Deep learning-based prediction of early cerebrovascular events after transcatheter aortic valve replacement
Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-re...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 18754 - 10 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
21.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-98265-5 |
Cover
Abstract | Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage. |
---|---|
AbstractList | Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage. Abstract Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage. Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model's performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2-30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82-3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65-0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage.Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model's performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2-30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82-3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65-0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage. Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to their multifactorial origin incompletely explained by clinical predictors. We aimed to build a deep learning-based predictive tool for TAVR-related CVE. Integrated clinical and imaging characteristics from consecutive patients enrolled into a prospective TAVR registry were analysed. CVE comprised any strokes and transient ischemic attacks. Predictive variables were selected by recursive feature reduction to train an autoencoder predictive model. Area under the curve (AUC) represented the model’s performance to predict 30-day CVE. Among 2279 patients included between 2007 and 2019, both clinical and imaging data were available in 1492 patients. Median age was 83 years and STS score was 4.6%. Acute (< 24 h) and subacute (day 2–30) CVE occurred in 19 (1.3%) and 36 (2.4%) patients, respectively. The occurrence of CVE was associated with an increased risk of death (HR [95% CI] 2.62 [1.82–3.78]). The constructed predictive model uses less than 107 clinical and imaging variables and has an AUC of 0.79 (0.65–0.93). TAVR-related CVE can be predicted using a deep learning-based predictive algorithm. The model is implemented online for broad usage. |
ArticleNumber | 18754 |
Author | Asami, Masahiko Lanz, Jonas Windecker, Stephan Tomii, Daijiro Praz, Fabien Siontis, George C. M. Pilgrim, Thomas Gräni, Christoph Okuno, Taishi Stortecky, Stefan Overtchouk, Pavel |
Author_xml | – sequence: 1 givenname: Taishi surname: Okuno fullname: Okuno, Taishi organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 2 givenname: Pavel surname: Overtchouk fullname: Overtchouk, Pavel email: pavel@alviss.ai organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, AlvissLabs Research, ALVISS.AI SAS – sequence: 3 givenname: Masahiko surname: Asami fullname: Asami, Masahiko organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 4 givenname: Daijiro surname: Tomii fullname: Tomii, Daijiro organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 5 givenname: Stefan surname: Stortecky fullname: Stortecky, Stefan organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 6 givenname: Fabien surname: Praz fullname: Praz, Fabien organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 7 givenname: Jonas surname: Lanz fullname: Lanz, Jonas organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 8 givenname: George C. M. surname: Siontis fullname: Siontis, George C. M. organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 9 givenname: Christoph surname: Gräni fullname: Gräni, Christoph organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 10 givenname: Stephan surname: Windecker fullname: Windecker, Stephan organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern – sequence: 11 givenname: Thomas surname: Pilgrim fullname: Pilgrim, Thomas organization: Department of Cardiology, Inselspital, Bern University Hospital, University of Bern |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34548574$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhSNUREvpH2CBIrFhE_AzsTdIqLwqVWIDa2viTG5z8bWDnUTqv8dpWmi7qDd-zHeOju15WRz54LEoXlPynhKuPiRBpVYVYbTSitWyks-KE0aErBhn7Oje-rg4S2lP8pBMC6pfFMdcSKFkI06K358Rx9IhRD_4XdVCwq4cI3aDnYbgy9CXueauS4sR2xgWSHZ2EEtc0E-phH7CWE4RfLIwXeG6gxCnwZYLuAXLiKMDi4dMvyqe9-ASnt3Op8Wvr19-nn-vLn98uzj_dFlZKchUIUVt61YI3iCps7Yhdc90R1XbK2BaSQut5IwTLnXTZLQHkJqRDoTVxPLT4mLz7QLszRiHA8RrE2AwNwch7gysCR0aqRQlVipE2ohG9JoTVZO6pdi2bd_12evj5jXO7QE7m68RwT0wfVjxw5XZhcUoIWXdyGzw7tYghj8zpskchmTROfAY5mSYzFDDpSIZffsI3Yc5-vxUKyU0p1qv1Jv7if5FufvTDKgNsDGkFLE3dphg_c0ccHCGErN2kNk6yOQOMjcdZNaw7JH0zv1JEd9EKcN-h_F_7CdUfwH2B9pQ |
CitedBy_id | crossref_primary_10_1007_s10489_023_04877_x crossref_primary_10_1016_j_jscai_2025_102562 crossref_primary_10_1038_s41598_023_37358_9 crossref_primary_10_1097_CRD_0000000000000849 crossref_primary_10_3390_diagnostics14131393 crossref_primary_10_4244_EIJ_D_23_01087 crossref_primary_10_1371_journal_pdig_0000081 crossref_primary_10_31083_j_rcm2501031 crossref_primary_10_1016_j_jtcvs_2024_05_017 crossref_primary_10_1007_s00423_023_03223_6 crossref_primary_10_1016_j_neucom_2022_07_005 crossref_primary_10_1016_j_jcin_2023_10_021 crossref_primary_10_1136_heartjnl_2022_321575 crossref_primary_10_3390_diagnostics14030261 |
Cites_doi | 10.1161/CIRCULATIONAHA.112.110981 10.1016/j.jtcvs.2012.01.055 10.1038/nrcardio.2016.42 10.1016/j.amjcard.2012.11.056 10.1016/j.jcin.2020.04.015 10.1161/CIRCULATIONAHA.112.001091 10.1056/NEJMoa1911425 10.1056/NEJMoa2017815 10.1016/j.jacc.2016.11.033 10.1016/j.jcin.2019.06.019 10.1016/j.jcin.2019.06.013 10.1136/heartjnl-2011-300065 10.1093/ejcts/ezs533 10.1001/jama.2018.11100 10.1056/NEJMra1814259 10.1016/j.jcct.2020.10.003 10.1016/j.jcin.2020.05.049 10.1016/j.jacc.2016.11.045 10.1161/01.str.28.7.1501 10.1093/eurheartj/ehz275 10.1007/s12471-019-1285-7 10.1016/j.jacc.2016.10.023 10.1056/NEJMoa1915152 10.1093/ehjqcco/qcy048 10.1016/j.amjcard.2016.02.036 10.1038/s41591-018-0268-3 10.1016/j.jcct.2018.04.007 10.1016/j.jcmg.2018.12.003 10.1038/nature14539 10.1016/j.jacc.2020.11.030 10.1016/j.jcin.2021.03.024 10.1002/ccd.28961 10.1109/ICCP48234.2019.8959787 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-98265-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_58810c58ee17474f9308606b1ebbbfdf PMC8455675 34548574 10_1038_s41598_021_98265_5 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-e1e9c6b4437e06ace706f29d18bf8a2985cab5323035977c6bfaa5920da4c90c3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:35 EDT 2025 Thu Aug 21 14:13:47 EDT 2025 Thu Sep 04 22:29:01 EDT 2025 Wed Aug 13 05:11:37 EDT 2025 Thu Jan 02 22:55:47 EST 2025 Tue Jul 01 03:49:20 EDT 2025 Thu Apr 24 23:12:25 EDT 2025 Fri Feb 21 02:39:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-e1e9c6b4437e06ace706f29d18bf8a2985cab5323035977c6bfaa5920da4c90c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-98265-5 |
PMID | 34548574 |
PQID | 2574931990 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_58810c58ee17474f9308606b1ebbbfdf pubmedcentral_primary_oai_pubmedcentral_nih_gov_8455675 proquest_miscellaneous_2575373580 proquest_journals_2574931990 pubmed_primary_34548574 crossref_citationtrail_10_1038_s41598_021_98265_5 crossref_primary_10_1038_s41598_021_98265_5 springer_journals_10_1038_s41598_021_98265_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-21 |
PublicationDateYYYYMMDD | 2021-09-21 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lansky (CR23) 2017; 69 Hernandez-Suarez (CR6) 2019; 12 Grover (CR34) 2017; 69 Dangas (CR27) 2020; 382 Brouwer (CR29) 2020; 383 Okuno (CR16) 2020; 13 Rajkomar, Dean, Kohane (CR3) 2019; 380 Hannun (CR5) 2019; 25 Kapadia (CR26) 2017; 69 Veulemans (CR31) 2020; 96 Spaziano (CR30) 2018; 12 Miller (CR17) 2012; 143 LeCun, Bengio, Hinton (CR1) 2015; 521 Siontis (CR10) 2019; 40 Fairbairn (CR18) 2012; 98 Liao (CR14) 2016; 117 Stortecky (CR11) 2018; 20 Okuno (CR19) 2020 Lopes (CR7) 2019; 27 Nombela-Franco (CR9) 2012; 126 CR25 Mohr (CR13) 1997; 28 CR24 Rumsfeld, Joynt, Maddox (CR32) 2016; 13 Van Mieghem (CR12) 2013; 127 Navarese (CR8) 2021; 14 Mentias (CR15) 2019; 12 Kappetein (CR22) 2012; 42 Nijenhuis (CR28) 2020; 382 Quer, Arnaout, Henne, Arnaout (CR4) 2021; 77 Durand (CR33) 2013; 111 Okuno (CR21) 2020; 13 Hinton (CR2) 2018; 320 Blanke (CR20) 2019; 12 TA Fairbairn (98265_CR18) 2012; 98 AY Hannun (98265_CR5) 2019; 25 AP Kappetein (98265_CR22) 2012; 42 S Stortecky (98265_CR11) 2018; 20 JS Rumsfeld (98265_CR32) 2016; 13 EP Navarese (98265_CR8) 2021; 14 L Nombela-Franco (98265_CR9) 2012; 126 AJ Lansky (98265_CR23) 2017; 69 VJ Nijenhuis (98265_CR28) 2020; 382 DC Miller (98265_CR17) 2012; 143 JP Mohr (98265_CR13) 1997; 28 M Spaziano (98265_CR30) 2018; 12 A Mentias (98265_CR15) 2019; 12 SR Kapadia (98265_CR26) 2017; 69 G Hinton (98265_CR2) 2018; 320 NM Van Mieghem (98265_CR12) 2013; 127 FL Grover (98265_CR34) 2017; 69 GCM Siontis (98265_CR10) 2019; 40 Y LeCun (98265_CR1) 2015; 521 T Okuno (98265_CR21) 2020; 13 P Blanke (98265_CR20) 2019; 12 V Veulemans (98265_CR31) 2020; 96 T Okuno (98265_CR16) 2020; 13 E Durand (98265_CR33) 2013; 111 YB Liao (98265_CR14) 2016; 117 G Quer (98265_CR4) 2021; 77 T Okuno (98265_CR19) 2020 GD Dangas (98265_CR27) 2020; 382 RR Lopes (98265_CR7) 2019; 27 98265_CR24 98265_CR25 J Brouwer (98265_CR29) 2020; 383 A Rajkomar (98265_CR3) 2019; 380 DF Hernandez-Suarez (98265_CR6) 2019; 12 |
References_xml | – volume: 126 start-page: 3041 year: 2012 end-page: 3053 ident: CR9 article-title: Timing, predictive factors, and prognostic value of cerebrovascular events in a large cohort of patients undergoing transcatheter aortic valve implantation publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.110981 – volume: 143 start-page: 832 year: 2012 end-page: 843 e813 ident: CR17 article-title: Transcatheter (TAVR) versus surgical (AVR) aortic valve replacement: Occurrence, hazard, risk factors, and consequences of neurologic events in the PARTNER trial publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2012.01.055 – volume: 13 start-page: 350 year: 2016 end-page: 359 ident: CR32 article-title: Big data analytics to improve cardiovascular care: Promise and challenges publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2016.42 – volume: 111 start-page: 891 year: 2013 end-page: 897 ident: CR33 article-title: Performance analysis of EuroSCORE II compared to the original logistic EuroSCORE and STS scores for predicting 30-day mortality after transcatheter aortic valve replacement publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2012.11.056 – volume: 13 start-page: 1789 year: 2020 end-page: 1799 ident: CR21 article-title: Impact of left ventricular outflow tract calcification on procedural outcomes after transcatheter aortic valve replacement publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2020.04.015 – volume: 127 start-page: 2194 year: 2013 end-page: 2201 ident: CR12 article-title: Histopathology of embolic debris captured during transcatheter aortic valve replacement publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.001091 – volume: 382 start-page: 120 year: 2020 end-page: 129 ident: CR27 article-title: A controlled trial of rivaroxaban after transcatheter aortic-valve replacement publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1911425 – volume: 383 start-page: 1447 year: 2020 end-page: 1457 ident: CR29 article-title: Aspirin with or without clopidogrel after transcatheter aortic-valve implantation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2017815 – volume: 69 start-page: 1215 year: 2017 end-page: 1230 ident: CR34 article-title: 2016 annual report of the society of thoracic surgeons/American College of Cardiology Transcatheter Valve Therapy Registry publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.11.033 – volume: 12 start-page: 2119 year: 2019 end-page: 2129 ident: CR15 article-title: Impact of pre-existing and new-onset atrial fibrillation on outcomes after transcatheter aortic valve replacement publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2019.06.019 – volume: 12 start-page: 1328 year: 2019 end-page: 1338 ident: CR6 article-title: Machine learning prediction models for in-hospital mortality after transcatheter aortic valve replacement publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2019.06.013 – volume: 98 start-page: 18 year: 2012 end-page: 23 ident: CR18 article-title: Diffusion-weighted MRI determined cerebral embolic infarction following transcatheter aortic valve implantation: Assessment of predictive risk factors and the relationship to subsequent health status publication-title: Heart (British Cardiac Society) doi: 10.1136/heartjnl-2011-300065 – volume: 42 start-page: S45 year: 2012 end-page: 60 ident: CR22 article-title: Updated standardized endpoint definitions for transcatheter aortic valve implantation: The Valve Academic Research Consortium-2 consensus document (VARC-2) publication-title: Eur. J. Cardio-thorac. Surg. doi: 10.1093/ejcts/ezs533 – volume: 320 start-page: 1101 year: 2018 end-page: 1102 ident: CR2 article-title: Deep learning-a technology with the potential to transform health care publication-title: JAMA doi: 10.1001/jama.2018.11100 – volume: 380 start-page: 1347 year: 2019 end-page: 1358 ident: CR3 article-title: Machine learning in medicine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1814259 – ident: CR25 – year: 2020 ident: CR19 article-title: Clinical impact of mitral calcium volume in patients undergoing transcatheter aortic valve implantation publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2020.10.003 – volume: 13 start-page: 2124 year: 2020 end-page: 2133 ident: CR16 article-title: Valvular and nonvalvular atrial fibrillation in patients undergoing transcatheter aortic valve replacement publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2020.05.049 – volume: 69 start-page: 679 year: 2017 end-page: 691 ident: CR23 article-title: Proposed standardized neurological endpoints for cardiovascular clinical trials: An Academic Research Consortium initiative publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.11.045 – volume: 28 start-page: 1501 year: 1997 end-page: 1506 ident: CR13 article-title: American Heart Association Prevention Conference. IV. Prevention and rehabilitation of stroke. Etiology of stroke publication-title: Stroke doi: 10.1161/01.str.28.7.1501 – volume: 40 start-page: 3143 year: 2019 end-page: 3153 ident: CR10 article-title: Transcatheter aortic valve implantation vs. surgical aortic valve replacement for treatment of symptomatic severe aortic stenosis: An updated meta-analysis publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz275 – volume: 27 start-page: 443 year: 2019 end-page: 450 ident: CR7 article-title: Value of machine learning in predicting TAVI outcomes publication-title: Neth. Heart J. doi: 10.1007/s12471-019-1285-7 – volume: 69 start-page: 367 year: 2017 end-page: 377 ident: CR26 article-title: Protection against cerebral embolism during transcatheter aortic valve replacement publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.10.023 – volume: 382 start-page: 1696 year: 2020 end-page: 1707 ident: CR28 article-title: Anticoagulation with or without clopidogrel after transcatheter aortic-valve implantation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1915152 – volume: 20 start-page: 20 year: 2018 ident: CR11 article-title: Temporal trends in adoption and outcomes of transcatheter aortic valve implantation: A Swisstavi Registry Analysis publication-title: Eur. Heart j. Qual. Care clin. Outcomes. doi: 10.1093/ehjqcco/qcy048 – volume: 117 start-page: 1629 year: 2016 end-page: 1635 ident: CR14 article-title: Meta-analysis of the effectiveness and safety of transcatheter aortic valve implantation without balloon predilation publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2016.02.036 – volume: 25 start-page: 65 year: 2019 end-page: 69 ident: CR5 article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 12 start-page: 338 year: 2018 end-page: 343 ident: CR30 article-title: Computed tomography predictors of mortality, stroke and conduction disturbances in women undergoing TAVR: A sub-analysis of the WIN-TAVI registry publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2018.04.007 – volume: 12 start-page: 1 year: 2019 end-page: 24 ident: CR20 article-title: Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): An expert consensus document of the society of cardiovascular computed tomography publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2018.12.003 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: CR1 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: CR24 – volume: 77 start-page: 300 year: 2021 end-page: 313 ident: CR4 article-title: Machine learning and the future of cardiovascular care: JACC state-of-the-art review publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.11.030 – volume: 14 start-page: 1196 year: 2021 end-page: 1206 ident: CR8 article-title: Development and validation of a practical model to identify patients at risk of bleeding after TAVR publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2021.03.024 – volume: 96 start-page: 1511 year: 2020 end-page: 1519 ident: CR31 article-title: Novel insights on outcome in horizontal aorta with self-expandable new-generation transcatheter aortic valve replacement devices publication-title: Catheter. Cardiovasc. Interv. doi: 10.1002/ccd.28961 – volume: 521 start-page: 436 year: 2015 ident: 98265_CR1 publication-title: Nature doi: 10.1038/nature14539 – volume: 143 start-page: 832 year: 2012 ident: 98265_CR17 publication-title: J. Thorac. Cardiovasc. Surg. doi: 10.1016/j.jtcvs.2012.01.055 – volume: 77 start-page: 300 year: 2021 ident: 98265_CR4 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2020.11.030 – volume: 126 start-page: 3041 year: 2012 ident: 98265_CR9 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.110981 – volume: 13 start-page: 2124 year: 2020 ident: 98265_CR16 publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2020.05.049 – volume: 117 start-page: 1629 year: 2016 ident: 98265_CR14 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2016.02.036 – volume: 25 start-page: 65 year: 2019 ident: 98265_CR5 publication-title: Nat. Med. doi: 10.1038/s41591-018-0268-3 – volume: 13 start-page: 1789 year: 2020 ident: 98265_CR21 publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2020.04.015 – volume: 28 start-page: 1501 year: 1997 ident: 98265_CR13 publication-title: Stroke doi: 10.1161/01.str.28.7.1501 – volume: 12 start-page: 2119 year: 2019 ident: 98265_CR15 publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2019.06.019 – volume: 69 start-page: 1215 year: 2017 ident: 98265_CR34 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.11.033 – ident: 98265_CR24 – ident: 98265_CR25 doi: 10.1109/ICCP48234.2019.8959787 – volume: 380 start-page: 1347 year: 2019 ident: 98265_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1814259 – volume: 20 start-page: 20 year: 2018 ident: 98265_CR11 publication-title: Eur. Heart j. Qual. Care clin. Outcomes. doi: 10.1093/ehjqcco/qcy048 – volume: 69 start-page: 367 year: 2017 ident: 98265_CR26 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.10.023 – volume: 40 start-page: 3143 year: 2019 ident: 98265_CR10 publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehz275 – volume: 382 start-page: 120 year: 2020 ident: 98265_CR27 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1911425 – volume: 382 start-page: 1696 year: 2020 ident: 98265_CR28 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1915152 – volume: 111 start-page: 891 year: 2013 ident: 98265_CR33 publication-title: Am. J. Cardiol. doi: 10.1016/j.amjcard.2012.11.056 – volume: 383 start-page: 1447 year: 2020 ident: 98265_CR29 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2017815 – volume: 12 start-page: 1 year: 2019 ident: 98265_CR20 publication-title: JACC Cardiovasc. Imaging doi: 10.1016/j.jcmg.2018.12.003 – volume: 12 start-page: 1328 year: 2019 ident: 98265_CR6 publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2019.06.013 – volume: 27 start-page: 443 year: 2019 ident: 98265_CR7 publication-title: Neth. Heart J. doi: 10.1007/s12471-019-1285-7 – volume: 320 start-page: 1101 year: 2018 ident: 98265_CR2 publication-title: JAMA doi: 10.1001/jama.2018.11100 – volume: 127 start-page: 2194 year: 2013 ident: 98265_CR12 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.001091 – year: 2020 ident: 98265_CR19 publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2020.10.003 – volume: 12 start-page: 338 year: 2018 ident: 98265_CR30 publication-title: J. Cardiovasc. Comput. Tomogr. doi: 10.1016/j.jcct.2018.04.007 – volume: 96 start-page: 1511 year: 2020 ident: 98265_CR31 publication-title: Catheter. Cardiovasc. Interv. doi: 10.1002/ccd.28961 – volume: 14 start-page: 1196 year: 2021 ident: 98265_CR8 publication-title: JACC Cardiovasc. Interv. doi: 10.1016/j.jcin.2021.03.024 – volume: 13 start-page: 350 year: 2016 ident: 98265_CR32 publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2016.42 – volume: 42 start-page: S45 year: 2012 ident: 98265_CR22 publication-title: Eur. J. Cardio-thorac. Surg. doi: 10.1093/ejcts/ezs533 – volume: 69 start-page: 679 year: 2017 ident: 98265_CR23 publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2016.11.045 – volume: 98 start-page: 18 year: 2012 ident: 98265_CR18 publication-title: Heart (British Cardiac Society) doi: 10.1136/heartjnl-2011-300065 |
SSID | ssj0000529419 |
Score | 2.4116464 |
Snippet | Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict due to... Abstract Cerebrovascular events (CVE) are among the most feared complications of transcatheter aortic valve replacement (TAVR). CVE appear difficult to predict... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18754 |
SubjectTerms | 692/308 692/4019 692/499 692/700 Aged Aged, 80 and over Aortic valve Deep Learning Female Humanities and Social Sciences Humans Incidence Ischemia Male multidisciplinary Patients Prediction models Prospective Studies Risk Factors Science Science (multidisciplinary) Stroke - diagnostic imaging Stroke - etiology Tomography, X-Ray Computed Transcatheter Aortic Valve Replacement - adverse effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDBelMOjL2Ee3peuGB33bQp3YTuzHfZUyaJ9a6Juxc_I2NnLH3XWw_36Sk0t7-3zZYxI5MZZkSZH8E8BRS1baoq7KpiEJ1laqMpBYkeIZGRjOOzV83vnsvDm91B-uzNWtVl9cEzbAAw8Ld2ysrWRnLCL5zq1OTpETLptYYYwxzRLvvtLJW8HUgOpdO1258ZSMVPZ4RZaKT5NxRQK51KY0W5YoA_b_zsv8tVjyp4xpNkQn9-Du6EGK18PM78MO9g_gztBT8vtD-PIOcSHGZhAfS7ZSM7FYcj6GeSDmSSCDGosOlxQPT6WoIkM5rURuGi7WbMIypCtfhTl_TJBQfkOxxFzHxX8V9-Hy5P3F29Ny7KhQduSZrUus0HVN1Fq1KBuibWWTajerbEw21M6aLkSjKCxRjEtHpCkE42o5C7pzslOPYLef9_gEhIqpjYH8C35fHTHauuWhUmkaXbsCqs3q-m6EG-euF199Tnsr6weOeOKIzxzxpoCX05jFALbxV-o3zLSJkoGy8w0SHz-Kj_-X-BRwuGG5H7V35Wkb0472JicLeDE9Jr3jZErocX6daYxqOYlcwONBQqaZKE1xIL2jgHZLdramuv2k__wpY3tbbQzFcAW82kjZzbT-vBQH_2MpnsJezerBKbfqEHbXy2t8Rh7XOj7PyvUD3vEmmQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgERIXxJvCgoLEDapNm6RJTojXaoUEJ1aaW5S06YJA7dCZReLfY6eZrobHHmfqdDL1l9qOnc8AzzVaaRNlVTYNIlgaLkqPsMKFp7gnOu--ofPOHz81J6fyw0qt8obbJpdV7t6J6UXdjS3tkR8htKRFvFj-av2jpK5RlF3NLTSuwrUKPRFq3aBXetljoSyWrGw-K8OFOdqgvaIzZVSXgI61KtWePUq0_f_yNf8umfwjb5rM0fEtuJn9SPZ6VvxtuBKHO3B97iz56y58exfjmuWWEGcl2aqOrSfKypAm2NizSNTGrI0TRsVLQSpLhE4bllqHsy0ZskTsSp_8SD_GEJo_I5tiquaivcV7cHr8_vPbkzL3VShb9M-2ZayibZsgpdCRNyiredPXtqtM6I2vrVGtD0pgcCKInQ5Fe--VrXnnZWt5K-7DwTAO8SEwEXodPHoZdL86xGBqTUO5kDi6tgVUu6fr2kw6Tr0vvruU_BbGzRpxqBGXNOJUAS-WMeuZcuNS6TektEWS6LLTF-N05vLqc8qYirfKxIgBmJY9QsVg5BaqGELou76Aw53KXV7DG3eBuAKeLZdx9VFKxQ9xPE8ySmhKJRfwYEbIMhMhMRrEexSg97CzN9X9K8PXL4nh20ilMJIr4OUOZRfT-v-jeHT5v3gMN2oCPqXUqkM42E7n8Ql6VNvwNC2b39tSHfc priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfGTUi8IL7pGChIvEFF2iRN8nh8TNNJ8AKT9hYlvXQgUHvq3ZD472enH-hgIPHY1mmj2I7t2vkZ4IVGK22iLPKqQgmWhovco1ih4inuCc67qei884eP1emZXJ2r8wMop7MwqWg_QVqmbXqqDnu9RUNDh8GooAA9YpWrG3BoNG6_CzhcLlefVvOfFcpdycKOJ2S4MNcM3rNCCaz_Og_zz0LJ37KlyQid3IHbo_fIlsN878JBbO_BzaGf5M_78O1djBs2NoK4yMlCrdmmp1wMrT_rGhYJ0JjVscdYeC5DZQnGactSw3C2I_OV4Fzpynf0MYYC-SOyPqYaLvqj-ADOTt5_fnuaj90U8hq9sl0ei2jrKkgpdOQV0mpeNaVdFyY0xpfWqNoHJTAkEYRJh6SN98qWfO1lbXktHsKi7dr4GJgIjQ4efQt6XxliMKWmoVxIHF3aDIppdV09Qo1Tx4vvLqW8hXEDRxxyxCWOOJXBy3nMZgDa-Cf1G2LaTEkg2elG11-4UWicMqbgtTIxYtilZWMFxm-8CkUMITTrJoPjieVu1Nytwy1MWtyXLM_g-fwYdY4SKb6N3WWiUUJTAjmDR4OEzDMREmNAfEcGek929qa6_6T9-iXhehupFMZvGbyapOzXtP6-FEf_R_4EbpWkCJRYK45hsesv41P0q3bh2ahIVwDyHTA priority: 102 providerName: Springer Nature |
Title | Deep learning-based prediction of early cerebrovascular events after transcatheter aortic valve replacement |
URI | https://link.springer.com/article/10.1038/s41598-021-98265-5 https://www.ncbi.nlm.nih.gov/pubmed/34548574 https://www.proquest.com/docview/2574931990 https://www.proquest.com/docview/2575373580 https://pubmed.ncbi.nlm.nih.gov/PMC8455675 https://doaj.org/article/58810c58ee17474f9308606b1ebbbfdf |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9QwDLf2IdBeEJ-jME5B4g0KbZM0yQNCt2PTdBITAk66t6rppQMxtUfvhth_j51-oIODB56qtk4bxXZt187PAM8UWmntRBymKUqw0BEPcxQrVDwZ5QTnXaa03_ndeXo2E9O5nO9A3-6oW8DV1tCO-knNmsuXP75dv0GFf91uGdevVmiEaKMYFRugtyxDuQv7Pl9EpXydu99ifSdGxKbbO7N96AHc5ALdeKnEhqnyiP7b3NA_qyl_S6l6S3V6G251LiYbtzJxB3ZcdRdutE0nr-_B17fOLVnXLeIiJDO2YMuGEjbEJFaXzBHqMStcgwHzUKvKPNbTivmu4mxNNs5jvtJZXtPLGErtd8ca5wu96LfjfZidnnyanIVdy4WwQNdtHbrYmSK1QnDlohRpVZSWiVnE2pY6T4yWRW4lx7iFE3AdkpZ5Lk0SLXJRmKjgD2Cvqiv3EBi3pbI5OiD0vMQ6qxNFQyMucHRiAoj71c2KDo-c2mJcZj4vznXWMidD5mSeOZkM4PkwZtmicfyT-piYNlASkra_UDcXWaeYmdQ6jgqpncPYTInScAzyotTGzlpbLsoAjnqWZ710ZvidEwY_XiYK4OlwGxWTsi155eorTyO5oixzAIethAwz6SUsALUhOxtT3bxTffnswb-1kBKDvABe9FL2a1p_X4pH__2ix3CQkHpQIi4-gr11c-WeoB-2tiPYVXM1gv3xePpxisfjk_P3H_DqJJ2M_L-NkVe_nyMgNGY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThDVie3EOSAElGpLH6dW2puxE6cgULLsbkH9U_xGZpxHtTx66zGJ4ziebzwznvEMwPMcpbT2MomzDBEsNRexRVgh4yluKZ13ndF554PDbHIsP07VdA1-DWdhKKxyWBPDQl21Je2RbyG0ZIF4Kfib2feYqkaRd3UoodHBYs-f_USTbfF6dxvp-yJNdz4cvZ_EfVWBuETtZBn7xBdl5qQUueeZLX3OszotqkS7Wtu00Kq0TglUzQXlZsOmtbWqSHllZVnwUmC_V-CqJBcj8k8-zcc9HfKayaToz-ZwobcWKB_pDBvFQaAir2K1Iv9CmYB_6bZ_h2j-4acN4m_nFtzs9Vb2tgPabVjzzR241lWyPLsLX7e9n7G-BMVJTLKxYrM5eYGI8qytmadUyqz0c7TCxwBYFhJILVgoVc6WJDhDIlm6si19jCEr_PBs7kP0GO1l3oPjS5nx-7DetI1_AEy4OncWtRrqL3Xe6TSnV7lAeoi0iCAZZteUfZJzqrXxzQRnu9Cmo4hBiphAEaMieDm-M-tSfFzY-h0RbWxJ6bnDjXZ-YnpuN0rrhJdKe48GXy7rQqDlyDOXeOdcXdURbA4kN_2asTDnCI_g2fgYuZ1cOLbx7Wloo0ROrusINjqEjCMREq1P7COCfAU7K0NdfdJ8-RwyimupFFqOEbwaUHY-rP9PxcOL_-IpXJ8cHeyb_d3DvUdwIyUmIHdesgnry_mpf4za3NI9CSzE4NNl8-xvckBa_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw9GhsAvGCuBMYYCR4gqhObCfOw4QYXbUxqCbEpL15duIMBGpK24H2i3wV57hJpnLZ2x7T2I7rc_e5ATzPUUprL5M4yxCDpeYitohWSHiKWyrnXWeU7_xhnO0eyndH6mgNfnW5MBRW2fHEwKirpqQ78gGiliwQXwo-qNuwiIPh6PX0e0wdpMjT2rXTsG2bhWorlBtrkzz2_dlPNOfmW3tDhP2LNB3tfHq7G7cdB-ISNZdF7BNflJmTUuSeZ7b0Oc_qtKgS7Wpt00Kr0jolUG0XVLcNh9bWqiLllZVlwUuB616BjRylPhqCG9s744OP_Y0P-dRkUrSZO1zowRylJ2W4UZQEqvkqVivSMTQR-Jfm-3cA5x9e3CAcRzfhRqvVsjdLNLwFa35yG64u-1ye3YGvQ--nrG1QcRKT5KzYdEY-IsIL1tTMU6FlVvoZ2uh9eCwL5aXmLDQyZwsSq6HMLD3Zhj7GkFB-eDbzIbaMbjrvwuGlnPk9WJ80E_8AmHB17izqPLRe6rzTaU5TuZA4Oy0iSLrTNWVbAp06cXwzwRUvtFlCxCBETICIURG87OdMlwVALhy9TUDrR1Lx7vBDMzsxLS8wSuuEl0p7j-ZgLutCoF3JM5d451xd1RFsdiA3LUeZm3P8j-BZ_xp5ATl47MQ3p2GMEjk5tiO4v8SQfidCom2Ka0SQr-DOylZX30y-fA71xrVUCu3KCF51WHa-rf8fxcOL_8VTuIb0a97vjfcfwfWUaIB8fckmrC9mp_4xqnoL96SlIQbHl022vwH4kmXZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+prediction+of+early+cerebrovascular+events+after+transcatheter+aortic+valve+replacement&rft.jtitle=Scientific+reports&rft.au=Okuno%2C+Taishi&rft.au=Overtchouk%2C+Pavel&rft.au=Asami%2C+Masahiko&rft.au=Tomii%2C+Daijiro&rft.date=2021-09-21&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft_id=info:doi/10.1038%2Fs41598-021-98265-5&rft_id=info%3Apmid%2F34548574&rft.externalDocID=PMC8455675 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |