Deep learning-based prediction of early cerebrovascular events after transcatheter aortic valve replacement

Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-re...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 18754 - 10
Main Authors Okuno, Taishi, Overtchouk, Pavel, Asami, Masahiko, Tomii, Daijiro, Stortecky, Stefan, Praz, Fabien, Lanz, Jonas, Siontis, George C. M., Gräni, Christoph, Windecker, Stephan, Pilgrim, Thomas
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 21.09.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-98265-5

Cover

Abstract Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.
AbstractList Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.
Abstract Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.
Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model's performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2-30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82-3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65-0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model's performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2-30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82-3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65-0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.
Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.
ArticleNumber 18754
Author Asami, Masahiko
Lanz, Jonas
Windecker, Stephan
Tomii, Daijiro
Praz, Fabien
Siontis, George C. M.
Pilgrim, Thomas
Gräni, Christoph
Okuno, Taishi
Stortecky, Stefan
Overtchouk, Pavel
Author_xml – sequence: 1
  givenname: Taishi
  surname: Okuno
  fullname: Okuno, Taishi
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 2
  givenname: Pavel
  surname: Overtchouk
  fullname: Overtchouk, Pavel
  email: pavel@alviss.ai
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, AlvissLabs Research, ALVISS.AI SAS
– sequence: 3
  givenname: Masahiko
  surname: Asami
  fullname: Asami, Masahiko
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 4
  givenname: Daijiro
  surname: Tomii
  fullname: Tomii, Daijiro
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 5
  givenname: Stefan
  surname: Stortecky
  fullname: Stortecky, Stefan
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 6
  givenname: Fabien
  surname: Praz
  fullname: Praz, Fabien
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 7
  givenname: Jonas
  surname: Lanz
  fullname: Lanz, Jonas
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 8
  givenname: George C. M.
  surname: Siontis
  fullname: Siontis, George C. M.
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 9
  givenname: Christoph
  surname: Gräni
  fullname: Gräni, Christoph
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 10
  givenname: Stephan
  surname: Windecker
  fullname: Windecker, Stephan
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
– sequence: 11
  givenname: Thomas
  surname: Pilgrim
  fullname: Pilgrim, Thomas
  organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34548574$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhSNUREvpH2CBIrFhE_AzsTdIqLwqVWIDa2viTG5z8bWDnUTqv8dpWmi7qDd-zHeOju15WRz54LEoXlPynhKuPiRBpVYVYbTSitWyks-KE0aErBhn7Oje-rg4S2lP8pBMC6pfFMdcSKFkI06K358Rx9IhRD_4XdVCwq4cI3aDnYbgy9CXueauS4sR2xgWSHZ2EEtc0E-phH7CWE4RfLIwXeG6gxCnwZYLuAXLiKMDi4dMvyqe9-ASnt3Op8Wvr19-nn-vLn98uzj_dFlZKchUIUVt61YI3iCps7Yhdc90R1XbK2BaSQut5IwTLnXTZLQHkJqRDoTVxPLT4mLz7QLszRiHA8RrE2AwNwch7gysCR0aqRQlVipE2ohG9JoTVZO6pdi2bd_12evj5jXO7QE7m68RwT0wfVjxw5XZhcUoIWXdyGzw7tYghj8zpskchmTROfAY5mSYzFDDpSIZffsI3Yc5-vxUKyU0p1qv1Jv7if5FufvTDKgNsDGkFLE3dphg_c0ccHCGErN2kNk6yOQOMjcdZNaw7JH0zv1JEd9EKcN-h_F_7CdUfwH2B9pQ
CitedBy_id crossref_primary_10_1007_s10489_023_04877_x
crossref_primary_10_1016_j_jscai_2025_102562
crossref_primary_10_1038_s41598_023_37358_9
crossref_primary_10_1097_CRD_0000000000000849
crossref_primary_10_3390_diagnostics14131393
crossref_primary_10_4244_EIJ_D_23_01087
crossref_primary_10_1371_journal_pdig_0000081
crossref_primary_10_31083_j_rcm2501031
crossref_primary_10_1016_j_jtcvs_2024_05_017
crossref_primary_10_1007_s00423_023_03223_6
crossref_primary_10_1016_j_neucom_2022_07_005
crossref_primary_10_1016_j_jcin_2023_10_021
crossref_primary_10_1136_heartjnl_2022_321575
crossref_primary_10_3390_diagnostics14030261
Cites_doi 10.1161/CIRCULATIONAHA.112.110981
10.1016/j.jtcvs.2012.01.055
10.1038/nrcardio.2016.42
10.1016/j.amjcard.2012.11.056
10.1016/j.jcin.2020.04.015
10.1161/CIRCULATIONAHA.112.001091
10.1056/NEJMoa1911425
10.1056/NEJMoa2017815
10.1016/j.jacc.2016.11.033
10.1016/j.jcin.2019.06.019
10.1016/j.jcin.2019.06.013
10.1136/heartjnl-2011-300065
10.1093/ejcts/ezs533
10.1001/jama.2018.11100
10.1056/NEJMra1814259
10.1016/j.jcct.2020.10.003
10.1016/j.jcin.2020.05.049
10.1016/j.jacc.2016.11.045
10.1161/01.str.28.7.1501
10.1093/eurheartj/ehz275
10.1007/s12471-019-1285-7
10.1016/j.jacc.2016.10.023
10.1056/NEJMoa1915152
10.1093/ehjqcco/qcy048
10.1016/j.amjcard.2016.02.036
10.1038/s41591-018-0268-3
10.1016/j.jcct.2018.04.007
10.1016/j.jcmg.2018.12.003
10.1038/nature14539
10.1016/j.jacc.2020.11.030
10.1016/j.jcin.2021.03.024
10.1002/ccd.28961
10.1109/ICCP48234.2019.8959787
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-98265-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


CrossRef
MEDLINE - Academic
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_58810c58ee17474f9308606b1ebbbfdf
PMC8455675
34548574
10_1038_s41598_021_98265_5
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-e1e9c6b4437e06ace706f29d18bf8a2985cab5323035977c6bfaa5920da4c90c3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:30:35 EDT 2025
Thu Aug 21 14:13:47 EDT 2025
Thu Sep 04 22:29:01 EDT 2025
Wed Aug 13 05:11:37 EDT 2025
Thu Jan 02 22:55:47 EST 2025
Tue Jul 01 03:49:20 EDT 2025
Thu Apr 24 23:12:25 EDT 2025
Fri Feb 21 02:39:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-e1e9c6b4437e06ace706f29d18bf8a2985cab5323035977c6bfaa5920da4c90c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-98265-5
PMID 34548574
PQID 2574931990
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_58810c58ee17474f9308606b1ebbbfdf
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455675
proquest_miscellaneous_2575373580
proquest_journals_2574931990
pubmed_primary_34548574
crossref_citationtrail_10_1038_s41598_021_98265_5
crossref_primary_10_1038_s41598_021_98265_5
springer_journals_10_1038_s41598_021_98265_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-21
PublicationDateYYYYMMDD 2021-09-21
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-21
  day: 21
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Lansky (CR23) 2017; 69
Hernandez-Suarez (CR6) 2019; 12
Grover (CR34) 2017; 69
Dangas (CR27) 2020; 382
Brouwer (CR29) 2020; 383
Okuno (CR16) 2020; 13
Rajkomar, Dean, Kohane (CR3) 2019; 380
Hannun (CR5) 2019; 25
Kapadia (CR26) 2017; 69
Veulemans (CR31) 2020; 96
Spaziano (CR30) 2018; 12
Miller (CR17) 2012; 143
LeCun, Bengio, Hinton (CR1) 2015; 521
Siontis (CR10) 2019; 40
Fairbairn (CR18) 2012; 98
Liao (CR14) 2016; 117
Stortecky (CR11) 2018; 20
Okuno (CR19) 2020
Lopes (CR7) 2019; 27
Nombela-Franco (CR9) 2012; 126
CR25
Mohr (CR13) 1997; 28
CR24
Rumsfeld, Joynt, Maddox (CR32) 2016; 13
Van Mieghem (CR12) 2013; 127
Navarese (CR8) 2021; 14
Mentias (CR15) 2019; 12
Kappetein (CR22) 2012; 42
Nijenhuis (CR28) 2020; 382
Quer, Arnaout, Henne, Arnaout (CR4) 2021; 77
Durand (CR33) 2013; 111
Okuno (CR21) 2020; 13
Hinton (CR2) 2018; 320
Blanke (CR20) 2019; 12
TA Fairbairn (98265_CR18) 2012; 98
AY Hannun (98265_CR5) 2019; 25
AP Kappetein (98265_CR22) 2012; 42
S Stortecky (98265_CR11) 2018; 20
JS Rumsfeld (98265_CR32) 2016; 13
EP Navarese (98265_CR8) 2021; 14
L Nombela-Franco (98265_CR9) 2012; 126
AJ Lansky (98265_CR23) 2017; 69
VJ Nijenhuis (98265_CR28) 2020; 382
DC Miller (98265_CR17) 2012; 143
JP Mohr (98265_CR13) 1997; 28
M Spaziano (98265_CR30) 2018; 12
A Mentias (98265_CR15) 2019; 12
SR Kapadia (98265_CR26) 2017; 69
G Hinton (98265_CR2) 2018; 320
NM Van Mieghem (98265_CR12) 2013; 127
FL Grover (98265_CR34) 2017; 69
GCM Siontis (98265_CR10) 2019; 40
Y LeCun (98265_CR1) 2015; 521
T Okuno (98265_CR21) 2020; 13
P Blanke (98265_CR20) 2019; 12
V Veulemans (98265_CR31) 2020; 96
T Okuno (98265_CR16) 2020; 13
E Durand (98265_CR33) 2013; 111
YB Liao (98265_CR14) 2016; 117
G Quer (98265_CR4) 2021; 77
T Okuno (98265_CR19) 2020
GD Dangas (98265_CR27) 2020; 382
RR Lopes (98265_CR7) 2019; 27
98265_CR24
98265_CR25
J Brouwer (98265_CR29) 2020; 383
A Rajkomar (98265_CR3) 2019; 380
DF Hernandez-Suarez (98265_CR6) 2019; 12
References_xml – volume: 126
  start-page: 3041
  year: 2012
  end-page: 3053
  ident: CR9
  article-title: Timing, predictive factors, and prognostic value of cerebrovascular events in a large cohort of patients undergoing transcatheter aortic valve implantation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.110981
– volume: 143
  start-page: 832
  year: 2012
  end-page: 843 e813
  ident: CR17
  article-title: Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: Occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2012.01.055
– volume: 13
  start-page: 350
  year: 2016
  end-page: 359
  ident: CR32
  article-title: Big data analytics to improve cardiovascular care: Promise and challenges
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2016.42
– volume: 111
  start-page: 891
  year: 2013
  end-page: 897
  ident: CR33
  article-title: Performance analysis of EuroSCORE II compared to the original logistic EuroSCORE and STS scores for predicting 30-day mortality after transcatheter aortic valve replacement
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2012.11.056
– volume: 13
  start-page: 1789
  year: 2020
  end-page: 1799
  ident: CR21
  article-title: Impact of left ventricular outflow tract calcification on procedural outcomes after transcatheter aortic valve replacement
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2020.04.015
– volume: 127
  start-page: 2194
  year: 2013
  end-page: 2201
  ident: CR12
  article-title: Histopathology of embolic debris captured during transcatheter aortic valve replacement
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.001091
– volume: 382
  start-page: 120
  year: 2020
  end-page: 129
  ident: CR27
  article-title: A controlled trial of rivaroxaban after transcatheter aortic-valve replacement
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911425
– volume: 383
  start-page: 1447
  year: 2020
  end-page: 1457
  ident: CR29
  article-title: Aspirin with or without clopidogrel after transcatheter aortic-valve implantation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2017815
– volume: 69
  start-page: 1215
  year: 2017
  end-page: 1230
  ident: CR34
  article-title: 2016 annual report of the society of thoracic surgeons/American College of Cardiology Transcatheter Valve Therapy Registry
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.11.033
– volume: 12
  start-page: 2119
  year: 2019
  end-page: 2129
  ident: CR15
  article-title: Impact of pre-existing and new-onset atrial fibrillation on outcomes after transcatheter aortic valve replacement
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2019.06.019
– volume: 12
  start-page: 1328
  year: 2019
  end-page: 1338
  ident: CR6
  article-title: Machine learning prediction models for in-hospital mortality after transcatheter aortic valve replacement
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2019.06.013
– volume: 98
  start-page: 18
  year: 2012
  end-page: 23
  ident: CR18
  article-title: Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: Assessment of predictive risk factors and the relationship to subsequent health status
  publication-title: Heart (British Cardiac Society)
  doi: 10.1136/heartjnl-2011-300065
– volume: 42
  start-page: S45
  year: 2012
  end-page: 60
  ident: CR22
  article-title: Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document (VARC-2)
  publication-title: Eur. J. Cardio-thorac. Surg.
  doi: 10.1093/ejcts/ezs533
– volume: 320
  start-page: 1101
  year: 2018
  end-page: 1102
  ident: CR2
  article-title: Deep learning-a technology with the potential to transform health care
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  ident: CR3
  article-title: Machine learning in medicine
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1814259
– ident: CR25
– year: 2020
  ident: CR19
  article-title: Clinical impact of mitral calcium volume in patients undergoing transcatheter aortic valve implantation
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2020.10.003
– volume: 13
  start-page: 2124
  year: 2020
  end-page: 2133
  ident: CR16
  article-title: Valvular and nonvalvular atrial fibrillation in patients undergoing transcatheter aortic valve replacement
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2020.05.049
– volume: 69
  start-page: 679
  year: 2017
  end-page: 691
  ident: CR23
  article-title: Proposed standardized neurological endpoints for cardiovascular clinical trials: An Academic Research Consortium initiative
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.11.045
– volume: 28
  start-page: 1501
  year: 1997
  end-page: 1506
  ident: CR13
  article-title: American Heart Association Prevention Conference. IV. Prevention and rehabilitation of stroke. Etiology of stroke
  publication-title: Stroke
  doi: 10.1161/01.str.28.7.1501
– volume: 40
  start-page: 3143
  year: 2019
  end-page: 3153
  ident: CR10
  article-title: Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: An updated meta-analysis
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz275
– volume: 27
  start-page: 443
  year: 2019
  end-page: 450
  ident: CR7
  article-title: Value of machine learning in predicting TAVI outcomes
  publication-title: Neth. Heart J.
  doi: 10.1007/s12471-019-1285-7
– volume: 69
  start-page: 367
  year: 2017
  end-page: 377
  ident: CR26
  article-title: Protection against cerebral embolism during transcatheter aortic valve replacement
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.10.023
– volume: 382
  start-page: 1696
  year: 2020
  end-page: 1707
  ident: CR28
  article-title: Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1915152
– volume: 20
  start-page: 20
  year: 2018
  ident: CR11
  article-title: Temporal trends in adoption and outcomes of transcatheter aortic valve implantation: A Swisstavi Registry Analysis
  publication-title: Eur. Heart j. Qual. Care clin. Outcomes.
  doi: 10.1093/ehjqcco/qcy048
– volume: 117
  start-page: 1629
  year: 2016
  end-page: 1635
  ident: CR14
  article-title: Meta-analysis of the effectiveness and safety of transcatheter aortic valve implantation without balloon predilation
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2016.02.036
– volume: 25
  start-page: 65
  year: 2019
  end-page: 69
  ident: CR5
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 12
  start-page: 338
  year: 2018
  end-page: 343
  ident: CR30
  article-title: Computed tomography predictors of mortality, stroke and conduction disturbances in women undergoing TAVR: A sub-analysis of the WIN-TAVI registry
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2018.04.007
– volume: 12
  start-page: 1
  year: 2019
  end-page: 24
  ident: CR20
  article-title: Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): An expert consensus document of the society of cardiovascular computed tomography
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2018.12.003
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: CR1
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: CR24
– volume: 77
  start-page: 300
  year: 2021
  end-page: 313
  ident: CR4
  article-title: Machine learning and the future of cardiovascular care: JACC state-of-the-art review
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.11.030
– volume: 14
  start-page: 1196
  year: 2021
  end-page: 1206
  ident: CR8
  article-title: Development and validation of a practical model to identify patients at risk of bleeding after TAVR
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2021.03.024
– volume: 96
  start-page: 1511
  year: 2020
  end-page: 1519
  ident: CR31
  article-title: Novel insights on outcome in horizontal aorta with self-expandable new-generation transcatheter aortic valve replacement devices
  publication-title: Catheter. Cardiovasc. Interv.
  doi: 10.1002/ccd.28961
– volume: 521
  start-page: 436
  year: 2015
  ident: 98265_CR1
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 143
  start-page: 832
  year: 2012
  ident: 98265_CR17
  publication-title: J. Thorac. Cardiovasc. Surg.
  doi: 10.1016/j.jtcvs.2012.01.055
– volume: 77
  start-page: 300
  year: 2021
  ident: 98265_CR4
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2020.11.030
– volume: 126
  start-page: 3041
  year: 2012
  ident: 98265_CR9
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.110981
– volume: 13
  start-page: 2124
  year: 2020
  ident: 98265_CR16
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2020.05.049
– volume: 117
  start-page: 1629
  year: 2016
  ident: 98265_CR14
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2016.02.036
– volume: 25
  start-page: 65
  year: 2019
  ident: 98265_CR5
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 13
  start-page: 1789
  year: 2020
  ident: 98265_CR21
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2020.04.015
– volume: 28
  start-page: 1501
  year: 1997
  ident: 98265_CR13
  publication-title: Stroke
  doi: 10.1161/01.str.28.7.1501
– volume: 12
  start-page: 2119
  year: 2019
  ident: 98265_CR15
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2019.06.019
– volume: 69
  start-page: 1215
  year: 2017
  ident: 98265_CR34
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.11.033
– ident: 98265_CR24
– ident: 98265_CR25
  doi: 10.1109/ICCP48234.2019.8959787
– volume: 380
  start-page: 1347
  year: 2019
  ident: 98265_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1814259
– volume: 20
  start-page: 20
  year: 2018
  ident: 98265_CR11
  publication-title: Eur. Heart j. Qual. Care clin. Outcomes.
  doi: 10.1093/ehjqcco/qcy048
– volume: 69
  start-page: 367
  year: 2017
  ident: 98265_CR26
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.10.023
– volume: 40
  start-page: 3143
  year: 2019
  ident: 98265_CR10
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehz275
– volume: 382
  start-page: 120
  year: 2020
  ident: 98265_CR27
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1911425
– volume: 382
  start-page: 1696
  year: 2020
  ident: 98265_CR28
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1915152
– volume: 111
  start-page: 891
  year: 2013
  ident: 98265_CR33
  publication-title: Am. J. Cardiol.
  doi: 10.1016/j.amjcard.2012.11.056
– volume: 383
  start-page: 1447
  year: 2020
  ident: 98265_CR29
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2017815
– volume: 12
  start-page: 1
  year: 2019
  ident: 98265_CR20
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2018.12.003
– volume: 12
  start-page: 1328
  year: 2019
  ident: 98265_CR6
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2019.06.013
– volume: 27
  start-page: 443
  year: 2019
  ident: 98265_CR7
  publication-title: Neth. Heart J.
  doi: 10.1007/s12471-019-1285-7
– volume: 320
  start-page: 1101
  year: 2018
  ident: 98265_CR2
  publication-title: JAMA
  doi: 10.1001/jama.2018.11100
– volume: 127
  start-page: 2194
  year: 2013
  ident: 98265_CR12
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.001091
– year: 2020
  ident: 98265_CR19
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2020.10.003
– volume: 12
  start-page: 338
  year: 2018
  ident: 98265_CR30
  publication-title: J. Cardiovasc. Comput. Tomogr.
  doi: 10.1016/j.jcct.2018.04.007
– volume: 96
  start-page: 1511
  year: 2020
  ident: 98265_CR31
  publication-title: Catheter. Cardiovasc. Interv.
  doi: 10.1002/ccd.28961
– volume: 14
  start-page: 1196
  year: 2021
  ident: 98265_CR8
  publication-title: JACC Cardiovasc. Interv.
  doi: 10.1016/j.jcin.2021.03.024
– volume: 13
  start-page: 350
  year: 2016
  ident: 98265_CR32
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2016.42
– volume: 42
  start-page: S45
  year: 2012
  ident: 98265_CR22
  publication-title: Eur. J. Cardio-thorac. Surg.
  doi: 10.1093/ejcts/ezs533
– volume: 69
  start-page: 679
  year: 2017
  ident: 98265_CR23
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2016.11.045
– volume: 98
  start-page: 18
  year: 2012
  ident: 98265_CR18
  publication-title: Heart (British Cardiac Society)
  doi: 10.1136/heartjnl-2011-300065
SSID ssj0000529419
Score 2.4116464
Snippet Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to...
Abstract Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18754
SubjectTerms 692/308
692/4019
692/499
692/700
Aged
Aged, 80 and over
Aortic valve
Deep Learning
Female
Humanities and Social Sciences
Humans
Incidence
Ischemia
Male
multidisciplinary
Patients
Prediction models
Prospective Studies
Risk Factors
Science
Science (multidisciplinary)
Stroke - diagnostic imaging
Stroke - etiology
Tomography, X-Ray Computed
Transcatheter Aortic Valve Replacement - adverse effects
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBelMOjL2Ee3peuGB33bQp3YTuzHfZUyaJ9a6Juxc_I2NnLH3XWw_36Sk0t7-3zZYxI5MZZkSZH8E8BRS1baoq7KpiEJ1laqMpBYkeIZGRjOOzV83vnsvDm91B-uzNWtVl9cEzbAAw8Ld2ysrWRnLCL5zq1OTpETLptYYYwxzRLvvtLJW8HUgOpdO1258ZSMVPZ4RZaKT5NxRQK51KY0W5YoA_b_zsv8tVjyp4xpNkQn9-Du6EGK18PM78MO9g_gztBT8vtD-PIOcSHGZhAfS7ZSM7FYcj6GeSDmSSCDGosOlxQPT6WoIkM5rURuGi7WbMIypCtfhTl_TJBQfkOxxFzHxX8V9-Hy5P3F29Ny7KhQduSZrUus0HVN1Fq1KBuibWWTajerbEw21M6aLkSjKCxRjEtHpCkE42o5C7pzslOPYLef9_gEhIqpjYH8C35fHTHauuWhUmkaXbsCqs3q-m6EG-euF199Tnsr6weOeOKIzxzxpoCX05jFALbxV-o3zLSJkoGy8w0SHz-Kj_-X-BRwuGG5H7V35Wkb0472JicLeDE9Jr3jZErocX6daYxqOYlcwONBQqaZKE1xIL2jgHZLdramuv2k__wpY3tbbQzFcAW82kjZzbT-vBQH_2MpnsJezerBKbfqEHbXy2t8Rh7XOj7PyvUD3vEmmQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgERIXxJvCgoLEDapNm6RJTojXaoUEJ1aaW5S06YJA7dCZReLfY6eZrobHHmfqdDL1l9qOnc8AzzVaaRNlVTYNIlgaLkqPsMKFp7gnOu--ofPOHz81J6fyw0qt8obbJpdV7t6J6UXdjS3tkR8htKRFvFj-av2jpK5RlF3NLTSuwrUKPRFq3aBXetljoSyWrGw-K8OFOdqgvaIzZVSXgI61KtWePUq0_f_yNf8umfwjb5rM0fEtuJn9SPZ6VvxtuBKHO3B97iz56y58exfjmuWWEGcl2aqOrSfKypAm2NizSNTGrI0TRsVLQSpLhE4bllqHsy0ZskTsSp_8SD_GEJo_I5tiquaivcV7cHr8_vPbkzL3VShb9M-2ZayibZsgpdCRNyiredPXtqtM6I2vrVGtD0pgcCKInQ5Fe--VrXnnZWt5K-7DwTAO8SEwEXodPHoZdL86xGBqTUO5kDi6tgVUu6fr2kw6Tr0vvruU_BbGzRpxqBGXNOJUAS-WMeuZcuNS6TektEWS6LLTF-N05vLqc8qYirfKxIgBmJY9QsVg5BaqGELou76Aw53KXV7DG3eBuAKeLZdx9VFKxQ9xPE8ySmhKJRfwYEbIMhMhMRrEexSg97CzN9X9K8PXL4nh20ilMJIr4OUOZRfT-v-jeHT5v3gMN2oCPqXUqkM42E7n8Ql6VNvwNC2b39tSHfc
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTUi8IL7pGChIvEFF2iRN8nh8TNNJ8AKT9hYlvXQgUHvq3ZD472enH-hgIPHY1mmj2I7t2vkZ4IVGK22iLPKqQgmWhovco1ih4inuCc67qei884eP1emZXJ2r8wMop7MwqWg_QVqmbXqqDnu9RUNDh8GooAA9YpWrG3BoNG6_CzhcLlefVvOfFcpdycKOJ2S4MNcM3rNCCaz_Og_zz0LJ37KlyQid3IHbo_fIlsN878JBbO_BzaGf5M_78O1djBs2NoK4yMlCrdmmp1wMrT_rGhYJ0JjVscdYeC5DZQnGactSw3C2I_OV4Fzpynf0MYYC-SOyPqYaLvqj-ADOTt5_fnuaj90U8hq9sl0ei2jrKkgpdOQV0mpeNaVdFyY0xpfWqNoHJTAkEYRJh6SN98qWfO1lbXktHsKi7dr4GJgIjQ4efQt6XxliMKWmoVxIHF3aDIppdV09Qo1Tx4vvLqW8hXEDRxxyxCWOOJXBy3nMZgDa-Cf1G2LaTEkg2elG11-4UWicMqbgtTIxYtilZWMFxm-8CkUMITTrJoPjieVu1Nytwy1MWtyXLM_g-fwYdY4SKb6N3WWiUUJTAjmDR4OEzDMREmNAfEcGek929qa6_6T9-iXhehupFMZvGbyapOzXtP6-FEf_R_4EbpWkCJRYK45hsesv41P0q3bh2ahIVwDyHTA
  priority: 102
  providerName: Springer Nature
Title Deep learning-based prediction of early cerebrovascular events after transcatheter aortic valve replacement
URI https://link.springer.com/article/10.1038/s41598-021-98265-5
https://www.ncbi.nlm.nih.gov/pubmed/34548574
https://www.proquest.com/docview/2574931990
https://www.proquest.com/docview/2575373580
https://pubmed.ncbi.nlm.nih.gov/PMC8455675
https://doaj.org/article/58810c58ee17474f9308606b1ebbbfdf
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLf2IdBeEJ-jME5B4g0KbZM0yQNCt2PTdBITAk66t6rppQMxtUfvhth_j51-oIODB56qtk4bxXZt187PAM8UWmntRBymKUqw0BEPcxQrVDwZ5QTnXaa03_ndeXo2E9O5nO9A3-6oW8DV1tCO-knNmsuXP75dv0GFf91uGdevVmiEaKMYFRugtyxDuQv7Pl9EpXydu99ifSdGxKbbO7N96AHc5ALdeKnEhqnyiP7b3NA_qyl_S6l6S3V6G251LiYbtzJxB3ZcdRdutE0nr-_B17fOLVnXLeIiJDO2YMuGEjbEJFaXzBHqMStcgwHzUKvKPNbTivmu4mxNNs5jvtJZXtPLGErtd8ca5wu96LfjfZidnnyanIVdy4WwQNdtHbrYmSK1QnDlohRpVZSWiVnE2pY6T4yWRW4lx7iFE3AdkpZ5Lk0SLXJRmKjgD2Cvqiv3EBi3pbI5OiD0vMQ6qxNFQyMucHRiAoj71c2KDo-c2mJcZj4vznXWMidD5mSeOZkM4PkwZtmicfyT-piYNlASkra_UDcXWaeYmdQ6jgqpncPYTInScAzyotTGzlpbLsoAjnqWZ710ZvidEwY_XiYK4OlwGxWTsi155eorTyO5oixzAIethAwz6SUsALUhOxtT3bxTffnswb-1kBKDvABe9FL2a1p_X4pH__2ix3CQkHpQIi4-gr11c-WeoB-2tiPYVXM1gv3xePpxisfjk_P3H_DqJJ2M_L-NkVe_nyMgNGY
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThDVie3EOSAElGpLH6dW2puxE6cgULLsbkH9U_xGZpxHtTx66zGJ4ziebzwznvEMwPMcpbT2MomzDBEsNRexRVgh4yluKZ13ndF554PDbHIsP07VdA1-DWdhKKxyWBPDQl21Je2RbyG0ZIF4Kfib2feYqkaRd3UoodHBYs-f_USTbfF6dxvp-yJNdz4cvZ_EfVWBuETtZBn7xBdl5qQUueeZLX3OszotqkS7Wtu00Kq0TglUzQXlZsOmtbWqSHllZVnwUmC_V-CqJBcj8k8-zcc9HfKayaToz-ZwobcWKB_pDBvFQaAir2K1Iv9CmYB_6bZ_h2j-4acN4m_nFtzs9Vb2tgPabVjzzR241lWyPLsLX7e9n7G-BMVJTLKxYrM5eYGI8qytmadUyqz0c7TCxwBYFhJILVgoVc6WJDhDIlm6si19jCEr_PBs7kP0GO1l3oPjS5nx-7DetI1_AEy4OncWtRrqL3Xe6TSnV7lAeoi0iCAZZteUfZJzqrXxzQRnu9Cmo4hBiphAEaMieDm-M-tSfFzY-h0RbWxJ6bnDjXZ-YnpuN0rrhJdKe48GXy7rQqDlyDOXeOdcXdURbA4kN_2asTDnCI_g2fgYuZ1cOLbx7Wloo0ROrusINjqEjCMREq1P7COCfAU7K0NdfdJ8-RwyimupFFqOEbwaUHY-rP9PxcOL_-IpXJ8cHeyb_d3DvUdwIyUmIHdesgnry_mpf4za3NI9CSzE4NNl8-xvckBa_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GhsAvGCuBMYYCR4gqhObCfOw4QYXbUxqCbEpL15duIMBGpK24H2i3wV57hJpnLZ2x7T2I7rc_e5ATzPUUprL5M4yxCDpeYitohWSHiKWyrnXWeU7_xhnO0eyndH6mgNfnW5MBRW2fHEwKirpqQ78gGiliwQXwo-qNuwiIPh6PX0e0wdpMjT2rXTsG2bhWorlBtrkzz2_dlPNOfmW3tDhP2LNB3tfHq7G7cdB-ISNZdF7BNflJmTUuSeZ7b0Oc_qtKgS7Wpt00Kr0jolUG0XVLcNh9bWqiLllZVlwUuB616BjRylPhqCG9s744OP_Y0P-dRkUrSZO1zowRylJ2W4UZQEqvkqVivSMTQR-Jfm-3cA5x9e3CAcRzfhRqvVsjdLNLwFa35yG64u-1ye3YGvQ--nrG1QcRKT5KzYdEY-IsIL1tTMU6FlVvoZ2uh9eCwL5aXmLDQyZwsSq6HMLD3Zhj7GkFB-eDbzIbaMbjrvwuGlnPk9WJ80E_8AmHB17izqPLRe6rzTaU5TuZA4Oy0iSLrTNWVbAp06cXwzwRUvtFlCxCBETICIURG87OdMlwVALhy9TUDrR1Lx7vBDMzsxLS8wSuuEl0p7j-ZgLutCoF3JM5d451xd1RFsdiA3LUeZm3P8j-BZ_xp5ATl47MQ3p2GMEjk5tiO4v8SQfidCom2Ka0SQr-DOylZX30y-fA71xrVUCu3KCF51WHa-rf8fxcOL_8VTuIb0a97vjfcfwfWUaIB8fckmrC9mp_4xqnoL96SlIQbHl022vwH4kmXZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+prediction+of+early+cerebrovascular+events+after+transcatheter+aortic+valve+replacement&rft.jtitle=Scientific+reports&rft.au=Okuno%2C+Taishi&rft.au=Overtchouk%2C+Pavel&rft.au=Asami%2C+Masahiko&rft.au=Tomii%2C+Daijiro&rft.date=2021-09-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-98265-5&rft_id=info%3Apmid%2F34548574&rft.externalDocID=PMC8455675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon