Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network

The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 13460 - 11
Main Authors Jeoun, Bo-Soung, Yang, Su, Lee, Sang-Jeong, Kim, Tae-Il, Kim, Jun-Min, Kim, Jo-Eun, Huh, Kyung-Hoe, Lee, Sam-Sun, Heo, Min-Suk, Yi, Won-Jin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.08.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-022-17341-6

Cover

Abstract The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.
AbstractList The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.
The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.
Abstract The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal (MC) with high consistent accuracy throughout the entire MC volume in cone-beam CT (CBCT) images. The Canal-Net was designed based on a 3D U-Net with bidirectional convolutional long short-term memory (ConvLSTM) under a multi-task learning framework. Specifically, the Canal-Net learned the 3D anatomical context information of the MC by incorporating spatio-temporal features from ConvLSTM, and also the structural continuity of the overall MC volume under a multi-task learning framework using multi-planar projection losses complementally. The Canal-Net showed higher segmentation accuracies in 2D and 3D performance metrics (p < 0.05), and especially, a significant improvement in Dice similarity coefficient scores and mean curve distance (p < 0.05) throughout the entire MC volume compared to other popular deep learning networks. As a result, the Canal-Net achieved high consistent accuracy in 3D segmentations of the entire MC in spite of the areas of low visibility by the unclear and ambiguous cortical bone layer. Therefore, the Canal-Net demonstrated the automatic and robust 3D segmentation of the entire MC volume by improving structural continuity and boundary details of the MC in CBCT images.
ArticleNumber 13460
Author Kim, Tae-Il
Yi, Won-Jin
Jeoun, Bo-Soung
Lee, Sam-Sun
Lee, Sang-Jeong
Huh, Kyung-Hoe
Heo, Min-Suk
Kim, Jun-Min
Yang, Su
Kim, Jo-Eun
Author_xml – sequence: 1
  givenname: Bo-Soung
  surname: Jeoun
  fullname: Jeoun, Bo-Soung
  organization: Interdisciplinary Program in Bioengineering, Graduate School of Engineering, Seoul National University
– sequence: 2
  givenname: Su
  surname: Yang
  fullname: Yang, Su
  organization: Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University
– sequence: 3
  givenname: Sang-Jeong
  surname: Lee
  fullname: Lee, Sang-Jeong
  organization: Vision AI Business Team, LG CNS
– sequence: 4
  givenname: Tae-Il
  surname: Kim
  fullname: Kim, Tae-Il
  organization: Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University
– sequence: 5
  givenname: Jun-Min
  surname: Kim
  fullname: Kim, Jun-Min
  organization: Department of Electronics and Information Engineering, Hansung University
– sequence: 6
  givenname: Jo-Eun
  surname: Kim
  fullname: Kim, Jo-Eun
  organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University
– sequence: 7
  givenname: Kyung-Hoe
  surname: Huh
  fullname: Huh, Kyung-Hoe
  organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University
– sequence: 8
  givenname: Sam-Sun
  surname: Lee
  fullname: Lee, Sam-Sun
  organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University
– sequence: 9
  givenname: Min-Suk
  surname: Heo
  fullname: Heo, Min-Suk
  organization: Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University
– sequence: 10
  givenname: Won-Jin
  surname: Yi
  fullname: Yi, Won-Jin
  email: wjyi@snu.ac.kr
  organization: Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Department of Oral and Maxillofacial Radiology and Dental Research Institute, School of Dentistry, Seoul National University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35931733$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAUjFARLaV_gAOyxIVLwF-J7QsSLF-VKriUs_XiOMFL1i52wrJXfjnOZiltDxW-2HpvZjTvjR8XRz54WxRPCX5JMJOvEieVkiWmtCSCcVLWD4oTinlVUkbp0Y33cXGW0hrnU1HFiXpUHLNKscxiJ8XvFXgYys92RF2ICKYxbGB0BoFvUQzNlEbE3qFk-431Y-4Ej0KHNrntmmmAiMwskJDzaPV2dYncBnqb0JSc7xEgE_zo_OTGXQlbiHZfsL_GCQbk7bgN8fuT4mGXFezZ4T4tvn54f7n6VF58-Xi-enNRmorjsbQAhkssuhZTQwlRVYMr0jAGwrStULyrBOVKKEKVZIpy26qG59Xg2rbCYnZanC-6bYC1vorZadzpAE7vCyH2GmIefbBaAljJFSWVVFzUQgpOukYKEMzQrqmzFlu0Jn8Fuy0Mw7UgwXoOSC8B6RyQ3gekZ9brhXU1NRvbmrzRCMMtK7c73n3TffipFatqXMss8OIgEMOPyaZRb1wydhjA2zAlTWulBCacz9Dnd6DrMMU5qhkllaKsmlHPbjq6tvL3g2SAXAAmhpSi7bRxyzfIBt1w_7T0DvW_VnRYbMpg39v4z_Y9rD-Q7u-t
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3406342
crossref_primary_10_1016_j_jdent_2023_104582
crossref_primary_10_1093_dmfr_twad002
crossref_primary_10_1186_s12903_023_03452_7
crossref_primary_10_1016_j_jdent_2024_104931
crossref_primary_10_3389_fbioe_2023_1302524
crossref_primary_10_3724_zdxbyxb_2024_0256
crossref_primary_10_1038_s41598_024_62211_y
crossref_primary_10_1016_j_jdent_2023_104727
crossref_primary_10_3390_oral2030022
crossref_primary_10_1109_TMI_2024_3457245
crossref_primary_10_5624_isd_20230245
crossref_primary_10_1038_s41598_025_91725_2
crossref_primary_10_1186_s12903_023_03496_9
crossref_primary_10_1186_s12903_023_03607_6
Cites_doi 10.1109/ACCESS.2020.3002835
10.5624/isd.2014.44.4.273
10.12968/denu.2003.30.7.375
10.1038/s41598-019-45487-3
10.3990/1.9789036532808
10.1038/s41598-020-64509-z
10.5037/jomr.2014.5401
10.1590/s1678-77572011000300011
10.48550/arXiv.1706.05098
10.1109/CVPR.2019.00542
10.1007/978-3-319-24574-4_28
10.1007/978-3-642-04271-3_10
10.1902/jop.2006.060197
10.48550/arXiv.1702.0597
10.1038/s41598-021-94359-2
10.1259/dmfr/14340323
10.1109/TMI.2018.2881678
10.1259/dmfr.20200375
10.1109/TMI.2018.2791488
10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V
10.1038/s41598-020-62321-3
10.1016/j.mri.2012.05.001
10.1038/sj/dmfr/4600448
10.1109/JBHI.2016.2635663
10.3390/info8030091
10.1111/j.1834-7819.2008.00037.x
10.1007/s11548-016-1484-2
10.1007/978-3-319-67558-9_28
10.1162/neco_a_01199
10.1016/j.patcog.2016.05.029
10.1016/j.ijom.2009.06.007
10.1038/srep24454
10.1259/bjr.20120135
10.1007/s10384-019-00659-6
10.1109/TPAMI.2016.2644615
10.48550/arXiv.1506.04214
10.5037/jomr.2014.5402
10.1038/s41598-020-62586-8
10.1259/dmfr.20200185
10.1111/j.1365-2842.2010.02176.x
10.1007/978-3-319-46723-8_49
10.4103/jcis.JCIS_28_17
10.48550/arXiv.1409.3215
10.1371/journal.pone.0211579
10.1109/CCE.2012.6315922
10.1016/S0099-2399(06)81411-1
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
2022. The Author(s).
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1038/s41598-022-17341-6
DatabaseName Springer Nature Open Access Journals (LUT & LAB)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Dentistry
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_8aae8492158947678741fb87a73c2fb6
10.1038/s41598-022-17341-6
PMC9356068
35931733
10_1038_s41598_022_17341_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Korea Medical Device Development Fund grant funded by the Korea government (the Ministry of Science and ICT, the Ministry of Trade, Industry and Energy, the Ministry of Health & Welfare, the Ministry of Food and Drug Safety)
  grantid: 1711137883; KMDF_PR_20200901_0011; 1711138289; RS-2020-KD00014
– fundername: ;
  grantid: 1711137883; KMDF_PR_20200901_0011; 1711138289; RS-2020-KD00014
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
5PM
ADTOC
EJD
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c540t-eaac4807fd02c21195b051b33a7cdd794f572497912983924ed9b473406ed7e03
IEDL.DBID M48
ISSN 2045-2322
IngestDate Tue Oct 14 19:04:11 EDT 2025
Sun Oct 26 04:00:57 EDT 2025
Tue Sep 30 15:49:45 EDT 2025
Thu Sep 04 19:28:47 EDT 2025
Tue Oct 07 08:00:41 EDT 2025
Thu Jan 02 22:53:27 EST 2025
Wed Oct 01 04:54:55 EDT 2025
Thu Apr 24 23:01:43 EDT 2025
Fri Feb 21 02:36:44 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-eaac4807fd02c21195b051b33a7cdd794f572497912983924ed9b473406ed7e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-17341-6
PMID 35931733
PQID 2698992358
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8aae8492158947678741fb87a73c2fb6
unpaywall_primary_10_1038_s41598_022_17341_6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9356068
proquest_miscellaneous_2699701448
proquest_journals_2698992358
pubmed_primary_35931733
crossref_citationtrail_10_1038_s41598_022_17341_6
crossref_primary_10_1038_s41598_022_17341_6
springer_journals_10_1038_s41598_022_17341_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References YinPYuanRChengYWuQDeep guidance network for biomedical image segmentationIEEE Access2020811610611611610.1109/ACCESS.2020.3002835
ShavitIJuodzbalysGInferior alveolar nerve injuries following implant placement—Importance of early diagnosis and treatment: A systematic reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5402
ShenWMulti-crop convolutional neural networks for lung nodule malignancy suspiciousness classificationPattern Recognit.2017616636732017PatRe..61..663S10.1016/j.patcog.2016.05.029
YuYSiXHuCZhangJA review of recurrent neural networks: LSTM cells and network architecturesNeural Comput.20193112351270398846410.1162/neco_a_011991494.68236
JungYHChoBHRadiographic evaluation of the course and visibility of the mandibular canalImaging Sci. Dent.20144427327810.5624/isd.2014.44.4.273
Ventura, C. et al. Rvos: End-to-end recurrent network for video object segmentation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5277–5286. (IEEE, 2019).
NovikovAAMajorDWimmerMLenisDBuhlerKDeep sequential segmentation of organs in volumetric medical scansIEEE Trans. Med. Imaging2019381207121510.1109/TMI.2018.2881678
AbdolaliFAutomatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marchingInt. J. Comput. Assist. Radiol. Surg.20171258159310.1007/s11548-016-1484-2
DenioDTorabinejadMBaklandLKAnatomical relationship of the mandibular canal to its surrounding structures in mature mandiblesJ. Endod.1992181611651:STN:280:DyaK3s%2FhvVOhug%3D%3D10.1016/S0099-2399(06)81411-1
VinayahalingamSXiTBergeSMaalTde JongGAutomated detection of third molars and mandibular nerve by deep learningSci. Rep.2019990072019NatSR...9.9007V1:CAS:528:DC%2BC1MXht1GjsL7F10.1038/s41598-019-45487-3
MonsourPADudhiaRImplant radiography and radiologyAust. Dent. J.200853Suppl 1S112510.1111/j.1834-7819.2008.00037.x
FedorovA3D Slicer as an image computing platform for the quantitative imaging networkMagn. Reason. Imaging2012301323134110.1016/j.mri.2012.05.001
Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215.https://doi.org/10.48550/arXiv.1409.3215 (2014).
GhaeminiaHPosition of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiographyInt. J. Oral Maxillofac. Surg.2009389649711:STN:280:DC%2BD1Mnhslyisw%3D%3D10.1016/j.ijom.2009.06.007
YuYDeep transfer learning for modality classification of medical imagesInformation201789110.3390/info8030091
JaskariJDeep learning method for mandibular canal segmentation in dental cone beam computed tomography volumesSci. Rep.20201058422020NatSR..10.5842J1:CAS:528:DC%2BB3cXmsVOkt7Y%3D10.1038/s41598-020-62321-3
ChangH-JDeep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitisSci. Rep.20201075312020NatSR..10.7531C1:CAS:528:DC%2BB3cXovFGqtLk%3D10.1038/s41598-020-64509-z
KumarAKimJLyndonDFulhamMFengDAn ensemble of fine-tuned convolutional neural networks for medical image classificationIEEE J. Biomed. Health Inform.201621314010.1109/JBHI.2016.2635663
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 424–432. (Springer, 2016).
KwonOAutomatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural networkDentomaxillofac. Radiol.2020492020018510.1259/dmfr.20200185
Christ, P. F. et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint: arXiv:1702.05970. https://doi.org/10.48550/arXiv.1702.0597 (2017).
CarterRBKeenENThe intramandibular course of the inferior alveolar nerveJ. Anat.19711084334401:STN:280:DyaE3M7oslKmug%3D%3D
Moris, B., Claesen, L., Sun, Y. & Politis, C. Automated tracking of the mandibular canal in cbct images using matching and multiple hypotheses methods. in 2012 Fourth International Conference on Communications and Electronics. 327–332. (IEEE, 2012).
GreensteinGTarnowDThe mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature reviewJ. Periodontol.2006771933194310.1902/jop.2006.060197
Oliveira-SantosCVisibility of the mandibular canal on CBCT cross-sectional imagesJ. Appl. Oral Sci.20111924024310.1590/s1678-77572011000300011
Kainmueller, D., Lamecker, H., Seim, H., Zinser, M. & Zachow, S. Automatic extraction of mandibular nerve and bone from cone-beam CT data. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 76–83. (Springer, 2009).
AhnJMA deep learning model for the detection of both advanced and early glaucoma using fundus photographyPLoS ONE20181310.1371/journal.pone.0211579
ChengJZComputer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scansSci. Rep.20166244542016NatSR...624454C1:CAS:528:DC%2BC28Xmt1eitLo%3D10.1038/srep24454
PhillipsCEssickGInferior alveolar nerve injury following orthognathic surgery: A review of assessment issuesJ. Oral Rehabil.2011385475541:STN:280:DC%2BC3MrnvVCgtA%3D%3D10.1111/j.1365-2842.2010.02176.x
PauwelsRVariability of dental cone beam CT grey values for density estimationsBr. J. Radiol.201386201201351:STN:280:DC%2BC3szjsVCmsA%3D%3D10.1259/bjr.20120135
YongT-HQCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: A human skull phantom studySci. Rep.2021111131:CAS:528:DC%2BB3MXhslKhtbrJ10.1038/s41598-021-94359-2
LudlowJBDavies-LudlowLBrooksSHowertonWDosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CATDentomaxillofac. Radiol.2006352192261:STN:280:DC%2BD28vksFOgtg%3D%3D10.1259/dmfr/14340323
WaduSGPenhallBTownsendGCMorphological variability of the human inferior alveolar nerveClin. Anat.19971082871:STN:280:DyaK2s3htFSitw%3D%3D10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V
PhanSSatohSIYodaYKashiwagiKOshikaTEvaluation of deep convolutional neural networks for glaucoma detectionJpn. J. Ophthalmol20196327628310.1007/s10384-019-00659-6
Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 240–248. (Springer, 2017).
SarikovRJuodzbalysGInferior alveolar nerve injury after mandibular third molar extraction: A literature reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5401
BadrinarayananVKendallACipollaRSegNet: A deep convolutional encoder-decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.2644615
KroonD-JSegmentation of the mandibular canal in cone-beam CT dataUniv. Twente.201110.3990/1.9789036532808
AiCJJabarNALanTHRamliRMandibular canal enlargement: Clinical and radiological characteristicsJ. Clin. Imaging Sci.201772810.4103/jcis.JCIS_28_17
Ruder, S. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098. https://doi.org/10.48550/arXiv.1706.05098 (2017).
HeoM-SArtificial intelligence in oral and maxillofacial radiology: What is currently possible?Dentomaxillofac. Radiol.2021502020037510.1259/dmfr.20200375
GhatakRNHelwanyMGinglenJGAnatomy, Head and Neck, Mandibular Nerve2020StatPearls
FuHJoint optic disc and cup segmentation based on multi-label deep network and polar transformationIEEE Trans. Med. Imaging201837159716052018ITED...65.1597F10.1109/TMI.2018.2791488
Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241. (Springer, 2015).
LoescherARSmithKGRobinsonPPNerve damage and third molar removalDent. Update2003303753801:STN:280:DC%2BD3svotVeguw%3D%3D10.12968/denu.2003.30.7.375382
Shi, X. et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214.https://doi.org/10.48550/arXiv.1506.04214 (2015).
AraiYTammisaloEIwaiKHashimotoKShinodaKDevelopment of a compact computed tomographic apparatus for dental useDentomaxillofac. Radiol.1999282452481:STN:280:DC%2BD3czitlKmtw%3D%3D10.1038/sj/dmfr/4600448
GowgielJMThe position and course of the mandibular canalJ. Oral Implantol.1992183833851:STN:280:DyaK3s3isFWmsA%3D%3D
KwakGHAutomatic mandibular canal detection using a deep convolutional neural networkSci. Rep.20201057112020NatSR..10.5711K1:CAS:528:DC%2BB3cXmtl2rtrs%3D10.1038/s41598-020-62586-8
A Kumar (17341_CR23) 2016; 21
J Jaskari (17341_CR14) 2020; 10
V Badrinarayanan (17341_CR40) 2017; 39
F Abdolali (17341_CR17) 2017; 12
17341_CR48
A Fedorov (17341_CR30) 2012; 30
17341_CR42
17341_CR41
YH Jung (17341_CR7) 2014; 44
Y Arai (17341_CR12) 1999; 28
D-J Kroon (17341_CR16) 2011
T-H Yong (17341_CR27) 2021; 11
O Kwon (17341_CR49) 2020; 49
GH Kwak (17341_CR10) 2020; 10
SG Wadu (17341_CR46) 1997; 10
17341_CR18
C Oliveira-Santos (17341_CR15) 2011; 19
JZ Cheng (17341_CR25) 2016; 6
H Ghaeminia (17341_CR8) 2009; 38
S Vinayahalingam (17341_CR9) 2019; 9
R Pauwels (17341_CR13) 2013; 86
JM Ahn (17341_CR19) 2018; 13
H-J Chang (17341_CR21) 2020; 10
R Sarikov (17341_CR3) 2014; 5
C Phillips (17341_CR4) 2011; 38
RN Ghatak (17341_CR1) 2020
G Greenstein (17341_CR29) 2006; 77
JB Ludlow (17341_CR11) 2006; 35
17341_CR26
CJ Ai (17341_CR6) 2017; 7
H Fu (17341_CR31) 2018; 37
AA Novikov (17341_CR33) 2019; 38
D Denio (17341_CR43) 1992; 18
S Phan (17341_CR20) 2019; 63
Y Yu (17341_CR34) 2019; 31
RB Carter (17341_CR47) 1971; 108
Y Yu (17341_CR24) 2017; 8
JM Gowgiel (17341_CR44) 1992; 18
W Shen (17341_CR22) 2017; 61
17341_CR39
AR Loescher (17341_CR5) 2003; 30
17341_CR37
17341_CR38
M-S Heo (17341_CR28) 2021; 50
I Shavit (17341_CR2) 2014; 5
17341_CR35
PA Monsour (17341_CR45) 2008; 53
P Yin (17341_CR32) 2020; 8
17341_CR36
36477659 - Sci Rep. 2022 Dec 7;12(1):21137
References_xml – reference: Kainmueller, D., Lamecker, H., Seim, H., Zinser, M. & Zachow, S. Automatic extraction of mandibular nerve and bone from cone-beam CT data. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 76–83. (Springer, 2009).
– reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241. (Springer, 2015).
– reference: PauwelsRVariability of dental cone beam CT grey values for density estimationsBr. J. Radiol.201386201201351:STN:280:DC%2BC3szjsVCmsA%3D%3D10.1259/bjr.20120135
– reference: Moris, B., Claesen, L., Sun, Y. & Politis, C. Automated tracking of the mandibular canal in cbct images using matching and multiple hypotheses methods. in 2012 Fourth International Conference on Communications and Electronics. 327–332. (IEEE, 2012).
– reference: FedorovA3D Slicer as an image computing platform for the quantitative imaging networkMagn. Reason. Imaging2012301323134110.1016/j.mri.2012.05.001
– reference: KumarAKimJLyndonDFulhamMFengDAn ensemble of fine-tuned convolutional neural networks for medical image classificationIEEE J. Biomed. Health Inform.201621314010.1109/JBHI.2016.2635663
– reference: YuYDeep transfer learning for modality classification of medical imagesInformation201789110.3390/info8030091
– reference: ShavitIJuodzbalysGInferior alveolar nerve injuries following implant placement—Importance of early diagnosis and treatment: A systematic reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5402
– reference: GhatakRNHelwanyMGinglenJGAnatomy, Head and Neck, Mandibular Nerve2020StatPearls
– reference: GreensteinGTarnowDThe mental foramen and nerve: Clinical and anatomical factors related to dental implant placement: A literature reviewJ. Periodontol.2006771933194310.1902/jop.2006.060197
– reference: PhanSSatohSIYodaYKashiwagiKOshikaTEvaluation of deep convolutional neural networks for glaucoma detectionJpn. J. Ophthalmol20196327628310.1007/s10384-019-00659-6
– reference: GowgielJMThe position and course of the mandibular canalJ. Oral Implantol.1992183833851:STN:280:DyaK3s3isFWmsA%3D%3D
– reference: AiCJJabarNALanTHRamliRMandibular canal enlargement: Clinical and radiological characteristicsJ. Clin. Imaging Sci.201772810.4103/jcis.JCIS_28_17
– reference: AbdolaliFAutomatic segmentation of mandibular canal in cone beam CT images using conditional statistical shape model and fast marchingInt. J. Comput. Assist. Radiol. Surg.20171258159310.1007/s11548-016-1484-2
– reference: YinPYuanRChengYWuQDeep guidance network for biomedical image segmentationIEEE Access2020811610611611610.1109/ACCESS.2020.3002835
– reference: AhnJMA deep learning model for the detection of both advanced and early glaucoma using fundus photographyPLoS ONE20181310.1371/journal.pone.0211579
– reference: PhillipsCEssickGInferior alveolar nerve injury following orthognathic surgery: A review of assessment issuesJ. Oral Rehabil.2011385475541:STN:280:DC%2BC3MrnvVCgtA%3D%3D10.1111/j.1365-2842.2010.02176.x
– reference: YongT-HQCBCT-NET for direct measurement of bone mineral density from quantitative cone-beam CT: A human skull phantom studySci. Rep.2021111131:CAS:528:DC%2BB3MXhslKhtbrJ10.1038/s41598-021-94359-2
– reference: Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T. & Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 424–432. (Springer, 2016).
– reference: WaduSGPenhallBTownsendGCMorphological variability of the human inferior alveolar nerveClin. Anat.19971082871:STN:280:DyaK2s3htFSitw%3D%3D10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V
– reference: GhaeminiaHPosition of the impacted third molar in relation to the mandibular canal. Diagnostic accuracy of cone beam computed tomography compared with panoramic radiographyInt. J. Oral Maxillofac. Surg.2009389649711:STN:280:DC%2BD1Mnhslyisw%3D%3D10.1016/j.ijom.2009.06.007
– reference: AraiYTammisaloEIwaiKHashimotoKShinodaKDevelopment of a compact computed tomographic apparatus for dental useDentomaxillofac. Radiol.1999282452481:STN:280:DC%2BD3czitlKmtw%3D%3D10.1038/sj/dmfr/4600448
– reference: VinayahalingamSXiTBergeSMaalTde JongGAutomated detection of third molars and mandibular nerve by deep learningSci. Rep.2019990072019NatSR...9.9007V1:CAS:528:DC%2BC1MXht1GjsL7F10.1038/s41598-019-45487-3
– reference: Shi, X. et al. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. arXiv preprint arXiv:1506.04214.https://doi.org/10.48550/arXiv.1506.04214 (2015).
– reference: KwonOAutomatic diagnosis for cysts and tumors of both jaws on panoramic radiographs using a deep convolution neural networkDentomaxillofac. Radiol.2020492020018510.1259/dmfr.20200185
– reference: Ventura, C. et al. Rvos: End-to-end recurrent network for video object segmentation. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 5277–5286. (IEEE, 2019).
– reference: KroonD-JSegmentation of the mandibular canal in cone-beam CT dataUniv. Twente.201110.3990/1.9789036532808
– reference: ChengJZComputer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scansSci. Rep.20166244542016NatSR...624454C1:CAS:528:DC%2BC28Xmt1eitLo%3D10.1038/srep24454
– reference: YuYSiXHuCZhangJA review of recurrent neural networks: LSTM cells and network architecturesNeural Comput.20193112351270398846410.1162/neco_a_011991494.68236
– reference: Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215.https://doi.org/10.48550/arXiv.1409.3215 (2014).
– reference: ChangH-JDeep learning hybrid method to automatically diagnose periodontal bone loss and stage periodontitisSci. Rep.20201075312020NatSR..10.7531C1:CAS:528:DC%2BB3cXovFGqtLk%3D10.1038/s41598-020-64509-z
– reference: NovikovAAMajorDWimmerMLenisDBuhlerKDeep sequential segmentation of organs in volumetric medical scansIEEE Trans. Med. Imaging2019381207121510.1109/TMI.2018.2881678
– reference: DenioDTorabinejadMBaklandLKAnatomical relationship of the mandibular canal to its surrounding structures in mature mandiblesJ. Endod.1992181611651:STN:280:DyaK3s%2FhvVOhug%3D%3D10.1016/S0099-2399(06)81411-1
– reference: LoescherARSmithKGRobinsonPPNerve damage and third molar removalDent. Update2003303753801:STN:280:DC%2BD3svotVeguw%3D%3D10.12968/denu.2003.30.7.375382
– reference: MonsourPADudhiaRImplant radiography and radiologyAust. Dent. J.200853Suppl 1S112510.1111/j.1834-7819.2008.00037.x
– reference: HeoM-SArtificial intelligence in oral and maxillofacial radiology: What is currently possible?Dentomaxillofac. Radiol.2021502020037510.1259/dmfr.20200375
– reference: Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S. & Cardoso, M. J. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 240–248. (Springer, 2017).
– reference: KwakGHAutomatic mandibular canal detection using a deep convolutional neural networkSci. Rep.20201057112020NatSR..10.5711K1:CAS:528:DC%2BB3cXmtl2rtrs%3D10.1038/s41598-020-62586-8
– reference: CarterRBKeenENThe intramandibular course of the inferior alveolar nerveJ. Anat.19711084334401:STN:280:DyaE3M7oslKmug%3D%3D
– reference: SarikovRJuodzbalysGInferior alveolar nerve injury after mandibular third molar extraction: A literature reviewJ. Oral Maxillofac. Res.2014510.5037/jomr.2014.5401
– reference: JungYHChoBHRadiographic evaluation of the course and visibility of the mandibular canalImaging Sci. Dent.20144427327810.5624/isd.2014.44.4.273
– reference: BadrinarayananVKendallACipollaRSegNet: A deep convolutional encoder-decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.2644615
– reference: Oliveira-SantosCVisibility of the mandibular canal on CBCT cross-sectional imagesJ. Appl. Oral Sci.20111924024310.1590/s1678-77572011000300011
– reference: FuHJoint optic disc and cup segmentation based on multi-label deep network and polar transformationIEEE Trans. Med. Imaging201837159716052018ITED...65.1597F10.1109/TMI.2018.2791488
– reference: LudlowJBDavies-LudlowLBrooksSHowertonWDosimetry of 3 CBCT devices for oral and maxillofacial radiology: CB Mercuray, NewTom 3G and i-CATDentomaxillofac. Radiol.2006352192261:STN:280:DC%2BD28vksFOgtg%3D%3D10.1259/dmfr/14340323
– reference: JaskariJDeep learning method for mandibular canal segmentation in dental cone beam computed tomography volumesSci. Rep.20201058422020NatSR..10.5842J1:CAS:528:DC%2BB3cXmsVOkt7Y%3D10.1038/s41598-020-62321-3
– reference: ShenWMulti-crop convolutional neural networks for lung nodule malignancy suspiciousness classificationPattern Recognit.2017616636732017PatRe..61..663S10.1016/j.patcog.2016.05.029
– reference: Christ, P. F. et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arXiv preprint: arXiv:1702.05970. https://doi.org/10.48550/arXiv.1702.0597 (2017).
– reference: Ruder, S. An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098. https://doi.org/10.48550/arXiv.1706.05098 (2017).
– volume: 8
  start-page: 116106
  year: 2020
  ident: 17341_CR32
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3002835
– volume: 44
  start-page: 273
  year: 2014
  ident: 17341_CR7
  publication-title: Imaging Sci. Dent.
  doi: 10.5624/isd.2014.44.4.273
– volume: 30
  start-page: 375
  year: 2003
  ident: 17341_CR5
  publication-title: Dent. Update
  doi: 10.12968/denu.2003.30.7.375
– volume: 9
  start-page: 9007
  year: 2019
  ident: 17341_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-45487-3
– year: 2011
  ident: 17341_CR16
  publication-title: Univ. Twente.
  doi: 10.3990/1.9789036532808
– volume: 10
  start-page: 7531
  year: 2020
  ident: 17341_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64509-z
– volume: 5
  year: 2014
  ident: 17341_CR3
  publication-title: J. Oral Maxillofac. Res.
  doi: 10.5037/jomr.2014.5401
– volume: 19
  start-page: 240
  year: 2011
  ident: 17341_CR15
  publication-title: J. Appl. Oral Sci.
  doi: 10.1590/s1678-77572011000300011
– ident: 17341_CR48
  doi: 10.48550/arXiv.1706.05098
– ident: 17341_CR36
  doi: 10.1109/CVPR.2019.00542
– ident: 17341_CR39
  doi: 10.1007/978-3-319-24574-4_28
– ident: 17341_CR18
  doi: 10.1007/978-3-642-04271-3_10
– volume: 77
  start-page: 1933
  year: 2006
  ident: 17341_CR29
  publication-title: J. Periodontol.
  doi: 10.1902/jop.2006.060197
– ident: 17341_CR26
  doi: 10.48550/arXiv.1702.0597
– volume: 11
  start-page: 1
  year: 2021
  ident: 17341_CR27
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-94359-2
– volume: 35
  start-page: 219
  year: 2006
  ident: 17341_CR11
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr/14340323
– volume: 38
  start-page: 1207
  year: 2019
  ident: 17341_CR33
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2881678
– volume: 50
  start-page: 20200375
  year: 2021
  ident: 17341_CR28
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20200375
– volume: 37
  start-page: 1597
  year: 2018
  ident: 17341_CR31
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2791488
– volume: 10
  start-page: 82
  year: 1997
  ident: 17341_CR46
  publication-title: Clin. Anat.
  doi: 10.1002/(SICI)1098-2353(1997)10:2<82::AID-CA2>3.0.CO;2-V
– volume: 10
  start-page: 5842
  year: 2020
  ident: 17341_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62321-3
– volume: 18
  start-page: 383
  year: 1992
  ident: 17341_CR44
  publication-title: J. Oral Implantol.
– volume: 30
  start-page: 1323
  year: 2012
  ident: 17341_CR30
  publication-title: Magn. Reason. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 28
  start-page: 245
  year: 1999
  ident: 17341_CR12
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1038/sj/dmfr/4600448
– volume: 21
  start-page: 31
  year: 2016
  ident: 17341_CR23
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2635663
– volume: 8
  start-page: 91
  year: 2017
  ident: 17341_CR24
  publication-title: Information
  doi: 10.3390/info8030091
– volume: 53
  start-page: S11
  issue: Suppl 1
  year: 2008
  ident: 17341_CR45
  publication-title: Aust. Dent. J.
  doi: 10.1111/j.1834-7819.2008.00037.x
– volume: 12
  start-page: 581
  year: 2017
  ident: 17341_CR17
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-016-1484-2
– ident: 17341_CR38
  doi: 10.1007/978-3-319-67558-9_28
– volume: 31
  start-page: 1235
  year: 2019
  ident: 17341_CR34
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 61
  start-page: 663
  year: 2017
  ident: 17341_CR22
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.05.029
– volume: 108
  start-page: 433
  year: 1971
  ident: 17341_CR47
  publication-title: J. Anat.
– volume: 38
  start-page: 964
  year: 2009
  ident: 17341_CR8
  publication-title: Int. J. Oral Maxillofac. Surg.
  doi: 10.1016/j.ijom.2009.06.007
– volume: 6
  start-page: 24454
  year: 2016
  ident: 17341_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep24454
– volume: 86
  start-page: 20120135
  year: 2013
  ident: 17341_CR13
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20120135
– volume: 63
  start-page: 276
  year: 2019
  ident: 17341_CR20
  publication-title: Jpn. J. Ophthalmol
  doi: 10.1007/s10384-019-00659-6
– volume: 39
  start-page: 2481
  year: 2017
  ident: 17341_CR40
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 17341_CR37
  doi: 10.48550/arXiv.1506.04214
– volume: 5
  year: 2014
  ident: 17341_CR2
  publication-title: J. Oral Maxillofac. Res.
  doi: 10.5037/jomr.2014.5402
– volume: 10
  start-page: 5711
  year: 2020
  ident: 17341_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-62586-8
– volume: 49
  start-page: 20200185
  year: 2020
  ident: 17341_CR49
  publication-title: Dentomaxillofac. Radiol.
  doi: 10.1259/dmfr.20200185
– volume: 38
  start-page: 547
  year: 2011
  ident: 17341_CR4
  publication-title: J. Oral Rehabil.
  doi: 10.1111/j.1365-2842.2010.02176.x
– ident: 17341_CR41
  doi: 10.1007/978-3-319-46723-8_49
– volume: 7
  start-page: 28
  year: 2017
  ident: 17341_CR6
  publication-title: J. Clin. Imaging Sci.
  doi: 10.4103/jcis.JCIS_28_17
– ident: 17341_CR35
  doi: 10.48550/arXiv.1409.3215
– volume-title: Anatomy, Head and Neck, Mandibular Nerve
  year: 2020
  ident: 17341_CR1
– volume: 13
  year: 2018
  ident: 17341_CR19
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0211579
– ident: 17341_CR42
  doi: 10.1109/CCE.2012.6315922
– volume: 18
  start-page: 161
  year: 1992
  ident: 17341_CR43
  publication-title: J. Endod.
  doi: 10.1016/S0099-2399(06)81411-1
– reference: 36477659 - Sci Rep. 2022 Dec 7;12(1):21137
SSID ssj0000529419
Score 2.4822557
Snippet The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the mandibular canal...
Abstract The purpose of this study was to propose a continuity-aware contextual network (Canal-Net) for the automatic and robust 3D segmentation of the...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13460
SubjectTerms 631/114/1305
692/698/3008
Accuracy
Bioengineering
Biological Phenomena
Cone-Beam Computed Tomography - methods
Cortical bone
Datasets
Deep learning
Dental research
Dentistry
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
Long short-term memory
Mandibular Canal
Maxillofacial surgery
Mental task performance
multidisciplinary
Science
Science (multidisciplinary)
Segmentation
Spiral Cone-Beam Computed Tomography
Temporal variations
Transplants & implants
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEG_SFmQkbjRqNk7i-EgXqopDT63UmzVx7LLSrlNtElW98suZcbJhV6DCgdsq8a688_B8I898w9jHmQGEodLFAJmMM5mbuKwUfiqMsy4XtYVQIHtenF1m367yq61RX1QTNtADD4I7LgFsmSmMTKXKJB6tGAJdVUqQwqSuCmTbSam2kqmB1TtV2UyNXTKJKI9bjFTUTYa510zi0R0XO5EoEPb_CWX-Xiw53Zg-YY96fwN3t7BcbgWl02fs6Ygm-efhXzxnD6x_wR4O8yXvXrIfxD2wjM9txxGbcui7JjC0cvA1XzdV33ZcfOGtvV6NLUieN46vqNWlovpUTjVhy5YvPJ-fzC_4YoXHT8upWP6aA6c694XvEcjHcAtrGx7gad_jnvxQX_6KXZ5-vZifxePQhdggeOtiC2CozdzVSWqI_i2v0G8rIUCaukbvdbnElE0qBAoErjJbqypDiSaFraVNxGu25xtv3zKeVyrB2IdJCeLCLDWQgrOQCGuUyxE3Rmy2UYA2IyM5DcZY6nAzLko9KE2j0nRQmi4i9mn6zs3Ax3Hv6hPS67SSuLTDA7QwPVqY_puFRexwYxV6dPBWpzR4U1GfccQ-TK_RNem-Bbxt-rBGScpYcc2bwYimnQgUAG5SREzumNfOVnff-MX3QP-tBKLUAn_zaGOIv7Z1nyiOJmP9B8nt_w_JHbDHKTkcVdjkh2yvW_f2HWK4rnof3PUn2EU-8w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF6VVKhwQFBegYIWiRu16nhtr_eAEElbVRwihFqpN2u8XqeRHDvEtqpe-eXMrB8lAkXcIntjjXde33pejH2caEAYKjMHwJeOLwPtRInCX6HOTBaI1IBNkJ2HF1f-t-vgeo_N-1oYSqvsbaI11Gmp6Rv5iUeTDhUVdn5Z_3RoahRFV_sRGtCNVkg_2xZjD9i-R52xRmx_ejb__mP46kJxLX-iuuoZV0QnFXowqjLDM9lEokl3wi0PZRv5_wt9_p1EOURSH7ODpljD3S3k-R_O6vwpe9KhTP61FYtnbM8Uh-xhO3fy7pAdnFKOEI15e85-UX-C3JmbmiN-5dDUpe3iyqFI-aZMmqrm4pRXZrHqypQKXmZ8ReUwCeWwcsobyyu-LPhsOrvkyxWaqIpTQv2CA6dc-GXRINh34BY2xl5Aj9AgfUWbg_6CXZ2fXc4unG4wg6MR4NWOAdBUip6lrqepRVyQoG4nQoDUaYoangUSj3VSIZggAOabVCU-7q4bmlQaV7xko6IszGvGg0S56B_x4ILY0fc0eJAZcIXRKgsQW47ZpGdGrLuu5TQ8I49t9FxEccvAGBkYWwbG4Zh9Gv6zbnt27Fw9JR4PK6nftr1QbhZxp75xBGAiXyE-ipQv0cEjEMuSSIIU2ssSfMhRLyFxZwSq-F5kx-zDcBvVl2IyUJiysWuUpFMtrnnVCtRAicANQCLFmMktUdsidftOsbyxLcKVQCQb4jOPe6G8J2vXVhwPgvsfO_dm90u_ZY88UivKrwmO2KjeNOYdIrg6ed-p5W8ZlEHM
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVgh6QLwKCwUZiRsbkY2TOD5uF6pqD73QSr1ZE8cuK2WdapOo6pVf3rGTDURFFdwivzTyzHg-Zx4m5PNcAcJQbgKAmAcxT1SQ5QK_UmW0SVihwQfInqWnF_HqMrncI7NdLszIf-9Ld9doYlwaGF6a5hzP3CB9RPYzFMxsQvYXi9WP1fBPxXmt4rnoc2Nw-tf7k0f2x5fp_xu2vB8iOfhJD8iT1l7D7Q2U5R-m6OQ5edZjSLromP6C7Gn7kjzuXpW8fUV-uYoDZXCmG4qIlELbVL4uKwVb0G2Vt3VD2Tda66tNn3hkaWXoxiW45C4qlbpIsLKma0uXx8tzut7goVNTFyJ_RYG66Pa1bRG-B3ADW-0b8IxvkSbbRZW_Jhcn38-Xp0H_1EKgELI1gQZQLrncFGGkXNG3JEdtzRkDrooCddYkHC9qXCA8cJAq1oXIY9zRMNUF1yE7JBNbWf2W0CQXIVo8vIogGowjBREYDSHTSpgE0eKUzHcMkKqvQ-6ewyil94ezTHZMk8g06Zkm0yn5Msy57qpwPDj62PF1GOkqaPsGFCzZK6TMAHQWC0Q8mYg5mmyEVibPOHCmIpPjIkc7qZC9Wtcycs9tCpddPCWfhm5USOdlAaur1o8R3N1TccybTogGShhuABLJpoSPxGtE6rjHrn_6ot-CITZNcc3ZThB_k_XQVswGYf2HnXv3f6u_J08jp1ougiY5IpNm2-oPiNGa_GOvmnftzjHz
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJ8R44JtRGMhIvLGUNE7i5HErTBMPFQ-rGE_R2bG7itapmkTTeOQv5-x8QGGa2FuUXCL7cj7_Tv7dHSHvxhIQhnLtAYTcC3kkvUSkeBVLrXTEcgWOIDuNT2fh5_PofIfEXS6MI-27kpbOTXfssA8lbjQ2GQxDpzFHz-vFo3Wu75DdOEIMPiC7s-mXo2-2kxxiFA9hQtBmyPgsueblrV3IFeu_DmH-S5TsT0vvk3u1WcPVJSyXf2xIJw_J124qDQ_l-6iuxEj--KvK4-3n-og8aDEqPWokH5MdZZ6Qu03Xyqun5KetaLD0pqqiiHgp1FXh6r5SMDndFKIuK8o-0lLNV21ik6GFpiubQCMs65VaptmypAtDJ8eTM7pYoVMrqaXgzylQy55fmBrDAw8uYaPcDdxDahyTaVjrz8js5NPZ5NRrWzl4EiFh5SkAaZPXde4H0haViwR6A8EYcJnn6BN0xDEQ5CnCDwvZQpWnIsTJ-7HKufLZczIwhVEvCI1E6uOOiqEOos0wkBCAVuAzJVMdIRodknH3azPZ1jm37TaWmTtvZ0nW6DdD_WZOv1k8JO_7d9ZNlY8bpY-txfSStkK3u1Fs5ln7F7MEQCVhiogqSUOOkAChmxYJB85koAV-5KCzt6x1G2UW2Haeqc1eHpK3_WNc8PYUB4wqaieTchsHo8x-Y579SBgqAAfJhoRvGe7WULefmMWFKyqeMsS-MX7zsDPx38O6SRWH_TL4D829vJ34K7IX2FVgGTrRARlUm1q9RgxYiTftgv8FGClUfw
  priority: 102
  providerName: Unpaywall
Title Canal-Net for automatic and robust 3D segmentation of mandibular canals in CBCT images using a continuity-aware contextual network
URI https://link.springer.com/article/10.1038/s41598-022-17341-6
https://www.ncbi.nlm.nih.gov/pubmed/35931733
https://www.proquest.com/docview/2698992358
https://www.proquest.com/docview/2699701448
https://pubmed.ncbi.nlm.nih.gov/PMC9356068
https://www.nature.com/articles/s41598-022-17341-6.pdf
https://doaj.org/article/8aae8492158947678741fb87a73c2fb6
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: ABDBF
  dateStart: 20121221
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: NAO
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (Proquest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M48
  dateStart: 20110801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: AAJSJ
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: C6C
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2IWA5IN4UlspI3NhAGidxfECoDbtaVaJawVYqp8hxnFIpdZY8tPTKL2fsPKCirDglsp1o5JnJfBPPA6HXI8EBhtLU4tyllks9YQUxgztfpDL1SCK5CZCd-edzd7rwFnuoa3fUbmC507XT_aTmRfb2x_fNB1D4903KePCuBCOkE8XArRpR-Cpb_j46BEvFdCuHTy3cb2p9O8wdsTZ3ZvejR-g28RhYVUK2TJWp6L8Lhv4dTdkfqd5Fd2p1xTfXPMv-sFpn99G9Fm7icSMfD9CeVA_RraYB5eYR-qmLE2TWTFYYwCvmdZWbEq6YqwQXeVyXFSYfcSmX6zZHSeE8xWudCxPrAFasg8ayEq8UDifhJV6t4ftUYh1Nv8Qc60D4laoB6Vv8mhfSDIA5qIEm1QSgP0bzs9PL8NxquzJYAtBdZUnOhc5DTxPbEbo-nBeDYseEcCqSBNQ79Sj4dJQBktDoy5UJi13YXNuXCZU2eYIOVK7kM4S9mNlgHMFrAeDoOoI7PJXcJlKwFHjgDNCoY0Ak2pLlunNGFpmjcxJEDf8i4F9k-Bf5A_Smf-aqKdhx4-qJ5mu_UhfbNgN5sYxa3Y0CzmXgMgBHAXMpWHdAYWkcUE6JcNIYXnLcSUXUCXDk6M6cTCciD9Crfhp0Vx_IcCXz2qxhVLu0sOZpI0Q9JZ0QDhDdEq8tUrdn1OqbqQ_OCMBYH9550gnib7Ju2oqTXlj_Y-ee_5PiF-jI0Qql42q8Y3RQFbV8Ccitiodony7oEB2Ox9MvU7hOTmcXn2E09MOh-RsyNAoLM_PZxfjrLyXZQdA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJ1T2gGB8rDDASPDEorVxUicPE6Ltpo6NCqFO2lvmOE6p1DqlSVT1lT-Mv40752NUoIqXvUXJxXJ857vfxfdByLuOFABDeWwJ4XDL4a60vNCHq66MVeyySAkTIDvqDq-cz9fu9Q75VeXCYFhlpRONoo4Sif_Ij23sdOhjYufHxQ8Lu0bh6WrVQkOUrRWiE1NirEzsuFDrFbhw6cn5APj93rbPTsf9oVV2GbAkoJXMUkJIzKuOo7Ytsd6ZG4KghowJLqMIxDV2Ofgo3AfLiGjCUZEfOpyBJVQRV20G494juw4DmgbZ7Z2Ovn6r__LgOZrT8ctsnTbzjlOwmJjVBj5gBwbpWN0Ni2gaB_wL7f4dtFmf3O6RZq4XYr0Ss9kfxvHsEXlYolr6qRDDx2RH6X1yv-hzud4nzQHGJGFbuSfkJ9ZDmFkjlVHAy1TkWWKqxlKhI7pMwjzNKBvQVE3mZVqUpklM55h-E2LMLMU4tVlKp5r2e_0xnc5BJaYUA_gnVFCMvZ_qHJwLS6zEUpkbYIFymJ8uYt6fkqs7YdEz0tCJVgeEuqHfBnsMjhJgVceWwhaxEm2mpB-7gGVbpFMxI5BllXRs1jELzGk984KCgQEwMDAMDLot8qF-Z1HUCNlK3UMe15RY39vcSJaToFQXgSeE8hwf8JjnOxwABQC_OPS44EzacQiDHFYSEpRKJw1ut0iLvK0fg7rAMyChVZIbGp-jFw00zwuBqmfCYAFgkqxF-IaobUx184mefjclyX0GyLkLYx5VQnk7rW1LcVQL7n-s3IvtH_2GNIfjL5fB5fno4iV5YOMWw9ge95A0smWuXgF6zMLX5Ral5OautcJvAOp9FA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRbBwQLC8CgsYCU5s1DRO6viAENtS7bKo4rAr9RYcxy6VWqc0iape-Vn8OmbyWipQxWVvVeJajmcy8038zQwhb3pKAgzlxpHS547PA-WEsYBffWW0CViiZUmQHfdPL_3Pk2CyR341uTBIq2xsYmmok1ThN_Kuh50OBSZ2dk1Ni_g6HH1Y_nCwgxSetDbtNCoVOdebNYRv2fuzIcj6reeNPl0MTp26w4CjAKnkjpZSYU61SVxPYa2zIAYljRmTXCUJqKoJOMQnXIBXRCTh60TEPmfgBXXCtctg3hvkJmdMIJ2QT3j7fQdP0PyeqPN0XBZ2M_CVmM8G0V8Ppug5_S1fWLYM-BfO_Zuu2Z7Z3iUHhV3KzVrO53-4xdF9cq_Gs_RjpYAPyJ62h-RW1eFyc0gOhshGwoZyD8lPrIQwd8Y6p4CUqSzytKwXS6VN6CqNiyynbEgzPV3UCVGWpoYuMPEmRrYsRYbaPKMzSwcngws6W4AxzChS96dUUmTdz2wBYYUj13KlywsgwALWZyu2-yNyeS0Cekz2bWr1U0KDWLjgiSFEApTqe0p60mjpMq2ECQDFdkivEUak6vro2KZjHpXn9CyMKgFGIMCoFGDU75B37X-WVXWQnaNPUMbtSKzsXV5IV9OoNhRRKKUOfQFILBQ-BygBkM_EIZecKc_EMMlRoyFRbW6y6Orl6JDX7W0wFHj6I61Oi3KM4Bg_w5gnlUK1K2GwAbBI1iF8S9W2lrp9x86-l8XIBQPM3Ic5jxulvFrWrq04bhX3P3bu2e6HfkVugy2IvpyNz5-TOx6-YUjqCY7Ifr4q9AuAjXn8snw_Kfl23QbhN3mweq4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJ8R44JtRGMhIvLGUNE7i5HErTBMPFQ-rGE_R2bG7itapmkTTeOQv5-x8QGGa2FuUXCL7cj7_Tv7dHSHvxhIQhnLtAYTcC3kkvUSkeBVLrXTEcgWOIDuNT2fh5_PofIfEXS6MI-27kpbOTXfssA8lbjQ2GQxDpzFHz-vFo3Wu75DdOEIMPiC7s-mXo2-2kxxiFA9hQtBmyPgsueblrV3IFeu_DmH-S5TsT0vvk3u1WcPVJSyXf2xIJw_J124qDQ_l-6iuxEj--KvK4-3n-og8aDEqPWokH5MdZZ6Qu03Xyqun5KetaLD0pqqiiHgp1FXh6r5SMDndFKIuK8o-0lLNV21ik6GFpiubQCMs65VaptmypAtDJ8eTM7pYoVMrqaXgzylQy55fmBrDAw8uYaPcDdxDahyTaVjrz8js5NPZ5NRrWzl4EiFh5SkAaZPXde4H0haViwR6A8EYcJnn6BN0xDEQ5CnCDwvZQpWnIsTJ-7HKufLZczIwhVEvCI1E6uOOiqEOos0wkBCAVuAzJVMdIRodknH3azPZ1jm37TaWmTtvZ0nW6DdD_WZOv1k8JO_7d9ZNlY8bpY-txfSStkK3u1Fs5ln7F7MEQCVhiogqSUOOkAChmxYJB85koAV-5KCzt6x1G2UW2Haeqc1eHpK3_WNc8PYUB4wqaieTchsHo8x-Y579SBgqAAfJhoRvGe7WULefmMWFKyqeMsS-MX7zsDPx38O6SRWH_TL4D829vJ34K7IX2FVgGTrRARlUm1q9RgxYiTftgv8FGClUfw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canal-Net+for+automatic+and+robust+3D+segmentation+of+mandibular+canals+in+CBCT+images+using+a+continuity-aware+contextual+network&rft.jtitle=Scientific+reports&rft.au=Jeoun%2C+Bo-Soung&rft.au=Yang%2C+Su&rft.au=Lee%2C+Sang-Jeong&rft.au=Kim%2C+Tae-Il&rft.date=2022-08-05&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=13460&rft_id=info:doi/10.1038%2Fs41598-022-17341-6&rft_id=info%3Apmid%2F35931733&rft.externalDocID=35931733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon