Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber
The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of solution pH. Moreover, high temperature was in favor of the adsorption process. The background electrolyte (NaCl) not only reduced the uptake amount...
Saved in:
Published in | Journal of colloid and interface science Vol. 364; no. 2; pp. 490 - 496 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.12.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9797 1095-7103 1095-7103 |
DOI | 10.1016/j.jcis.2011.08.067 |
Cover
Abstract | The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of solution pH. Moreover, high temperature was in favor of the adsorption process. The background electrolyte (NaCl) not only reduced the uptake amount but also increased the effect of intraparticle diffusion on adsorption of phosphate onto ACF-La. [Display omitted]
► The feasibility of phosphate removal using ACF-La as an adsorbent was investigated. ► The effect of pH on the phosphate adsorption mechanism was identified. ► The effect of ionic strength on the mass transport of phosphate ions onto the ACF-La was examined. ► The behavior of adsorption process by means of evaluating activation energy and thermodynamic parameters was studied.
Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid–base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption. |
---|---|
AbstractList | Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid–base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption. Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid-base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption.Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid-base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption. The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of solution pH. Moreover, high temperature was in favor of the adsorption process. The background electrolyte (NaCl) not only reduced the uptake amount but also increased the effect of intraparticle diffusion on adsorption of phosphate onto ACF-La. [Display omitted] ► The feasibility of phosphate removal using ACF-La as an adsorbent was investigated. ► The effect of pH on the phosphate adsorption mechanism was identified. ► The effect of ionic strength on the mass transport of phosphate ions onto the ACF-La was examined. ► The behavior of adsorption process by means of evaluating activation energy and thermodynamic parameters was studied. Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous solutions by using lanthanum-doped activated carbon fiber (ACF-La). Various batch sorption conditions, e.g., pH, ionic strength, and temperature were tested, and the adsorption mechanisms were discussed. The sorption capacity of ACF-La was higher in acidic solutions than that in basic ones, suggesting that the Lewis acid–base interaction gradually dominated the adsorption process with the increase in pH values. The degree of phosphate removal decreased with the enhancement of the ionic strength of the solution, meaning that the adsorption of phosphate on ACF-La was strongly dependent on ionic strength. Employing the pseudo first- and second-order, and intra-particle diffusion models to evaluate the adsorption kinetics of phosphate onto ACF-La indicated that the second-order model best fits the experimental data. The presence of chloride ion in solutions increased the effect of intra-particle diffusion on the adsorption of phosphate onto ACF-La but reduced the overall rate of the adsorption. The thermodynamic parameters were determined which revealed the feasibility, spontaneity, and endothermic nature of adsorption. |
Author | Liu, Jianyong Zhou, Qi Zhang, Ling Wan, Lihua |
Author_xml | – sequence: 1 givenname: Jianyong surname: Liu fullname: Liu, Jianyong – sequence: 2 givenname: Lihua surname: Wan fullname: Wan, Lihua – sequence: 3 givenname: Ling surname: Zhang fullname: Zhang, Ling email: zhanglinglzu@staff.shu.edu.cn – sequence: 4 givenname: Qi surname: Zhou fullname: Zhou, Qi |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24704174$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21937053$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0stuEzEUBmALFdE08AIswBtUFp1wPBdfJDZVVShSJRbQteXxHDeOkvFgeyrx9jhKKiQWYeWFv9-2jv8LcjaGEQl5y2DFgPFPm9XG-rSqgbEVyBVw8YIsGKiuEgyaM7IAqFmlhBLn5CKlDRTYdeoVOa-ZagR0zYLMt86hzTQ4Ot1dUR9Gb2nKEcfHvL6iZhxoxt2E0eQ5Ig0jzWuk0zqkaW0yUjOkEKdccmUvB7o1Y16bcd5VQ5hwoMZm_1TgQK2JfVHO9xhfk5fObBO-Oa5L8vDl9ufNXXX__eu3m-v7ynYt5MpBMwBvmxalk6C47Hlvet5BLQUXqueuVi1reS-x5zUHZKY2rvheDAKlbJbk8nDuFMOvGVPWO58sbssrMcxJK97IVnQN_6-USrEG6jKzJfl4UjIJDau7Blih74507nc46Cn6nYm_9fP4C_hwBCZZs3XRjOVH_7pWQMtEW5w8OBtDShGdtj6b_dRzNH6rGeh9I_RG7xuh943QIHVpRInW_0SfTz8Zen8IORO0eYxl--FHARwAhAC5n8Lng8DyfU8eo07W42hx8LH0SQ_Bn7rgDyfn1y8 |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_18307_2015_0317 crossref_primary_10_20964_2016_12_06 crossref_primary_10_1016_j_scitotenv_2022_154786 crossref_primary_10_1016_j_cej_2013_02_029 crossref_primary_10_1007_s11356_020_10976_w crossref_primary_10_1016_j_biortech_2018_10_064 crossref_primary_10_1016_j_envint_2020_106115 crossref_primary_10_5004_dwt_2020_26266 crossref_primary_10_1016_j_chemosphere_2024_142909 crossref_primary_10_1039_D1RA08087C crossref_primary_10_1016_j_jece_2021_106697 crossref_primary_10_1098_rsos_172257 crossref_primary_10_1016_j_cej_2017_06_052 crossref_primary_10_1039_c3ta15251k crossref_primary_10_1080_02757540_2013_810726 crossref_primary_10_1139_er_2015_0080 crossref_primary_10_1016_j_cej_2021_132630 crossref_primary_10_1016_j_watres_2017_09_050 crossref_primary_10_1016_j_colsurfa_2019_123680 crossref_primary_10_1039_D3RA00064H crossref_primary_10_1088_2053_1591_aa6020 crossref_primary_10_1039_C4RA01700E crossref_primary_10_1080_10934529_2015_1055159 crossref_primary_10_1007_s44174_022_00029_w crossref_primary_10_1007_s11705_014_1448_4 crossref_primary_10_1016_j_jhazmat_2020_124582 crossref_primary_10_1016_j_micromeso_2019_05_016 crossref_primary_10_1080_19443994_2016_1144533 crossref_primary_10_1016_j_crchbi_2021_100005 crossref_primary_10_1016_j_applthermaleng_2013_09_060 crossref_primary_10_1371_journal_pone_0142700 crossref_primary_10_1007_s13762_023_05246_4 crossref_primary_10_1039_C8RA01519H crossref_primary_10_1080_19443994_2015_1038589 crossref_primary_10_2139_ssrn_3980081 crossref_primary_10_1016_j_jece_2014_04_010 crossref_primary_10_1016_j_jwpe_2020_101323 crossref_primary_10_1016_j_envpol_2015_08_018 crossref_primary_10_2166_wh_2015_210 crossref_primary_10_1016_j_watres_2017_06_085 crossref_primary_10_2139_ssrn_3974332 crossref_primary_10_1016_j_jenvman_2021_112245 crossref_primary_10_18307_2019_0506 crossref_primary_10_1016_j_chemosphere_2024_142878 crossref_primary_10_1016_j_chemosphere_2021_132267 crossref_primary_10_1016_j_surfin_2021_101330 crossref_primary_10_1007_s11051_012_0900_y crossref_primary_10_1007_s11356_015_5453_z crossref_primary_10_1016_j_jwpe_2024_106158 crossref_primary_10_1039_D4EW00052H crossref_primary_10_2166_wst_2019_048 crossref_primary_10_2166_wst_2022_382 crossref_primary_10_1016_j_jenvman_2024_120502 crossref_primary_10_1016_j_scitotenv_2022_153153 crossref_primary_10_1007_s11270_012_1325_z crossref_primary_10_1039_D4RA01929F crossref_primary_10_2166_wrd_2016_212 crossref_primary_10_1016_j_etap_2023_104105 crossref_primary_10_1016_j_aca_2018_10_037 crossref_primary_10_1016_j_jenvman_2021_113203 crossref_primary_10_5004_dwt_2017_21563 crossref_primary_10_1016_j_cej_2021_134439 crossref_primary_10_1177_0263617419860620 crossref_primary_10_1016_j_scitotenv_2019_135959 crossref_primary_10_1016_j_talanta_2023_124997 crossref_primary_10_1007_s11356_019_06762_y crossref_primary_10_1016_j_jcis_2015_11_043 crossref_primary_10_1016_j_scitotenv_2019_05_480 crossref_primary_10_1016_j_molliq_2019_112111 crossref_primary_10_1016_j_matdes_2015_12_095 crossref_primary_10_1016_j_chemosphere_2023_139191 crossref_primary_10_1016_j_jece_2017_03_014 crossref_primary_10_2166_wrd_2021_007 crossref_primary_10_1007_s11356_024_35444_7 crossref_primary_10_1016_j_colsurfa_2023_131042 crossref_primary_10_1039_C4TA06147K crossref_primary_10_1016_j_chemosphere_2020_128378 crossref_primary_10_1016_j_chemosphere_2019_01_085 crossref_primary_10_1007_s10668_019_00396_3 crossref_primary_10_1039_C5NJ01928A crossref_primary_10_1021_acsearthspacechem_4c00125 crossref_primary_10_1016_j_ijbiomac_2018_07_140 crossref_primary_10_1016_j_jenvman_2015_11_028 crossref_primary_10_1016_j_molliq_2019_111935 crossref_primary_10_1007_s11356_019_07577_7 crossref_primary_10_1016_j_apsusc_2017_07_272 crossref_primary_10_1021_acsenvironau_3c00069 crossref_primary_10_1016_j_biortech_2016_07_072 crossref_primary_10_1016_j_cclet_2021_01_046 crossref_primary_10_1039_C5RA12658D crossref_primary_10_1016_j_chemosphere_2020_126580 crossref_primary_10_1039_c2jm31522j crossref_primary_10_1016_j_jwpe_2022_103026 crossref_primary_10_1016_j_jtice_2015_12_007 crossref_primary_10_1016_j_molliq_2016_01_020 crossref_primary_10_5004_dwt_2020_26622 crossref_primary_10_5004_dwt_2019_23584 crossref_primary_10_1007_s11270_022_05637_2 crossref_primary_10_1080_09593330_2014_971884 crossref_primary_10_1038_s41598_019_39035_2 crossref_primary_10_1016_j_chemosphere_2014_02_024 crossref_primary_10_2166_wst_2021_086 crossref_primary_10_1073_pnas_2102583118 crossref_primary_10_1016_j_jece_2020_104632 crossref_primary_10_1002_jctb_4710 crossref_primary_10_1016_j_cej_2019_122566 crossref_primary_10_1038_s41598_018_34144_w crossref_primary_10_1155_2015_546720 crossref_primary_10_2166_wst_2020_561 crossref_primary_10_5004_dwt_2022_28798 crossref_primary_10_1016_j_jes_2019_02_014 crossref_primary_10_1007_s11270_024_07474_x crossref_primary_10_1016_j_jallcom_2018_04_177 crossref_primary_10_1016_j_catena_2022_106908 crossref_primary_10_1016_j_scitotenv_2021_151489 crossref_primary_10_1007_s10098_024_02958_0 crossref_primary_10_1016_j_apsusc_2014_07_039 crossref_primary_10_1016_j_chemosphere_2018_07_085 crossref_primary_10_1016_j_biortech_2019_121600 crossref_primary_10_1038_s41598_025_87754_6 crossref_primary_10_4236_gep_2022_108003 crossref_primary_10_1016_j_cej_2015_08_146 crossref_primary_10_1016_j_cej_2017_10_117 crossref_primary_10_1016_j_jcis_2014_02_020 crossref_primary_10_1016_j_ecoleng_2021_106245 crossref_primary_10_1007_s11356_022_19662_5 crossref_primary_10_1016_j_micromeso_2018_12_017 crossref_primary_10_1016_j_scitotenv_2017_10_193 crossref_primary_10_1039_D2NJ03584G crossref_primary_10_1002_sae2_12039 crossref_primary_10_2166_wst_2018_441 crossref_primary_10_1016_j_seppur_2022_122513 crossref_primary_10_1039_C6RA24568D crossref_primary_10_1080_15226514_2022_2040421 crossref_primary_10_1016_j_cej_2013_01_088 crossref_primary_10_1016_j_clay_2018_09_031 crossref_primary_10_1007_s11356_018_3754_8 crossref_primary_10_1007_s11356_021_15724_2 crossref_primary_10_1016_j_jece_2019_103223 crossref_primary_10_1016_j_jclepro_2016_03_088 crossref_primary_10_1007_s42452_020_2465_1 crossref_primary_10_1016_j_jece_2017_02_005 crossref_primary_10_1346_CCMN_2018_064118 crossref_primary_10_1016_j_jcis_2015_06_045 crossref_primary_10_1080_10643389_2020_1864958 crossref_primary_10_1016_j_chemosphere_2016_02_004 crossref_primary_10_1016_j_seppur_2017_09_015 crossref_primary_10_3103_S1063455X21040111 crossref_primary_10_1007_s11356_020_09271_5 crossref_primary_10_1007_s11270_013_1556_7 crossref_primary_10_2139_ssrn_4010653 crossref_primary_10_1016_j_seppur_2022_120924 crossref_primary_10_2166_wst_2018_230 crossref_primary_10_1021_acsomega_0c04955 crossref_primary_10_1007_s11164_020_04357_8 crossref_primary_10_1016_j_chemosphere_2021_132177 crossref_primary_10_1016_j_envpol_2025_125919 crossref_primary_10_1021_acs_jced_0c00352 crossref_primary_10_1080_15226514_2025_2467328 crossref_primary_10_1016_j_jece_2022_107329 crossref_primary_10_1039_C6TA04364J crossref_primary_10_1016_j_apsusc_2013_07_114 crossref_primary_10_1021_acsestengg_3c00001 crossref_primary_10_5004_dwt_2019_24281 crossref_primary_10_1088_1757_899X_928_5_052021 crossref_primary_10_1016_j_heliyon_2023_e23179 crossref_primary_10_1016_j_jece_2019_103199 crossref_primary_10_1016_j_colsurfa_2021_126813 crossref_primary_10_1080_19443994_2013_826786 crossref_primary_10_4236_jeas_2018_84013 crossref_primary_10_1016_j_seppur_2021_119626 crossref_primary_10_1016_j_jwpe_2020_101741 crossref_primary_10_1098_rsos_210428 crossref_primary_10_3390_w14152326 crossref_primary_10_1016_j_scitotenv_2017_05_133 crossref_primary_10_1016_j_ecoleng_2013_12_056 crossref_primary_10_1088_2053_1591_ac1533 crossref_primary_10_1039_C7EW00421D crossref_primary_10_4491_eer_2024_377 crossref_primary_10_1016_j_jece_2020_104645 |
Cites_doi | 10.1016/j.jhazmat.2010.08.128 10.1016/j.colsurfa.2009.03.037 10.1016/j.fuel.2010.07.034 10.1016/j.carbon.2004.07.008 10.1016/j.jhazmat.2009.12.063 10.1021/es025755f 10.1016/j.watres.2009.06.055 10.1016/S1001-0742(07)60051-5 10.1016/j.jcis.2005.12.054 10.1021/la991242j 10.1016/S1001-0742(09)60141-8 10.1016/S1001-0742(08)62111-7 10.1016/j.colsurfa.2007.05.027 10.1016/j.jhazmat.2006.10.046 10.1016/S1001-0742(09)60069-3 10.1016/j.colsurfa.2004.12.015 10.1016/j.jhazmat.2009.02.025 10.1016/j.jcis.2005.11.011 10.4028/www.scientific.net/AMR.160-162.182 10.1016/j.clay.2009.09.009 10.1016/S0008-6223(98)00294-2 10.2175/106143096X127730 10.1016/j.jhazmat.2006.08.066 10.1016/j.jhazmat.2010.06.031 10.1016/j.jhazmat.2005.12.051 10.1016/j.jhazmat.2008.02.123 10.1021/la049363t 10.1016/j.cej.2009.02.006 10.1016/j.jhazmat.2008.05.131 10.1016/S0043-1354(98)00129-8 10.1016/j.cej.2008.06.024 10.1016/j.chemosphere.2007.04.022 |
ContentType | Journal Article |
Copyright | 2011 Elsevier Inc. 2015 INIST-CNRS Copyright © 2011 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Inc. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW NPM 7S9 L.6 7X8 7U5 8FD L7M |
DOI | 10.1016/j.jcis.2011.08.067 |
DatabaseName | AGRIS CrossRef Pascal-Francis PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | MEDLINE - Academic AGRICOLA Technology Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 496 |
ExternalDocumentID | 21937053 24704174 10_1016_j_jcis_2011_08_067 US201600077085 S0021979711010782 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SDP SES SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ WH7 XPP YQT ZMT ZU3 ~02 ~G- .GJ 29K 6TJ AAQXK ABPIF ABPTK ADFGL AFFNX AI. ASPBG AVWKF AZFZN BBWZM CAG COF D-I EJD FBQ FEDTE FGOYB G-2 G8K HLY HVGLF H~9 NDZJH NEJ R2- SCB SCE SEW VH1 WUQ XFK ZGI ZXP AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH NPM 7S9 L.6 7X8 7U5 8FD L7M |
ID | FETCH-LOGICAL-c540t-f03d06434e8f80968b6bab650287679b6f294146b8eb6260e1a2af434b7d7e883 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Sun Sep 28 08:31:10 EDT 2025 Sun Sep 28 07:18:57 EDT 2025 Mon Sep 29 06:19:55 EDT 2025 Thu Apr 03 07:09:36 EDT 2025 Mon Jul 21 09:16:27 EDT 2025 Wed Oct 01 02:00:31 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Wed Dec 27 19:16:11 EST 2023 Fri Feb 23 02:28:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Phosphate removal Lanthanum Kinetics Adsorption Activated carbon fiber Lewis acid Water Phosphates Experimental data Ions Mechanism Acidic solution Particle Sorption Ionic strength Activated carbon Chlorides Thermodynamic parameter pH Models Aqueous solution Lewis base Diffusion Carbon fiber |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-f03d06434e8f80968b6bab650287679b6f294146b8eb6260e1a2af434b7d7e883 |
Notes | http://dx.doi.org/10.1016/j.jcis.2011.08.067 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21937053 |
PQID | 1803125301 |
PQPubID | 24069 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_963847536 proquest_miscellaneous_899130205 proquest_miscellaneous_1803125301 pubmed_primary_21937053 pascalfrancis_primary_24704174 crossref_citationtrail_10_1016_j_jcis_2011_08_067 crossref_primary_10_1016_j_jcis_2011_08_067 fao_agris_US201600077085 elsevier_sciencedirect_doi_10_1016_j_jcis_2011_08_067 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-12-15 |
PublicationDateYYYYMMDD | 2011-12-15 |
PublicationDate_xml | – month: 12 year: 2011 text: 2011-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Liang, Liu, Wei, Guo (b0025) 2010; 22 Cai, Zheng, Liang, Liang (b0055) 2010; 160 Cooperband (b0010) 2002; 36 El-Merraoui, Aoshima, Kaneko (b0065) 2000; 16 Pan, Wu, Pan, Lv, Zhang, Xiao, Wang, Tao, Zheng (b0050) 2009; 43 Xue, Hou, Zhu (b0145) 2009; 162 Chitrakar, Tezuka, Sonoda, Sakane, Ooi, Hirotsu, Colloid (b0155) 2006; 297 Delaneya, Manamon, Hanrahan, Copley, Holmes, Morris (b0040) 2011; 185 Lu, Bai, Zhu, Shan (b0060) 2009; 161 Zhang, Shen, Shan, Chen, Mei, Lei, Wang (b0085) 2010; 22 Zhang, Wan, Chang, Liu, Duan, Zhou, Li, Wang (b0115) 2011; 190 Haghseresht, Wang, Do (b0160) 2009; 46 Das, Gaur, Verma (b0075) 2004; 42 Chubar, Kanibolotskyy, Strelko (b0125) 2005; 255 Wu, Lam, Lee, Lau (b0100) 2007; 69 Guan, Chen, Shang (b0170) 2007; 19 Kim, Yim, Jung, Lee (b0015) 2006; 136 Tang, Zheng, Lin, Luan, Zhang (b0070) 2007; 143 Wasay, Haron, Tokunaga (b0110) 1996; 68 Unuabonah, Adebowale, Olu-Owolabi (b0130) 2007; 144 Chitrakar, Tezuka, Sonoda, Sakane, Ooi, Hirotsu, Colloid (b0120) 2006; 298 Zhao, Yue, Li, Gao, Han, Yu (b0045) 2010; 182 Cheng, Huang, Wang, Sun (b0035) 2010; 177 Ning, Bart, Li, Lu, Zhang (b0090) 2008; 20 Mino, Van Loosdrecht, Heijnen (b0020) 1998; 32 Li, Ru, Yin, Liu, Wang, Zhang (b0105) 2009; 168 Yang, Chun, Sheng, Huang (b0140) 2004; 20 Mezenner, Bensmaili (b0165) 2009; 147 Borgnino, Avena, De Pauli (b0030) 2009; 341 Tian, Jiang, Ning, Su (b0150) 2009; 151 Ou, Zhou, Mao, Wang, Xia, Min (b0095) 2007; 308 Xu, Deng, Liu, Peng (b0005) 2010; 89 APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 1998. Tamai, Yoshida, Sasaki, Yasuda (b0080) 1999; 37 Li (10.1016/j.jcis.2011.08.067_b0105) 2009; 168 Liang (10.1016/j.jcis.2011.08.067_b0025) 2010; 22 Mezenner (10.1016/j.jcis.2011.08.067_b0165) 2009; 147 Zhao (10.1016/j.jcis.2011.08.067_b0045) 2010; 182 Kim (10.1016/j.jcis.2011.08.067_b0015) 2006; 136 El-Merraoui (10.1016/j.jcis.2011.08.067_b0065) 2000; 16 Ou (10.1016/j.jcis.2011.08.067_b0095) 2007; 308 Cai (10.1016/j.jcis.2011.08.067_b0055) 2010; 160 Ning (10.1016/j.jcis.2011.08.067_b0090) 2008; 20 Zhang (10.1016/j.jcis.2011.08.067_b0115) 2011; 190 Unuabonah (10.1016/j.jcis.2011.08.067_b0130) 2007; 144 Tian (10.1016/j.jcis.2011.08.067_b0150) 2009; 151 Chubar (10.1016/j.jcis.2011.08.067_b0125) 2005; 255 Cooperband (10.1016/j.jcis.2011.08.067_b0010) 2002; 36 Xue (10.1016/j.jcis.2011.08.067_b0145) 2009; 162 Wu (10.1016/j.jcis.2011.08.067_b0100) 2007; 69 Chitrakar (10.1016/j.jcis.2011.08.067_b0155) 2006; 297 Lu (10.1016/j.jcis.2011.08.067_b0060) 2009; 161 Haghseresht (10.1016/j.jcis.2011.08.067_b0160) 2009; 46 Tamai (10.1016/j.jcis.2011.08.067_b0080) 1999; 37 Xu (10.1016/j.jcis.2011.08.067_b0005) 2010; 89 Das (10.1016/j.jcis.2011.08.067_b0075) 2004; 42 Wasay (10.1016/j.jcis.2011.08.067_b0110) 1996; 68 Guan (10.1016/j.jcis.2011.08.067_b0170) 2007; 19 Cheng (10.1016/j.jcis.2011.08.067_b0035) 2010; 177 Delaneya (10.1016/j.jcis.2011.08.067_b0040) 2011; 185 10.1016/j.jcis.2011.08.067_b0135 Tang (10.1016/j.jcis.2011.08.067_b0070) 2007; 143 Pan (10.1016/j.jcis.2011.08.067_b0050) 2009; 43 Zhang (10.1016/j.jcis.2011.08.067_b0085) 2010; 22 Borgnino (10.1016/j.jcis.2011.08.067_b0030) 2009; 341 Chitrakar (10.1016/j.jcis.2011.08.067_b0120) 2006; 298 Mino (10.1016/j.jcis.2011.08.067_b0020) 1998; 32 Yang (10.1016/j.jcis.2011.08.067_b0140) 2004; 20 |
References_xml | – volume: 177 start-page: 516 year: 2010 end-page: 523 ident: b0035 publication-title: J. Hazard. Mater. – volume: 143 start-page: 49 year: 2007 end-page: 56 ident: b0070 publication-title: J. Hazard. Mater. – volume: 42 start-page: 2949 year: 2004 end-page: 2962 ident: b0075 publication-title: Carbon – volume: 32 start-page: 3193 year: 1998 end-page: 3207 ident: b0020 publication-title: Water Res. – volume: 168 start-page: 326 year: 2009 end-page: 330 ident: b0105 publication-title: J. Hazard. Mater. – volume: 36 start-page: 5075 year: 2002 end-page: 5082 ident: b0010 publication-title: Environ. Sci. Technol. – volume: 37 start-page: 983 year: 1999 end-page: 989 ident: b0080 publication-title: Carbon – volume: 151 start-page: 141 year: 2009 end-page: 148 ident: b0150 publication-title: Chem. Eng. J. – volume: 160 start-page: 182 year: 2010 end-page: 188 ident: b0055 publication-title: Adv. Mater. Res. – volume: 308 start-page: 47 year: 2007 end-page: 53 ident: b0095 publication-title: Colloid Surf. A: Physicochem. Eng. Asp. – reference: APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC, USA, 1998. – volume: 19 start-page: 312 year: 2007 end-page: 318 ident: b0170 publication-title: J. Environ. Sci. – volume: 298 start-page: 602 year: 2006 end-page: 608 ident: b0120 publication-title: Interface Sci. – volume: 144 start-page: 386 year: 2007 end-page: 395 ident: b0130 publication-title: J. Hazard. Mater. – volume: 185 start-page: 382 year: 2011 end-page: 391 ident: b0040 publication-title: J. Hazard. Mater. – volume: 161 start-page: 95 year: 2009 end-page: 101 ident: b0060 publication-title: J. Hazard. Mater. – volume: 22 start-page: 15 year: 2010 end-page: 22 ident: b0025 publication-title: J. Environ. Sci. – volume: 43 start-page: 4421 year: 2009 end-page: 4429 ident: b0050 publication-title: Water Res. – volume: 16 start-page: 4300 year: 2000 end-page: 4304 ident: b0065 publication-title: Langmuir – volume: 89 start-page: 3668 year: 2010 end-page: 3674 ident: b0005 publication-title: Fuel – volume: 20 start-page: 6736 year: 2004 end-page: 6741 ident: b0140 publication-title: Langmuir – volume: 182 start-page: 309 year: 2010 end-page: 316 ident: b0045 publication-title: J. Hazard. Mater. – volume: 69 start-page: 289 year: 2007 end-page: 294 ident: b0100 publication-title: Chemosphere – volume: 162 start-page: 973 year: 2009 end-page: 980 ident: b0145 publication-title: J. Hazard. Mater. – volume: 136 start-page: 690 year: 2006 end-page: 697 ident: b0015 publication-title: J. Hazard. Mater. – volume: 255 start-page: 55 year: 2005 end-page: 63 ident: b0125 publication-title: Colloid Surf. A: Physicochem. Eng. Asp. – volume: 20 start-page: 670 year: 2008 end-page: 674 ident: b0090 publication-title: J. Environ. Sci. – volume: 147 start-page: 87 year: 2009 end-page: 96 ident: b0165 publication-title: Chem. Eng. J. – volume: 190 start-page: 845 year: 2011 end-page: 855 ident: b0115 publication-title: J. Hazard. Mater. – volume: 297 start-page: 426 year: 2006 end-page: 433 ident: b0155 publication-title: Interface Sci. – volume: 68 start-page: 295 year: 1996 end-page: 300 ident: b0110 publication-title: Water Environ. Res. – volume: 341 start-page: 46 year: 2009 end-page: 52 ident: b0030 publication-title: Colloid Surf. A: Physicochem. Eng. Asp. – volume: 46 start-page: 369 year: 2009 end-page: 375 ident: b0160 publication-title: Appl. Clay Sci. – volume: 22 start-page: 507 year: 2010 end-page: 511 ident: b0085 publication-title: J. Environ. Sci. – volume: 185 start-page: 382 year: 2011 ident: 10.1016/j.jcis.2011.08.067_b0040 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.08.128 – volume: 341 start-page: 46 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0030 publication-title: Colloid Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2009.03.037 – volume: 89 start-page: 3668 year: 2010 ident: 10.1016/j.jcis.2011.08.067_b0005 publication-title: Fuel doi: 10.1016/j.fuel.2010.07.034 – volume: 42 start-page: 2949 year: 2004 ident: 10.1016/j.jcis.2011.08.067_b0075 publication-title: Carbon doi: 10.1016/j.carbon.2004.07.008 – volume: 177 start-page: 516 year: 2010 ident: 10.1016/j.jcis.2011.08.067_b0035 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.12.063 – volume: 36 start-page: 5075 issue: 23 year: 2002 ident: 10.1016/j.jcis.2011.08.067_b0010 publication-title: Environ. Sci. Technol. doi: 10.1021/es025755f – volume: 43 start-page: 4421 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0050 publication-title: Water Res. doi: 10.1016/j.watres.2009.06.055 – volume: 19 start-page: 312 year: 2007 ident: 10.1016/j.jcis.2011.08.067_b0170 publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(07)60051-5 – volume: 190 start-page: 845 year: 2011 ident: 10.1016/j.jcis.2011.08.067_b0115 publication-title: J. Hazard. Mater. – volume: 298 start-page: 602 year: 2006 ident: 10.1016/j.jcis.2011.08.067_b0120 publication-title: Interface Sci. doi: 10.1016/j.jcis.2005.12.054 – volume: 16 start-page: 4300 year: 2000 ident: 10.1016/j.jcis.2011.08.067_b0065 publication-title: Langmuir doi: 10.1021/la991242j – volume: 22 start-page: 507 year: 2010 ident: 10.1016/j.jcis.2011.08.067_b0085 publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60141-8 – volume: 20 start-page: 670 year: 2008 ident: 10.1016/j.jcis.2011.08.067_b0090 publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(08)62111-7 – volume: 308 start-page: 47 year: 2007 ident: 10.1016/j.jcis.2011.08.067_b0095 publication-title: Colloid Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2007.05.027 – volume: 144 start-page: 386 year: 2007 ident: 10.1016/j.jcis.2011.08.067_b0130 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.10.046 – volume: 22 start-page: 15 year: 2010 ident: 10.1016/j.jcis.2011.08.067_b0025 publication-title: J. Environ. Sci. doi: 10.1016/S1001-0742(09)60069-3 – volume: 255 start-page: 55 year: 2005 ident: 10.1016/j.jcis.2011.08.067_b0125 publication-title: Colloid Surf. A: Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2004.12.015 – volume: 168 start-page: 326 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0105 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2009.02.025 – volume: 297 start-page: 426 year: 2006 ident: 10.1016/j.jcis.2011.08.067_b0155 publication-title: Interface Sci. doi: 10.1016/j.jcis.2005.11.011 – volume: 160 start-page: 182 year: 2010 ident: 10.1016/j.jcis.2011.08.067_b0055 publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.160-162.182 – volume: 46 start-page: 369 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0160 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2009.09.009 – volume: 37 start-page: 983 year: 1999 ident: 10.1016/j.jcis.2011.08.067_b0080 publication-title: Carbon doi: 10.1016/S0008-6223(98)00294-2 – volume: 68 start-page: 295 year: 1996 ident: 10.1016/j.jcis.2011.08.067_b0110 publication-title: Water Environ. Res. doi: 10.2175/106143096X127730 – volume: 143 start-page: 49 year: 2007 ident: 10.1016/j.jcis.2011.08.067_b0070 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2006.08.066 – volume: 182 start-page: 309 year: 2010 ident: 10.1016/j.jcis.2011.08.067_b0045 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.06.031 – volume: 136 start-page: 690 year: 2006 ident: 10.1016/j.jcis.2011.08.067_b0015 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.12.051 – volume: 161 start-page: 95 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0060 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.02.123 – ident: 10.1016/j.jcis.2011.08.067_b0135 – volume: 20 start-page: 6736 year: 2004 ident: 10.1016/j.jcis.2011.08.067_b0140 publication-title: Langmuir doi: 10.1021/la049363t – volume: 151 start-page: 141 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0150 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2009.02.006 – volume: 162 start-page: 973 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0145 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2008.05.131 – volume: 32 start-page: 3193 year: 1998 ident: 10.1016/j.jcis.2011.08.067_b0020 publication-title: Water Res. doi: 10.1016/S0043-1354(98)00129-8 – volume: 147 start-page: 87 year: 2009 ident: 10.1016/j.jcis.2011.08.067_b0165 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.06.024 – volume: 69 start-page: 289 year: 2007 ident: 10.1016/j.jcis.2011.08.067_b0100 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2007.04.022 |
SSID | ssj0011559 |
Score | 2.4631379 |
Snippet | The phosphate adsorption onto ACF-La was strongly dependent on pH value and the main mechanism involved in adsorption process varied with the change of... Phosphate removal from polluted water is crucial to preventing eutrophication. Herein, we present the investigation on phosphate adsorption in aqueous... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 490 |
SubjectTerms | activated carbon Activated carbon fiber Adsorbents Adsorption aqueous solutions carbon fibers Chemistry Diffusion eutrophication Exact sciences and technology Fibers General and physical chemistry ionic strength Kinetics Lanthanum Mathematical models Phosphate removal Phosphates Sorption Strength Surface physical chemistry temperature thermodynamics water pollution |
Title | Effect of pH, ionic strength, and temperature on the phosphate adsorption onto lanthanum-doped activated carbon fiber |
URI | https://dx.doi.org/10.1016/j.jcis.2011.08.067 https://www.ncbi.nlm.nih.gov/pubmed/21937053 https://www.proquest.com/docview/1803125301 https://www.proquest.com/docview/899130205 https://www.proquest.com/docview/963847536 |
Volume | 364 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-7103 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1095-7103 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-7103 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1095-7103 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-7103 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011559 issn: 0021-9797 databaseCode: AKRWK dateStart: 19660101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOQCHCgq0aenKSNxo6DqxE-dYragWEL3ASr1Zfna3Kkm02eXIb-9MHkt72B56jcaS47FnvrFnviHkUwDFcmls7ILQMRf4SJhYFjOXCZ9kwYqWYuPnZTad8e9X4mqHTIZaGEyr7G1_Z9Nba91_OetX86xeLLDGF05bXuTgwBg6Oqxg5xmm9X35t0nzYPjs1qV5sBil-8KZLsfrxi6aezSe-Tbn9CzoCrMmdQMLF7qOF9shaeuaLl6TvR5T0vNu2m_Iji_3yYvJ0Mptn7y6xzr4lqw7xmJaBVpPTyleyFqKNSPl9Wp-SnXpKBJW9WzLtCopgERaz6umngMypdo11bK1NBTJD-gtKGeuy_Wf2FW1dxRLJf6CoKNWLw1IBcxKeUdmF19_T6Zx330htoDiVnEYpw7xCvcySAh0pMmMNgDoIMbK8sJkISk42FkjvcGoyDOd6ADyJne5lzJ9T3bLqvSHWBdepNJbwBap5GlaSMu9G_sUgk8rRCgiwoZlV7anJscOGbdqyEG7UagqhapS2DYzyyPyeTOm7og5HpUWgzbVg-2lwHM8Ou4QVK_0NVhcNfuVIB8fMiABUI3I6MF-2Mwi4fmYQ6AXkY_DBlGgb3yI0aWv1o1iEkxpIsC2RoRukYE4GN-Ux2K7CNpODuFmFpGDbv_9nwPg8hyO4dET__uYvGwvz1kSM_GB7K6Wa38C6GtlRu3xGpHn599-TC_vAC5GKzM |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCba9NDtMGzd1nqPTgN2W43GtmTLxyJY4a5tLmuA3gRZlpoUnW3EyX7_SD-y9pAedg0oQBEl8qNJfgT45lCxXObGL5zQPheUJAxN4AdFLGwYOyNaio3raZzN-M9bcbsDk6EXhsoqe9vf2fTWWve_nPaneVovFtTji68tSRN0YAE5ul3Y4wJt8gj2zi4us-kmmUCZt67SI_BpQd8705V53ZtF84jJM9nmn3adrqhwUjd4dq4berEdlbbe6fw1vOphJTvrdv4Gdmx5APuTYZrbAbx8RDz4FtYdaTGrHKuzE0bfZA2jtpHybjU_YbosGHFW9YTLrCoZ4kRWz6umniM4ZbpoqmVrbBjxH7AH1M9cl-vfflHVtmDULfEHBQtm9DJHKUeFKe9gdv7jZpL5_QAG3yCQW_luHBUEWbiVTmKsI_M41zliOgyz4iTNYxemHE1tLm1OgZENdKgdyudJkVgpo_cwKqvSHlFreBpJaxBeRJJHUSoNt8XYRhh_GiFc6kEwHLsyPTs5Dcl4UEMZ2r0iVSlSlaLJmXHiwffNmrrj5nhWWgzaVE9umELn8ey6I1S90ndodNXsV0iUfESChFjVg-Mn92Gzi5AnY46xngdfhwuiUN-Ui9GlrdaNCiRa01CgefWAbZHBUJjSymOxXYTMJ8eIM_bgsLt___aA0DzBl_jhP__3F9jPbq6v1NXF9PIjvGi_pQehH4hPMFot1_YzgrFVftw_tr9Ipi3e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+pH%2C+ionic+strength%2C+and+temperature+on+the+phosphate+adsorption+onto+lanthanum-doped+activated+carbon+fiber&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Liu%2C+Jianyong&rft.au=Wan%2C+Lihua&rft.au=Zhang%2C+Ling&rft.au=Zhou%2C+Qi&rft.date=2011-12-15&rft.issn=0021-9797&rft.volume=364&rft.issue=2&rft.spage=490&rft.epage=496&rft_id=info:doi/10.1016%2Fj.jcis.2011.08.067&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2011_08_067 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |