.1126/science.aaq1723
10.1093/nar/gky1270
10.1016/j.cell.2014.09.038
10.1101/sqb.2015.80.027201
10.1101/696724
10.1016/j.cell.2015.05.002
10.1242/dev.124.16.3157
10.1093/nar/gkz813
10.5281/zenodo.4738513
10.1038/s41586-019-1049-y
10.1038/s41586-019-0969-x
10.1242/dev.01283
10.1091/mbc.e04-03-0265
10.1016/j.molcel.2016.01.020
10.1146/annurev-genet-110410-132517
10.1016/j.molcel.2019.07.030
10.1038/nmeth.2772
10.1073/pnas.1912459116
10.1016/j.molcel.2017.11.014
10.1038/s41592-018-0175-z
10.1016/j.mod.2007.01.003
10.1038/s41592-020-0935-4
10.1038/s41467-017-00690-6
10.1016/j.celrep.2013.12.030
10.1038/nature17150
10.1126/science.aar3131
10.1126/science.aan6827
10.1038/nmeth.4435
10.1186/s13059-016-0938-8
10.1038/s41586-019-1369-y
10.1016/j.ymeth.2010.02.016
10.1007/978-1-4939-9009-2_9
10.1042/BC20040067
10.1038/s41467-019-11028-9
10.1126/science.aaw1219
10.1002/dvdy.21967
10.1080/19490992.2015.1080891
10.1016/j.cell.2009.01.044
10.1007/BF00337288
10.1261/rna.262607
10.1038/s41586-019-1773-3
10.1038/s41587-020-0480-9
10.1146/annurev.genet.37.110801.143752
10.1038/nmeth.4121
10.1038/s41596-020-0292-x
10.1016/j.copbio.2017.02.004
10.1038/nprot.2007.514
10.1038/s41467-021-21246-9
10.1016/S0960-9822(02)00723-6
10.1038/s41598-018-26592-1
10.1038/nbt.1621
10.1016/j.ydbio.2013.05.028
10.1126/science.aax3072
10.1016/j.cell.2007.08.003
10.7554/eLife.05003
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-23834-1
DatabaseName Springer Nature OA Free Journals (Selected full-text)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_ccde7f9fb6194c37951752ef36e5cf99
PMC8184788
34099733
10_1038_s41467_021_23834_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: ERC-StG 715361 SPACEVAR
  funderid: https://doi.org/10.13039/100010663
– fundername: Helmholtz Association
  grantid: Sparse2Big ZT-I-0007
  funderid: https://doi.org/10.13039/501100009318
– fundername: ;
  grantid: Sparse2Big ZT-I-0007
– fundername: ;
  grantid: ERC-StG 715361 SPACEVAR
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-f5049c62f90da2a0df52dad8f874adc045970a74279ccb27d73976950b55750b3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:12 EDT 2025
Thu Aug 21 18:33:48 EDT 2025
Fri Sep 05 10:48:56 EDT 2025
Wed Aug 13 08:09:19 EDT 2025
Wed Feb 19 02:06:20 EST 2025
Tue Jul 01 04:17:27 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Fri Feb 21 02:39:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f5049c62f90da2a0df52dad8f874adc045970a74279ccb27d73976950b55750b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5159-9223
0000-0002-2826-8290
0000-0001-6163-3344
0000-0002-0881-3116
0000-0002-1075-8734
0000-0002-7869-7624
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-23834-1
PMID 34099733
PQID 2537860789
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_ccde7f9fb6194c37951752ef36e5cf99
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8184788
proquest_miscellaneous_2539212619
proquest_journals_2537860789
pubmed_primary_34099733
crossref_citationtrail_10_1038_s41467_021_23834_1
crossref_primary_10_1038_s41467_021_23834_1
springer_journals_10_1038_s41467_021_23834_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-07
PublicationDateYYYYMMDD 2021-06-07
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KimmelCBBallardWWKimmelSRUllmannBSchillingTFStages of embryonic development of the zebrafishDev. Dyn.19952032533101:STN:280:DyaK287nt12qsw%3D%3D858942710.1002/aja.1002030302
Ciolli MattioliCAlternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartmentsNucleic Acids Res.201947256025733059074510.1093/nar/gky12701:CAS:528:DC%2BC1MXhs1KrtL7O
WheelerGNBrändliAWSimple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and XenopusDev. Dyn.2009238128713081:CAS:528:DC%2BD1MXnsF2itr0%3D1944106010.1002/dvdy.21967
Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. tomo-seq, https://doi.org/10.5281/zenodo.4738513 (2021).
WagnerDESingle-cell mapping of gene expression landscapes and lineage in the zebrafish embryoScience20183609819872018Sci...360..981W1:CAS:528:DC%2BC1cXhtVags77J29700229608344510.1126/science.aar4362
FazalFMAtlas of subcellular RNA localization revealed by APEX-SeqCell2019178473490.e261:CAS:528:DC%2BC1MXht1Wqt7jJ31230715678677310.1016/j.cell.2019.05.027
KuMMeltonDAXwnt-11: a maternally expressed Xenopus wnt geneDevelopment1993119116111731:CAS:528:DyaK2cXmtVWhsLg%3D830688010.1242/dev.119.4.1161
SchierAFTalbotWSMolecular genetics of axis formation in zebrafishAnnu. Rev. Genet.2005395616131:CAS:528:DC%2BD28Xlt1WqsA%3D%3D1628587210.1146/annurev.genet.37.110801.143752
HashimshonyTCEL-Seq2: sensitive highly-multiplexed single-cell RNA-SeqGenome Biol.20161727121950484878210.1186/s13059-016-0938-81:CAS:528:DC%2BC28XhsVert7jN
LeinEBormLELinnarssonSThe promise of spatial transcriptomics for neuroscience in the era of molecular cell typingScience201735864692017Sci...358...64L1:CAS:528:DC%2BC2sXhsF2jtLrJ2898304410.1126/science.aan6827
ClaussenMPielerTIdentification of vegetal RNA-localization elements in Xenopus oocytesMethods2010511461511:CAS:528:DC%2BC3cXlvVaqt78%3D2017884510.1016/j.ymeth.2010.02.016
CaoJZhouWSteemersFTrapnellCShendureJSci-fate characterizes the dynamics of gene expression in single cellsNat. Biotechnol.2020389809881:CAS:528:DC%2BB3cXmvFylu7k%3D32284584741649010.1038/s41587-020-0480-9
RothschildSCCaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signalingDev. Biol.20133811791881:CAS:528:DC%2BC3sXhtVWgurrN2374759910.1016/j.ydbio.2013.05.028
Qiu, X. et al. Mapping vector field of single cells. Preprint at bioRxiv, https://doi.org/10.1101/696724 (2021).
KosakaKKawakamiKSakamotoHInoueKSpatiotemporal localization of germ plasm RNAs during zebrafish oogenesisMech. Dev.20071242792891:CAS:528:DC%2BD2sXjtVahu7k%3D1729309410.1016/j.mod.2007.01.003
BaileyTLDREME: motif discovery in transcription factor ChIP-seq dataBioinformatics201127165316591:CAS:528:DC%2BC3MXntFGkurg%3D21543442310619910.1093/bioinformatics/btr261
ZappuloARNA localization is a key determinant of neurite-enriched proteomeNat. Commun.201782017NatCo...8..583Z28928394560562710.1038/s41467-017-00690-61:CAS:528:DC%2BC1cXos1KqtLc%3D
TaliaferroJMDistal alternative last exons localize mRNAs to neural projectionsMol. Cell2016618218331:CAS:528:DC%2BC28XivFOqt70%3D26907613479890010.1016/j.molcel.2016.01.020
HollerKJunkerJPRNA tomography for spatially resolved transcriptomics (Tomo-Seq)Methods Mol. Biol.201919201291411:CAS:528:DC%2BC1MXitVyrsrnM3073769010.1007/978-1-4939-9009-2_9
NitzanMKaraiskosNFriedmanNRajewskyNGene expression cartographyNature20195761321372019Natur.576..132N1:CAS:528:DC%2BC1MXitF2qt7nF3174874810.1038/s41586-019-1773-3
ClaußenMGlobal analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus speciesMol. Biol. Cell2015263777378726337391462606310.1091/mbc.E15-02-01151:CAS:528:DC%2BC28XmsVOmsLs%3D
ElkoubyYMMullinsMCCoordination of cellular differentiation, polarity, mitosis and meiosis – new findings from early vertebrate oogenesisDev. Biol.20174302752871:CAS:528:DC%2BC2sXhtFChtL3L28666956562361710.1016/j.ydbio.2017.06.029
ErhardFscSLAM-seq reveals core features of transcription dynamics in single cellsNature20195714194231:CAS:528:DC%2BC1MXhtl2qsLjO3129254510.1038/s41586-019-1369-y
CangZNieQInferring spatial and signaling relationships between cells from single cell transcriptomic dataNat. Commun.2020112020NatCo..11.2084C1:CAS:528:DC%2BB3cXosVOmu7k%3D32350282719065910.1038/s41467-020-15968-5
ColemanRAImaging transcription: past, present, and futureCold Spring Harb. Symp. Quant. Biol.201580182676398410.1101/sqb.2015.80.027201
KnautHSteinbeisserHSchwarzHNüsslein-VolhardCAn evolutionary conserved region in the vasa 3’UTR targets RNA translation to the germ cells in the zebrafishCurr. Biol.2002124544661:CAS:528:DC%2BD38XitlGgur4%3D1190953010.1016/S0960-9822(02)00723-6
KohonenTSelf-organized formation of topologically correct feature mapsBiol. Cybern.19824359696678890466.9200210.1007/BF00337288
EngC-HLTranscriptome-scale super-resolved imaging in tissues by RNA seqFISHNature20195682352392019Natur.568..235E1:CAS:528:DC%2BC1MXmslKksrg%3D30911168654402310.1038/s41586-019-1049-y
BetleyJNFrithMCGraberJHChooSDeshlerJOA ubiquitous and conserved signal for RNA localization in chordatesCurr. Biol.200212175617611:CAS:528:DC%2BD38Xot1ags7g%3D1240117010.1016/S0960-9822(02)01220-4
HendriksG-JNASC-seq monitors RNA synthesis in single cellsNat. Commun.2019102019NatCo..10.3138H31316066663724010.1038/s41467-019-11028-91:CAS:528:DC%2BC1MXhsVWlt7zL
JambhekarADerisiJLCis-acting determinants of asymmetric, cytoplasmic RNA transportRNA2007136256421:CAS:528:DC%2BD2sXltVaktbY%3D17449729185281110.1261/rna.262607
CaoJThe single-cell transcriptional landscape of mammalian organogenesisNature20195664965022019Natur.566..496C1:CAS:528:DC%2BC1MXnslOmtr4%3D30787437643495210.1038/s41586-019-0969-x
XiaCFanJEmanuelGHaoJZhuangXSpatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expressionProc. Natl Acad. Sci. USA201911619490194991:CAS:528:DC%2BC1MXhvVGnsr3N3150133110.1073/pnas.19124591166765259
La MannoGRNA velocity of single cellsNature20185604944982018Natur.560..494L30089906613080110.1038/s41586-018-0414-61:CAS:528:DC%2BC1cXhsVynsrrL
ChangPLocalization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulumMol. Biol. Cell200415466946811:CAS:528:DC%2BD2cXosVOitLc%3D1529245251915810.1091/mbc.e04-03-0265
RabaniMPieperLChewG-LSchierAFA massively parallel reporter assay of 3’ UTR sequences identifies in vivo rules for mRNA degradationMol. Cell20176810831094.e51:CAS:528:DC%2BC2sXhvFCisrvO29225039599490710.1016/j.molcel.2017.11.014
YartsevaVTakacsCMVejnarCELeeMTGiraldezAJRESA identifies mRNA-regulatory sequences at high resolutionNat. Methods2017142012071:CAS:528:DC%2BC28XitFGhs7bJ2802416010.1038/nmeth.4121
MoorAEGlobal mRNA polarization regulates translation efficiency in the intestinal epitheliumScience2017357129913032017Sci...357.1299M1:CAS:528:DC%2BC2sXhsFWhurfM28798045595521510.1126/science.aan2399
LangdonYGMullinsMCMaternal and zygotic control of zebrafish dorsoventral axial patterningAnnu. Rev. Genet.2011453573771:CAS:528:DC%2BC3MXhs1ahtrrL2194236710.1146/annurev-genet-110410-132517
Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. scSLAM-seq, https://doi.org/10.5281/zenodo.4738464 (2021).
OwensDAHigh-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migrationDevelopment20171442923041:CAS:528:DC%2BC2sXhtF2gsr7E28096217539475510.1242/dev.139220
IslamSQuantitative single-cell RNA-seq with unique molecular identifiersNat. Methods2014111631661:CAS:528:DC%2BC3sXhvFOls7zK2436302310.1038/nmeth.2772
ClaussenMHorvayKPielerTEvidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytesDevelopment2004131426342731:CAS:528:DC%2BD2cXotVyju7c%3D1529486310.1242/dev.01283
YoonCKawakamiKHopkinsNZebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cellsDevelopment1997124315731651:CAS:528:DyaK2sXlvVehs7Y%3D927295610.1242/dev.124.16.3157
HerzogVAThiol-linked alkylation of RNA to assess expression dynamicsNat. Methods201714119812041:CAS:528:DC%2BC2sXhsFGjs73L28945705571221810.1038/nmeth.4435
PadrónAIwasakiSIngoliaNTProximity RNA labeling by APEX-seq reveals the organization of translation initiation complexes and repressive RNA granulesMol. Cell201975875887.e531442426683436210.1016/j.molcel.2019.07.0301:CAS:528:DC%2BC1MXhs1emsr7O
YisraeliJKSokolSMeltonDAA two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNADevelopment19901082892981:CAS:528:DyaK3cXhvFGntLc%3D235107110.1242/dev.108.2.289
KingMLMessittTJMowryKLPutting RNAs in the right place at the right time: RNA localization in the frog oocyteBiol. Cell20059719331:CAS:528:DC%2BD2MXhtlSrtL8%3D1560125510.1042/BC20040067
Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science360, eaaq1723 (2018).
MartinKCEphrussiAmRNA localization: gene expression in the spatial dimensionCell20091367197301:CAS:528:DC%2BD1MXkvFGksbY%3D19239891281992410.1016/j.cell.2009.01.044
ThisseCThisseBHigh-resolution in situ hybridization to whole-mount zebrafish embryosNat. Protoc.2008359691:CAS:528:DC%2BD1cXlsVOjtw%3D%3D1819302210.1038/nprot.2007.514
MeltonDATranslocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytesNature198732880821987Natur.328...80M1:CAS:528:DyaL2sXkslCksbs%3D360077710.1038/328080a0
JinSInference and analysis of cell-cell communication using CellChatNat. Commun.2021122021NatCo..12.1088J1:CAS:528:DC%2BB3MXksFSms7c%3D33597522788987110.1038/s41467-021-21246-9
Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science360, eaar3131 (2018).
SindelkaRAsymmetric distribution of biomol
P Heyn (23834_CR36) 2014; 6
GN Wheeler (23834_CR74) 2009; 238
C Xia (23834_CR17) 2019; 116
Z Cang (23834_CR56) 2020; 11
23834_CR8
AM Klein (23834_CR5) 2015; 161
E Lécuyer (23834_CR59) 2007; 131
C Yoon (23834_CR37) 1997; 124
FM Fazal (23834_CR20) 2019; 178
T Kohonen (23834_CR29) 1982; 43
A Vourekas (23834_CR65) 2016; 531
M Claussen (23834_CR40) 2004; 131
V Yartseva (23834_CR51) 2017; 14
T Hashimshony (23834_CR3) 2016; 17
A Padrón (23834_CR19) 2019; 75
The Alliance of Genome Resources Consortium. (23834_CR72) 2019; 48
F Erhard (23834_CR23) 2019; 571
AE Moor (23834_CR12) 2017; 46
R Sindelka (23834_CR45) 2018; 8
KC Martin (23834_CR64) 2009; 136
E Welch (23834_CR33) 2014; 5
VA Herzog (23834_CR35) 2017; 14
JM Taliaferro (23834_CR49) 2016; 61
EZ Macosko (23834_CR6) 2015; 161
C Thisse (23834_CR67) 2008; 3
C Trapnell (23834_CR50) 2010; 28
E Raz (23834_CR38) 2003; 4
K Kosaka (23834_CR48) 2007; 124
23834_CR68
JP Junker (23834_CR14) 2014; 159
J Cao (23834_CR28) 2020; 38
23834_CR69
23834_CR26
S Islam (23834_CR4) 2014; 11
M Ku (23834_CR41) 1993; 119
SC Rothschild (23834_CR75) 2013; 381
TL Bailey (23834_CR52) 2011; 27
C-HL Eng (23834_CR16) 2019; 568
H Knaut (23834_CR39) 2002; 12
M Efremova (23834_CR70) 2020; 15
D Grün (23834_CR73) 2014; 11
23834_CR1
JN Betley (23834_CR46) 2002; 12
RA Coleman (23834_CR21) 2015; 80
AE Moor (23834_CR60) 2017; 357
23834_CR10
ML King (23834_CR55) 2005; 97
AF Schier (23834_CR34) 2005; 39
DA Melton (23834_CR42) 1987; 328
23834_CR58
Q Qiu (23834_CR27) 2020; 17
M Claußen (23834_CR43) 2015; 26
JK Yisraeli (23834_CR31) 1990; 108
YM Elkouby (23834_CR2) 2017; 430
A Jambhekar (23834_CR47) 2007; 13
S Codeluppi (23834_CR18) 2018; 15
M Rabani (23834_CR63) 2008; 105
C Ciolli Mattioli (23834_CR61) 2019; 47
G-J Hendriks (23834_CR24) 2019; 10
M Nitzan (23834_CR57) 2019; 576
M Rabani (23834_CR53) 2017; 68
M Claussen (23834_CR66) 2010; 51
CB Kimmel (23834_CR30) 1995; 203
G La Manno (23834_CR22) 2018; 560
DE Wagner (23834_CR7) 2018; 360
N Battich (23834_CR25) 2020; 367
A Zappulo (23834_CR62) 2017; 8
K Holler (23834_CR15) 2019; 1920
P Chang (23834_CR54) 2004; 15
E Lein (23834_CR11) 2017; 358
S Jin (23834_CR71) 2021; 12
DA Owens (23834_CR44) 2017; 144
J Cao (23834_CR9) 2019; 566
SG Rodriques (23834_CR13) 2019; 363
YG Langdon (23834_CR32) 2011; 45
References_xml – reference: YartsevaVTakacsCMVejnarCELeeMTGiraldezAJRESA identifies mRNA-regulatory sequences at high resolutionNat. Methods2017142012071:CAS:528:DC%2BC28XitFGhs7bJ2802416010.1038/nmeth.4121
– reference: QiuQMassively parallel and time-resolved RNA sequencing in single cells with scNT-seqNat. Methods20201799110011:CAS:528:DC%2BB3cXhslWgtLvE32868927810379710.1038/s41592-020-0935-4
– reference: ClaussenMPielerTIdentification of vegetal RNA-localization elements in Xenopus oocytesMethods2010511461511:CAS:528:DC%2BC3cXlvVaqt78%3D2017884510.1016/j.ymeth.2010.02.016
– reference: SindelkaRAsymmetric distribution of biomolecules of maternal origin in the Xenopuslaevis egg and their impact on the developmental planSci. Rep.201882018NatSR...8.8315S29844480597432010.1038/s41598-018-26592-11:CAS:528:DC%2BC1cXhslOgtLvF
– reference: RabaniMKerteszMSegalEComputational prediction of RNA structural motifs involved in posttranscriptional regulatory processesProc. Natl Acad. Sci. USA200810514885148902008PNAS..10514885R1:CAS:528:DC%2BD1cXht1aqur7K1881537610.1073/pnas.08031691052567462
– reference: HashimshonyTCEL-Seq2: sensitive highly-multiplexed single-cell RNA-SeqGenome Biol.20161727121950484878210.1186/s13059-016-0938-81:CAS:528:DC%2BC28XhsVert7jN
– reference: LeinEBormLELinnarssonSThe promise of spatial transcriptomics for neuroscience in the era of molecular cell typingScience201735864692017Sci...358...64L1:CAS:528:DC%2BC2sXhsF2jtLrJ2898304410.1126/science.aan6827
– reference: Jambor, H. et al. Systematic imaging reveals features and changing localization of mRNAs in Drosophila development. Elife4, e05003 (2015).
– reference: TaliaferroJMDistal alternative last exons localize mRNAs to neural projectionsMol. Cell2016618218331:CAS:528:DC%2BC28XivFOqt70%3D26907613479890010.1016/j.molcel.2016.01.020
– reference: MartinKCEphrussiAmRNA localization: gene expression in the spatial dimensionCell20091367197301:CAS:528:DC%2BD1MXkvFGksbY%3D19239891281992410.1016/j.cell.2009.01.044
– reference: RazEPrimordial germ-cell development: the zebrafish perspectiveNat. Rev. Genet.200346907001:CAS:528:DC%2BD3sXmvVWlsrk%3D1295157010.1038/nrg1154
– reference: TrapnellCTranscript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiationNat. Biotechnol.2010285115151:CAS:528:DC%2BC3cXlsVyitLY%3D20436464314604310.1038/nbt.1621
– reference: LangdonYGMullinsMCMaternal and zygotic control of zebrafish dorsoventral axial patterningAnnu. Rev. Genet.2011453573771:CAS:528:DC%2BC3MXhs1ahtrrL2194236710.1146/annurev-genet-110410-132517
– reference: ThisseCThisseBHigh-resolution in situ hybridization to whole-mount zebrafish embryosNat. Protoc.2008359691:CAS:528:DC%2BD1cXlsVOjtw%3D%3D1819302210.1038/nprot.2007.514
– reference: ElkoubyYMMullinsMCCoordination of cellular differentiation, polarity, mitosis and meiosis – new findings from early vertebrate oogenesisDev. Biol.20174302752871:CAS:528:DC%2BC2sXhtFChtL3L28666956562361710.1016/j.ydbio.2017.06.029
– reference: CaoJThe single-cell transcriptional landscape of mammalian organogenesisNature20195664965022019Natur.566..496C1:CAS:528:DC%2BC1MXnslOmtr4%3D30787437643495210.1038/s41586-019-0969-x
– reference: WelchEPelegriFCortical depth and differential transport of vegetally localized dorsal and germ line determinants in the zebrafish embryoBioarchitecture2014513262652872910.1080/19490992.2015.1080891
– reference: OwensDAHigh-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migrationDevelopment20171442923041:CAS:528:DC%2BC2sXhtF2gsr7E28096217539475510.1242/dev.139220
– reference: ErhardFscSLAM-seq reveals core features of transcription dynamics in single cellsNature20195714194231:CAS:528:DC%2BC1MXhtl2qsLjO3129254510.1038/s41586-019-1369-y
– reference: LécuyerEGlobal analysis of mRNA localization reveals a prominent role in organizing cellular architecture and functionCell20071311741871792309610.1016/j.cell.2007.08.0031:CAS:528:DC%2BD2sXht1CntLbM
– reference: JunkerJPGenome-wide RNA tomography in the zebrafish embryoCell20141596626751:CAS:528:DC%2BC2cXhvVanur7E2541711310.1016/j.cell.2014.09.038
– reference: Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science360, eaaq1723 (2018).
– reference: XiaCFanJEmanuelGHaoJZhuangXSpatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expressionProc. Natl Acad. Sci. USA201911619490194991:CAS:528:DC%2BC1MXhvVGnsr3N3150133110.1073/pnas.19124591166765259
– reference: BattichNSequencing metabolically labeled transcripts in single cells reveals mRNA turnover strategiesScience2020367115111562020Sci...367.1151B1:CAS:528:DC%2BB3cXktlOisLg%3D3213954710.1126/science.aax3072
– reference: YisraeliJKSokolSMeltonDAA two-step model for the localization of maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNADevelopment19901082892981:CAS:528:DyaK3cXhvFGntLc%3D235107110.1242/dev.108.2.289
– reference: KuMMeltonDAXwnt-11: a maternally expressed Xenopus wnt geneDevelopment1993119116111731:CAS:528:DyaK2cXmtVWhsLg%3D830688010.1242/dev.119.4.1161
– reference: HerzogVAThiol-linked alkylation of RNA to assess expression dynamicsNat. Methods201714119812041:CAS:528:DC%2BC2sXhsFGjs73L28945705571221810.1038/nmeth.4435
– reference: Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. tomo-seq, https://doi.org/10.5281/zenodo.4738513 (2021).
– reference: KnautHSteinbeisserHSchwarzHNüsslein-VolhardCAn evolutionary conserved region in the vasa 3’UTR targets RNA translation to the germ cells in the zebrafishCurr. Biol.2002124544661:CAS:528:DC%2BD38XitlGgur4%3D1190953010.1016/S0960-9822(02)00723-6
– reference: The Alliance of Genome Resources Consortium.Alliance of Genome Resources Portal: unified model organism research platformNucleic Acids Res.201948D650D65810.1093/nar/gkz8131:CAS:528:DC%2BB3cXhslWltrjO
– reference: ColemanRAImaging transcription: past, present, and futureCold Spring Harb. Symp. Quant. Biol.201580182676398410.1101/sqb.2015.80.027201
– reference: MacoskoEZHighly parallel genome-wide expression profiling of individual cells using nanoliter dropletsCell2015161120212141:CAS:528:DC%2BC2MXpt1Sgt7o%3D26000488448113910.1016/j.cell.2015.05.002
– reference: La MannoGRNA velocity of single cellsNature20185604944982018Natur.560..494L30089906613080110.1038/s41586-018-0414-61:CAS:528:DC%2BC1cXhsVynsrrL
– reference: BaileyTLDREME: motif discovery in transcription factor ChIP-seq dataBioinformatics201127165316591:CAS:528:DC%2BC3MXntFGkurg%3D21543442310619910.1093/bioinformatics/btr261
– reference: MeltonDATranslocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytesNature198732880821987Natur.328...80M1:CAS:528:DyaL2sXkslCksbs%3D360077710.1038/328080a0
– reference: PadrónAIwasakiSIngoliaNTProximity RNA labeling by APEX-seq reveals the organization of translation initiation complexes and repressive RNA granulesMol. Cell201975875887.e531442426683436210.1016/j.molcel.2019.07.0301:CAS:528:DC%2BC1MXhs1emsr7O
– reference: KingMLMessittTJMowryKLPutting RNAs in the right place at the right time: RNA localization in the frog oocyteBiol. Cell20059719331:CAS:528:DC%2BD2MXhtlSrtL8%3D1560125510.1042/BC20040067
– reference: Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science360, eaar3131 (2018).
– reference: SchierAFTalbotWSMolecular genetics of axis formation in zebrafishAnnu. Rev. Genet.2005395616131:CAS:528:DC%2BD28Xlt1WqsA%3D%3D1628587210.1146/annurev.genet.37.110801.143752
– reference: RodriquesSGSlide-seq: a scalable technology for measuring genome-wide expression at high spatial resolutionScience2019363146314672019Sci...363.1463R1:CAS:528:DC%2BC1MXlvVSmsLw%3D30923225692720910.1126/science.aaw1219
– reference: RothschildSCCaMK-II activation is essential for zebrafish inner ear development and acts through Delta-Notch signalingDev. Biol.20133811791881:CAS:528:DC%2BC3sXhtVWgurrN2374759910.1016/j.ydbio.2013.05.028
– reference: EfremovaMVento-TormoMTeichmannSAVento-TormoRCellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexesNat. Protoc.202015148415061:CAS:528:DC%2BB3cXjvFynsL0%3D3210320410.1038/s41596-020-0292-x
– reference: GrünDKesterLvan OudenaardenAValidation of noise models for single-cell transcriptomicsNat. Methods2014116376402474781410.1038/nmeth.29301:CAS:528:DC%2BC2cXmsVKlsLc%3D
– reference: Qiu, X. et al. Mapping vector field of single cells. Preprint at bioRxiv, https://doi.org/10.1101/696724 (2021).
– reference: CaoJZhouWSteemersFTrapnellCShendureJSci-fate characterizes the dynamics of gene expression in single cellsNat. Biotechnol.2020389809881:CAS:528:DC%2BB3cXmvFylu7k%3D32284584741649010.1038/s41587-020-0480-9
– reference: KimmelCBBallardWWKimmelSRUllmannBSchillingTFStages of embryonic development of the zebrafishDev. Dyn.19952032533101:STN:280:DyaK287nt12qsw%3D%3D858942710.1002/aja.1002030302
– reference: ClaußenMGlobal analysis of asymmetric RNA enrichment in oocytes reveals low conservation between closely related Xenopus speciesMol. Biol. Cell2015263777378726337391462606310.1091/mbc.E15-02-01151:CAS:528:DC%2BC28XmsVOmsLs%3D
– reference: Escobar-Aguirre, M., Elkouby, Y. M. & Mullins, M. C. Localization in oogenesis of maternal regulators of embryonic development. Adv. Exp. Med. Biolo.953, 173–207 (2017).
– reference: ClaussenMHorvayKPielerTEvidence for overlapping, but not identical, protein machineries operating in vegetal RNA localization along early and late pathways in Xenopus oocytesDevelopment2004131426342731:CAS:528:DC%2BD2cXotVyju7c%3D1529486310.1242/dev.01283
– reference: EngC-HLTranscriptome-scale super-resolved imaging in tissues by RNA seqFISHNature20195682352392019Natur.568..235E1:CAS:528:DC%2BC1MXmslKksrg%3D30911168654402310.1038/s41586-019-1049-y
– reference: ZappuloARNA localization is a key determinant of neurite-enriched proteomeNat. Commun.201782017NatCo...8..583Z28928394560562710.1038/s41467-017-00690-61:CAS:528:DC%2BC1cXos1KqtLc%3D
– reference: YoonCKawakamiKHopkinsNZebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cellsDevelopment1997124315731651:CAS:528:DyaK2sXlvVehs7Y%3D927295610.1242/dev.124.16.3157
– reference: MoorAEGlobal mRNA polarization regulates translation efficiency in the intestinal epitheliumScience2017357129913032017Sci...357.1299M1:CAS:528:DC%2BC2sXhsFWhurfM28798045595521510.1126/science.aan2399
– reference: FazalFMAtlas of subcellular RNA localization revealed by APEX-SeqCell2019178473490.e261:CAS:528:DC%2BC1MXht1Wqt7jJ31230715678677310.1016/j.cell.2019.05.027
– reference: RabaniMPieperLChewG-LSchierAFA massively parallel reporter assay of 3’ UTR sequences identifies in vivo rules for mRNA degradationMol. Cell20176810831094.e51:CAS:528:DC%2BC2sXhvFCisrvO29225039599490710.1016/j.molcel.2017.11.014
– reference: NitzanMKaraiskosNFriedmanNRajewskyNGene expression cartographyNature20195761321372019Natur.576..132N1:CAS:528:DC%2BC1MXitF2qt7nF3174874810.1038/s41586-019-1773-3
– reference: CodeluppiSSpatial organization of the somatosensory cortex revealed by osmFISHNat. Methods2018159329351:CAS:528:DC%2BC1cXitVCks7nK3037736410.1038/s41592-018-0175-z
– reference: KohonenTSelf-organized formation of topologically correct feature mapsBiol. Cybern.19824359696678890466.9200210.1007/BF00337288
– reference: VourekasAAlexiouPVrettosNMaragkakisMMourelatosZSequence-dependent but not sequence-specific piRNA adhesion traps mRNAs to the germ plasmNature20165313903942016Natur.531..390V1:CAS:528:DC%2BC28XjvVGnur0%3D26950602479596310.1038/nature17150
– reference: KosakaKKawakamiKSakamotoHInoueKSpatiotemporal localization of germ plasm RNAs during zebrafish oogenesisMech. Dev.20071242792891:CAS:528:DC%2BD2sXjtVahu7k%3D1729309410.1016/j.mod.2007.01.003
– reference: CangZNieQInferring spatial and signaling relationships between cells from single cell transcriptomic dataNat. Commun.2020112020NatCo..11.2084C1:CAS:528:DC%2BB3cXosVOmu7k%3D32350282719065910.1038/s41467-020-15968-5
– reference: Ciolli MattioliCAlternative 3′ UTRs direct localization of functionally diverse protein isoforms in neuronal compartmentsNucleic Acids Res.201947256025733059074510.1093/nar/gky12701:CAS:528:DC%2BC1MXhs1KrtL7O
– reference: IslamSQuantitative single-cell RNA-seq with unique molecular identifiersNat. Methods2014111631661:CAS:528:DC%2BC3sXhvFOls7zK2436302310.1038/nmeth.2772
– reference: JinSInference and analysis of cell-cell communication using CellChatNat. Commun.2021122021NatCo..12.1088J1:CAS:528:DC%2BB3MXksFSms7c%3D33597522788987110.1038/s41467-021-21246-9
– reference: HeynPThe earliest transcribed zygotic genes are short, newly evolved, and different across speciesCell Rep.201462852921:CAS:528:DC%2BC2cXhs1Khsbo%3D2444071910.1016/j.celrep.2013.12.030
– reference: Holler, K. et al. Spatio-temporal mRNA tracking in the early zebrafish embryo. scSLAM-seq, https://doi.org/10.5281/zenodo.4738464 (2021).
– reference: JambhekarADerisiJLCis-acting determinants of asymmetric, cytoplasmic RNA transportRNA2007136256421:CAS:528:DC%2BD2sXltVaktbY%3D17449729185281110.1261/rna.262607
– reference: HendriksG-JNASC-seq monitors RNA synthesis in single cellsNat. Commun.2019102019NatCo..10.3138H31316066663724010.1038/s41467-019-11028-91:CAS:528:DC%2BC1MXhsVWlt7zL
– reference: ChangPLocalization of RNAs to the mitochondrial cloud in Xenopus oocytes through entrapment and association with endoplasmic reticulumMol. Biol. Cell200415466946811:CAS:528:DC%2BD2cXosVOitLc%3D1529245251915810.1091/mbc.e04-03-0265
– reference: WheelerGNBrändliAWSimple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and XenopusDev. Dyn.2009238128713081:CAS:528:DC%2BD1MXnsF2itr0%3D1944106010.1002/dvdy.21967
– reference: WagnerDESingle-cell mapping of gene expression landscapes and lineage in the zebrafish embryoScience20183609819872018Sci...360..981W1:CAS:528:DC%2BC1cXhtVags77J29700229608344510.1126/science.aar4362
– reference: MoorAEItzkovitzSSpatial transcriptomics: paving the way for tissue-level systems biologyCurr. Opin. Biotechnol.2017461261331:CAS:528:DC%2BC2sXktlyqt7s%3D2834689110.1016/j.copbio.2017.02.004
– reference: BetleyJNFrithMCGraberJHChooSDeshlerJOA ubiquitous and conserved signal for RNA localization in chordatesCurr. Biol.200212175617611:CAS:528:DC%2BD38Xot1ags7g%3D1240117010.1016/S0960-9822(02)01220-4
– reference: KleinAMDroplet barcoding for single-cell transcriptomics applied to embryonic stem cellsCell2015161118712011:CAS:528:DC%2BC2MXpt1SgtL0%3D26000487444176810.1016/j.cell.2015.04.044
– reference: HollerKJunkerJPRNA tomography for spatially resolved transcriptomics (Tomo-Seq)Methods Mol. Biol.201919201291411:CAS:528:DC%2BC1MXitVyrsrnM3073769010.1007/978-1-4939-9009-2_9
– volume: 203
  start-page: 253
  year: 1995
  ident: 23834_CR30
  publication-title: Dev. Dyn.
  doi: 10.1002/aja.1002030302
– volume: 108
  start-page: 289
  year: 1990
  ident: 23834_CR31
  publication-title: Development
  doi: 10.1242/dev.108.2.289
– volume: 11
  year: 2020
  ident: 23834_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15968-5
– volume: 430
  start-page: 275
  year: 2017
  ident: 23834_CR2
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2017.06.029
– volume: 11
  start-page: 637
  year: 2014
  ident: 23834_CR73
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2930
– ident: 23834_CR1
  doi: 10.1007/978-3-319-46095-6_5
– volume: 328
  start-page: 80
  year: 1987
  ident: 23834_CR42
  publication-title: Nature
  doi: 10.1038/328080a0
– volume: 12
  start-page: 1756
  year: 2002
  ident: 23834_CR46
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01220-4
– volume: 178
  start-page: 473
  year: 2019
  ident: 23834_CR20
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.027
– volume: 161
  start-page: 1187
  year: 2015
  ident: 23834_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 27
  start-page: 1653
  year: 2011
  ident: 23834_CR52
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr261
– volume: 105
  start-page: 14885
  year: 2008
  ident: 23834_CR63
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0803169105
– volume: 357
  start-page: 1299
  year: 2017
  ident: 23834_CR60
  publication-title: Science
  doi: 10.1126/science.aan2399
– volume: 119
  start-page: 1161
  year: 1993
  ident: 23834_CR41
  publication-title: Development
  doi: 10.1242/dev.119.4.1161
– volume: 144
  start-page: 292
  year: 2017
  ident: 23834_CR44
  publication-title: Development
  doi: 10.1242/dev.139220
– volume: 4
  start-page: 690
  year: 2003
  ident: 23834_CR38
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg1154
– ident: 23834_CR69
  doi: 10.5281/zenodo.4738464
– volume: 360
  start-page: 981
  year: 2018
  ident: 23834_CR7
  publication-title: Science
  doi: 10.1126/science.aar4362
– volume: 560
  start-page: 494
  year: 2018
  ident: 23834_CR22
  publication-title: Nature
  doi: 10.1038/s41586-018-0414-6
– volume: 26
  start-page: 3777
  year: 2015
  ident: 23834_CR43
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E15-02-0115
– ident: 23834_CR10
  doi: 10.1126/science.aaq1723
– volume: 47
  start-page: 2560
  year: 2019
  ident: 23834_CR61
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1270
– volume: 159
  start-page: 662
  year: 2014
  ident: 23834_CR14
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.038
– volume: 80
  start-page: 1
  year: 2015
  ident: 23834_CR21
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2015.80.027201
– ident: 23834_CR26
  doi: 10.1101/696724
– volume: 161
  start-page: 1202
  year: 2015
  ident: 23834_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 124
  start-page: 3157
  year: 1997
  ident: 23834_CR37
  publication-title: Development
  doi: 10.1242/dev.124.16.3157
– volume: 48
  start-page: D650
  year: 2019
  ident: 23834_CR72
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz813
– ident: 23834_CR68
  doi: 10.5281/zenodo.4738513
– volume: 568
  start-page: 235
  year: 2019
  ident: 23834_CR16
  publication-title: Nature
  doi: 10.1038/s41586-019-1049-y
– volume: 566
  start-page: 496
  year: 2019
  ident: 23834_CR9
  publication-title: Nature
  doi: 10.1038/s41586-019-0969-x
– volume: 131
  start-page: 4263
  year: 2004
  ident: 23834_CR40
  publication-title: Development
  doi: 10.1242/dev.01283
– volume: 15
  start-page: 4669
  year: 2004
  ident: 23834_CR54
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-03-0265
– volume: 61
  start-page: 821
  year: 2016
  ident: 23834_CR49
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.01.020
– volume: 45
  start-page: 357
  year: 2011
  ident: 23834_CR32
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110410-132517
– volume: 75
  start-page: 875
  year: 2019
  ident: 23834_CR19
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2019.07.030
– volume: 11
  start-page: 163
  year: 2014
  ident: 23834_CR4
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2772
– volume: 116
  start-page: 19490
  year: 2019
  ident: 23834_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1912459116
– volume: 68
  start-page: 1083
  year: 2017
  ident: 23834_CR53
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.11.014
– volume: 15
  start-page: 932
  year: 2018
  ident: 23834_CR18
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0175-z
– volume: 124
  start-page: 279
  year: 2007
  ident: 23834_CR48
  publication-title: Mech. Dev.
  doi: 10.1016/j.mod.2007.01.003
– volume: 17
  start-page: 991
  year: 2020
  ident: 23834_CR27
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-0935-4
– volume: 8
  year: 2017
  ident: 23834_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00690-6
– volume: 6
  start-page: 285
  year: 2014
  ident: 23834_CR36
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.12.030
– volume: 531
  start-page: 390
  year: 2016
  ident: 23834_CR65
  publication-title: Nature
  doi: 10.1038/nature17150
– ident: 23834_CR8
  doi: 10.1126/science.aar3131
– volume: 358
  start-page: 64
  year: 2017
  ident: 23834_CR11
  publication-title: Science
  doi: 10.1126/science.aan6827
– volume: 14
  start-page: 1198
  year: 2017
  ident: 23834_CR35
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4435
– volume: 17
  year: 2016
  ident: 23834_CR3
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-0938-8
– volume: 571
  start-page: 419
  year: 2019
  ident: 23834_CR23
  publication-title: Nature
  doi: 10.1038/s41586-019-1369-y
– volume: 51
  start-page: 146
  year: 2010
  ident: 23834_CR66
  publication-title: Methods
  doi: 10.1016/j.ymeth.2010.02.016
– volume: 1920
  start-page: 129
  year: 2019
  ident: 23834_CR15
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-9009-2_9
– volume: 97
  start-page: 19
  year: 2005
  ident: 23834_CR55
  publication-title: Biol. Cell
  doi: 10.1042/BC20040067
– volume: 10
  year: 2019
  ident: 23834_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11028-9
– volume: 363
  start-page: 1463
  year: 2019
  ident: 23834_CR13
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 238
  start-page: 1287
  year: 2009
  ident: 23834_CR74
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21967
– volume: 5
  start-page: 13
  year: 2014
  ident: 23834_CR33
  publication-title: Bioarchitecture
  doi: 10.1080/19490992.2015.1080891
– volume: 136
  start-page: 719
  year: 2009
  ident: 23834_CR64
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.044
– volume: 43
  start-page: 59
  year: 1982
  ident: 23834_CR29
  publication-title: Biol. Cybern.
  doi: 10.1007/BF00337288
– volume: 13
  start-page: 625
  year: 2007
  ident: 23834_CR47
  publication-title: RNA
  doi: 10.1261/rna.262607
– volume: 576
  start-page: 132
  year: 2019
  ident: 23834_CR57
  publication-title: Nature
  doi: 10.1038/s41586-019-1773-3
– volume: 38
  start-page: 980
  year: 2020
  ident: 23834_CR28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0480-9
– volume: 39
  start-page: 561
  year: 2005
  ident: 23834_CR34
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev.genet.37.110801.143752
– volume: 14
  start-page: 201
  year: 2017
  ident: 23834_CR51
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4121
– volume: 15
  start-page: 1484
  year: 2020
  ident: 23834_CR70
  publication-title: Nat. Protoc.
  doi: 10.1038/s41596-020-0292-x
– volume: 46
  start-page: 126
  year: 2017
  ident: 23834_CR12
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2017.02.004
– volume: 3
  start-page: 59
  year: 2008
  ident: 23834_CR67
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.514
– volume: 12
  year: 2021
  ident: 23834_CR71
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21246-9
– volume: 12
  start-page: 454
  year: 2002
  ident: 23834_CR39
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)00723-6
– volume: 8
  year: 2018
  ident: 23834_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26592-1
– volume: 28
  start-page: 511
  year: 2010
  ident: 23834_CR50
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 381
  start-page: 179
  year: 2013
  ident: 23834_CR75
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2013.05.028
– volume: 367
  start-page: 1151
  year: 2020
  ident: 23834_CR25
  publication-title: Science
  doi: 10.1126/science.aax3072
– volume: 131
  start-page: 174
  year: 2007
  ident: 23834_CR59
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.003
– ident: 23834_CR58
  doi: 10.7554/eLife.05003
SSID ssj0000391844
Score 2.499559
Snippet Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by...
Early stages of embryogenesis are known to depend on subcellular localization and transport of maternal mRNA, but systematic analyses have been hindered by a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3358
SubjectTerms 38
38/91
631/136/756
631/1647/2217/2218
631/1647/334/1874/763
631/61/212/2019
631/80/85/2361
64/116
Animals
Cell Tracking - methods
Conserved sequence
Danio rerio
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - embryology
Embryo, Nonmammalian - metabolism
Embryogenesis
Embryonic growth stage
Embryos
Evolutionary conservation
Female
Gastrulation
Gene expression
Gene Expression Regulation, Developmental
Gene sequencing
Germ cells
Humanities and Social Sciences
Labeling
Localization
multidisciplinary
Oocytes - cytology
Oocytes - metabolism
Ribonucleic acid
RNA
RNA transport
RNA, Messenger - genetics
RNA, Messenger - metabolism
Science
Science (multidisciplinary)
Single-Cell Analysis - methods
Spatial analysis
Spatial discrimination
Spatio-Temporal Analysis
Species Specificity
Tracking
Transcriptome - genetics
Transcriptomes
Transcriptomics
Wildlife conservation
Xenopus - embryology
Xenopus - genetics
Xenopus laevis - embryology
Xenopus laevis - genetics
Zebrafish
Zebrafish - embryology
Zebrafish - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEG8CBRmJG1j1Zuw4FqeCqCokegAq9WY5jq2u1GZRd3sov54ZJ7t0eV64xg9Zn8eeb2L7G4CXaFQmU8ky9FFJ7bCXoXEoKW5LbXCqR8MPhT8eNYfH-sOJObmW6ovvhI3ywCNwezH2yWaXOw63I1piBNbUKWOTTMyuPN1TTl0LpsoejI5CFz29klHY7i112RP4RgJ5KdRytuWJimD_71jmr5clfzoxLY7o4A7cnhik2B9HfhdupOEe3BxzSl7dhzefyx1pOWlOnYnzT0f7gvqM_FNczAdBlE8k1jUW3_jUOM-XpyKddxdXiwdwfPD-y7tDOWVIkJGY1kpmQwQ_NnUmUEMdVJ9N3Ye-za3VDL6mcEEFin6ti7GrbW-ZfjijOkM0TXX4EHaGxZAeg2gptjEOncHsNLntzqG22AZqlhozwwpma7R8nOTDOYvFmS_H2Nj6EWFPCPuCsJ9V8GrT5usonvHX2m95EjY1Wfi6fCBz8JM5-H-ZQwW76yn002pc-tqgbRsW1q_gxaaY1hEfjoQhLS5LHUdunLqt4NE445uRoOb3xUgY2C1b2BrqdskwPy1a3cSHOEFBBa_XVvNjWH-G4sn_gOIp3KrZ3PmXkd2FndXFZXpGDGrVPS-L5Tu0lBRA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SDYVeSt91kxYXemtFvJZkWZRSkpIQCl1K2kBuQpalZCGx093NIfn1nZEfYfvI1Xogj0bSpxnNNwDvuMwCqkpgtnYZE5rXzBaaM7y3-dLqrOaSAoW_zYrDY_H1RJ5swGyIhaFnlcOeGDfqunVkI9_JJVdlQeTony9_McoaRd7VIYWG7VMr1J8ixdg92MQtWWYT2Nzbn30_Gq0uxIdeCtFHz2S83FmKuFfQSwU8vbhg07UTKhL5_wt9_v2I8g9PajygDh7Bwx5ZprudKjyGDd88gftdrsnrp_DxR3w7zXouqvP04mi2m2Kfjozl6bxJEQqmnviO0xvyJof58iz1F9Xiun0Gxwf7P78csj5zAnOIwFYsSAT-rsgDCtvmNquDzGtbl6FUgiZF4DUis3grVtq5Kle1IliiZVZJhG9ZxZ_DpGkb_xLSEu88UnMtedACj_NKc6F4abGZL-SUJzAdpGVcTytO2S3OTXRv89J0EjYoYRMlbKYJvB_bXHakGnfW3qNJGGsSIXb80C5OTb--jHO1V0GHiqwyjisEjkrmPvDCSxe0TmB7mELTr9KludWpBN6Oxbi-yGliG99exToadQm7TeBFN-PjSLiguGOOMlBrurA21PWSZn4WObwRJ1HiggQ-DFpzO6z_i-LV3X-xBQ9yUmQyEqltmKwWV_41YqZV9aZfCL8BlGoRqw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (Selected full-text)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lIvgifrtaJYJvGtzbSTYJPtXDUgT7oBb6FrLZxB60e-Xu-tD-9Z3JfshpFXzdfBAmMzu_SSa_YewtqDKhqiTh21AKaaEVvrYgMG6LxtuyBUUPhb8e1YfH8suJOtlh1fgWJiftZ0rL_Jses8M-rGU2aUooQCcDUmDEc8doUKTV83o-nasQ47mRcngfU4K5ZeiWD8pU_bfhyz_TJH-7K80u6OABuz9gR77fr_Yh24ndI3a3ryZ59Zh9_J6zo8XANnXGz78d7XOcM9BxOF90HMEej8RozK_pvjgt1qc8njerq-UTdnzw-cf8UAy1EURAjLURSSG0D3WVUJy-8mWbVNX61iSjJYldYqBQeox7tQ2hqXSrCXhYVTYKAVrZwFO22y27-Jxxg1GNsmAVJCvRYTcWpAbjcVis1QwKNhul5cJAHE71K85cvsAG43oJO5SwyxJ2s4K9m8Zc9LQZ_-z9iTZh6kmU1_nDcvXTDSrgQmijTjY1dO4SQCM01KqKCeqoQrK2YHvjFrrBDteuUqBNTZT6BXszNaMF0bWI7-LyMvex6MBx2oI963d8WglIelkMKAO9pQtbS91u6RanmaUbkRCVJijY-1Frfi3r76J48X_dX7J7FSk2HQvpPba7WV3GV4iSNs3rbBY3u8EIxA
  priority: 102
  providerName: Springer Nature
Title Spatio-temporal mRNA tracking in the early zebrafish embryo
URI https://link.springer.com/article/10.1038/s41467-021-23834-1
https://www.ncbi.nlm.nih.gov/pubmed/34099733
https://www.proquest.com/docview/2537860789
https://www.proquest.com/docview/2539212619
https://pubmed.ncbi.nlm.nih.gov/PMC8184788
https://doaj.org/article/ccde7f9fb6194c37951752ef36e5cf99
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTaC9IL7JGFWQeINAGttxLIRQV61MlajQRqW-WYljs0pdytpOovz13DlJUaHjJZH8EZ3Od7nf-ew7gNdMxA5FxUV5aeKIK1ZGeapYhH6bzXIVl0zQReEvo_RszIcTMdmDttxRw8DlTteO6kmNF7N3P6_Xn1DhP9ZXxrP3S-7VnQ4boAFiPEJv6MDHi-goXwP3_Z-ZKXRoeHN3ZvfUQ7jHOF0nZWzLVPmM_rtg6L-nKf8KqXpLNXgA9xuIGfZqmXgIe7Z6BHfropPrx_Dhwh-ijpqkVLPw6nzUC_GbhnbNw2kVIiYMLSU-Dn9RWNlNl5ehvSoW6_kTGA9Ov_XPoqaEQmQQiq0iJ9ADMGnikOt5kselE0mZl5nLJKfV4ehPxDm6x1IZUySylIRPlIgLgTguLthT2K_mlX0OYYbOj1BMCeYUR7teKMYly3KcZlPRZQF0W25p0-QXpzIXM-3j3CzTNbM1Mlt7ZutuAG82c37U2TX-O_qEFmEzkjJj-4b54rtuFE0bU1rplCtoe8YwiQhSisQ6llphnFIBHLdLqFtp04lgMksp834ArzbdqGgUPckrO7_xYxTaefxsAM_qFd9Q0kpMAHJLFrZI3e6pppc-mTcCJqpgEMDbVmr-kHU7K45uJeEFHCYkzrRRJI9hf7W4sS8RN62KDtyRE4nPbPC5Awe93vBiiO-T09HXc2ztp_2O35HoeKX5DS06FMs
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYIEJ4iaje04FqpQC622tF2h0kq9uYlj05XapOxuhZYfx29jxkm2Wh699Ro_5IzH9ucZzzcAr5mIHaqKi_LSxBFXrIzyVLEI7202y1VcMkGBwnvDdHDIPx-JoyX41cXC0LPKbk_0G3VZG7KRryaCySwlcvQP598jyhpF3tUuhUbeplYo1zzFWBvYsWNnP_AKN1nb_oTz_SZJtjYPPg6iNstAZBCtTCMnECSbNHE4sDzJ49KJpMzLzGWS0w9whNxxjjdIqYwpEllKOsKViAuBUCcuGPZ7A5Y5GVB6sLyxOfyyP7fyEP96xnkbrROzbHXC_d5ELyPwtGQ86i-ciD5xwL_Q7t-PNv_w3PoDcesu3GmRbLjeqN49WLLVfbjZ5LacPYD3X_1b7ajlvjoNz_aH6yH2acg4H46qEKFnaIlfOfxJ3ms3mpyE9qwYz-qHcHgtMnwEvaqu7BMIM7xjCcWUYE5xhA-FYlyyLMdmNhV9FkC_k5Y2LY05ZdM41d6dzjLdSFijhLWXsO4H8Hbe5rwh8biy9gZNwrwmEXD7D_X4m27XszamtNIpV5AVyDCJQFWKxDqWWmGcUgGsdFOo211hoi91OIBX82Jcz-SkyStbX_g6CuEEdhvA42bG5yNhnOKcGcpALujCwlAXS6rRiecMR1xGiRICeNdpzeWw_i-Kp1f_xUu4NTjY29W728OdZ3A7IaUmA5Vcgd50fGGfI16bFi_aRRHC8XWvw99yIk2s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTSBeEN9kDAgSPEHUNLbjWGhCG1u1MaimwaS9mcSxt0pbOtpOqPyJ_FXcuU6n8rG3vSaO5Zzv7N99A7xiInXIKi4pa5MmXLE6KXPFEtTbbFGqtGaCEoU_9_OdQ_7xSBwtwa82F4bCKtsz0R_U9dCQjbyTCSaLnIqjd1wIi9jf6r0__55QBynytLbtNMrQZqFe9-XGQpLHnp3-QHVuvL67hXv_Ost6218_7CSh40BiELlMEicQMJs8c7jIMivT2omsLuvCFZLTz3CE32mJ2qRUxlSZrCVd50qklUDYk1YM570BK_hUoSK4srnd3z-YW3yoFnvBecjcSVnRGXN_TlGUBN6cjCfdhdvRNxH4F_L9O4DzDy-uvxx7d-FOQLXxxowN78GSbe7DzVmfy-kDePfFx20noQ7WaXx20N-IcU5Dhvp40MQIQ2NLtZbjn-TJdoPxSWzPqtF0-BAOr4WGj2C5GTb2CcQF6ltCMSWYUxyhRKUYl6wo8TObiy6LoNtSS5tQ0pw6a5xq71pnhZ5RWCOFtaew7kbwZv7N-aygx5WjN2kT5iOpGLd_MBwd6yDb2pjaSqdcRRYhwySCViky61huhXFKRbDWbqEOJ8RYX_JzBC_nr1G2yWFTNnZ44ccohBY4bQSPZzs-XwnjlPPMkAZygRcWlrr4phmc-PrhiNGoaUIEb1uuuVzW_0mxevVfvIBbKI_6025_7ynczoinyVYl12B5MrqwzxC6TarnQSZi-HbdYvgbdHlR8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+mRNA+tracking+in+the+early+zebrafish+embryo&rft.jtitle=Nature+communications&rft.au=Holler%2C+Karoline&rft.au=Neuschulz%2C+Anika&rft.au=Drewe-Bo%C3%9F%2C+Philipp&rft.au=Mintcheva%2C+Janita&rft.date=2021-06-07&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=3358&rft_id=info:doi/10.1038%2Fs41467-021-23834-1&rft_id=info%3Apmid%2F34099733&rft.externalDocID=34099733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon