Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network
The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U...
        Saved in:
      
    
          | Published in | Scientific reports Vol. 12; no. 1; pp. 13460 - 11 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Nature Publishing Group UK
    
        05.08.2022
     Nature Publishing Group Nature Portfolio  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2045-2322 2045-2322  | 
| DOI | 10.1038/s41598-022-17341-6 | 
Cover
| Abstract | The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images. | 
    
|---|---|
| AbstractList | The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images. The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images. Abstract The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.  | 
    
| ArticleNumber | 13460 | 
    
| Author | Kim, Tae-Il Yi, Won-Jin Jeoun, Bo-Soung Lee, Sam-Sun Lee, Sang-Jeong Huh, Kyung-Hoe Heo, Min-Suk Kim, Jun-Min Yang, Su Kim, Jo-Eun  | 
    
| Author_xml | – sequence: 1 givenname: Bo-Soung surname: Jeoun fullname: Jeoun, Bo-Soung organization: Interdisciplinary Program in Bioengineering, Graduate School of Engineering, Seoul National University – sequence: 2 givenname: Su surname: Yang fullname: Yang, Su organization: Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University – sequence: 3 givenname: Sang-Jeong surname: Lee fullname: Lee, Sang-Jeong organization: Vision AI Business Team, LG CNS – sequence: 4 givenname: Tae-Il surname: Kim fullname: Kim, Tae-Il organization: Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University – sequence: 5 givenname: Jun-Min surname: Kim fullname: Kim, Jun-Min organization: Department of Electronics and Information Engineering, Hansung University – sequence: 6 givenname: Jo-Eun surname: Kim fullname: Kim, Jo-Eun organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University – sequence: 7 givenname: Kyung-Hoe surname: Huh fullname: Huh, Kyung-Hoe organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University – sequence: 8 givenname: Sam-Sun surname: Lee fullname: Lee, Sam-Sun organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University – sequence: 9 givenname: Min-Suk surname: Heo fullname: Heo, Min-Suk organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University – sequence: 10 givenname: Won-Jin surname: Yi fullname: Yi, Won-Jin email: wjyi@snu.ac.kr organization: Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35931733$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUk1v1DAUjFARLaV_gAOyxIVLwF-J7QsSLF-VKriUs_XiOMFL1i52wrJXfjnOZiltDxW-2HpvZjTvjR8XRz54WxRPCX5JMJOvEieVkiWmtCSCcVLWD4oTinlVUkbp0Y33cXGW0hrnU1HFiXpUHLNKscxiJ8XvFXgYys92RF2ICKYxbGB0BoFvUQzNlEbE3qFk-431Y-4Ej0KHNrntmmmAiMwskJDzaPV2dYncBnqb0JSc7xEgE_zo_OTGXQlbiHZfsL_GCQbk7bgN8fuT4mGXFezZ4T4tvn54f7n6VF58-Xi-enNRmorjsbQAhkssuhZTQwlRVYMr0jAGwrStULyrBOVKKEKVZIpy26qG59Xg2rbCYnZanC-6bYC1vorZadzpAE7vCyH2GmIefbBaAljJFSWVVFzUQgpOukYKEMzQrqmzFlu0Jn8Fuy0Mw7UgwXoOSC8B6RyQ3gekZ9brhXU1NRvbmrzRCMMtK7c73n3TffipFatqXMss8OIgEMOPyaZRb1wydhjA2zAlTWulBCacz9Dnd6DrMMU5qhkllaKsmlHPbjq6tvL3g2SAXAAmhpSi7bRxyzfIBt1w_7T0DvW_VnRYbMpg39v4z_Y9rD-Q7u-t | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3406342 crossref_primary_10_1016_j_jdent_2023_104582 crossref_primary_10_1093_dmfr_twad002 crossref_primary_10_1186_s12903_023_03452_7 crossref_primary_10_1016_j_jdent_2024_104931 crossref_primary_10_3389_fbioe_2023_1302524 crossref_primary_10_3724_zdxbyxb_2024_0256 crossref_primary_10_1038_s41598_024_62211_y crossref_primary_10_1016_j_jdent_2023_104727 crossref_primary_10_3390_oral2030022 crossref_primary_10_1109_TMI_2024_3457245 crossref_primary_10_5624_isd_20230245 crossref_primary_10_1038_s41598_025_91725_2 crossref_primary_10_1186_s12903_023_03496_9 crossref_primary_10_1186_s12903_023_03607_6  | 
    
| Cites_doi | 10.1109/ACCESS.2020.3002835 10.5624/isd.2014.44.4.273 10.12968/denu.2003.30.7.375 10.1038/s41598-019-45487-3 10.3990/1.9789036532808 10.1038/s41598-020-64509-z 10.5037/jomr.2014.5401 10.1590/s1678-77572011000300011 10.48550/arXiv.1706.05098 10.1109/CVPR.2019.00542 10.1007/978-3-319-24574-4_28 10.1007/978-3-642-04271-3_10 10.1902/jop.2006.060197 10.48550/arXiv.1702.0597 10.1038/s41598-021-94359-2 10.1259/dmfr/14340323 10.1109/TMI.2018.2881678 10.1259/dmfr.20200375 10.1109/TMI.2018.2791488 10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V 10.1038/s41598-020-62321-3 10.1016/j.mri.2012.05.001 10.1038/sj/dmfr/4600448 10.1109/JBHI.2016.2635663 10.3390/info8030091 10.1111/j.1834-7819.2008.00037.x 10.1007/s11548-016-1484-2 10.1007/978-3-319-67558-9_28 10.1162/neco_a_01199 10.1016/j.patcog.2016.05.029 10.1016/j.ijom.2009.06.007 10.1038/srep24454 10.1259/bjr.20120135 10.1007/s10384-019-00659-6 10.1109/TPAMI.2016.2644615 10.48550/arXiv.1506.04214 10.5037/jomr.2014.5402 10.1038/s41598-020-62586-8 10.1259/dmfr.20200185 10.1111/j.1365-2842.2010.02176.x 10.1007/978-3-319-46723-8_49 10.4103/jcis.JCIS_28_17 10.48550/arXiv.1409.3215 10.1371/journal.pone.0211579 10.1109/CCE.2012.6315922 10.1016/S0099-2399(06)81411-1  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2022. corrected publication 2022 2022. The Author(s). The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2022  | 
    
| Copyright_xml | – notice: The Author(s) 2022. corrected publication 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2022  | 
    
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1038/s41598-022-17341-6 | 
    
| DatabaseName | Springer Nature Open Access Journals (LUT & LAB) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology Dentistry  | 
    
| EISSN | 2045-2322 | 
    
| EndPage | 11 | 
    
| ExternalDocumentID | oai_doaj_org_article_8aae8492158947678741fb87a73c2fb6 10.1038/s41598-022-17341-6 PMC9356068 35931733 10_1038_s41598_022_17341_6  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: The Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety) grantid: 1711137883; KMDF_PR_20200901_0011; 1711138289; RS-2020-KD00014 – fundername: ; grantid: 1711137883; KMDF_PR_20200901_0011; 1711138289; RS-2020-KD00014  | 
    
| GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7XB 8FK K9. PKEHL PQEST PQUKI Q9U 7X8 5PM ADTOC EJD IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c540t-eaac4807fd02c21195b051b33a7cdd794f572497912983924ed9b473406ed7e03 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 2045-2322 | 
    
| IngestDate | Tue Oct 14 19:04:11 EDT 2025 Sun Oct 26 04:00:57 EDT 2025 Tue Sep 30 15:49:45 EDT 2025 Thu Sep 04 19:28:47 EDT 2025 Tue Oct 07 08:00:41 EDT 2025 Thu Jan 02 22:53:27 EST 2025 Wed Oct 01 04:54:55 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Fri Feb 21 02:36:44 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c540t-eaac4807fd02c21195b051b33a7cdd794f572497912983924ed9b473406ed7e03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-17341-6 | 
    
| PMID | 35931733 | 
    
| PQID | 2698992358 | 
    
| PQPubID | 2041939 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8aae8492158947678741fb87a73c2fb6 unpaywall_primary_10_1038_s41598_022_17341_6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356068 proquest_miscellaneous_2699701448 proquest_journals_2698992358 pubmed_primary_35931733 crossref_citationtrail_10_1038_s41598_022_17341_6 crossref_primary_10_1038_s41598_022_17341_6 springer_journals_10_1038_s41598_022_17341_6  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-08-05 | 
    
| PublicationDateYYYYMMDD | 2022-08-05 | 
    
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London – name: England  | 
    
| PublicationTitle | Scientific reports | 
    
| PublicationTitleAbbrev | Sci Rep | 
    
| PublicationTitleAlternate | Sci Rep | 
    
| PublicationYear | 2022 | 
    
| Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio  | 
    
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio  | 
    
| References | YinPYuanRChengYWuQDeep guidance network for biomedical image segmentationIEEE Access2020811610611611610.1109/ACCESS.2020.3002835 ShavitIJuodzbalysGInferior alveolar nerve injuries following implant placement—Importance of early diagnosis and treatment: A systematic reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5402 ShenWMulti-crop convolutional neural networks for lung nodule malignancy suspiciousness classificationPattern Recognit.2017616636732017PatRe..61..663S10.1016/j.patcog.2016.05.029 YuYSiXHuCZhangJA review of recurrent neural networks: LSTM cells and network architecturesNeural Comput.20193112351270398846410.1162/neco_a_011991494.68236 JungYHChoBHRadiographic evaluation of the course and visibility of the mandibular canalImaging Sci. Dent.20144427327810.5624/isd.2014.44.4.273 Ventura, C. et al. Rvos: End-to-end recurrent network for video object segmentation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5277–5286. (IEEE, 2019). NovikovAAMajorDWimmerMLenisDBuhlerKDeep sequential segmentation of organs in volumetric medical scansIEEE Trans. Med. Imaging2019381207121510.1109/TMI.2018.2881678 AbdolaliFAutomatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marchingInt. J. Comput. Assist. Radiol. Surg.20171258159310.1007/s11548-016-1484-2 DenioDTorabinejadMBaklandLKAnatomical relationship of the mandibular canal to its surrounding structures in mature mandiblesJ. Endod.1992181611651:STN:280:DyaK3s%2FhvVOhug%3D%3D10.1016/S0099-2399(06)81411-1 VinayahalingamSXiTBergeSMaalTde JongGAutomated detection of third molars and mandibular nerve by deep learningSci. Rep.2019990072019NatSR...9.9007V1:CAS:528:DC%2BC1MXht1GjsL7F10.1038/s41598-019-45487-3 MonsourPADudhiaRImplant radiography and radiologyAust. Dent. J.200853Suppl 1S112510.1111/j.1834-7819.2008.00037.x FedorovA3D Slicer as an image computing platform for the quantitative imaging networkMagn. Reason. Imaging2012301323134110.1016/j.mri.2012.05.001 Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215.https://doi.org/10.48550/arXiv.1409.3215 (2014). GhaeminiaHPosition of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiographyInt. J. Oral Maxillofac. Surg.2009389649711:STN:280:DC%2BD1Mnhslyisw%3D%3D10.1016/j.ijom.2009.06.007 YuYDeep transfer learning for modality classification of medical imagesInformation201789110.3390/info8030091 JaskariJDeep learning method for mandibular canal segmentation in dental cone beam computed tomography volumesSci. Rep.20201058422020NatSR..10.5842J1:CAS:528:DC%2BB3cXmsVOkt7Y%3D10.1038/s41598-020-62321-3 ChangH-JDeep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitisSci. Rep.20201075312020NatSR..10.7531C1:CAS:528:DC%2BB3cXovFGqtLk%3D10.1038/s41598-020-64509-z KumarAKimJLyndonDFulhamMFengDAn ensemble of fine-tuned convolutional neural networks for medical image classificationIEEE J. Biomed. Health Inform.201621314010.1109/JBHI.2016.2635663 Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 424–432. (Springer, 2016). KwonOAutomatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural networkDentomaxillofac. Radiol.2020492020018510.1259/dmfr.20200185 Christ, P. F. et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint: arXiv:1702.05970. https://doi.org/10.48550/arXiv.1702.0597 (2017). CarterRBKeenENThe intramandibular course of the inferior alveolar nerveJ. Anat.19711084334401:STN:280:DyaE3M7oslKmug%3D%3D Moris, B., Claesen, L., Sun, Y. & Politis, C. Automated tracking of the mandibular canal in cbct images using matching and multiple hypotheses methods. in 2012 Fourth International Conference on Communications and Electronics. 327–332. (IEEE, 2012). GreensteinGTarnowDThe mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature reviewJ. Periodontol.2006771933194310.1902/jop.2006.060197 Oliveira-SantosCVisibility of the mandibular canal on CBCT cross-sectional imagesJ. Appl. Oral Sci.20111924024310.1590/s1678-77572011000300011 Kainmueller, D., Lamecker, H., Seim, H., Zinser, M. & Zachow, S. Automatic extraction of mandibular nerve and bone from cone-beam CT data. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 76–83. (Springer, 2009). AhnJMA deep learning model for the detection of both advanced and early glaucoma using fundus photographyPLoS ONE20181310.1371/journal.pone.0211579 ChengJZComputer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scansSci. Rep.20166244542016NatSR...624454C1:CAS:528:DC%2BC28Xmt1eitLo%3D10.1038/srep24454 PhillipsCEssickGInferior alveolar nerve injury following orthognathic surgery: A review of assessment issuesJ. Oral Rehabil.2011385475541:STN:280:DC%2BC3MrnvVCgtA%3D%3D10.1111/j.1365-2842.2010.02176.x PauwelsRVariability of dental cone beam CT grey values for density estimationsBr. J. Radiol.201386201201351:STN:280:DC%2BC3szjsVCmsA%3D%3D10.1259/bjr.20120135 YongT-HQCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: A human skull phantom studySci. Rep.2021111131:CAS:528:DC%2BB3MXhslKhtbrJ10.1038/s41598-021-94359-2 LudlowJBDavies-LudlowLBrooksSHowertonWDosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CATDentomaxillofac. Radiol.2006352192261:STN:280:DC%2BD28vksFOgtg%3D%3D10.1259/dmfr/14340323 WaduSGPenhallBTownsendGCMorphological variability of the human inferior alveolar nerveClin. Anat.19971082871:STN:280:DyaK2s3htFSitw%3D%3D10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V PhanSSatohSIYodaYKashiwagiKOshikaTEvaluation of deep convolutional neural networks for glaucoma detectionJpn. J. Ophthalmol20196327628310.1007/s10384-019-00659-6 Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 240–248. (Springer, 2017). SarikovRJuodzbalysGInferior alveolar nerve injury after mandibular third molar extraction: A literature reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5401 BadrinarayananVKendallACipollaRSegNet: A deep convolutional encoder-decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.2644615 KroonD-JSegmentation of the mandibular canal in cone-beam CT dataUniv. Twente.201110.3990/1.9789036532808 AiCJJabarNALanTHRamliRMandibular canal enlargement: Clinical and radiological characteristicsJ. Clin. Imaging Sci.201772810.4103/jcis.JCIS_28_17 Ruder, S. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098. https://doi.org/10.48550/arXiv.1706.05098 (2017). HeoM-SArtificial intelligence in oral and maxillofacial radiology: What is currently possible?Dentomaxillofac. Radiol.2021502020037510.1259/dmfr.20200375 GhatakRNHelwanyMGinglenJGAnatomy, Head and Neck, Mandibular Nerve2020StatPearls FuHJoint optic disc and cup segmentation based on multi-label deep network and polar transformationIEEE Trans. Med. Imaging201837159716052018ITED...65.1597F10.1109/TMI.2018.2791488 Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241. (Springer, 2015). LoescherARSmithKGRobinsonPPNerve damage and third molar removalDent. Update2003303753801:STN:280:DC%2BD3svotVeguw%3D%3D10.12968/denu.2003.30.7.375382 Shi, X. et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214.https://doi.org/10.48550/arXiv.1506.04214 (2015). AraiYTammisaloEIwaiKHashimotoKShinodaKDevelopment of a compact computed tomographic apparatus for dental useDentomaxillofac. Radiol.1999282452481:STN:280:DC%2BD3czitlKmtw%3D%3D10.1038/sj/dmfr/4600448 GowgielJMThe position and course of the mandibular canalJ. Oral Implantol.1992183833851:STN:280:DyaK3s3isFWmsA%3D%3D KwakGHAutomatic mandibular canal detection using a deep convolutional neural networkSci. Rep.20201057112020NatSR..10.5711K1:CAS:528:DC%2BB3cXmtl2rtrs%3D10.1038/s41598-020-62586-8 A Kumar (17341_CR23) 2016; 21 J Jaskari (17341_CR14) 2020; 10 V Badrinarayanan (17341_CR40) 2017; 39 F Abdolali (17341_CR17) 2017; 12 17341_CR48 A Fedorov (17341_CR30) 2012; 30 17341_CR42 17341_CR41 YH Jung (17341_CR7) 2014; 44 Y Arai (17341_CR12) 1999; 28 D-J Kroon (17341_CR16) 2011 T-H Yong (17341_CR27) 2021; 11 O Kwon (17341_CR49) 2020; 49 GH Kwak (17341_CR10) 2020; 10 SG Wadu (17341_CR46) 1997; 10 17341_CR18 C Oliveira-Santos (17341_CR15) 2011; 19 JZ Cheng (17341_CR25) 2016; 6 H Ghaeminia (17341_CR8) 2009; 38 S Vinayahalingam (17341_CR9) 2019; 9 R Pauwels (17341_CR13) 2013; 86 JM Ahn (17341_CR19) 2018; 13 H-J Chang (17341_CR21) 2020; 10 R Sarikov (17341_CR3) 2014; 5 C Phillips (17341_CR4) 2011; 38 RN Ghatak (17341_CR1) 2020 G Greenstein (17341_CR29) 2006; 77 JB Ludlow (17341_CR11) 2006; 35 17341_CR26 CJ Ai (17341_CR6) 2017; 7 H Fu (17341_CR31) 2018; 37 AA Novikov (17341_CR33) 2019; 38 D Denio (17341_CR43) 1992; 18 S Phan (17341_CR20) 2019; 63 Y Yu (17341_CR34) 2019; 31 RB Carter (17341_CR47) 1971; 108 Y Yu (17341_CR24) 2017; 8 JM Gowgiel (17341_CR44) 1992; 18 W Shen (17341_CR22) 2017; 61 17341_CR39 AR Loescher (17341_CR5) 2003; 30 17341_CR37 17341_CR38 M-S Heo (17341_CR28) 2021; 50 I Shavit (17341_CR2) 2014; 5 17341_CR35 PA Monsour (17341_CR45) 2008; 53 P Yin (17341_CR32) 2020; 8 17341_CR36 36477659 - Sci Rep. 2022 Dec 7;12(1):21137  | 
    
| References_xml | – reference: Kainmueller, D., Lamecker, H., Seim, H., Zinser, M. & Zachow, S. Automatic extraction of mandibular nerve and bone from cone-beam CT data. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 76–83. (Springer, 2009). – reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241. (Springer, 2015). – reference: PauwelsRVariability of dental cone beam CT grey values for density estimationsBr. J. Radiol.201386201201351:STN:280:DC%2BC3szjsVCmsA%3D%3D10.1259/bjr.20120135 – reference: Moris, B., Claesen, L., Sun, Y. & Politis, C. Automated tracking of the mandibular canal in cbct images using matching and multiple hypotheses methods. in 2012 Fourth International Conference on Communications and Electronics. 327–332. (IEEE, 2012). – reference: FedorovA3D Slicer as an image computing platform for the quantitative imaging networkMagn. Reason. Imaging2012301323134110.1016/j.mri.2012.05.001 – reference: KumarAKimJLyndonDFulhamMFengDAn ensemble of fine-tuned convolutional neural networks for medical image classificationIEEE J. Biomed. Health Inform.201621314010.1109/JBHI.2016.2635663 – reference: YuYDeep transfer learning for modality classification of medical imagesInformation201789110.3390/info8030091 – reference: ShavitIJuodzbalysGInferior alveolar nerve injuries following implant placement—Importance of early diagnosis and treatment: A systematic reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5402 – reference: GhatakRNHelwanyMGinglenJGAnatomy, Head and Neck, Mandibular Nerve2020StatPearls – reference: GreensteinGTarnowDThe mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature reviewJ. Periodontol.2006771933194310.1902/jop.2006.060197 – reference: PhanSSatohSIYodaYKashiwagiKOshikaTEvaluation of deep convolutional neural networks for glaucoma detectionJpn. J. Ophthalmol20196327628310.1007/s10384-019-00659-6 – reference: GowgielJMThe position and course of the mandibular canalJ. Oral Implantol.1992183833851:STN:280:DyaK3s3isFWmsA%3D%3D – reference: AiCJJabarNALanTHRamliRMandibular canal enlargement: Clinical and radiological characteristicsJ. Clin. Imaging Sci.201772810.4103/jcis.JCIS_28_17 – reference: AbdolaliFAutomatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marchingInt. J. Comput. Assist. Radiol. Surg.20171258159310.1007/s11548-016-1484-2 – reference: YinPYuanRChengYWuQDeep guidance network for biomedical image segmentationIEEE Access2020811610611611610.1109/ACCESS.2020.3002835 – reference: AhnJMA deep learning model for the detection of both advanced and early glaucoma using fundus photographyPLoS ONE20181310.1371/journal.pone.0211579 – reference: PhillipsCEssickGInferior alveolar nerve injury following orthognathic surgery: A review of assessment issuesJ. Oral Rehabil.2011385475541:STN:280:DC%2BC3MrnvVCgtA%3D%3D10.1111/j.1365-2842.2010.02176.x – reference: YongT-HQCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: A human skull phantom studySci. Rep.2021111131:CAS:528:DC%2BB3MXhslKhtbrJ10.1038/s41598-021-94359-2 – reference: Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 424–432. (Springer, 2016). – reference: WaduSGPenhallBTownsendGCMorphological variability of the human inferior alveolar nerveClin. Anat.19971082871:STN:280:DyaK2s3htFSitw%3D%3D10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V – reference: GhaeminiaHPosition of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiographyInt. J. Oral Maxillofac. Surg.2009389649711:STN:280:DC%2BD1Mnhslyisw%3D%3D10.1016/j.ijom.2009.06.007 – reference: AraiYTammisaloEIwaiKHashimotoKShinodaKDevelopment of a compact computed tomographic apparatus for dental useDentomaxillofac. Radiol.1999282452481:STN:280:DC%2BD3czitlKmtw%3D%3D10.1038/sj/dmfr/4600448 – reference: VinayahalingamSXiTBergeSMaalTde JongGAutomated detection of third molars and mandibular nerve by deep learningSci. Rep.2019990072019NatSR...9.9007V1:CAS:528:DC%2BC1MXht1GjsL7F10.1038/s41598-019-45487-3 – reference: Shi, X. et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214.https://doi.org/10.48550/arXiv.1506.04214 (2015). – reference: KwonOAutomatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural networkDentomaxillofac. Radiol.2020492020018510.1259/dmfr.20200185 – reference: Ventura, C. et al. Rvos: End-to-end recurrent network for video object segmentation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5277–5286. (IEEE, 2019). – reference: KroonD-JSegmentation of the mandibular canal in cone-beam CT dataUniv. Twente.201110.3990/1.9789036532808 – reference: ChengJZComputer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scansSci. Rep.20166244542016NatSR...624454C1:CAS:528:DC%2BC28Xmt1eitLo%3D10.1038/srep24454 – reference: YuYSiXHuCZhangJA review of recurrent neural networks: LSTM cells and network architecturesNeural Comput.20193112351270398846410.1162/neco_a_011991494.68236 – reference: Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215.https://doi.org/10.48550/arXiv.1409.3215 (2014). – reference: ChangH-JDeep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitisSci. Rep.20201075312020NatSR..10.7531C1:CAS:528:DC%2BB3cXovFGqtLk%3D10.1038/s41598-020-64509-z – reference: NovikovAAMajorDWimmerMLenisDBuhlerKDeep sequential segmentation of organs in volumetric medical scansIEEE Trans. Med. Imaging2019381207121510.1109/TMI.2018.2881678 – reference: DenioDTorabinejadMBaklandLKAnatomical relationship of the mandibular canal to its surrounding structures in mature mandiblesJ. Endod.1992181611651:STN:280:DyaK3s%2FhvVOhug%3D%3D10.1016/S0099-2399(06)81411-1 – reference: LoescherARSmithKGRobinsonPPNerve damage and third molar removalDent. Update2003303753801:STN:280:DC%2BD3svotVeguw%3D%3D10.12968/denu.2003.30.7.375382 – reference: MonsourPADudhiaRImplant radiography and radiologyAust. Dent. J.200853Suppl 1S112510.1111/j.1834-7819.2008.00037.x – reference: HeoM-SArtificial intelligence in oral and maxillofacial radiology: What is currently possible?Dentomaxillofac. Radiol.2021502020037510.1259/dmfr.20200375 – reference: Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 240–248. (Springer, 2017). – reference: KwakGHAutomatic mandibular canal detection using a deep convolutional neural networkSci. Rep.20201057112020NatSR..10.5711K1:CAS:528:DC%2BB3cXmtl2rtrs%3D10.1038/s41598-020-62586-8 – reference: CarterRBKeenENThe intramandibular course of the inferior alveolar nerveJ. Anat.19711084334401:STN:280:DyaE3M7oslKmug%3D%3D – reference: SarikovRJuodzbalysGInferior alveolar nerve injury after mandibular third molar extraction: A literature reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5401 – reference: JungYHChoBHRadiographic evaluation of the course and visibility of the mandibular canalImaging Sci. Dent.20144427327810.5624/isd.2014.44.4.273 – reference: BadrinarayananVKendallACipollaRSegNet: A deep convolutional encoder-decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.2644615 – reference: Oliveira-SantosCVisibility of the mandibular canal on CBCT cross-sectional imagesJ. Appl. Oral Sci.20111924024310.1590/s1678-77572011000300011 – reference: FuHJoint optic disc and cup segmentation based on multi-label deep network and polar transformationIEEE Trans. Med. Imaging201837159716052018ITED...65.1597F10.1109/TMI.2018.2791488 – reference: LudlowJBDavies-LudlowLBrooksSHowertonWDosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CATDentomaxillofac. Radiol.2006352192261:STN:280:DC%2BD28vksFOgtg%3D%3D10.1259/dmfr/14340323 – reference: JaskariJDeep learning method for mandibular canal segmentation in dental cone beam computed tomography volumesSci. Rep.20201058422020NatSR..10.5842J1:CAS:528:DC%2BB3cXmsVOkt7Y%3D10.1038/s41598-020-62321-3 – reference: ShenWMulti-crop convolutional neural networks for lung nodule malignancy suspiciousness classificationPattern Recognit.2017616636732017PatRe..61..663S10.1016/j.patcog.2016.05.029 – reference: Christ, P. F. et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint: arXiv:1702.05970. https://doi.org/10.48550/arXiv.1702.0597 (2017). – reference: Ruder, S. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098. https://doi.org/10.48550/arXiv.1706.05098 (2017). – volume: 8 start-page: 116106 year: 2020 ident: 17341_CR32 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3002835 – volume: 44 start-page: 273 year: 2014 ident: 17341_CR7 publication-title: Imaging Sci. Dent. doi: 10.5624/isd.2014.44.4.273 – volume: 30 start-page: 375 year: 2003 ident: 17341_CR5 publication-title: Dent. Update doi: 10.12968/denu.2003.30.7.375 – volume: 9 start-page: 9007 year: 2019 ident: 17341_CR9 publication-title: Sci. Rep. doi: 10.1038/s41598-019-45487-3 – year: 2011 ident: 17341_CR16 publication-title: Univ. Twente. doi: 10.3990/1.9789036532808 – volume: 10 start-page: 7531 year: 2020 ident: 17341_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-020-64509-z – volume: 5 year: 2014 ident: 17341_CR3 publication-title: J. Oral Maxillofac. Res. doi: 10.5037/jomr.2014.5401 – volume: 19 start-page: 240 year: 2011 ident: 17341_CR15 publication-title: J. Appl. Oral Sci. doi: 10.1590/s1678-77572011000300011 – ident: 17341_CR48 doi: 10.48550/arXiv.1706.05098 – ident: 17341_CR36 doi: 10.1109/CVPR.2019.00542 – ident: 17341_CR39 doi: 10.1007/978-3-319-24574-4_28 – ident: 17341_CR18 doi: 10.1007/978-3-642-04271-3_10 – volume: 77 start-page: 1933 year: 2006 ident: 17341_CR29 publication-title: J. Periodontol. doi: 10.1902/jop.2006.060197 – ident: 17341_CR26 doi: 10.48550/arXiv.1702.0597 – volume: 11 start-page: 1 year: 2021 ident: 17341_CR27 publication-title: Sci. Rep. doi: 10.1038/s41598-021-94359-2 – volume: 35 start-page: 219 year: 2006 ident: 17341_CR11 publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr/14340323 – volume: 38 start-page: 1207 year: 2019 ident: 17341_CR33 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2881678 – volume: 50 start-page: 20200375 year: 2021 ident: 17341_CR28 publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20200375 – volume: 37 start-page: 1597 year: 2018 ident: 17341_CR31 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2791488 – volume: 10 start-page: 82 year: 1997 ident: 17341_CR46 publication-title: Clin. Anat. doi: 10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V – volume: 10 start-page: 5842 year: 2020 ident: 17341_CR14 publication-title: Sci. Rep. doi: 10.1038/s41598-020-62321-3 – volume: 18 start-page: 383 year: 1992 ident: 17341_CR44 publication-title: J. Oral Implantol. – volume: 30 start-page: 1323 year: 2012 ident: 17341_CR30 publication-title: Magn. Reason. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 28 start-page: 245 year: 1999 ident: 17341_CR12 publication-title: Dentomaxillofac. Radiol. doi: 10.1038/sj/dmfr/4600448 – volume: 21 start-page: 31 year: 2016 ident: 17341_CR23 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2635663 – volume: 8 start-page: 91 year: 2017 ident: 17341_CR24 publication-title: Information doi: 10.3390/info8030091 – volume: 53 start-page: S11 issue: Suppl 1 year: 2008 ident: 17341_CR45 publication-title: Aust. Dent. J. doi: 10.1111/j.1834-7819.2008.00037.x – volume: 12 start-page: 581 year: 2017 ident: 17341_CR17 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1484-2 – ident: 17341_CR38 doi: 10.1007/978-3-319-67558-9_28 – volume: 31 start-page: 1235 year: 2019 ident: 17341_CR34 publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – volume: 61 start-page: 663 year: 2017 ident: 17341_CR22 publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.05.029 – volume: 108 start-page: 433 year: 1971 ident: 17341_CR47 publication-title: J. Anat. – volume: 38 start-page: 964 year: 2009 ident: 17341_CR8 publication-title: Int. J. Oral Maxillofac. Surg. doi: 10.1016/j.ijom.2009.06.007 – volume: 6 start-page: 24454 year: 2016 ident: 17341_CR25 publication-title: Sci. Rep. doi: 10.1038/srep24454 – volume: 86 start-page: 20120135 year: 2013 ident: 17341_CR13 publication-title: Br. J. Radiol. doi: 10.1259/bjr.20120135 – volume: 63 start-page: 276 year: 2019 ident: 17341_CR20 publication-title: Jpn. J. Ophthalmol doi: 10.1007/s10384-019-00659-6 – volume: 39 start-page: 2481 year: 2017 ident: 17341_CR40 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 17341_CR37 doi: 10.48550/arXiv.1506.04214 – volume: 5 year: 2014 ident: 17341_CR2 publication-title: J. Oral Maxillofac. Res. doi: 10.5037/jomr.2014.5402 – volume: 10 start-page: 5711 year: 2020 ident: 17341_CR10 publication-title: Sci. Rep. doi: 10.1038/s41598-020-62586-8 – volume: 49 start-page: 20200185 year: 2020 ident: 17341_CR49 publication-title: Dentomaxillofac. Radiol. doi: 10.1259/dmfr.20200185 – volume: 38 start-page: 547 year: 2011 ident: 17341_CR4 publication-title: J. Oral Rehabil. doi: 10.1111/j.1365-2842.2010.02176.x – ident: 17341_CR41 doi: 10.1007/978-3-319-46723-8_49 – volume: 7 start-page: 28 year: 2017 ident: 17341_CR6 publication-title: J. Clin. Imaging Sci. doi: 10.4103/jcis.JCIS_28_17 – ident: 17341_CR35 doi: 10.48550/arXiv.1409.3215 – volume-title: Anatomy, Head and Neck, Mandibular Nerve year: 2020 ident: 17341_CR1 – volume: 13 year: 2018 ident: 17341_CR19 publication-title: PLoS ONE doi: 10.1371/journal.pone.0211579 – ident: 17341_CR42 doi: 10.1109/CCE.2012.6315922 – volume: 18 start-page: 161 year: 1992 ident: 17341_CR43 publication-title: J. Endod. doi: 10.1016/S0099-2399(06)81411-1 – reference: 36477659 - Sci Rep. 2022 Dec 7;12(1):21137  | 
    
| SSID | ssj0000529419 | 
    
| Score | 2.4822557 | 
    
| Snippet | The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal... Abstract The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 13460 | 
    
| SubjectTerms | 631/114/1305 692/698/3008 Accuracy Bioengineering Biological Phenomena Cone-Beam Computed Tomography - methods Cortical bone Datasets Deep learning Dental research Dentistry Humanities and Social Sciences Image processing Image Processing, Computer-Assisted - methods Long short-term memory Mandibular Canal Maxillofacial surgery Mental task performance multidisciplinary Science Science (multidisciplinary) Segmentation Spiral Cone-Beam Computed Tomography Temporal variations Transplants & implants  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEG_SFmQkbjRqNk7i-EgXqopDT63UmzVx7LLSrlNtElW98suZcbJhV6DCgdsq8a688_B8I898w9jHmQGEodLFAJmMM5mbuKwUfiqMsy4XtYVQIHtenF1m367yq61RX1QTNtADD4I7LgFsmSmMTKXKJB6tGAJdVUqQwqSuCmTbSam2kqmB1TtV2UyNXTKJKI9bjFTUTYa510zi0R0XO5EoEPb_CWX-Xiw53Zg-YY96fwN3t7BcbgWl02fs6Ygm-efhXzxnD6x_wR4O8yXvXrIfxD2wjM9txxGbcui7JjC0cvA1XzdV33ZcfOGtvV6NLUieN46vqNWlovpUTjVhy5YvPJ-fzC_4YoXHT8upWP6aA6c694XvEcjHcAtrGx7gad_jnvxQX_6KXZ5-vZifxePQhdggeOtiC2CozdzVSWqI_i2v0G8rIUCaukbvdbnElE0qBAoErjJbqypDiSaFraVNxGu25xtv3zKeVyrB2IdJCeLCLDWQgrOQCGuUyxE3Rmy2UYA2IyM5DcZY6nAzLko9KE2j0nRQmi4i9mn6zs3Ax3Hv6hPS67SSuLTDA7QwPVqY_puFRexwYxV6dPBWpzR4U1GfccQ-TK_RNem-Bbxt-rBGScpYcc2bwYimnQgUAG5SREzumNfOVnff-MX3QP-tBKLUAn_zaGOIv7Z1nyiOJmP9B8nt_w_JHbDHKTkcVdjkh2yvW_f2HWK4rnof3PUn2EU-8w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VVKhwQFBegYIWiRu16nhtr_eAEElbVRwihFqpN2u8XqeRHDvEtqpe-eXMrB8lAkXcIntjjXde33pejH2caEAYKjMHwJeOLwPtRInCX6HOTBaI1IBNkJ2HF1f-t-vgeo_N-1oYSqvsbaI11Gmp6Rv5iUeTDhUVdn5Z_3RoahRFV_sRGtCNVkg_2xZjD9i-R52xRmx_ejb__mP46kJxLX-iuuoZV0QnFXowqjLDM9lEokl3wi0PZRv5_wt9_p1EOURSH7ODpljD3S3k-R_O6vwpe9KhTP61FYtnbM8Uh-xhO3fy7pAdnFKOEI15e85-UX-C3JmbmiN-5dDUpe3iyqFI-aZMmqrm4pRXZrHqypQKXmZ8ReUwCeWwcsobyyu-LPhsOrvkyxWaqIpTQv2CA6dc-GXRINh34BY2xl5Aj9AgfUWbg_6CXZ2fXc4unG4wg6MR4NWOAdBUip6lrqepRVyQoG4nQoDUaYoangUSj3VSIZggAOabVCU-7q4bmlQaV7xko6IszGvGg0S56B_x4ILY0fc0eJAZcIXRKgsQW47ZpGdGrLuu5TQ8I49t9FxEccvAGBkYWwbG4Zh9Gv6zbnt27Fw9JR4PK6nftr1QbhZxp75xBGAiXyE-ipQv0cEjEMuSSIIU2ssSfMhRLyFxZwSq-F5kx-zDcBvVl2IyUJiysWuUpFMtrnnVCtRAicANQCLFmMktUdsidftOsbyxLcKVQCQb4jOPe6G8J2vXVhwPgvsfO_dm90u_ZY88UivKrwmO2KjeNOYdIrg6ed-p5W8ZlEHM priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVgh6QLwKCwUZiRsbkY2TOD5uF6pqD73QSr1ZE8cuK2WdapOo6pVf3rGTDURFFdwivzTyzHg-Zx4m5PNcAcJQbgKAmAcxT1SQ5QK_UmW0SVihwQfInqWnF_HqMrncI7NdLszIf-9Ld9doYlwaGF6a5hzP3CB9RPYzFMxsQvYXi9WP1fBPxXmt4rnoc2Nw-tf7k0f2x5fp_xu2vB8iOfhJD8iT1l7D7Q2U5R-m6OQ5edZjSLromP6C7Gn7kjzuXpW8fUV-uYoDZXCmG4qIlELbVL4uKwVb0G2Vt3VD2Tda66tNn3hkaWXoxiW45C4qlbpIsLKma0uXx8tzut7goVNTFyJ_RYG66Pa1bRG-B3ADW-0b8IxvkSbbRZW_Jhcn38-Xp0H_1EKgELI1gQZQLrncFGGkXNG3JEdtzRkDrooCddYkHC9qXCA8cJAq1oXIY9zRMNUF1yE7JBNbWf2W0CQXIVo8vIogGowjBREYDSHTSpgE0eKUzHcMkKqvQ-6ewyil94ezTHZMk8g06Zkm0yn5Msy57qpwPDj62PF1GOkqaPsGFCzZK6TMAHQWC0Q8mYg5mmyEVibPOHCmIpPjIkc7qZC9Wtcycs9tCpddPCWfhm5USOdlAaur1o8R3N1TccybTogGShhuABLJpoSPxGtE6rjHrn_6ot-CITZNcc3ZThB_k_XQVswGYf2HnXv3f6u_J08jp1ougiY5IpNm2-oPiNGa_GOvmnftzjHz priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJ8R44JtRGMhIvLGUNE7i5HErTBMPFQ-rGE_R2bG7itapmkTTeOQv5-x8QGGa2FuUXCL7cj7_Tv7dHSHvxhIQhnLtAYTcC3kkvUSkeBVLrXTEcgWOIDuNT2fh5_PofIfEXS6MI-27kpbOTXfssA8lbjQ2GQxDpzFHz-vFo3Wu75DdOEIMPiC7s-mXo2-2kxxiFA9hQtBmyPgsueblrV3IFeu_DmH-S5TsT0vvk3u1WcPVJSyXf2xIJw_J124qDQ_l-6iuxEj--KvK4-3n-og8aDEqPWokH5MdZZ6Qu03Xyqun5KetaLD0pqqiiHgp1FXh6r5SMDndFKIuK8o-0lLNV21ik6GFpiubQCMs65VaptmypAtDJ8eTM7pYoVMrqaXgzylQy55fmBrDAw8uYaPcDdxDahyTaVjrz8js5NPZ5NRrWzl4EiFh5SkAaZPXde4H0haViwR6A8EYcJnn6BN0xDEQ5CnCDwvZQpWnIsTJ-7HKufLZczIwhVEvCI1E6uOOiqEOos0wkBCAVuAzJVMdIRodknH3azPZ1jm37TaWmTtvZ0nW6DdD_WZOv1k8JO_7d9ZNlY8bpY-txfSStkK3u1Fs5ln7F7MEQCVhiogqSUOOkAChmxYJB85koAV-5KCzt6x1G2UW2Haeqc1eHpK3_WNc8PYUB4wqaieTchsHo8x-Y579SBgqAAfJhoRvGe7WULefmMWFKyqeMsS-MX7zsDPx38O6SRWH_TL4D829vJ34K7IX2FVgGTrRARlUm1q9RgxYiTftgv8FGClUfw priority: 102 providerName: Unpaywall  | 
    
| Title | Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network | 
    
| URI | https://link.springer.com/article/10.1038/s41598-022-17341-6 https://www.ncbi.nlm.nih.gov/pubmed/35931733 https://www.proquest.com/docview/2698992358 https://www.proquest.com/docview/2699701448 https://pubmed.ncbi.nlm.nih.gov/PMC9356068 https://www.nature.com/articles/s41598-022-17341-6.pdf https://doaj.org/article/8aae8492158947678741fb87a73c2fb6  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: ABDBF dateStart: 20121221 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: NAO dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: Health & Medical Collection (Proquest) customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: 7X7 dateStart: 20210101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2045-2322 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: M48 dateStart: 20110801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: AAJSJ dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2045-2322 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000529419 issn: 2045-2322 databaseCode: C6C dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2IWA5IN4UlspI3NhAGidxfECoDbtaVaJawVYqp8hxnFIpdZY8tPTKL2fsPKCirDglsp1o5JnJfBPPA6HXI8EBhtLU4tyllks9YQUxgztfpDL1SCK5CZCd-edzd7rwFnuoa3fUbmC507XT_aTmRfb2x_fNB1D4903KePCuBCOkE8XArRpR-Cpb_j46BEvFdCuHTy3cb2p9O8wdsTZ3ZvejR-g28RhYVUK2TJWp6L8Lhv4dTdkfqd5Fd2p1xTfXPMv-sFpn99G9Fm7icSMfD9CeVA_RraYB5eYR-qmLE2TWTFYYwCvmdZWbEq6YqwQXeVyXFSYfcSmX6zZHSeE8xWudCxPrAFasg8ayEq8UDifhJV6t4ftUYh1Nv8Qc60D4laoB6Vv8mhfSDIA5qIEm1QSgP0bzs9PL8NxquzJYAtBdZUnOhc5DTxPbEbo-nBeDYseEcCqSBNQ79Sj4dJQBktDoy5UJi13YXNuXCZU2eYIOVK7kM4S9mNlgHMFrAeDoOoI7PJXcJlKwFHjgDNCoY0Ak2pLlunNGFpmjcxJEDf8i4F9k-Bf5A_Smf-aqKdhx4-qJ5mu_UhfbNgN5sYxa3Y0CzmXgMgBHAXMpWHdAYWkcUE6JcNIYXnLcSUXUCXDk6M6cTCciD9Crfhp0Vx_IcCXz2qxhVLu0sOZpI0Q9JZ0QDhDdEq8tUrdn1OqbqQ_OCMBYH9550gnib7Ju2oqTXlj_Y-ee_5PiF-jI0Qql42q8Y3RQFbV8Ccitiodony7oEB2Ox9MvU7hOTmcXn2E09MOh-RsyNAoLM_PZxfjrLyXZQdA | 
    
| linkProvider | Scholars Portal | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ1T2gGB8rDDASPDEorVxUicPE6Ltpo6NCqFO2lvmOE6p1DqlSVT1lT-Mv40752NUoIqXvUXJxXJ857vfxfdByLuOFABDeWwJ4XDL4a60vNCHq66MVeyySAkTIDvqDq-cz9fu9Q75VeXCYFhlpRONoo4Sif_Ij23sdOhjYufHxQ8Lu0bh6WrVQkOUrRWiE1NirEzsuFDrFbhw6cn5APj93rbPTsf9oVV2GbAkoJXMUkJIzKuOo7Ytsd6ZG4KghowJLqMIxDV2Ofgo3AfLiGjCUZEfOpyBJVQRV20G494juw4DmgbZ7Z2Ovn6r__LgOZrT8ctsnTbzjlOwmJjVBj5gBwbpWN0Ni2gaB_wL7f4dtFmf3O6RZq4XYr0Ss9kfxvHsEXlYolr6qRDDx2RH6X1yv-hzud4nzQHGJGFbuSfkJ9ZDmFkjlVHAy1TkWWKqxlKhI7pMwjzNKBvQVE3mZVqUpklM55h-E2LMLMU4tVlKp5r2e_0xnc5BJaYUA_gnVFCMvZ_qHJwLS6zEUpkbYIFymJ8uYt6fkqs7YdEz0tCJVgeEuqHfBnsMjhJgVceWwhaxEm2mpB-7gGVbpFMxI5BllXRs1jELzGk984KCgQEwMDAMDLot8qF-Z1HUCNlK3UMe15RY39vcSJaToFQXgSeE8hwf8JjnOxwABQC_OPS44EzacQiDHFYSEpRKJw1ut0iLvK0fg7rAMyChVZIbGp-jFw00zwuBqmfCYAFgkqxF-IaobUx184mefjclyX0GyLkLYx5VQnk7rW1LcVQL7n-s3IvtH_2GNIfjL5fB5fno4iV5YOMWw9ge95A0smWuXgF6zMLX5Ral5OautcJvAOp9FA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRbBwQLC8CgsYCU5s1DRO6viAENtS7bKo4rAr9RYcxy6VWqc0iape-Vn8OmbyWipQxWVvVeJajmcy8038zQwhb3pKAgzlxpHS547PA-WEsYBffWW0CViiZUmQHfdPL_3Pk2CyR341uTBIq2xsYmmok1ThN_Kuh50OBSZ2dk1Ni_g6HH1Y_nCwgxSetDbtNCoVOdebNYRv2fuzIcj6reeNPl0MTp26w4CjAKnkjpZSYU61SVxPYa2zIAYljRmTXCUJqKoJOMQnXIBXRCTh60TEPmfgBXXCtctg3hvkJmdMIJ2QT3j7fQdP0PyeqPN0XBZ2M_CVmM8G0V8Ppug5_S1fWLYM-BfO_Zuu2Z7Z3iUHhV3KzVrO53-4xdF9cq_Gs_RjpYAPyJ62h-RW1eFyc0gOhshGwoZyD8lPrIQwd8Y6p4CUqSzytKwXS6VN6CqNiyynbEgzPV3UCVGWpoYuMPEmRrYsRYbaPKMzSwcngws6W4AxzChS96dUUmTdz2wBYYUj13KlywsgwALWZyu2-yNyeS0Cekz2bWr1U0KDWLjgiSFEApTqe0p60mjpMq2ECQDFdkivEUak6vro2KZjHpXn9CyMKgFGIMCoFGDU75B37X-WVXWQnaNPUMbtSKzsXV5IV9OoNhRRKKUOfQFILBQ-BygBkM_EIZecKc_EMMlRoyFRbW6y6Orl6JDX7W0wFHj6I61Oi3KM4Bg_w5gnlUK1K2GwAbBI1iF8S9W2lrp9x86-l8XIBQPM3Ic5jxulvFrWrq04bhX3P3bu2e6HfkVugy2IvpyNz5-TOx6-YUjqCY7Ifr4q9AuAjXn8snw_Kfl23QbhN3mweq4 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJ8R44JtRGMhIvLGUNE7i5HErTBMPFQ-rGE_R2bG7itapmkTTeOQv5-x8QGGa2FuUXCL7cj7_Tv7dHSHvxhIQhnLtAYTcC3kkvUSkeBVLrXTEcgWOIDuNT2fh5_PofIfEXS6MI-27kpbOTXfssA8lbjQ2GQxDpzFHz-vFo3Wu75DdOEIMPiC7s-mXo2-2kxxiFA9hQtBmyPgsueblrV3IFeu_DmH-S5TsT0vvk3u1WcPVJSyXf2xIJw_J124qDQ_l-6iuxEj--KvK4-3n-og8aDEqPWokH5MdZZ6Qu03Xyqun5KetaLD0pqqiiHgp1FXh6r5SMDndFKIuK8o-0lLNV21ik6GFpiubQCMs65VaptmypAtDJ8eTM7pYoVMrqaXgzylQy55fmBrDAw8uYaPcDdxDahyTaVjrz8js5NPZ5NRrWzl4EiFh5SkAaZPXde4H0haViwR6A8EYcJnn6BN0xDEQ5CnCDwvZQpWnIsTJ-7HKufLZczIwhVEvCI1E6uOOiqEOos0wkBCAVuAzJVMdIRodknH3azPZ1jm37TaWmTtvZ0nW6DdD_WZOv1k8JO_7d9ZNlY8bpY-txfSStkK3u1Fs5ln7F7MEQCVhiogqSUOOkAChmxYJB85koAV-5KCzt6x1G2UW2Haeqc1eHpK3_WNc8PYUB4wqaieTchsHo8x-Y579SBgqAAfJhoRvGe7WULefmMWFKyqeMsS-MX7zsDPx38O6SRWH_TL4D829vJ34K7IX2FVgGTrRARlUm1q9RgxYiTftgv8FGClUfw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canal-Net+for+automatic+and+robust+3D+segmentation+of+mandibular+canals+in+CBCT+images+using+a+continuity-aware+contextual+network&rft.jtitle=Scientific+reports&rft.au=Jeoun%2C+Bo-Soung&rft.au=Yang%2C+Su&rft.au=Lee%2C+Sang-Jeong&rft.au=Kim%2C+Tae-Il&rft.date=2022-08-05&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=13460&rft_id=info:doi/10.1038%2Fs41598-022-17341-6&rft_id=info%3Apmid%2F35931733&rft.externalDocID=35931733 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |