Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber

The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of solution pH. Moreover, high temperature was in favor of the adsorption process. The background electrolyte (NaCl) not only reduced the uptake amount...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 364; no. 2; pp. 490 - 496
Main Authors Liu, Jianyong, Wan, Lihua, Zhang, Ling, Zhou, Qi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.12.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9797
1095-7103
1095-7103
DOI10.1016/j.jcis.2011.08.067

Cover

Abstract The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of solution pH. Moreover, high temperature was in favor of the adsorption process. The background electrolyte (NaCl) not only reduced the uptake amount but also increased the effect of intraparticle diffusion on adsorption of phosphate onto ACF-La. [Display omitted] ► The feasibility of phosphate removal using ACF-La as an adsorbent was investigated. ► The effect of pH on the phosphate adsorption mechanism was identified. ► The effect of ionic strength on the mass transport of phosphate ions onto the ACF-La was examined. ► The behavior of adsorption process by means of evaluating activation energy and thermodynamic parameters was studied. Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid–base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.
AbstractList Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid–base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.
Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid-base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid-base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.
The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of solution pH. Moreover, high temperature was in favor of the adsorption process. The background electrolyte (NaCl) not only reduced the uptake amount but also increased the effect of intraparticle diffusion on adsorption of phosphate onto ACF-La. [Display omitted] ► The feasibility of phosphate removal using ACF-La as an adsorbent was investigated. ► The effect of pH on the phosphate adsorption mechanism was identified. ► The effect of ionic strength on the mass transport of phosphate ions onto the ACF-La was examined. ► The behavior of adsorption process by means of evaluating activation energy and thermodynamic parameters was studied. Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid–base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.
Author Liu, Jianyong
Zhou, Qi
Zhang, Ling
Wan, Lihua
Author_xml – sequence: 1
  givenname: Jianyong
  surname: Liu
  fullname: Liu, Jianyong
– sequence: 2
  givenname: Lihua
  surname: Wan
  fullname: Wan, Lihua
– sequence: 3
  givenname: Ling
  surname: Zhang
  fullname: Zhang, Ling
  email: zhanglinglzu@staff.shu.edu.cn
– sequence: 4
  givenname: Qi
  surname: Zhou
  fullname: Zhou, Qi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24704174$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21937053$$D View this record in MEDLINE/PubMed
BookMark eNqF0stuEzEUBmALFdE08AIswBtUFp1wPBdfJDZVVShSJRbQteXxHDeOkvFgeyrx9jhKKiQWYeWFv9-2jv8LcjaGEQl5y2DFgPFPm9XG-rSqgbEVyBVw8YIsGKiuEgyaM7IAqFmlhBLn5CKlDRTYdeoVOa-ZagR0zYLMt86hzTQ4Ot1dUR9Gb2nKEcfHvL6iZhxoxt2E0eQ5Ig0jzWuk0zqkaW0yUjOkEKdccmUvB7o1Y16bcd5VQ5hwoMZm_1TgQK2JfVHO9xhfk5fObBO-Oa5L8vDl9ufNXXX__eu3m-v7ynYt5MpBMwBvmxalk6C47Hlvet5BLQUXqueuVi1reS-x5zUHZKY2rvheDAKlbJbk8nDuFMOvGVPWO58sbssrMcxJK97IVnQN_6-USrEG6jKzJfl4UjIJDau7Blih74507nc46Cn6nYm_9fP4C_hwBCZZs3XRjOVH_7pWQMtEW5w8OBtDShGdtj6b_dRzNH6rGeh9I_RG7xuh943QIHVpRInW_0SfTz8Zen8IORO0eYxl--FHARwAhAC5n8Lng8DyfU8eo07W42hx8LH0SQ_Bn7rgDyfn1y8
CODEN JCISA5
CitedBy_id crossref_primary_10_18307_2015_0317
crossref_primary_10_20964_2016_12_06
crossref_primary_10_1016_j_scitotenv_2022_154786
crossref_primary_10_1016_j_cej_2013_02_029
crossref_primary_10_1007_s11356_020_10976_w
crossref_primary_10_1016_j_biortech_2018_10_064
crossref_primary_10_1016_j_envint_2020_106115
crossref_primary_10_5004_dwt_2020_26266
crossref_primary_10_1016_j_chemosphere_2024_142909
crossref_primary_10_1039_D1RA08087C
crossref_primary_10_1016_j_jece_2021_106697
crossref_primary_10_1098_rsos_172257
crossref_primary_10_1016_j_cej_2017_06_052
crossref_primary_10_1039_c3ta15251k
crossref_primary_10_1080_02757540_2013_810726
crossref_primary_10_1139_er_2015_0080
crossref_primary_10_1016_j_cej_2021_132630
crossref_primary_10_1016_j_watres_2017_09_050
crossref_primary_10_1016_j_colsurfa_2019_123680
crossref_primary_10_1039_D3RA00064H
crossref_primary_10_1088_2053_1591_aa6020
crossref_primary_10_1039_C4RA01700E
crossref_primary_10_1080_10934529_2015_1055159
crossref_primary_10_1007_s44174_022_00029_w
crossref_primary_10_1007_s11705_014_1448_4
crossref_primary_10_1016_j_jhazmat_2020_124582
crossref_primary_10_1016_j_micromeso_2019_05_016
crossref_primary_10_1080_19443994_2016_1144533
crossref_primary_10_1016_j_crchbi_2021_100005
crossref_primary_10_1016_j_applthermaleng_2013_09_060
crossref_primary_10_1371_journal_pone_0142700
crossref_primary_10_1007_s13762_023_05246_4
crossref_primary_10_1039_C8RA01519H
crossref_primary_10_1080_19443994_2015_1038589
crossref_primary_10_2139_ssrn_3980081
crossref_primary_10_1016_j_jece_2014_04_010
crossref_primary_10_1016_j_jwpe_2020_101323
crossref_primary_10_1016_j_envpol_2015_08_018
crossref_primary_10_2166_wh_2015_210
crossref_primary_10_1016_j_watres_2017_06_085
crossref_primary_10_2139_ssrn_3974332
crossref_primary_10_1016_j_jenvman_2021_112245
crossref_primary_10_18307_2019_0506
crossref_primary_10_1016_j_chemosphere_2024_142878
crossref_primary_10_1016_j_chemosphere_2021_132267
crossref_primary_10_1016_j_surfin_2021_101330
crossref_primary_10_1007_s11051_012_0900_y
crossref_primary_10_1007_s11356_015_5453_z
crossref_primary_10_1016_j_jwpe_2024_106158
crossref_primary_10_1039_D4EW00052H
crossref_primary_10_2166_wst_2019_048
crossref_primary_10_2166_wst_2022_382
crossref_primary_10_1016_j_jenvman_2024_120502
crossref_primary_10_1016_j_scitotenv_2022_153153
crossref_primary_10_1007_s11270_012_1325_z
crossref_primary_10_1039_D4RA01929F
crossref_primary_10_2166_wrd_2016_212
crossref_primary_10_1016_j_etap_2023_104105
crossref_primary_10_1016_j_aca_2018_10_037
crossref_primary_10_1016_j_jenvman_2021_113203
crossref_primary_10_5004_dwt_2017_21563
crossref_primary_10_1016_j_cej_2021_134439
crossref_primary_10_1177_0263617419860620
crossref_primary_10_1016_j_scitotenv_2019_135959
crossref_primary_10_1016_j_talanta_2023_124997
crossref_primary_10_1007_s11356_019_06762_y
crossref_primary_10_1016_j_jcis_2015_11_043
crossref_primary_10_1016_j_scitotenv_2019_05_480
crossref_primary_10_1016_j_molliq_2019_112111
crossref_primary_10_1016_j_matdes_2015_12_095
crossref_primary_10_1016_j_chemosphere_2023_139191
crossref_primary_10_1016_j_jece_2017_03_014
crossref_primary_10_2166_wrd_2021_007
crossref_primary_10_1007_s11356_024_35444_7
crossref_primary_10_1016_j_colsurfa_2023_131042
crossref_primary_10_1039_C4TA06147K
crossref_primary_10_1016_j_chemosphere_2020_128378
crossref_primary_10_1016_j_chemosphere_2019_01_085
crossref_primary_10_1007_s10668_019_00396_3
crossref_primary_10_1039_C5NJ01928A
crossref_primary_10_1021_acsearthspacechem_4c00125
crossref_primary_10_1016_j_ijbiomac_2018_07_140
crossref_primary_10_1016_j_jenvman_2015_11_028
crossref_primary_10_1016_j_molliq_2019_111935
crossref_primary_10_1007_s11356_019_07577_7
crossref_primary_10_1016_j_apsusc_2017_07_272
crossref_primary_10_1021_acsenvironau_3c00069
crossref_primary_10_1016_j_biortech_2016_07_072
crossref_primary_10_1016_j_cclet_2021_01_046
crossref_primary_10_1039_C5RA12658D
crossref_primary_10_1016_j_chemosphere_2020_126580
crossref_primary_10_1039_c2jm31522j
crossref_primary_10_1016_j_jwpe_2022_103026
crossref_primary_10_1016_j_jtice_2015_12_007
crossref_primary_10_1016_j_molliq_2016_01_020
crossref_primary_10_5004_dwt_2020_26622
crossref_primary_10_5004_dwt_2019_23584
crossref_primary_10_1007_s11270_022_05637_2
crossref_primary_10_1080_09593330_2014_971884
crossref_primary_10_1038_s41598_019_39035_2
crossref_primary_10_1016_j_chemosphere_2014_02_024
crossref_primary_10_2166_wst_2021_086
crossref_primary_10_1073_pnas_2102583118
crossref_primary_10_1016_j_jece_2020_104632
crossref_primary_10_1002_jctb_4710
crossref_primary_10_1016_j_cej_2019_122566
crossref_primary_10_1038_s41598_018_34144_w
crossref_primary_10_1155_2015_546720
crossref_primary_10_2166_wst_2020_561
crossref_primary_10_5004_dwt_2022_28798
crossref_primary_10_1016_j_jes_2019_02_014
crossref_primary_10_1007_s11270_024_07474_x
crossref_primary_10_1016_j_jallcom_2018_04_177
crossref_primary_10_1016_j_catena_2022_106908
crossref_primary_10_1016_j_scitotenv_2021_151489
crossref_primary_10_1007_s10098_024_02958_0
crossref_primary_10_1016_j_apsusc_2014_07_039
crossref_primary_10_1016_j_chemosphere_2018_07_085
crossref_primary_10_1016_j_biortech_2019_121600
crossref_primary_10_1038_s41598_025_87754_6
crossref_primary_10_4236_gep_2022_108003
crossref_primary_10_1016_j_cej_2015_08_146
crossref_primary_10_1016_j_cej_2017_10_117
crossref_primary_10_1016_j_jcis_2014_02_020
crossref_primary_10_1016_j_ecoleng_2021_106245
crossref_primary_10_1007_s11356_022_19662_5
crossref_primary_10_1016_j_micromeso_2018_12_017
crossref_primary_10_1016_j_scitotenv_2017_10_193
crossref_primary_10_1039_D2NJ03584G
crossref_primary_10_1002_sae2_12039
crossref_primary_10_2166_wst_2018_441
crossref_primary_10_1016_j_seppur_2022_122513
crossref_primary_10_1039_C6RA24568D
crossref_primary_10_1080_15226514_2022_2040421
crossref_primary_10_1016_j_cej_2013_01_088
crossref_primary_10_1016_j_clay_2018_09_031
crossref_primary_10_1007_s11356_018_3754_8
crossref_primary_10_1007_s11356_021_15724_2
crossref_primary_10_1016_j_jece_2019_103223
crossref_primary_10_1016_j_jclepro_2016_03_088
crossref_primary_10_1007_s42452_020_2465_1
crossref_primary_10_1016_j_jece_2017_02_005
crossref_primary_10_1346_CCMN_2018_064118
crossref_primary_10_1016_j_jcis_2015_06_045
crossref_primary_10_1080_10643389_2020_1864958
crossref_primary_10_1016_j_chemosphere_2016_02_004
crossref_primary_10_1016_j_seppur_2017_09_015
crossref_primary_10_3103_S1063455X21040111
crossref_primary_10_1007_s11356_020_09271_5
crossref_primary_10_1007_s11270_013_1556_7
crossref_primary_10_2139_ssrn_4010653
crossref_primary_10_1016_j_seppur_2022_120924
crossref_primary_10_2166_wst_2018_230
crossref_primary_10_1021_acsomega_0c04955
crossref_primary_10_1007_s11164_020_04357_8
crossref_primary_10_1016_j_chemosphere_2021_132177
crossref_primary_10_1016_j_envpol_2025_125919
crossref_primary_10_1021_acs_jced_0c00352
crossref_primary_10_1080_15226514_2025_2467328
crossref_primary_10_1016_j_jece_2022_107329
crossref_primary_10_1039_C6TA04364J
crossref_primary_10_1016_j_apsusc_2013_07_114
crossref_primary_10_1021_acsestengg_3c00001
crossref_primary_10_5004_dwt_2019_24281
crossref_primary_10_1088_1757_899X_928_5_052021
crossref_primary_10_1016_j_heliyon_2023_e23179
crossref_primary_10_1016_j_jece_2019_103199
crossref_primary_10_1016_j_colsurfa_2021_126813
crossref_primary_10_1080_19443994_2013_826786
crossref_primary_10_4236_jeas_2018_84013
crossref_primary_10_1016_j_seppur_2021_119626
crossref_primary_10_1016_j_jwpe_2020_101741
crossref_primary_10_1098_rsos_210428
crossref_primary_10_3390_w14152326
crossref_primary_10_1016_j_scitotenv_2017_05_133
crossref_primary_10_1016_j_ecoleng_2013_12_056
crossref_primary_10_1088_2053_1591_ac1533
crossref_primary_10_1039_C7EW00421D
crossref_primary_10_4491_eer_2024_377
crossref_primary_10_1016_j_jece_2020_104645
Cites_doi 10.1016/j.jhazmat.2010.08.128
10.1016/j.colsurfa.2009.03.037
10.1016/j.fuel.2010.07.034
10.1016/j.carbon.2004.07.008
10.1016/j.jhazmat.2009.12.063
10.1021/es025755f
10.1016/j.watres.2009.06.055
10.1016/S1001-0742(07)60051-5
10.1016/j.jcis.2005.12.054
10.1021/la991242j
10.1016/S1001-0742(09)60141-8
10.1016/S1001-0742(08)62111-7
10.1016/j.colsurfa.2007.05.027
10.1016/j.jhazmat.2006.10.046
10.1016/S1001-0742(09)60069-3
10.1016/j.colsurfa.2004.12.015
10.1016/j.jhazmat.2009.02.025
10.1016/j.jcis.2005.11.011
10.4028/www.scientific.net/AMR.160-162.182
10.1016/j.clay.2009.09.009
10.1016/S0008-6223(98)00294-2
10.2175/106143096X127730
10.1016/j.jhazmat.2006.08.066
10.1016/j.jhazmat.2010.06.031
10.1016/j.jhazmat.2005.12.051
10.1016/j.jhazmat.2008.02.123
10.1021/la049363t
10.1016/j.cej.2009.02.006
10.1016/j.jhazmat.2008.05.131
10.1016/S0043-1354(98)00129-8
10.1016/j.cej.2008.06.024
10.1016/j.chemosphere.2007.04.022
ContentType Journal Article
Copyright 2011 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
NPM
7S9
L.6
7X8
7U5
8FD
L7M
DOI 10.1016/j.jcis.2011.08.067
DatabaseName AGRIS
CrossRef
Pascal-Francis
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
Technology Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 496
ExternalDocumentID 21937053
24704174
10_1016_j_jcis_2011_08_067
US201600077085
S0021979711010782
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAQXK
ABPIF
ABPTK
ADFGL
AFFNX
AI.
ASPBG
AVWKF
AZFZN
BBWZM
CAG
COF
D-I
EJD
FBQ
FEDTE
FGOYB
G-2
G8K
HLY
HVGLF
H~9
NDZJH
NEJ
R2-
SCB
SCE
SEW
VH1
WUQ
XFK
ZGI
ZXP
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
NPM
7S9
L.6
7X8
7U5
8FD
L7M
ID FETCH-LOGICAL-c540t-f03d06434e8f80968b6bab650287679b6f294146b8eb6260e1a2af434b7d7e883
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Sun Sep 28 08:31:10 EDT 2025
Sun Sep 28 07:18:57 EDT 2025
Mon Sep 29 06:19:55 EDT 2025
Thu Apr 03 07:09:36 EDT 2025
Mon Jul 21 09:16:27 EDT 2025
Wed Oct 01 02:00:31 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Wed Dec 27 19:16:11 EST 2023
Fri Feb 23 02:28:09 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Phosphate removal
Lanthanum
Kinetics
Adsorption
Activated carbon fiber
Lewis acid
Water
Phosphates
Experimental data
Ions
Mechanism
Acidic solution
Particle
Sorption
Ionic strength
Activated carbon
Chlorides
Thermodynamic parameter
pH
Models
Aqueous solution
Lewis base
Diffusion
Carbon fiber
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-f03d06434e8f80968b6bab650287679b6f294146b8eb6260e1a2af434b7d7e883
Notes http://dx.doi.org/10.1016/j.jcis.2011.08.067
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21937053
PQID 1803125301
PQPubID 24069
PageCount 7
ParticipantIDs proquest_miscellaneous_963847536
proquest_miscellaneous_899130205
proquest_miscellaneous_1803125301
pubmed_primary_21937053
pascalfrancis_primary_24704174
crossref_citationtrail_10_1016_j_jcis_2011_08_067
crossref_primary_10_1016_j_jcis_2011_08_067
fao_agris_US201600077085
elsevier_sciencedirect_doi_10_1016_j_jcis_2011_08_067
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-12-15
PublicationDateYYYYMMDD 2011-12-15
PublicationDate_xml – month: 12
  year: 2011
  text: 2011-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Liang, Liu, Wei, Guo (b0025) 2010; 22
Cai, Zheng, Liang, Liang (b0055) 2010; 160
Cooperband (b0010) 2002; 36
El-Merraoui, Aoshima, Kaneko (b0065) 2000; 16
Pan, Wu, Pan, Lv, Zhang, Xiao, Wang, Tao, Zheng (b0050) 2009; 43
Xue, Hou, Zhu (b0145) 2009; 162
Chitrakar, Tezuka, Sonoda, Sakane, Ooi, Hirotsu, Colloid (b0155) 2006; 297
Delaneya, Manamon, Hanrahan, Copley, Holmes, Morris (b0040) 2011; 185
Lu, Bai, Zhu, Shan (b0060) 2009; 161
Zhang, Shen, Shan, Chen, Mei, Lei, Wang (b0085) 2010; 22
Zhang, Wan, Chang, Liu, Duan, Zhou, Li, Wang (b0115) 2011; 190
Haghseresht, Wang, Do (b0160) 2009; 46
Das, Gaur, Verma (b0075) 2004; 42
Chubar, Kanibolotskyy, Strelko (b0125) 2005; 255
Wu, Lam, Lee, Lau (b0100) 2007; 69
Guan, Chen, Shang (b0170) 2007; 19
Kim, Yim, Jung, Lee (b0015) 2006; 136
Tang, Zheng, Lin, Luan, Zhang (b0070) 2007; 143
Wasay, Haron, Tokunaga (b0110) 1996; 68
Unuabonah, Adebowale, Olu-Owolabi (b0130) 2007; 144
Chitrakar, Tezuka, Sonoda, Sakane, Ooi, Hirotsu, Colloid (b0120) 2006; 298
Zhao, Yue, Li, Gao, Han, Yu (b0045) 2010; 182
Cheng, Huang, Wang, Sun (b0035) 2010; 177
Ning, Bart, Li, Lu, Zhang (b0090) 2008; 20
Mino, Van Loosdrecht, Heijnen (b0020) 1998; 32
Li, Ru, Yin, Liu, Wang, Zhang (b0105) 2009; 168
Yang, Chun, Sheng, Huang (b0140) 2004; 20
Mezenner, Bensmaili (b0165) 2009; 147
Borgnino, Avena, De Pauli (b0030) 2009; 341
Tian, Jiang, Ning, Su (b0150) 2009; 151
Ou, Zhou, Mao, Wang, Xia, Min (b0095) 2007; 308
Xu, Deng, Liu, Peng (b0005) 2010; 89
APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 1998.
Tamai, Yoshida, Sasaki, Yasuda (b0080) 1999; 37
Li (10.1016/j.jcis.2011.08.067_b0105) 2009; 168
Liang (10.1016/j.jcis.2011.08.067_b0025) 2010; 22
Mezenner (10.1016/j.jcis.2011.08.067_b0165) 2009; 147
Zhao (10.1016/j.jcis.2011.08.067_b0045) 2010; 182
Kim (10.1016/j.jcis.2011.08.067_b0015) 2006; 136
El-Merraoui (10.1016/j.jcis.2011.08.067_b0065) 2000; 16
Ou (10.1016/j.jcis.2011.08.067_b0095) 2007; 308
Cai (10.1016/j.jcis.2011.08.067_b0055) 2010; 160
Ning (10.1016/j.jcis.2011.08.067_b0090) 2008; 20
Zhang (10.1016/j.jcis.2011.08.067_b0115) 2011; 190
Unuabonah (10.1016/j.jcis.2011.08.067_b0130) 2007; 144
Tian (10.1016/j.jcis.2011.08.067_b0150) 2009; 151
Chubar (10.1016/j.jcis.2011.08.067_b0125) 2005; 255
Cooperband (10.1016/j.jcis.2011.08.067_b0010) 2002; 36
Xue (10.1016/j.jcis.2011.08.067_b0145) 2009; 162
Wu (10.1016/j.jcis.2011.08.067_b0100) 2007; 69
Chitrakar (10.1016/j.jcis.2011.08.067_b0155) 2006; 297
Lu (10.1016/j.jcis.2011.08.067_b0060) 2009; 161
Haghseresht (10.1016/j.jcis.2011.08.067_b0160) 2009; 46
Tamai (10.1016/j.jcis.2011.08.067_b0080) 1999; 37
Xu (10.1016/j.jcis.2011.08.067_b0005) 2010; 89
Das (10.1016/j.jcis.2011.08.067_b0075) 2004; 42
Wasay (10.1016/j.jcis.2011.08.067_b0110) 1996; 68
Guan (10.1016/j.jcis.2011.08.067_b0170) 2007; 19
Cheng (10.1016/j.jcis.2011.08.067_b0035) 2010; 177
Delaneya (10.1016/j.jcis.2011.08.067_b0040) 2011; 185
10.1016/j.jcis.2011.08.067_b0135
Tang (10.1016/j.jcis.2011.08.067_b0070) 2007; 143
Pan (10.1016/j.jcis.2011.08.067_b0050) 2009; 43
Zhang (10.1016/j.jcis.2011.08.067_b0085) 2010; 22
Borgnino (10.1016/j.jcis.2011.08.067_b0030) 2009; 341
Chitrakar (10.1016/j.jcis.2011.08.067_b0120) 2006; 298
Mino (10.1016/j.jcis.2011.08.067_b0020) 1998; 32
Yang (10.1016/j.jcis.2011.08.067_b0140) 2004; 20
References_xml – volume: 177
  start-page: 516
  year: 2010
  end-page: 523
  ident: b0035
  publication-title: J. Hazard. Mater.
– volume: 143
  start-page: 49
  year: 2007
  end-page: 56
  ident: b0070
  publication-title: J. Hazard. Mater.
– volume: 42
  start-page: 2949
  year: 2004
  end-page: 2962
  ident: b0075
  publication-title: Carbon
– volume: 32
  start-page: 3193
  year: 1998
  end-page: 3207
  ident: b0020
  publication-title: Water Res.
– volume: 168
  start-page: 326
  year: 2009
  end-page: 330
  ident: b0105
  publication-title: J. Hazard. Mater.
– volume: 36
  start-page: 5075
  year: 2002
  end-page: 5082
  ident: b0010
  publication-title: Environ. Sci. Technol.
– volume: 37
  start-page: 983
  year: 1999
  end-page: 989
  ident: b0080
  publication-title: Carbon
– volume: 151
  start-page: 141
  year: 2009
  end-page: 148
  ident: b0150
  publication-title: Chem. Eng. J.
– volume: 160
  start-page: 182
  year: 2010
  end-page: 188
  ident: b0055
  publication-title: Adv. Mater. Res.
– volume: 308
  start-page: 47
  year: 2007
  end-page: 53
  ident: b0095
  publication-title: Colloid Surf. A: Physicochem. Eng. Asp.
– reference: APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 1998.
– volume: 19
  start-page: 312
  year: 2007
  end-page: 318
  ident: b0170
  publication-title: J. Environ. Sci.
– volume: 298
  start-page: 602
  year: 2006
  end-page: 608
  ident: b0120
  publication-title: Interface Sci.
– volume: 144
  start-page: 386
  year: 2007
  end-page: 395
  ident: b0130
  publication-title: J. Hazard. Mater.
– volume: 185
  start-page: 382
  year: 2011
  end-page: 391
  ident: b0040
  publication-title: J. Hazard. Mater.
– volume: 161
  start-page: 95
  year: 2009
  end-page: 101
  ident: b0060
  publication-title: J. Hazard. Mater.
– volume: 22
  start-page: 15
  year: 2010
  end-page: 22
  ident: b0025
  publication-title: J. Environ. Sci.
– volume: 43
  start-page: 4421
  year: 2009
  end-page: 4429
  ident: b0050
  publication-title: Water Res.
– volume: 16
  start-page: 4300
  year: 2000
  end-page: 4304
  ident: b0065
  publication-title: Langmuir
– volume: 89
  start-page: 3668
  year: 2010
  end-page: 3674
  ident: b0005
  publication-title: Fuel
– volume: 20
  start-page: 6736
  year: 2004
  end-page: 6741
  ident: b0140
  publication-title: Langmuir
– volume: 182
  start-page: 309
  year: 2010
  end-page: 316
  ident: b0045
  publication-title: J. Hazard. Mater.
– volume: 69
  start-page: 289
  year: 2007
  end-page: 294
  ident: b0100
  publication-title: Chemosphere
– volume: 162
  start-page: 973
  year: 2009
  end-page: 980
  ident: b0145
  publication-title: J. Hazard. Mater.
– volume: 136
  start-page: 690
  year: 2006
  end-page: 697
  ident: b0015
  publication-title: J. Hazard. Mater.
– volume: 255
  start-page: 55
  year: 2005
  end-page: 63
  ident: b0125
  publication-title: Colloid Surf. A: Physicochem. Eng. Asp.
– volume: 20
  start-page: 670
  year: 2008
  end-page: 674
  ident: b0090
  publication-title: J. Environ. Sci.
– volume: 147
  start-page: 87
  year: 2009
  end-page: 96
  ident: b0165
  publication-title: Chem. Eng. J.
– volume: 190
  start-page: 845
  year: 2011
  end-page: 855
  ident: b0115
  publication-title: J. Hazard. Mater.
– volume: 297
  start-page: 426
  year: 2006
  end-page: 433
  ident: b0155
  publication-title: Interface Sci.
– volume: 68
  start-page: 295
  year: 1996
  end-page: 300
  ident: b0110
  publication-title: Water Environ. Res.
– volume: 341
  start-page: 46
  year: 2009
  end-page: 52
  ident: b0030
  publication-title: Colloid Surf. A: Physicochem. Eng. Asp.
– volume: 46
  start-page: 369
  year: 2009
  end-page: 375
  ident: b0160
  publication-title: Appl. Clay Sci.
– volume: 22
  start-page: 507
  year: 2010
  end-page: 511
  ident: b0085
  publication-title: J. Environ. Sci.
– volume: 185
  start-page: 382
  year: 2011
  ident: 10.1016/j.jcis.2011.08.067_b0040
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.08.128
– volume: 341
  start-page: 46
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0030
  publication-title: Colloid Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2009.03.037
– volume: 89
  start-page: 3668
  year: 2010
  ident: 10.1016/j.jcis.2011.08.067_b0005
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.07.034
– volume: 42
  start-page: 2949
  year: 2004
  ident: 10.1016/j.jcis.2011.08.067_b0075
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.07.008
– volume: 177
  start-page: 516
  year: 2010
  ident: 10.1016/j.jcis.2011.08.067_b0035
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.12.063
– volume: 36
  start-page: 5075
  issue: 23
  year: 2002
  ident: 10.1016/j.jcis.2011.08.067_b0010
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es025755f
– volume: 43
  start-page: 4421
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0050
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.06.055
– volume: 19
  start-page: 312
  year: 2007
  ident: 10.1016/j.jcis.2011.08.067_b0170
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(07)60051-5
– volume: 190
  start-page: 845
  year: 2011
  ident: 10.1016/j.jcis.2011.08.067_b0115
  publication-title: J. Hazard. Mater.
– volume: 298
  start-page: 602
  year: 2006
  ident: 10.1016/j.jcis.2011.08.067_b0120
  publication-title: Interface Sci.
  doi: 10.1016/j.jcis.2005.12.054
– volume: 16
  start-page: 4300
  year: 2000
  ident: 10.1016/j.jcis.2011.08.067_b0065
  publication-title: Langmuir
  doi: 10.1021/la991242j
– volume: 22
  start-page: 507
  year: 2010
  ident: 10.1016/j.jcis.2011.08.067_b0085
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(09)60141-8
– volume: 20
  start-page: 670
  year: 2008
  ident: 10.1016/j.jcis.2011.08.067_b0090
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(08)62111-7
– volume: 308
  start-page: 47
  year: 2007
  ident: 10.1016/j.jcis.2011.08.067_b0095
  publication-title: Colloid Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2007.05.027
– volume: 144
  start-page: 386
  year: 2007
  ident: 10.1016/j.jcis.2011.08.067_b0130
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.10.046
– volume: 22
  start-page: 15
  year: 2010
  ident: 10.1016/j.jcis.2011.08.067_b0025
  publication-title: J. Environ. Sci.
  doi: 10.1016/S1001-0742(09)60069-3
– volume: 255
  start-page: 55
  year: 2005
  ident: 10.1016/j.jcis.2011.08.067_b0125
  publication-title: Colloid Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2004.12.015
– volume: 168
  start-page: 326
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0105
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2009.02.025
– volume: 297
  start-page: 426
  year: 2006
  ident: 10.1016/j.jcis.2011.08.067_b0155
  publication-title: Interface Sci.
  doi: 10.1016/j.jcis.2005.11.011
– volume: 160
  start-page: 182
  year: 2010
  ident: 10.1016/j.jcis.2011.08.067_b0055
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.160-162.182
– volume: 46
  start-page: 369
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0160
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2009.09.009
– volume: 37
  start-page: 983
  year: 1999
  ident: 10.1016/j.jcis.2011.08.067_b0080
  publication-title: Carbon
  doi: 10.1016/S0008-6223(98)00294-2
– volume: 68
  start-page: 295
  year: 1996
  ident: 10.1016/j.jcis.2011.08.067_b0110
  publication-title: Water Environ. Res.
  doi: 10.2175/106143096X127730
– volume: 143
  start-page: 49
  year: 2007
  ident: 10.1016/j.jcis.2011.08.067_b0070
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2006.08.066
– volume: 182
  start-page: 309
  year: 2010
  ident: 10.1016/j.jcis.2011.08.067_b0045
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.06.031
– volume: 136
  start-page: 690
  year: 2006
  ident: 10.1016/j.jcis.2011.08.067_b0015
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.12.051
– volume: 161
  start-page: 95
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0060
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.02.123
– ident: 10.1016/j.jcis.2011.08.067_b0135
– volume: 20
  start-page: 6736
  year: 2004
  ident: 10.1016/j.jcis.2011.08.067_b0140
  publication-title: Langmuir
  doi: 10.1021/la049363t
– volume: 151
  start-page: 141
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0150
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2009.02.006
– volume: 162
  start-page: 973
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0145
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2008.05.131
– volume: 32
  start-page: 3193
  year: 1998
  ident: 10.1016/j.jcis.2011.08.067_b0020
  publication-title: Water Res.
  doi: 10.1016/S0043-1354(98)00129-8
– volume: 147
  start-page: 87
  year: 2009
  ident: 10.1016/j.jcis.2011.08.067_b0165
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2008.06.024
– volume: 69
  start-page: 289
  year: 2007
  ident: 10.1016/j.jcis.2011.08.067_b0100
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.04.022
SSID ssj0011559
Score 2.4631379
Snippet The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of...
Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 490
SubjectTerms activated carbon
Activated carbon fiber
Adsorbents
Adsorption
aqueous solutions
carbon fibers
Chemistry
Diffusion
eutrophication
Exact sciences and technology
Fibers
General and physical chemistry
ionic strength
Kinetics
Lanthanum
Mathematical models
Phosphate removal
Phosphates
Sorption
Strength
Surface physical chemistry
temperature
thermodynamics
water pollution
Title Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber
URI https://dx.doi.org/10.1016/j.jcis.2011.08.067
https://www.ncbi.nlm.nih.gov/pubmed/21937053
https://www.proquest.com/docview/1803125301
https://www.proquest.com/docview/899130205
https://www.proquest.com/docview/963847536
Volume 364
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-7103
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011559
  issn: 0021-9797
  databaseCode: AKRWK
  dateStart: 19660101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHCgq0aenKSNxo6DqxE-dYragWEL3ASr1Zfna3Kkm02eXIb-9MHkt72B56jcaS47FnvrFnviHkUwDFcmls7ILQMRf4SJhYFjOXCZ9kwYqWYuPnZTad8e9X4mqHTIZaGEyr7G1_Z9Nba91_OetX86xeLLDGF05bXuTgwBg6Oqxg5xmm9X35t0nzYPjs1qV5sBil-8KZLsfrxi6aezSe-Tbn9CzoCrMmdQMLF7qOF9shaeuaLl6TvR5T0vNu2m_Iji_3yYvJ0Mptn7y6xzr4lqw7xmJaBVpPTyleyFqKNSPl9Wp-SnXpKBJW9WzLtCopgERaz6umngMypdo11bK1NBTJD-gtKGeuy_Wf2FW1dxRLJf6CoKNWLw1IBcxKeUdmF19_T6Zx330htoDiVnEYpw7xCvcySAh0pMmMNgDoIMbK8sJkISk42FkjvcGoyDOd6ADyJne5lzJ9T3bLqvSHWBdepNJbwBap5GlaSMu9G_sUgk8rRCgiwoZlV7anJscOGbdqyEG7UagqhapS2DYzyyPyeTOm7og5HpUWgzbVg-2lwHM8Ou4QVK_0NVhcNfuVIB8fMiABUI3I6MF-2Mwi4fmYQ6AXkY_DBlGgb3yI0aWv1o1iEkxpIsC2RoRukYE4GN-Ux2K7CNpODuFmFpGDbv_9nwPg8hyO4dET__uYvGwvz1kSM_GB7K6Wa38C6GtlRu3xGpHn599-TC_vAC5GKzM
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NDtMGzd1nqPTgN2W43GtmTLxyJY4a5tLmuA3gRZlpoUnW3EyX7_SD-y9pAedg0oQBEl8qNJfgT45lCxXObGL5zQPheUJAxN4AdFLGwYOyNaio3raZzN-M9bcbsDk6EXhsoqe9vf2fTWWve_nPaneVovFtTji68tSRN0YAE5ul3Y4wJt8gj2zi4us-kmmUCZt67SI_BpQd8705V53ZtF84jJM9nmn3adrqhwUjd4dq4berEdlbbe6fw1vOphJTvrdv4Gdmx5APuTYZrbAbx8RDz4FtYdaTGrHKuzE0bfZA2jtpHybjU_YbosGHFW9YTLrCoZ4kRWz6umniM4ZbpoqmVrbBjxH7AH1M9cl-vfflHVtmDULfEHBQtm9DJHKUeFKe9gdv7jZpL5_QAG3yCQW_luHBUEWbiVTmKsI_M41zliOgyz4iTNYxemHE1tLm1OgZENdKgdyudJkVgpo_cwKqvSHlFreBpJaxBeRJJHUSoNt8XYRhh_GiFc6kEwHLsyPTs5Dcl4UEMZ2r0iVSlSlaLJmXHiwffNmrrj5nhWWgzaVE9umELn8ey6I1S90ndodNXsV0iUfESChFjVg-Mn92Gzi5AnY46xngdfhwuiUN-Ui9GlrdaNCiRa01CgefWAbZHBUJjSymOxXYTMJ8eIM_bgsLt___aA0DzBl_jhP__3F9jPbq6v1NXF9PIjvGi_pQehH4hPMFot1_YzgrFVftw_tr9Ipi3e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+pH%2C+ionic+strength%2C+and+temperature+on+the+phosphate+adsorption+onto+lanthanum-doped+activated+carbon+fiber&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Liu%2C+Jianyong&rft.au=Wan%2C+Lihua&rft.au=Zhang%2C+Ling&rft.au=Zhou%2C+Qi&rft.date=2011-12-15&rft.issn=0021-9797&rft.volume=364&rft.issue=2&rft.spage=490&rft.epage=496&rft_id=info:doi/10.1016%2Fj.jcis.2011.08.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2011_08_067
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon