Identification of an interactome network between lncRNAs and miRNAs in thyroid cancer reveals SPTY2D1-AS1 as a new tumor suppressor
Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve importan...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 7706 - 13 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.05.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-022-11725-4 |
Cover
Abstract | Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that ‘sponge’ microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions. We have identified a likely operative post-transcriptional regulatory network in which the downregulated lncRNA, SPTY2D1-AS1, is predicted to target the most abundant and upregulated miRNAs in thyroid cancer, particularly miR-221, a well-known oncomiRNA in cancer. Indeed, SPTY2D1-AS1 functions as a potent tumor suppressor in vitro and in vivo, it is downregulated in the most advanced stages of human thyroid cancer, and it seems to block the processing of the primary form of miR-221. Overall, our results link SPTY2D1-AS1 to thyroid cancer progression and highlight the potential use of this lncRNA as a therapeutic target of thyroid cancer. |
---|---|
AbstractList | Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that ‘sponge’ microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions. We have identified a likely operative post-transcriptional regulatory network in which the downregulated lncRNA, SPTY2D1-AS1, is predicted to target the most abundant and upregulated miRNAs in thyroid cancer, particularly miR-221, a well-known oncomiRNA in cancer. Indeed, SPTY2D1-AS1 functions as a potent tumor suppressor in vitro and in vivo, it is downregulated in the most advanced stages of human thyroid cancer, and it seems to block the processing of the primary form of miR-221. Overall, our results link SPTY2D1-AS1 to thyroid cancer progression and highlight the potential use of this lncRNA as a therapeutic target of thyroid cancer. Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that 'sponge' microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions. We have identified a likely operative post-transcriptional regulatory network in which the downregulated lncRNA, SPTY2D1-AS1, is predicted to target the most abundant and upregulated miRNAs in thyroid cancer, particularly miR-221, a well-known oncomiRNA in cancer. Indeed, SPTY2D1-AS1 functions as a potent tumor suppressor in vitro and in vivo, it is downregulated in the most advanced stages of human thyroid cancer, and it seems to block the processing of the primary form of miR-221. Overall, our results link SPTY2D1-AS1 to thyroid cancer progression and highlight the potential use of this lncRNA as a therapeutic target of thyroid cancer.Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that 'sponge' microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions. We have identified a likely operative post-transcriptional regulatory network in which the downregulated lncRNA, SPTY2D1-AS1, is predicted to target the most abundant and upregulated miRNAs in thyroid cancer, particularly miR-221, a well-known oncomiRNA in cancer. Indeed, SPTY2D1-AS1 functions as a potent tumor suppressor in vitro and in vivo, it is downregulated in the most advanced stages of human thyroid cancer, and it seems to block the processing of the primary form of miR-221. Overall, our results link SPTY2D1-AS1 to thyroid cancer progression and highlight the potential use of this lncRNA as a therapeutic target of thyroid cancer. Abstract Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally defined as RNA molecules longer than 200 nucleotides with no protein-encoding capacity, are highly tissue-specific molecules that serve important roles in gene regulation through a variety of different mechanisms, including acting as competing endogenous RNAs (ceRNAs) that ‘sponge’ microRNAs (miRNAs). In the present study, using an integrated approach through RNA-sequencing of paired thyroid tumor and non-tumor samples, we have identified an interactome network between lncRNAs and miRNAs and examined the functional consequences in vitro and in vivo of one of such interactions. We have identified a likely operative post-transcriptional regulatory network in which the downregulated lncRNA, SPTY2D1-AS1, is predicted to target the most abundant and upregulated miRNAs in thyroid cancer, particularly miR-221, a well-known oncomiRNA in cancer. Indeed, SPTY2D1-AS1 functions as a potent tumor suppressor in vitro and in vivo, it is downregulated in the most advanced stages of human thyroid cancer, and it seems to block the processing of the primary form of miR-221. Overall, our results link SPTY2D1-AS1 to thyroid cancer progression and highlight the potential use of this lncRNA as a therapeutic target of thyroid cancer. |
ArticleNumber | 7706 |
Author | Wert-Lamas, León Santisteban, Pilar Fletcher, Alice McCabe, Christopher J. Wert-Carvajal, Carlos Ramírez-Moya, Julia Riesco-Eizaguirre, Garcilaso Acuña-Ruíz, Adrián |
Author_xml | – sequence: 1 givenname: Julia surname: Ramírez-Moya fullname: Ramírez-Moya, Julia organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII) – sequence: 2 givenname: León surname: Wert-Lamas fullname: Wert-Lamas, León organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM) – sequence: 3 givenname: Adrián surname: Acuña-Ruíz fullname: Acuña-Ruíz, Adrián organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII) – sequence: 4 givenname: Alice surname: Fletcher fullname: Fletcher, Alice organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Institute of Metabolism and Systems Research, University of Birmingham – sequence: 5 givenname: Carlos surname: Wert-Carvajal fullname: Wert-Carvajal, Carlos organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Department of Bioengineering and Aerospace Engineering, Universidad Carlos III – sequence: 6 givenname: Christopher J. surname: McCabe fullname: McCabe, Christopher J. organization: Institute of Metabolism and Systems Research, University of Birmingham – sequence: 7 givenname: Pilar surname: Santisteban fullname: Santisteban, Pilar email: psantisteban@iib.uam.es organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII) – sequence: 8 givenname: Garcilaso surname: Riesco-Eizaguirre fullname: Riesco-Eizaguirre, Garcilaso email: griesco@iib.uam.es organization: Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas, Universidad Autónoma de Madrid (CSIC-UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Hospital Universitario de Móstoles, Endocrinology Molecular Group, Faculty of Medicine, Universidad Francisco de Vitoria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35562181$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1PFTEUhicGI4j8ARemiRs3o_3udGNC8OsmRI3gwlXTaTuXXmfaS9uBsPaPW-4FBRZ006Z93icnPed5sxNicE3zEsG3CJLuXaaIya6FGLcICcxa-qTZw5CyFhOMd-6cd5uDnFewLoYlRfJZs0sY4xh1aK_5s7AuFD94o4uPAcQB6AB8KC5pU-LkQHDlMqbfoK-7cwGMwfz4epgrZsHkN0cfQDm7StFbYHQwLoHkLpweMzj5fvoLf0Dt4QkCumaq7RKUeYoJ5Hm9Ti7nmF40T4cKu4Obfb_5-enj6dGX9vjb58XR4XFrGIWlHTCRPTNYcAQ7qhmGckCuH6DECGlqqOUEWYaJGASViA8CQY6ltaSHSDBL9pvF1mujXql18pNOVypqrzYXMS2VTsWb0SmDu14SazHhrHqF5o5hBjHvEXRCoOp6v3Wt535y1tRPTHq8J73_EvyZWsYLJaFkrONV8OZGkOL57HJRk8_GjaMOLs5ZYc6pkBJyUtHXD9BVnFOoX3VN1T5CIWGlXt2t6F8pt72uQLcFTIo5Jzco48um67VAPyoE1fVkqe1kqTpZajNZitYofhC9tT8aIttQrnBYuvS_7EdSfwHLR95f |
CitedBy_id | crossref_primary_10_1007_s12033_022_00536_7 crossref_primary_10_3892_ol_2023_13982 crossref_primary_10_3233_CBM_230396 crossref_primary_10_1093_immhor_vlae007 crossref_primary_10_1016_j_pbiomolbio_2024_04_003 crossref_primary_10_1007_s12079_022_00697_9 |
Cites_doi | 10.1016/j.cub.2010.08.052 10.18632/oncotarget.17556 10.1038/s41580-021-00330-4 10.1038/s41388-017-0088-9 10.7314/APJCP.2016.17.1.407 10.1677/erc.1.01209 10.1016/j.febslet.2013.11.014 10.1210/jc.2014-2147 10.1016/j.ccr.2014.03.010 10.1186/s12885-016-2429-4 10.7754/Clin.Lab.2017.170821 10.1016/j.mce.2016.12.017 10.1097/MJT.0000000000000420 10.1007/s13277-016-5445-8 10.1677/ERC-07-0129 10.1159/000442145 10.1038/s41598-017-01957-0 10.1002/ijc.25516 10.3892/ol.2016.5180 10.1001/jama.2017.2719 10.1016/j.canlet.2020.08.021 10.1016/j.bbamcr.2014.03.023 10.1038/nature09144 10.1073/pnas.0509603102 10.4161/rna.20481 10.1038/s41568-021-00353-1 10.1158/0008-5472.CAN-08-1071 10.1158/0008-5472.CAN-19-0039 10.1016/j.cell.2014.09.050 10.1016/j.cell.2011.10.031 10.1073/pnas.1205654109 10.1158/0008-5472.CAN-14-3547 10.1530/EJE-16-0202 10.2147/OTT.S190364 10.1186/s12957-016-1086-z 10.3389/fimmu.2017.00056 10.1016/j.cell.2011.07.014 10.1016/j.yexmp.2019.104332 10.1093/nar/gkv1270 10.1210/jc.2016-1991 10.1093/nar/gkr330 10.1517/14728222.2016.1164693 10.2147/OTT.S143315 10.1101/373746 10.1093/nar/gkn201 10.1016/j.molcel.2014.05.005 10.1038/nrc3431 10.1038/nmeth1079 10.1038/nrc3932 10.3389/fendo.2019.00430 10.1002/ijc.22701 10.3389/fonc.2021.706011 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-11725-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database (NC LIVE) ProQuest Biological Science ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_c28b93dd23654d67a6e525026b10e771 PMC9095586 35562181 10_1038_s41598_022_11725_4 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministerio de Ciencia e Innovación grantid: PID2019-105303RB-I00; SAF2016-75531-R funderid: http://dx.doi.org/10.13039/501100004837 – fundername: Fundación Científica Asociación Española Contra el Cáncer grantid: GCB14142311CRES; GCB14142311CRES funderid: http://dx.doi.org/10.13039/501100002704 – fundername: Comunidad de Madrid grantid: B2017/BMD-3724 funderid: http://dx.doi.org/10.13039/100012818 – fundername: Instituto de Salud Carlos III grantid: PI14/01980 funderid: http://dx.doi.org/10.13039/501100004587 – fundername: Ministerio de Ciencia e Innovación grantid: PID2019-105303RB-I00 – fundername: Comunidad de Madrid grantid: B2017/BMD-3724 – fundername: Ministerio de Ciencia e Innovación grantid: SAF2016-75531-R – fundername: Instituto de Salud Carlos III grantid: PI14/01980 – fundername: Fundación Científica Asociación Española Contra el Cáncer grantid: GCB14142311CRES – fundername: ; grantid: B2017/BMD-3724 – fundername: ; grantid: GCB14142311CRES; GCB14142311CRES – fundername: ; grantid: PID2019-105303RB-I00; SAF2016-75531-R – fundername: ; grantid: PI14/01980 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-f239b5c2761084a5209f1ebf09211a4c4d631d5237f74916f710629dd3b0175d3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:23:05 EDT 2025 Thu Aug 21 17:51:33 EDT 2025 Thu Sep 04 17:34:42 EDT 2025 Wed Aug 13 04:10:23 EDT 2025 Mon Jul 21 05:46:29 EDT 2025 Tue Jul 01 04:16:24 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Fri Feb 21 02:39:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f239b5c2761084a5209f1ebf09211a4c4d631d5237f74916f710629dd3b0175d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-11725-4 |
PMID | 35562181 |
PQID | 2662180790 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c28b93dd23654d67a6e525026b10e771 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9095586 proquest_miscellaneous_2664799063 proquest_journals_2662180790 pubmed_primary_35562181 crossref_citationtrail_10_1038_s41598_022_11725_4 crossref_primary_10_1038_s41598_022_11725_4 springer_journals_10_1038_s41598_022_11725_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-11 |
PublicationDateYYYYMMDD | 2022-05-11 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Matouk, I. J. et al. Oncofetal H19 RNA promotes tumor metastasis. Mol. Cell Res.1843 (2014). AgrawalNIntegrated Genomic Characterization of Papillary Thyroid CarcinomaCell201415967669010.1016/j.cell.2014.09.050 Ramírez-Moya, J., Wert-Lamas, L. & Santisteban, P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene37, (2018). Pallante, P. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer13, (2006). Thomson, D. W., Bracken, C. P. & Goodall, G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39 (2011). Ramírez-Moya, J., Wert-Lamas, L., Riesco-Eizaguirre, G. & Santisteban, P. Impaired microRNA processing by DICER1 downregulation endows thyroid cancer with increased aggressiveness. Oncogene38, (2019). Liu, S. J., Dang, H. X., Lim, D. A., Feng, F. Y. & Maher, C. A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 21 (2021). Yuan, J. Hang et al. A Long Noncoding RNA Activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell25 (2014). Goedert, L. et al. Identification of long noncoding RNAs deregulated in papillary thyroid cancer and correlated with BRAFV600E mutation by bioinformatics integrative analysis. Sci. Rep. 7 (2017). di Martino, M. T. et al. Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin. Ther. Targets20 (2016). Jendrzejewski, J. et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc. Natl. Acad. Sci. USA109, (2012). Safavi, A., Azizi, F., Jafari, R., Chaibakhsh, S. & Safavi, A. A. Thyroid cancer epidemiology in Iran: A time trend study. Asian Pac. J. Cancer Prevent.17, (2016). Ramírez-Moya, J. & Santisteban, P. MiRNA-directed regulation of the main signaling pathways in thyroid cancer. Front. Endocrinol. 10 (2019). Cao, J. et al. Non-coding RNA in thyroid cancer—functions and mechanisms. Cancer Lett. 496 (2021). Lim, H., Devesa, S. S., Sosa, J. A., Check, D. & Kitahara, C. M. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA317 (2017). Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol.20 (2010). Paraskevopoulou, M. D. et al. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. Nucleic Acids Res.44, (2016). He, H. et al. Genetic predisposition to papillary thyroid carcinoma: Involvement of FOXE1, TSHR, and a novel lincRNA Gene, PTCSC2. J. Clin. Endocrinol. Metab.100, (2015). Gutschner, T. & Diederichs, S. The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 9 (2012). Ma, M. et al. miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. OncoTargets Ther.10, (2017). Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer vol. 15 (2015). Visone, R. et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine-Relat. Cancer14, (2007). Ghafouri-Fard, S., Mohammad-Rahimi, H. & Taheri, M. The role of long non-coding RNAs in the pathogenesis of thyroid cancer. Exp. Mol. Pathol. 112 (2020). He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA102 (2005). Diao, Y., Fu, H. & Wang, Q. MiR-221 exacerbate cell proliferation and invasion by targeting TIMP3 in papillary thyroid carcinoma. Am. J. Ther.24, (2017). Wei, Z. L. et al. MicroRNA-221 promotes papillary thyroid carcinoma cell migration and invasion via targeting RECK and regulating epithelial–mesenchymal transition. OncoTargets Ther.12, (2019). He, H. et al. A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res.69, (2009). Ludvíková, M., Kalfeřt, D. & Kholová, I. Pathobiology of MicroRNAs and their emerging role in thyroid fine-needle aspiration. Acta Cytol. 59 (2015). Song, J. et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front. Immunol. 8 (2017). Zhao, L. et al. MiRNA-221–3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1. Tumor Biol.37, (2016). Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, (2011). Riesco-EizaguirreGSantistebanPAdvances in the molecular pathogenesis of thyroid cancer: Lessons from the cancer genomeEur. J. Endocrinol.2016175R203R2171:CAS:528:DC%2BC2sXhslCjt7c%3D10.1530/EJE-16-0202 Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465, (2010). Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol.22 (2021). Yoon, H. et al. Identification of a novel noncoding RNA gene, NAMA, that is downregulated in papillary thyroid carcinoma with BRAF mutation and associated with growth arrest. Int. J. Cancer121, (2007). Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nature Methods4, (2007). Liu, P. et al. Identification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer. Oncol. Lett.12, (2016). Abak, A. et al. Analysis of miRNA-221 expression level in tumors and marginal biopsies from patients with breast cancer (cross-sectional observational study). Clin. Lab.64, (2018). Liz, J. et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol. Cell55, (2014). Carlberg, M., Hedendahl, L., Ahonen, M., Koppel, T. & Hardell, L. Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data. BMC Cancer16, (2016). Riesco-EizaguirreGThe miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesisCan. Res.201575411941301:CAS:528:DC%2BC2MXhsFyrtbnN10.1158/0008-5472.CAN-14-3547 Li, Q. et al. Identification of novel long non-coding RNA biomarkers for prognosis prediction of papillary thyroid cancer. Oncotarget8 (2017). FuziwaraCSKimuraETMicroRNAs in thyroid development, function and tumorigenesisMol. Cell. Endocrinol.201745644501:CAS:528:DC%2BC2sXit1yltQ%3D%3D10.1016/j.mce.2016.12.017 Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nature Rev. Cancer13 (2013). Liyanarachchi, S. et al. Genome-wide expression screening discloses long noncoding RNAs involved in thyroid carcinogenesis. J. Clin. Endocrinol. Metab.101, (2016). Credendino, S. C. et al. A ceRNA circuitry involving the long noncoding RNA KLHL14-AS, PAX8, and BCL2 drives thyroid carcinogenesis. Cancer Res.79, (2019). Dai, L. et al. MiR-221, a potential prognostic biomarker for recurrence in papillary thyroid cancer. World J. Surg. Oncol.15 (2017). Qin, J. & Luo, M. MicroRNA-221 promotes colorectal cancer cell invasion and metastasis by targeting RECK. FEBS Lett.588, (2014). Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell146 (2011). Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127, (2010). Rosignolo, F. et al. Identification of thyroid-associated Serum microRNA profiles and their potential use in thyroid cancer follow-up. J. Endocr. Soc.1, (2017). Zhu, J. et al. The emerging landscapes of long noncoding RNA in thyroid carcinoma: Biological functions and clinical significance. Front. Oncol. 11 (2021). Johnson, M. et al. NCBI BLAST: A better web interface. Nucleic Acids Res.36, (2008). 11725_CR50 G Riesco-Eizaguirre (11725_CR7) 2015; 75 11725_CR18 11725_CR17 11725_CR4 11725_CR16 11725_CR5 11725_CR15 11725_CR8 11725_CR9 11725_CR19 11725_CR53 11725_CR52 11725_CR51 N Agrawal (11725_CR6) 2014; 159 11725_CR14 11725_CR13 11725_CR12 11725_CR11 11725_CR29 11725_CR28 11725_CR27 11725_CR26 CS Fuziwara (11725_CR10) 2017; 456 11725_CR21 11725_CR20 11725_CR25 11725_CR24 11725_CR22 11725_CR39 11725_CR38 11725_CR37 G Riesco-Eizaguirre (11725_CR23) 2016; 175 11725_CR32 11725_CR31 11725_CR30 11725_CR36 11725_CR35 11725_CR34 11725_CR33 11725_CR2 11725_CR3 11725_CR1 11725_CR49 11725_CR48 11725_CR43 11725_CR42 11725_CR41 11725_CR40 11725_CR47 11725_CR46 11725_CR45 11725_CR44 |
References_xml | – reference: He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA102 (2005). – reference: Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell147, (2011). – reference: Liu, S. J., Dang, H. X., Lim, D. A., Feng, F. Y. & Maher, C. A. Long noncoding RNAs in cancer metastasis. Nat. Rev. Cancer 21 (2021). – reference: di Martino, M. T. et al. Mir-221/222 are promising targets for innovative anticancer therapy. Expert Opin. Ther. Targets20 (2016). – reference: Liu, P. et al. Identification of targets of miRNA-221 and miRNA-222 in fulvestrant-resistant breast cancer. Oncol. Lett.12, (2016). – reference: Goedert, L. et al. Identification of long noncoding RNAs deregulated in papillary thyroid cancer and correlated with BRAFV600E mutation by bioinformatics integrative analysis. Sci. Rep. 7 (2017). – reference: Matouk, I. J. et al. Oncofetal H19 RNA promotes tumor metastasis. Mol. Cell Res.1843 (2014). – reference: Song, J. et al. Potential value of miR-221/222 as diagnostic, prognostic, and therapeutic biomarkers for diseases. Front. Immunol. 8 (2017). – reference: Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol.20 (2010). – reference: Rosignolo, F. et al. Identification of thyroid-associated Serum microRNA profiles and their potential use in thyroid cancer follow-up. J. Endocr. Soc.1, (2017). – reference: AgrawalNIntegrated Genomic Characterization of Papillary Thyroid CarcinomaCell201415967669010.1016/j.cell.2014.09.050 – reference: Ramírez-Moya, J., Wert-Lamas, L. & Santisteban, P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene37, (2018). – reference: Qin, J. & Luo, M. MicroRNA-221 promotes colorectal cancer cell invasion and metastasis by targeting RECK. FEBS Lett.588, (2014). – reference: Wei, Z. L. et al. MicroRNA-221 promotes papillary thyroid carcinoma cell migration and invasion via targeting RECK and regulating epithelial–mesenchymal transition. OncoTargets Ther.12, (2019). – reference: Xing, M. Molecular pathogenesis and mechanisms of thyroid cancer. Nature Rev. Cancer13 (2013). – reference: Dai, L. et al. MiR-221, a potential prognostic biomarker for recurrence in papillary thyroid cancer. World J. Surg. Oncol.15 (2017). – reference: Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nature Methods4, (2007). – reference: Riesco-EizaguirreGThe miR-146b-3p/PAX8/NIS regulatory circuit modulates the differentiation phenotype and function of thyroid cells during carcinogenesisCan. Res.201575411941301:CAS:528:DC%2BC2MXhsFyrtbnN10.1158/0008-5472.CAN-14-3547 – reference: Jendrzejewski, J. et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc. Natl. Acad. Sci. USA109, (2012). – reference: Ghafouri-Fard, S., Mohammad-Rahimi, H. & Taheri, M. The role of long non-coding RNAs in the pathogenesis of thyroid cancer. Exp. Mol. Pathol. 112 (2020). – reference: Visone, R. et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocrine-Relat. Cancer14, (2007). – reference: FuziwaraCSKimuraETMicroRNAs in thyroid development, function and tumorigenesisMol. Cell. Endocrinol.201745644501:CAS:528:DC%2BC2sXit1yltQ%3D%3D10.1016/j.mce.2016.12.017 – reference: Lin, S. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nature Reviews Cancer vol. 15 (2015). – reference: Ferlay, J. et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer127, (2010). – reference: Ramírez-Moya, J. & Santisteban, P. MiRNA-directed regulation of the main signaling pathways in thyroid cancer. Front. Endocrinol. 10 (2019). – reference: Liz, J. et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol. Cell55, (2014). – reference: He, H. et al. Genetic predisposition to papillary thyroid carcinoma: Involvement of FOXE1, TSHR, and a novel lincRNA Gene, PTCSC2. J. Clin. Endocrinol. Metab.100, (2015). – reference: Li, Q. et al. Identification of novel long non-coding RNA biomarkers for prognosis prediction of papillary thyroid cancer. Oncotarget8 (2017). – reference: Cao, J. et al. Non-coding RNA in thyroid cancer—functions and mechanisms. Cancer Lett. 496 (2021). – reference: Abak, A. et al. Analysis of miRNA-221 expression level in tumors and marginal biopsies from patients with breast cancer (cross-sectional observational study). Clin. Lab.64, (2018). – reference: Lim, H., Devesa, S. S., Sosa, J. A., Check, D. & Kitahara, C. M. Trends in thyroid cancer incidence and mortality in the United States, 1974–2013. JAMA317 (2017). – reference: Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: The rosetta stone of a hidden RNA language? Cell146 (2011). – reference: Liyanarachchi, S. et al. Genome-wide expression screening discloses long noncoding RNAs involved in thyroid carcinogenesis. J. Clin. Endocrinol. Metab.101, (2016). – reference: Statello, L., Guo, C. J., Chen, L. L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol.22 (2021). – reference: Johnson, M. et al. NCBI BLAST: A better web interface. Nucleic Acids Res.36, (2008). – reference: Yuan, J. Hang et al. A Long Noncoding RNA Activated by TGF-β promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell25 (2014). – reference: Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature465, (2010). – reference: He, H. et al. A susceptibility locus for papillary thyroid carcinoma on chromosome 8q24. Cancer Res.69, (2009). – reference: Riesco-EizaguirreGSantistebanPAdvances in the molecular pathogenesis of thyroid cancer: Lessons from the cancer genomeEur. J. Endocrinol.2016175R203R2171:CAS:528:DC%2BC2sXhslCjt7c%3D10.1530/EJE-16-0202 – reference: Pallante, P. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer13, (2006). – reference: Paraskevopoulou, M. D. et al. DIANA-LncBase v2: Indexing microRNA targets on non-coding transcripts. Nucleic Acids Res.44, (2016). – reference: Zhu, J. et al. The emerging landscapes of long noncoding RNA in thyroid carcinoma: Biological functions and clinical significance. Front. Oncol. 11 (2021). – reference: Diao, Y., Fu, H. & Wang, Q. MiR-221 exacerbate cell proliferation and invasion by targeting TIMP3 in papillary thyroid carcinoma. Am. J. Ther.24, (2017). – reference: Yoon, H. et al. Identification of a novel noncoding RNA gene, NAMA, that is downregulated in papillary thyroid carcinoma with BRAF mutation and associated with growth arrest. Int. J. Cancer121, (2007). – reference: Credendino, S. C. et al. A ceRNA circuitry involving the long noncoding RNA KLHL14-AS, PAX8, and BCL2 drives thyroid carcinogenesis. Cancer Res.79, (2019). – reference: Ludvíková, M., Kalfeřt, D. & Kholová, I. Pathobiology of MicroRNAs and their emerging role in thyroid fine-needle aspiration. Acta Cytol. 59 (2015). – reference: Ma, M. et al. miRNA-221 of exosomes originating from bone marrow mesenchymal stem cells promotes oncogenic activity in gastric cancer. OncoTargets Ther.10, (2017). – reference: Carlberg, M., Hedendahl, L., Ahonen, M., Koppel, T. & Hardell, L. Increasing incidence of thyroid cancer in the Nordic countries with main focus on Swedish data. BMC Cancer16, (2016). – reference: Ramírez-Moya, J., Wert-Lamas, L., Riesco-Eizaguirre, G. & Santisteban, P. Impaired microRNA processing by DICER1 downregulation endows thyroid cancer with increased aggressiveness. Oncogene38, (2019). – reference: Safavi, A., Azizi, F., Jafari, R., Chaibakhsh, S. & Safavi, A. A. Thyroid cancer epidemiology in Iran: A time trend study. Asian Pac. J. Cancer Prevent.17, (2016). – reference: Zhao, L. et al. MiRNA-221–3p desensitizes pancreatic cancer cells to 5-fluorouracil by targeting RB1. Tumor Biol.37, (2016). – reference: Gutschner, T. & Diederichs, S. The hallmarks of cancer: A long non-coding RNA point of view. RNA Biol. 9 (2012). – reference: Thomson, D. W., Bracken, C. P. & Goodall, G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39 (2011). – ident: 11725_CR35 doi: 10.1016/j.cub.2010.08.052 – ident: 11725_CR44 doi: 10.18632/oncotarget.17556 – ident: 11725_CR31 doi: 10.1038/s41580-021-00330-4 – ident: 11725_CR12 doi: 10.1038/s41388-017-0088-9 – ident: 11725_CR3 doi: 10.7314/APJCP.2016.17.1.407 – ident: 11725_CR9 doi: 10.1677/erc.1.01209 – ident: 11725_CR17 doi: 10.1016/j.febslet.2013.11.014 – ident: 11725_CR39 doi: 10.1210/jc.2014-2147 – ident: 11725_CR26 doi: 10.1016/j.ccr.2014.03.010 – ident: 11725_CR2 doi: 10.1186/s12885-016-2429-4 – ident: 11725_CR16 doi: 10.7754/Clin.Lab.2017.170821 – volume: 456 start-page: 44 year: 2017 ident: 11725_CR10 publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2016.12.017 – ident: 11725_CR18 doi: 10.1097/MJT.0000000000000420 – ident: 11725_CR14 doi: 10.1007/s13277-016-5445-8 – ident: 11725_CR19 doi: 10.1677/ERC-07-0129 – ident: 11725_CR22 doi: 10.1159/000442145 – ident: 11725_CR42 doi: 10.1038/s41598-017-01957-0 – ident: 11725_CR1 doi: 10.1002/ijc.25516 – ident: 11725_CR15 doi: 10.3892/ol.2016.5180 – ident: 11725_CR4 doi: 10.1001/jama.2017.2719 – ident: 11725_CR45 doi: 10.1016/j.canlet.2020.08.021 – ident: 11725_CR27 doi: 10.1016/j.bbamcr.2014.03.023 – ident: 11725_CR33 doi: 10.1038/nature09144 – ident: 11725_CR8 doi: 10.1073/pnas.0509603102 – ident: 11725_CR25 doi: 10.4161/rna.20481 – ident: 11725_CR30 doi: 10.1038/s41568-021-00353-1 – ident: 11725_CR38 doi: 10.1158/0008-5472.CAN-08-1071 – ident: 11725_CR47 doi: 10.1158/0008-5472.CAN-19-0039 – volume: 159 start-page: 676 year: 2014 ident: 11725_CR6 publication-title: Cell doi: 10.1016/j.cell.2014.09.050 – ident: 11725_CR36 doi: 10.1016/j.cell.2011.10.031 – ident: 11725_CR40 doi: 10.1073/pnas.1205654109 – volume: 75 start-page: 4119 year: 2015 ident: 11725_CR7 publication-title: Can. Res. doi: 10.1158/0008-5472.CAN-14-3547 – volume: 175 start-page: R203 year: 2016 ident: 11725_CR23 publication-title: Eur. J. Endocrinol. doi: 10.1530/EJE-16-0202 – ident: 11725_CR20 doi: 10.2147/OTT.S190364 – ident: 11725_CR21 doi: 10.1186/s12957-016-1086-z – ident: 11725_CR49 doi: 10.3389/fimmu.2017.00056 – ident: 11725_CR32 doi: 10.1016/j.cell.2011.07.014 – ident: 11725_CR24 doi: 10.1016/j.yexmp.2019.104332 – ident: 11725_CR28 doi: 10.1093/nar/gkv1270 – ident: 11725_CR43 doi: 10.1210/jc.2016-1991 – ident: 11725_CR48 doi: 10.1093/nar/gkr330 – ident: 11725_CR50 – ident: 11725_CR51 doi: 10.1517/14728222.2016.1164693 – ident: 11725_CR13 doi: 10.2147/OTT.S143315 – ident: 11725_CR52 doi: 10.1101/373746 – ident: 11725_CR53 doi: 10.1093/nar/gkn201 – ident: 11725_CR29 doi: 10.1016/j.molcel.2014.05.005 – ident: 11725_CR5 doi: 10.1038/nrc3431 – ident: 11725_CR34 doi: 10.1038/nmeth1079 – ident: 11725_CR37 doi: 10.1038/nrc3932 – ident: 11725_CR11 doi: 10.3389/fendo.2019.00430 – ident: 11725_CR41 doi: 10.1002/ijc.22701 – ident: 11725_CR46 doi: 10.3389/fonc.2021.706011 |
SSID | ssj0000529419 |
Score | 2.4061384 |
Snippet | Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs), generally... Abstract Thyroid cancer is the most common primary endocrine malignancy in adults and its incidence is rapidly increasing. Long non-coding RNAs (lncRNAs),... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7706 |
SubjectTerms | 631/67/1459 631/67/69 692/163 Gene regulation Humanities and Social Sciences Malignancy miRNA multidisciplinary Neuroendocrine tumors Non-coding RNA Nucleotides Post-transcription Science Science (multidisciplinary) Therapeutic targets Thyroid Thyroid cancer Tumor suppressor genes Tumors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgi3q2uEsE3LdtcmjSP42VZBBdxd2F9CkmT4MBOunRmEJ_9454knXHH64sPhdKmIZwL5zvNOV8Qep4YvFvi21pYQmvuBau7jttasdAJS4MNucP7_bE4OuPvztvzK0d9pZqwQg9cBHfQ084q5hxlouVOSCN82omjMHfjZe4ep41qriRThdWbKk7U1CXTsO5gCZEqdZNB7kUgaLc134lEmbD_dyjz12LJn3ZMcyA6vIVuTggSz8rKb6NrPt5B18uZkl_vom-l9TZM_-LwELCJOLFCpH6oYeFxLJXfeCrRwhex_3g8W8IwhxfzfDuPGBQ4DnOH-2QWI05MT2Cp-OTD6Sf6htSzE4INfAOzfcGr9WIY8XJ9matqh_EeOjt8e_r6qJ5OWqh7QGyrOlCmbNtTCarruEmlMYF4GxoF-aHhPQieEQc5qwySA6AMgEsEVc4xCx7dOnYf7cUh-ocImwCQCXCBpdxw6oyFS_oQHGsMpC59hchG6rqfaMjTaRgXOm-Hs04XTWnQlM6a0rxCL7bfXBYSjr-OfpWUuR2ZCLTzAzArPZmV_pdZVWh_Ywp68uqlBjADiKiRqqnQs-1r8Me0yWKiH9Z5DJcQ4gWr0INiOduVALZLE8Dkcsemdpa6-ybOP2fOb5WoAjtRoZcb6_uxrD-L4tH_EMVjdIMmt0mUtWQf7a3GtX8CSGxln2an-w6EFysb priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96Ivgifls9JYJvGq75aNM-yfpxHIKHeHewPpWmSc6F23ZtdxGf_cedSbM91o97KJQ2DWlnpvNLZvIbQl4ig3fGXcZywwVTLpesKJRhpfRFboQ3Puzw_nScH52pj_NsHhfchphWuf0nhh-17RpcIz8ARwLeKNVl-mb1nWHVKIyuxhIa18kNDkgESzfouZ7WWDCKpXgZ98qksjgYwF_hnjKYgXFw3RlTO_4o0Pb_C2v-nTL5R9w0uKPDO-R2xJF0Ngr-Lrnm2nvk5lhZ8ud98mvcgOvjihztPK1bitwQuCuqWzrajvnfNCZq0Yu2-XI8G6CZpctFOF20FMTYdwtLG1SOniLfE-grPfl8-lW852x2wmkNz0BvP-h6s-x6OmxWIbe26x-Qs8MPp--OWKy3wBrAbWvmhSxN1ggNAixUjQkynjvj0xJmibVqlM0ltzBz1V4rgJUe0EkuSmulAbvOrHxI9tqudY8JrT0AJ0AHRqhaCVsbOLTz3sq0hglMkxC-_epVE8nIsSbGRRWC4rKoRklVIKkqSKpSCXk1PbMaqTiubP0WhTm1RBrtcKHrz6tolVUjClNKa4XMM3g7XecOw7wCFDd1WvOE7G9VoYq2PVSXmpiQF9NtsEoMtdSt6zahjdLg6HOZkEej5kwjAYSHHUDnekendoa6e6ddfAvM3yUSBhZ5Ql5vte9yWP__FE-ufoun5JZAg0BKWr5P9tb9xj0DpLU2z4M5_QYhwCOh priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nHoIv4rfVUyL4psXmo0n7WD-OY8FD3Ds4n0LSJOfCbXt0dznu2X_cSfohq6fgw8KynYRsZ6bzS2fmF4ReBwbvnLg8FYbQlDvB0qLgJi2ZL4Sh3vjY4f35WByd8vlZfraH6NgLE4v2I6VlfEyP1WHv1hBoQjMYbJ0IxNw85bfQfiHh8TtD-1U1X8ynNyshd8VJOXTIZKy4YfBOFIpk_TchzD8LJX_LlsYgdHgP3R3QI6769d5He655gG7350leP0Q_-rZbP7yHw63HusGBESL0QrUrh5u-6hsP5Vn4oqm_HldrELN4tYxflw0G5XXt0uI6mESHA8sTWClefDn5Rj-StFoQrGEMzHaFN9tV2-H19jJW1LbdI3R6-Onkw1E6nLKQ1oDWNqmnrDR5TSWoreA6lMV44ozPStgbal5zKxixsF-VXnIAkx4wiaCltcyAN-eWPUazpm3cU4S1B7gEmMBQrjm12sBHOu8tyzRsW-oEkfGuq3qgIA8nYVyomApnheo1pUBTKmpK8QS9mcZc9gQc_5R-H5Q5SQby7PhD252rwZhUTQtTMmspEzn8O6mFC8ldCuaaOSlJgg5GU1CDR68VABlAQ5ksswS9mi6DL4YEi25cu40yXEJ4FyxBT3rLmVYCuC5MAJPLHZvaWerulWb5PfJ9l4EmsBAJejta369l_f1WPPs_8efoDg0OEohpyQGabbqtewF4a2NeDg72EwjxIs4 priority: 102 providerName: Springer Nature |
Title | Identification of an interactome network between lncRNAs and miRNAs in thyroid cancer reveals SPTY2D1-AS1 as a new tumor suppressor |
URI | https://link.springer.com/article/10.1038/s41598-022-11725-4 https://www.ncbi.nlm.nih.gov/pubmed/35562181 https://www.proquest.com/docview/2662180790 https://www.proquest.com/docview/2664799063 https://pubmed.ncbi.nlm.nih.gov/PMC9095586 https://doaj.org/article/c28b93dd23654d67a6e525026b10e771 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JGJWReINAYzt28oBQVzZNlaimdZXKUxTHNlRqky1tBXvmH-fspEWFgnioWiWO5fru5N_l7n4H8MoxeMeRiUOhIhpyI1iYJFyFKbOJUNQq6yu8Pw3F-ZgPJvFkD9btjtoNXOx07Vw_qXE9e_v95vYDGvz7pmQ8ebfAQ8gViqFbFeF5HId8Hw59vMil8rVwv-H6pin3vT4cCXuIYIK2dTS7p9k6qzyl_y4c-mc65W8xVX9Und2Hey3GJL1GKR7Anikfwp2m6-TtI_jRFOfa9m0dqSzJS-J4I1zFVDU3pGxyw0mbxEVmZXE57C1wmCbzqf85LQmKuK6mmhROcWriuKBwT8no4uoz_RiFvVFEcnwGZ_tGlqt5VZPF6trn3Vb1YxifnV71z8O2F0NYIKZbhpayVMUFlSjchOcuecZGRtluih5kzguuBYs0erXSSo6Q0yJyETTVmim0-VizJ3BQVqV5BiS3CKoQOSjKc051rvAjjbWadXN0booAovWuZ0VLVO76ZcwyHzBnSdZIKkNJZV5SGQ_g9eaZ64am45-jT5wwNyMdxba_UNVfstZis4ImKmVaUyZi_HcyF8aFgCkqdddIGQVwvFaFbK22GcIdxExdmXYDeLm5jRbrwjB5aaqVH8MlggDBAnjaaM5mJYj-3AQ4udzSqa2lbt8pp189K3jqyAQTEcCbtfb9Wtbft-LoP5b5HO5SZxWOszY6hoNlvTIvEIotVQf25UR24LDXG4wG-H1yOry4xKt90e_41xsdb4E_AXiAMJU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0SNH3kdKrSlrVrarqp2K5WTiWMbVuomS3ZXVc_8L34bY8fZann01sNK0caxnMyMZ8Yz8w1Cby2Cd0x0HCaS0JDrhIVZxmWYM5MlkhppXIX34SDZPeWfz-KzFfSrq4WxaZXdnug2alWX9ox8HRQJaKMozaOPkx-h7Rplo6tdC43Ct1ZQGw5izBd27OvLC3Dhpht7W0Dvd5TubA8_7Ya-y0BYgrUyCw1luYxLCv58lPHCpoUYoqWJcvCNCl5ylTCiwF9LTcrBmDKgkxOaK8UkcHOsGMx7C61ye4DSQ6ub24Oj48Upj42jcZL7ap2IZetT0Ji2qg18QALGQxzyJY3oGgf8y9r9O2nzj8itU4g799E9b8nifst6D9CKrh6i221vy8tH6GdbAmz8mSCuDS4qbNEpbF1WPda4ajPQsU8Vw-dVeTzoT2GYwuORuxxVGBipqUcKl5Y9G2wRp0Bi8MnR8AvdImH_hOACnoHZLvBsPq4bPJ1PXHZv3TxGpzdCiyeoV9WVfoZwYcB0A_tEUl5wqgoJv1Qbo1hUgAtVBoh0X12UHg7dduU4Fy4szzLRUkoApYSjlOABer94ZtKCgVw7etMSczHSAnm7P-rmm_D7gihpJnOmFGVJDG-XFom2gWYKohPpNCUBWutYQfjdZSquZCFAbxa3YV-wwZ6i0vXcjeEpmBoJC9DTlnMWKwEb004Ak6dLPLW01OU71ei7wx7PLWRhlgToQ8d9V8v6_6d4fv1bvEZ3doeHB-Jgb7D_At2lVjgsQC5ZQ71ZM9cvwe6byVdeuDD6etPy_BtbYmSF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE0SNL4mTB4QKpdoYVBPbpO7JxLG9VVqTkraa9sy_4tdx7CSdymVve6gUNY7l5Jzj8x2fG0KvXAXvmJg4TBShITcJC9OUqzBjNk0Utcr6DO-vo2T7kH8ex-MN9KvLhXFhld2e6DdqXRXujLwHigS0USSyqGfbsIi9wfD97EfoOkg5T2vXTqNhkV1zfgbm2_zdzgBo_ZrS4aeDj9th22EgLACpLEJLWabigoItH6U8dyEhlhhlowzsopwXXCeMaLDVhBUcgJQFfZzQTGumgJNjzWDea-i6YJy7thFiLFbnO86DxknW5ulELO3NQVe6fDaw_gjAhjjka7rQtwz4F879O1zzD5-tV4XDO-h2i2Fxv2G6u2jDlPfQjaar5fl99LNJ_rXtaSCuLM5L7OpSuIysampw2cSe4zZIDJ-WxbdRfw7DNJ5O_OWkxMBCdTXRuHCMWWNXawpkBe_vHRzRAQn7-wTn8AzMdoYXy2lV4_ly5uN6q_oBOrwSSjxEm2VVmscI5xZAGyATRXnOqc4V_ISxVrMoB-OpCBDpvros2kLorh_HqfQOeZbKhlISKCU9pSQP0JvVM7OmDMiloz84Yq5GuhLe_o-qPpbtjiALmqqMaU1ZEsPbiTwxzsVMQWgiIwQJ0FbHCrLdV-byQgoC9HJ1G3YE5-bJS1Mt_RguAGQkLECPGs5ZrQTQpZsAJhdrPLW21PU75eTEVx3PXLHCNAnQ2477Lpb1_0_x5PK3eIFughTLLzuj3afoFnWy4Srjki20uaiX5hkAvoV67iULo-9XLcq_AYkaYiE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+an+interactome+network+between+lncRNAs+and+miRNAs+in+thyroid+cancer+reveals+SPTY2D1-AS1+as+a+new+tumor+suppressor&rft.jtitle=Scientific+reports&rft.au=Ram%C3%ADrez-Moya%2C+Julia&rft.au=Wert-Lamas%2C+Le%C3%B3n&rft.au=Acu%C3%B1a-Ru%C3%ADz%2C+Adri%C3%A1n&rft.au=Fletcher%2C+Alice&rft.date=2022-05-11&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=7706&rft_id=info:doi/10.1038%2Fs41598-022-11725-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |