2015 Marshall Urist Young Investigator Award: Prognostication in Patients With Long Bone Metastases: Does a Boosting Algorithm Improve Survival Estimates?

Background Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these mod...

Full description

Saved in:
Bibliographic Details
Published inClinical orthopaedics and related research Vol. 473; no. 10; pp. 3112 - 3121
Main Authors Janssen, Stein J., van der Heijden, Andrea S., van Dijke, Maarten, Ready, John E., Raskin, Kevin A., Ferrone, Marco L., Hornicek, Francis J., Schwab, Joseph H.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2015
Lippincott Williams & Wilkins Ovid Technologies
Subjects
Online AccessGet full text
ISSN0009-921X
1528-1132
1528-1132
DOI10.1007/s11999-015-4446-z

Cover

Abstract Background Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these models. Additionally, the use of different algorithms—nomograms or boosting algorithms—could further improve accuracy of prognostication relative to classic scoring systems. A nomogram is an extension of a classic scoring system and generates a more-individualized survival probability based on a patient’s set of characteristics using a figure. Boosting is a method that automatically trains to classify outcomes by applying classifiers (variables) in a sequential way and subsequently combines them. A boosting algorithm provides survival probabilities based on every possible combination of variables. Questions/purposes We wished to (1) assess factors independently associated with decreased survival in patients with metastatic long bone fractures and (2) compare the accuracy of a classic scoring system, nomogram, and boosting algorithms in predicting 30-, 90-, and 365-day survival. Methods We included all 927 patients in our retrospective study who underwent surgery for a metastatic long bone fracture at two institutions between January 1999 and December 2013. We included only the first procedure if patients underwent multiple surgical procedures or had more than one fracture. Median followup was 8 months (interquartile range, 3-25 months); 369 of 412 (90%) patients who where alive at 1 year were still in followup. Multivariable Cox regression analysis was used to identify clinical and laboratory factors independently associated with decreased survival. We created a classic scoring system, nomogram, and boosting algorithms based on identified variables. Accuracy of the algorithms was assessed using area under the curve analysis through fivefold cross validation. Results The following factors were associated with a decreased likelihood of survival after surgical treatment of a metastatic long bone fracture, after controlling for relevant confounding variables: older age (hazard ratio [HR], 1.0; 95% CI, 1.0–1.0; p < 0.001), additional comorbidity (HR, 1.2; 95% CI, 1.0–1.4; p = 0.034), BMI less than 18.5 kg/m 2 (HR, 2.0; 95% CI, 1.2–3.5; p = 0.011), tumor type with poor prognosis (HR, 1.8; 95% CI, 1.6–2.2; p < 0.001), multiple bone metastases (HR, 1.3; 95% CI, 1.1–1.6; p = 0.008), visceral metastases (HR, 1.6; 95% CI, 1.4–1.9; p < 0.001), and lower hemoglobin level (HR, 0.91; 95% CI, 0.87–0.96; p < 0.001). The survival estimates by the nomogram were moderately accurate for predicting 30-day (area under the curve [AUC], 0.72), 90-day (AUC, 0.75), and 365-day (AUC, 0.73) survival and remained stable after correcting for optimism through fivefold cross validation. Boosting algorithms were better predictors of survival on the training datasets, but decreased to a performance level comparable to the nomogram when applied on testing datasets for 30-day (AUC, 0.69), 90-day (AUC, 0.75), and 365-day (AUC, 0.72) survival prediction. Performance of the classic scoring system was lowest for all prediction periods. Conclusions Comorbidity status and BMI are newly identified factors associated with decreased survival and should be taken into account when estimating survival. Performance of the boosting algorithms and nomogram were comparable on the testing datasets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision making in clinical practice. Level of Evidence Level III, prognostic study.
AbstractList Background Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these models. Additionally, the use of different algorithms—nomograms or boosting algorithms—could further improve accuracy of prognostication relative to classic scoring systems. A nomogram is an extension of a classic scoring system and generates a more-individualized survival probability based on a patient’s set of characteristics using a figure. Boosting is a method that automatically trains to classify outcomes by applying classifiers (variables) in a sequential way and subsequently combines them. A boosting algorithm provides survival probabilities based on every possible combination of variables. Questions/purposes We wished to (1) assess factors independently associated with decreased survival in patients with metastatic long bone fractures and (2) compare the accuracy of a classic scoring system, nomogram, and boosting algorithms in predicting 30-, 90-, and 365-day survival. Methods We included all 927 patients in our retrospective study who underwent surgery for a metastatic long bone fracture at two institutions between January 1999 and December 2013. We included only the first procedure if patients underwent multiple surgical procedures or had more than one fracture. Median followup was 8 months (interquartile range, 3-25 months); 369 of 412 (90%) patients who where alive at 1 year were still in followup. Multivariable Cox regression analysis was used to identify clinical and laboratory factors independently associated with decreased survival. We created a classic scoring system, nomogram, and boosting algorithms based on identified variables. Accuracy of the algorithms was assessed using area under the curve analysis through fivefold cross validation. Results The following factors were associated with a decreased likelihood of survival after surgical treatment of a metastatic long bone fracture, after controlling for relevant confounding variables: older age (hazard ratio [HR], 1.0; 95% CI, 1.0–1.0; p < 0.001), additional comorbidity (HR, 1.2; 95% CI, 1.0–1.4; p = 0.034), BMI less than 18.5 kg/m 2 (HR, 2.0; 95% CI, 1.2–3.5; p = 0.011), tumor type with poor prognosis (HR, 1.8; 95% CI, 1.6–2.2; p < 0.001), multiple bone metastases (HR, 1.3; 95% CI, 1.1–1.6; p = 0.008), visceral metastases (HR, 1.6; 95% CI, 1.4–1.9; p < 0.001), and lower hemoglobin level (HR, 0.91; 95% CI, 0.87–0.96; p < 0.001). The survival estimates by the nomogram were moderately accurate for predicting 30-day (area under the curve [AUC], 0.72), 90-day (AUC, 0.75), and 365-day (AUC, 0.73) survival and remained stable after correcting for optimism through fivefold cross validation. Boosting algorithms were better predictors of survival on the training datasets, but decreased to a performance level comparable to the nomogram when applied on testing datasets for 30-day (AUC, 0.69), 90-day (AUC, 0.75), and 365-day (AUC, 0.72) survival prediction. Performance of the classic scoring system was lowest for all prediction periods. Conclusions Comorbidity status and BMI are newly identified factors associated with decreased survival and should be taken into account when estimating survival. Performance of the boosting algorithms and nomogram were comparable on the testing datasets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision making in clinical practice. Level of Evidence Level III, prognostic study.
Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these models. Additionally, the use of different algorithms--nomograms or boosting algorithms--could further improve accuracy of prognostication relative to classic scoring systems. A nomogram is an extension of a classic scoring system and generates a more-individualized survival probability based on a patient's set of characteristics using a figure. Boosting is a method that automatically trains to classify outcomes by applying classifiers (variables) in a sequential way and subsequently combines them. A boosting algorithm provides survival probabilities based on every possible combination of variables.BACKGROUNDSurvival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these models. Additionally, the use of different algorithms--nomograms or boosting algorithms--could further improve accuracy of prognostication relative to classic scoring systems. A nomogram is an extension of a classic scoring system and generates a more-individualized survival probability based on a patient's set of characteristics using a figure. Boosting is a method that automatically trains to classify outcomes by applying classifiers (variables) in a sequential way and subsequently combines them. A boosting algorithm provides survival probabilities based on every possible combination of variables.We wished to (1) assess factors independently associated with decreased survival in patients with metastatic long bone fractures and (2) compare the accuracy of a classic scoring system, nomogram, and boosting algorithms in predicting 30-, 90-, and 365-day survival.QUESTIONS/PURPOSESWe wished to (1) assess factors independently associated with decreased survival in patients with metastatic long bone fractures and (2) compare the accuracy of a classic scoring system, nomogram, and boosting algorithms in predicting 30-, 90-, and 365-day survival.We included all 927 patients in our retrospective study who underwent surgery for a metastatic long bone fracture at two institutions between January 1999 and December 2013. We included only the first procedure if patients underwent multiple surgical procedures or had more than one fracture. Median followup was 8 months (interquartile range, 3-25 months); 369 of 412 (90%) patients who where alive at 1 year were still in followup. Multivariable Cox regression analysis was used to identify clinical and laboratory factors independently associated with decreased survival. We created a classic scoring system, nomogram, and boosting algorithms based on identified variables. Accuracy of the algorithms was assessed using area under the curve analysis through fivefold cross validation.METHODSWe included all 927 patients in our retrospective study who underwent surgery for a metastatic long bone fracture at two institutions between January 1999 and December 2013. We included only the first procedure if patients underwent multiple surgical procedures or had more than one fracture. Median followup was 8 months (interquartile range, 3-25 months); 369 of 412 (90%) patients who where alive at 1 year were still in followup. Multivariable Cox regression analysis was used to identify clinical and laboratory factors independently associated with decreased survival. We created a classic scoring system, nomogram, and boosting algorithms based on identified variables. Accuracy of the algorithms was assessed using area under the curve analysis through fivefold cross validation.The following factors were associated with a decreased likelihood of survival after surgical treatment of a metastatic long bone fracture, after controlling for relevant confounding variables: older age (hazard ratio [HR], 1.0; 95% CI, 1.0-1.0; p < 0.001), additional comorbidity (HR, 1.2; 95% CI, 1.0-1.4; p = 0.034), BMI less than 18.5 kg/m(2) (HR, 2.0; 95% CI, 1.2-3.5; p = 0.011), tumor type with poor prognosis (HR, 1.8; 95% CI, 1.6-2.2; p < 0.001), multiple bone metastases (HR, 1.3; 95% CI, 1.1-1.6; p = 0.008), visceral metastases (HR, 1.6; 95% CI, 1.4-1.9; p < 0.001), and lower hemoglobin level (HR, 0.91; 95% CI, 0.87-0.96; p < 0.001). The survival estimates by the nomogram were moderately accurate for predicting 30-day (area under the curve [AUC], 0.72), 90-day (AUC, 0.75), and 365-day (AUC, 0.73) survival and remained stable after correcting for optimism through fivefold cross validation. Boosting algorithms were better predictors of survival on the training datasets, but decreased to a performance level comparable to the nomogram when applied on testing datasets for 30-day (AUC, 0.69), 90-day (AUC, 0.75), and 365-day (AUC, 0.72) survival prediction. Performance of the classic scoring system was lowest for all prediction periods.RESULTSThe following factors were associated with a decreased likelihood of survival after surgical treatment of a metastatic long bone fracture, after controlling for relevant confounding variables: older age (hazard ratio [HR], 1.0; 95% CI, 1.0-1.0; p < 0.001), additional comorbidity (HR, 1.2; 95% CI, 1.0-1.4; p = 0.034), BMI less than 18.5 kg/m(2) (HR, 2.0; 95% CI, 1.2-3.5; p = 0.011), tumor type with poor prognosis (HR, 1.8; 95% CI, 1.6-2.2; p < 0.001), multiple bone metastases (HR, 1.3; 95% CI, 1.1-1.6; p = 0.008), visceral metastases (HR, 1.6; 95% CI, 1.4-1.9; p < 0.001), and lower hemoglobin level (HR, 0.91; 95% CI, 0.87-0.96; p < 0.001). The survival estimates by the nomogram were moderately accurate for predicting 30-day (area under the curve [AUC], 0.72), 90-day (AUC, 0.75), and 365-day (AUC, 0.73) survival and remained stable after correcting for optimism through fivefold cross validation. Boosting algorithms were better predictors of survival on the training datasets, but decreased to a performance level comparable to the nomogram when applied on testing datasets for 30-day (AUC, 0.69), 90-day (AUC, 0.75), and 365-day (AUC, 0.72) survival prediction. Performance of the classic scoring system was lowest for all prediction periods.Comorbidity status and BMI are newly identified factors associated with decreased survival and should be taken into account when estimating survival. Performance of the boosting algorithms and nomogram were comparable on the testing datasets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision making in clinical practice.CONCLUSIONSComorbidity status and BMI are newly identified factors associated with decreased survival and should be taken into account when estimating survival. Performance of the boosting algorithms and nomogram were comparable on the testing datasets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision making in clinical practice.Level III, prognostic study.LEVEL OF EVIDENCELevel III, prognostic study.
Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these models. Additionally, the use of different algorithms--nomograms or boosting algorithms--could further improve accuracy of prognostication relative to classic scoring systems. A nomogram is an extension of a classic scoring system and generates a more-individualized survival probability based on a patient's set of characteristics using a figure. Boosting is a method that automatically trains to classify outcomes by applying classifiers (variables) in a sequential way and subsequently combines them. A boosting algorithm provides survival probabilities based on every possible combination of variables. We wished to (1) assess factors independently associated with decreased survival in patients with metastatic long bone fractures and (2) compare the accuracy of a classic scoring system, nomogram, and boosting algorithms in predicting 30-, 90-, and 365-day survival. We included all 927 patients in our retrospective study who underwent surgery for a metastatic long bone fracture at two institutions between January 1999 and December 2013. We included only the first procedure if patients underwent multiple surgical procedures or had more than one fracture. Median followup was 8 months (interquartile range, 3-25 months); 369 of 412 (90%) patients who where alive at 1 year were still in followup. Multivariable Cox regression analysis was used to identify clinical and laboratory factors independently associated with decreased survival. We created a classic scoring system, nomogram, and boosting algorithms based on identified variables. Accuracy of the algorithms was assessed using area under the curve analysis through fivefold cross validation. The following factors were associated with a decreased likelihood of survival after surgical treatment of a metastatic long bone fracture, after controlling for relevant confounding variables: older age (hazard ratio [HR], 1.0; 95% CI, 1.0-1.0; p < 0.001), additional comorbidity (HR, 1.2; 95% CI, 1.0-1.4; p = 0.034), BMI less than 18.5 kg/m(2) (HR, 2.0; 95% CI, 1.2-3.5; p = 0.011), tumor type with poor prognosis (HR, 1.8; 95% CI, 1.6-2.2; p < 0.001), multiple bone metastases (HR, 1.3; 95% CI, 1.1-1.6; p = 0.008), visceral metastases (HR, 1.6; 95% CI, 1.4-1.9; p < 0.001), and lower hemoglobin level (HR, 0.91; 95% CI, 0.87-0.96; p < 0.001). The survival estimates by the nomogram were moderately accurate for predicting 30-day (area under the curve [AUC], 0.72), 90-day (AUC, 0.75), and 365-day (AUC, 0.73) survival and remained stable after correcting for optimism through fivefold cross validation. Boosting algorithms were better predictors of survival on the training datasets, but decreased to a performance level comparable to the nomogram when applied on testing datasets for 30-day (AUC, 0.69), 90-day (AUC, 0.75), and 365-day (AUC, 0.72) survival prediction. Performance of the classic scoring system was lowest for all prediction periods. Comorbidity status and BMI are newly identified factors associated with decreased survival and should be taken into account when estimating survival. Performance of the boosting algorithms and nomogram were comparable on the testing datasets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision making in clinical practice. Level III, prognostic study.
Background Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide survival estimates based on a summary score of prognostic factors. Identification of new factors might improve the accuracy of these models. Additionally, the use of different algorithms--nomograms or boosting algorithms--could further improve accuracy of prognostication relative to classic scoring systems. A nomogram is an extension of a classic scoring system and generates a more-individualized survival probability based on a patient's set of characteristics using a figure. Boosting is a method that automatically trains to classify outcomes by applying classifiers (variables) in a sequential way and subsequently combines them. A boosting algorithm provides survival probabilities based on every possible combination of variables. Questions/purposes We wished to (1) assess factors independently associated with decreased survival in patients with metastatic long bone fractures and (2) compare the accuracy of a classic scoring system, nomogram, and boosting algorithms in predicting 30-, 90-, and 365-day survival. Methods We included all 927 patients in our retrospective study who underwent surgery for a metastatic long bone fracture at two institutions between January 1999 and December 2013. We included only the first procedure if patients underwent multiple surgical procedures or had more than one fracture. Median followup was 8 months (interquartile range, 3-25 months); 369 of 412 (90%) patients who where alive at 1 year were still in followup. Multivariable Cox regression analysis was used to identify clinical and laboratory factors independently associated with decreased survival. We created a classic scoring system, nomogram, and boosting algorithms based on identified variables. Accuracy of the algorithms was assessed using area under the curve analysis through fivefold cross validation. Results The following factors were associated with a decreased likelihood of survival after surgical treatment of a metastatic long bone fracture, after controlling for relevant confounding variables: older age (hazard ratio [HR], 1.0; 95% CI, 1.0-1.0; p < 0.001), additional comorbidity (HR, 1.2; 95% CI, 1.0-1.4; p = 0.034), BMI less than 18.5 kg/m^sup 2^ (HR, 2.0; 95% CI, 1.2-3.5; p = 0.011), tumor type with poor prognosis (HR, 1.8; 95% CI, 1.6-2.2; p < 0.001), multiple bone metastases (HR, 1.3; 95% CI, 1.1-1.6; p = 0.008), visceral metastases (HR, 1.6; 95% CI, 1.4-1.9; p < 0.001), and lower hemoglobin level (HR, 0.91; 95% CI, 0.87-0.96; p < 0.001). The survival estimates by the nomogram were moderately accurate for predicting 30-day (area under the curve [AUC], 0.72), 90-day (AUC, 0.75), and 365-day (AUC, 0.73) survival and remained stable after correcting for optimism through fivefold cross validation. Boosting algorithms were better predictors of survival on the training datasets, but decreased to a performance level comparable to the nomogram when applied on testing datasets for 30-day (AUC, 0.69), 90-day (AUC, 0.75), and 365-day (AUC, 0.72) survival prediction. Performance of the classic scoring system was lowest for all prediction periods. Conclusions Comorbidity status and BMI are newly identified factors associated with decreased survival and should be taken into account when estimating survival. Performance of the boosting algorithms and nomogram were comparable on the testing datasets. However, the nomogram is easier to apply and therefore more useful to aid surgical decision making in clinical practice. Level of Evidence Level III, prognostic study.
Author Ready, John E.
Hornicek, Francis J.
van Dijke, Maarten
Schwab, Joseph H.
Raskin, Kevin A.
Ferrone, Marco L.
Janssen, Stein J.
van der Heijden, Andrea S.
Author_xml – sequence: 1
  givenname: Stein J.
  orcidid: 0000-0003-3939-7765
  surname: Janssen
  fullname: Janssen, Stein J.
  email: steinjanssen@gmail.com
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital–Harvard Medical School, Massachusetts General Hospital
– sequence: 2
  givenname: Andrea S.
  surname: van der Heijden
  fullname: van der Heijden, Andrea S.
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital–Harvard Medical School
– sequence: 3
  givenname: Maarten
  surname: van Dijke
  fullname: van Dijke, Maarten
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital–Harvard Medical School
– sequence: 4
  givenname: John E.
  surname: Ready
  fullname: Ready, John E.
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Brigham and Women’s Hospital–Harvard Medical School
– sequence: 5
  givenname: Kevin A.
  surname: Raskin
  fullname: Raskin, Kevin A.
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital–Harvard Medical School
– sequence: 6
  givenname: Marco L.
  surname: Ferrone
  fullname: Ferrone, Marco L.
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Brigham and Women’s Hospital–Harvard Medical School
– sequence: 7
  givenname: Francis J.
  surname: Hornicek
  fullname: Hornicek, Francis J.
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital–Harvard Medical School
– sequence: 8
  givenname: Joseph H.
  surname: Schwab
  fullname: Schwab, Joseph H.
  organization: Department of Orthopaedic Surgery, Orthopaedic Oncology Service, Massachusetts General Hospital–Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26155769$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1u0zAYhi00xLrBBXCCLHHCSYbt2Em8A1DZBlTqxCSYgCPLcbzUU2IXO-m0XQpXy9e1wJgEQory4zzvp9eP99COD94i9JSSA0pI-TJRKqXMCBUZ57zIbh6gCRWsyijN2Q6aEEJkJhn9sov2UrqEz5wL9gjtsoIKURZygr4zSONTHdNCdx0-jy4N-GsYfYtnfmXT4Fo9hIinVzo2h_gshtYHWDV6cMFj5_EZvFk_JPzZDQs8D5B8AzXxqR10gsumQ3wcbMIa1tdRAKZdGyLgPZ71yxhWFn8c48qtdIdPgOj1YNPrx-jhhe6SfbJ97qPztyefjt5n8w_vZkfTeWYEJ0NmiWGWl1XRNDkFDQ0njRGVZI2pSS0Maeqc19pKKoscbrXUtdVlRSpBBS14vo_YZu7ol_r6CjSoZYQO8VpRotai1Ua0AlVqLVrdQOjVJrQc6942BgxE_TsYtFN__vFuodqwUlwUTOYUBrzYDojh2wiiVe-SsV2nvQ1jUrSkRFa5ZAzQ5_fQyzBGD05uKcqrnK-38exuo19Vfp41AOUGMDGkFO2FMm64PUYo6Lp_bpbeS_6PoK3VBKxvbbxT-q-hHx2A3_Y
CitedBy_id crossref_primary_10_52628_90_3_12636
crossref_primary_10_5435_JAAOSGlobal_D_22_00001
crossref_primary_10_1186_s10195_025_00821_6
crossref_primary_10_1302_0301_620X_106B2_BJJ_2023_0751
crossref_primary_10_2106_JBJS_16_01514
crossref_primary_10_1097_BRS_0000000000002084
crossref_primary_10_1016_j_jbo_2019_100225
crossref_primary_10_1097_BRS_0000000000002285
crossref_primary_10_1302_2048_0105_45_360397
crossref_primary_10_26442_18151434_2022_3_201865
crossref_primary_10_1002_jso_24345
crossref_primary_10_2174_1874325001812010469
crossref_primary_10_1002_cam4_7072
crossref_primary_10_1097_01_blo_0000534678_44152_ee
crossref_primary_10_1186_s12911_017_0542_1
crossref_primary_10_1016_j_clineuro_2017_03_008
crossref_primary_10_1097_BRS_0000000000002839
crossref_primary_10_2106_JBJS_RVW_24_00057
crossref_primary_10_2106_JBJS_21_00711
crossref_primary_10_4103_eoj_eoj_3_24
crossref_primary_10_1016_j_canlet_2019_12_007
crossref_primary_10_3390_curroncol28050290
crossref_primary_10_3390_cancers15174396
crossref_primary_10_1080_17453674_2021_1932928
crossref_primary_10_3390_curroncol28050331
crossref_primary_10_1016_j_jor_2020_08_008
crossref_primary_10_1080_0284186X_2017_1420910
crossref_primary_10_1097_CORR_0000000000001036
crossref_primary_10_1038_s41416_018_0231_6
crossref_primary_10_1016_j_spinee_2019_03_009
crossref_primary_10_1016_j_wneu_2018_07_276
crossref_primary_10_1097_CORR_0000000000001969
crossref_primary_10_1002_jso_24284
crossref_primary_10_1001_jamanetworkopen_2021_3520
crossref_primary_10_1080_0284186X_2018_1549368
crossref_primary_10_2106_JBJS_17_01343
crossref_primary_10_1002_jso_25218
crossref_primary_10_1016_j_otsr_2016_11_001
crossref_primary_10_17116_onkolog20221104128
crossref_primary_10_1302_2058_5241_2_170006
crossref_primary_10_1302_2046_3758_139_BJR_2023_0372_R1
crossref_primary_10_1302_2058_5241_1_000008
crossref_primary_10_3389_fonc_2021_693689
crossref_primary_10_1097_CORR_0000000000000997
crossref_primary_10_1002_jso_26708
crossref_primary_10_1097_CORR_0000000000000433
crossref_primary_10_1097_CORR_0000000000002698
crossref_primary_10_17650_2219_4614_2024_16_3_11_18
crossref_primary_10_1016_j_jbo_2022_100427
crossref_primary_10_1002_jso_26793
crossref_primary_10_1016_j_injury_2022_08_052
crossref_primary_10_3390_cancers15041227
crossref_primary_10_1080_01635581_2021_1983614
crossref_primary_10_1007_s11999_0000000000000201
crossref_primary_10_1002_jso_24537
crossref_primary_10_3390_cancers16152700
crossref_primary_10_1002_cam4_6097
crossref_primary_10_21294_1814_4861_2022_21_2_96_108
crossref_primary_10_5312_wjo_v12_i9_685
crossref_primary_10_1007_s43465_019_00023_3
crossref_primary_10_3390_curroncol29070373
crossref_primary_10_17116_onkolog20221106131
crossref_primary_10_5435_JAAOS_D_16_00043
crossref_primary_10_1016_j_jse_2015_08_009
Cites_doi 10.1136/bmj.g7594
10.2106/00004623-200408000-00011
10.1177/1536867X0200200307
10.1371/journal.pone.0019956
10.1016/j.jclinepi.2014.09.007
10.1177/1536867X0900900101
10.1200/JCO.2003.06.121
10.1093/annonc/mdn723
10.1200/JCO.2010.27.9752
10.1016/S0895-4356(01)00341-9
10.1302/0301-620X.87B5.15185
10.2106/JBJS.E.00272
10.1177/1536867X0500500304
10.1136/bmj.g4829
10.1200/JCO.2007.12.9791
10.1016/j.suronc.2013.02.008
10.1200/JCO.2005.08.104
10.1097/00005650-200208000-00007
10.1111/j.1365-2796.2010.02274.x
10.1002/cncr.28509
10.1007/978-0-387-84858-7
10.1016/0895-4356(92)90133-8
10.1007/s00277-013-1977-9
10.1136/bmjopen-2013-004007
10.2147/CLEP.S47150
10.3109/17453679508995508
10.1093/jnci/90.10.766
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.1136/jme.2005.012427
10.1093/aje/kwq433
10.1016/j.ijrobp.2015.02.048
10.1007/s11999-013-3394-8
10.1186/1471-2407-12-493
10.1093/jnci/djr188
ContentType Journal Article
Copyright The Association of Bone and Joint Surgeons® 2015
The Association of Bone and Joint Surgeons 2015
Copyright_xml – notice: The Association of Bone and Joint Surgeons® 2015
– notice: The Association of Bone and Joint Surgeons 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7RV
7T5
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
H94
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.1007/s11999-015-4446-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Immunology Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Database Suite (ProQuest)
ProQuest One
Health Research Premium Collection
Health Research Premium Collection (Alumni)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-1132
EndPage 3121
ExternalDocumentID 10.1007/s11999-015-4446-z
PMC4562931
3800822871
26155769
10_1007_s11999_015_4446_z
Genre Journal Article
Comparative Study
GroupedDBID ---
-5E
-5G
-BR
-Y2
-~C
-~X
.55
.86
.GJ
.VR
06C
06D
08G
0R~
0VY
199
1CY
1KJ
1N0
203
29B
29~
2J2
2JY
2KG
2KM
2LR
2WC
30V
354
3O-
3V.
4.4
408
40D
40E
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
67Z
6J9
6NX
6PF
78A
7O~
7RV
7X7
88E
8AO
8F7
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAAV
AABHQ
AAEJM
AAGIX
AAHPQ
AAIAL
AAIQE
AAJJC
AAJKR
AAMOA
AANXM
AAQKA
AAQQT
AARTL
AASCR
AASXQ
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
AAYZH
ABASU
ABDIG
ABHLI
ABJNI
ABJOX
ABMNI
ABNWP
ABPLI
ABPPZ
ABTEG
ABTMW
ABUWG
ABUWZ
ABVCZ
ACBXY
ACGFO
ACGFS
ACGUR
ACHVE
ACHXU
ACIHN
ACIJW
ACILI
ACKNC
ACLDA
ACNWC
ACOAL
ACPRK
ACREN
ACRZS
ACXJB
ADBBV
ADBIZ
ADFPA
ADGGA
ADHIR
ADHPY
ADIYS
ADKPE
ADNKB
ADQRH
AE3
AEAQA
AEBTG
AEETU
AEGNC
AEJHL
AEKMD
AENEX
AEOHA
AEPYU
AETLH
AFBBN
AFDTB
AFFNX
AFJLC
AFKRA
AFLOW
AFUWQ
AFWTZ
AFZKB
AGJBK
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHMBA
AHOMT
AHQNM
AHRYX
AHSBF
AHVBC
AHYZX
AI.
AIIXL
AINUH
AJBLW
AJCLO
AJIOK
AJJEV
AJNWD
AJRNO
AJZMW
AKCTQ
AKMHD
AKULP
ALIPV
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
ALWAN
AMJPA
AMKLP
AMKUR
AMNEI
AOHHW
AOIJS
ARMRJ
ASPBG
AVWKF
AWKKM
AZFZN
B-.
BA0
BAWUL
BENPR
BGNMA
BKEYQ
BPHCQ
BQLVK
BS7
BVXVI
BYPQX
C45
CAG
CCPQU
COF
CS3
CSCUP
DIK
DIWNM
DUNZO
E3Z
EBS
EEVPB
EJD
ERAAH
ESBYG
EX3
F5P
FCALG
FEDTE
FIGPU
FNLPD
FRRFC
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GNXGY
GQ6
GQ7
GQDEL
GX1
H0~
H13
HF~
HG5
HG6
HLICF
HLJTE
HMCUK
HMJXF
HRMNR
HVGLF
HYE
HZ~
H~9
IKREB
IKYAY
ITM
IXC
IZQ
I~X
I~Z
J-C
J0Z
J5H
JBSCW
JF9
JG8
JK3
JK8
K8S
KMI
KOV
KPH
L7B
M18
M1P
M4Y
MA-
N9A
NAPCQ
NU0
N~M
O9-
O93
O9I
O9J
OAG
OAH
OB4
OCUKA
ODA
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
P9S
PF0
PONUX
PQQKQ
PROAC
PSQYO
Q2X
QOR
QOS
R58
R89
R9I
RIG
RLZ
ROL
RPM
RPX
RRX
RSV
S16
S1Z
S27
S37
S3B
S4R
SAP
SDH
SHX
SMD
SNE
SNX
SOJ
SZ9
SZN
T13
T8P
TEORI
TR2
TSG
TSK
TSPGW
TT1
TUC
TWZ
U2A
U9L
UG4
UKHRP
VC2
VH1
VVN
W48
WAF
WH7
WK8
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YCJ
YFH
YOC
YQY
YRY
Z45
Z7U
Z82
Z87
ZB8
ZCG
ZFV
ZGI
ZOVNA
ZXP
ZZMQN
AAFWJ
AAYXX
ABFSG
ABPXF
ABZZY
ACSTC
ACZKN
ADGHP
ADKSD
ADSXY
AEZWR
AFBFQ
AFHIU
AHWEU
AIXLP
AOQMC
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7T5
7XB
8FK
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c540t-e0c2e4786dd31444d40dc5892dcb0b5c0db34bae91963919b9abea78085151643
IEDL.DBID UNPAY
ISSN 0009-921X
1528-1132
IngestDate Wed Oct 01 16:50:05 EDT 2025
Tue Sep 30 16:26:37 EDT 2025
Sat Sep 27 18:53:32 EDT 2025
Tue Oct 07 05:56:18 EDT 2025
Mon Jul 21 06:03:19 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Oct 01 03:55:36 EDT 2025
Fri Feb 21 02:27:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Bone Metastasis
Visceral Metastasis
Fivefold Cross Validation
Multiple Bone Metastasis
Prediction Period
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-e0c2e4786dd31444d40dc5892dcb0b5c0db34bae91963919b9abea78085151643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ORCID 0000-0003-3939-7765
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s11999-015-4446-z.pdf
PMID 26155769
PQID 1710148344
PQPubID 54045
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s11999_015_4446_z
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4562931
proquest_miscellaneous_1710983922
proquest_journals_1710148344
pubmed_primary_26155769
crossref_citationtrail_10_1007_s11999_015_4446_z
crossref_primary_10_1007_s11999_015_4446_z
springer_journals_10_1007_s11999_015_4446_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-10-01
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 2015-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Park Ridge
PublicationTitle Clinical orthopaedics and related research
PublicationTitleAbbrev Clin Orthop Relat Res
PublicationTitleAlternate Clin Orthop Relat Res
PublicationYear 2015
Publisher Springer US
Lippincott Williams & Wilkins Ovid Technologies
Publisher_xml – name: Springer US
– name: Lippincott Williams & Wilkins Ovid Technologies
References PatnaikJLByersTDiguiseppiCDenbergTDDabeleaDThe influence of comorbidities on overall survival among older women diagnosed with breast cancerJ Natl Cancer Inst.201110311011111313958510.1093/jnci/djr18821719777
SiontisGCTzoulakiICastaldiPJIoannidisJPExternal validation of new risk prediction models is infrequent and reveals worse prognostic discriminationJ Clin Epidemiol.201568253410.1016/j.jclinepi.2014.09.00725441703
ForsbergJAEberhardtJBolandPJWedinRHealeyJHEstimating survival in patients with operable skeletal metastases: an application of a bayesian belief networkPloS One.20116e1995630944051:CAS:528:DC%2BC3MXmsV2iur0%3D10.1371/journal.pone.001995621603644
SchneiderbauerMMvon KnochMSchleckCDHarmsenWSSimFHScullySPPatient survival after hip arthroplasty for metastatic disease of the hipJ Bone Joint Surg Am.2004861684168915292415
NathanSSHealeyJHMellanoDHoangBLewisIMorrisCDAthanasianEABolandPJSurvival in patients operated on for pathologic fracture: implications for end-of-life orthopedic careJ Clin Oncol.2005236072608210.1200/JCO.2005.08.10416135474
ClevesMAFrom the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit modelsStata J.20022301313
OberijeCDe RuysscherDHoubenRvan de HeuvelMUyterlindeWDeasyJOBelderbosJDingemansAMRimnerADinSLambinPA validated prediction model for overall survival from stage III non-small cell lung cancer: toward survival prediction for individual patientsInt J Radiat Oncol Biol Phys.20159293594410.1016/j.ijrobp.2015.02.04825936599
HosmerDLemeshowSApplied Survival Analysis: Regression Modeling of Time to Event Data1999New York, NYJohn Wiley & Sons
HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning: Data Mining, Inference, and Prediction2009New York, NYSpringer-Verlag10.1007/978-0-387-84858-7
KattanMWEasthamJAStapletonAMWheelerTMScardinoPTA preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancerJ Natl Cancer Inst.1998907667711:STN:280:DyaK1c3ms1Krtg%3D%3D10.1093/jnci/90.10.7669605647
McTiernanAIrwinMVongruenigenVWeight, physical activity, diet, and prognosis in breast and gynecologic cancersJ Clin Oncol.20102840744080294042510.1200/JCO.2010.27.975220644095
SteyerbergEWHarrellFEJrBorsboomGJEijkemansMJVergouweYHabbemaJDInternal validation of predictive models: efficiency of some procedures for logistic regression analysisJ Clin Epidemiol.2001547747811:STN:280:DC%2BD3MvitVOisQ%3D%3D10.1016/S0895-4356(01)00341-911470385
QuanHParsonsGAGhaliWAValidity of information on comorbidity derived rom ICD-9-CCM administrative dataMed Care.20024067568510.1097/00005650-200208000-0000712187181
BauerHCWedinRSurvival after surgery for spinal and extremity metastases: prognostication in 241 patientsActa orthopaedica Scandinavica.1995661431461:STN:280:DyaK2M3lvFGjsw%3D%3D10.3109/174536795089955087740944
HuntingtonJTButterfieldMFisherJTorrentDBloomstonMThe Social Security Death Index (SSDI) most accurately reflects true survival for older oncology patientsAm J Cancer Res.20133518522381697124224129
SogaardMThomsenRWBossenKSSorensenHTNorgaardMThe impact of comorbidity on cancer survival: a reviewClin Epidemiol.20135suppl 1329382048310.2147/CLEP.S4715024227920
KatagiriHTakahashiMWakaiKSugiuraHKataokaTNakanishiKPrognostic factors and a scoring system for patients with skeletal metastasisJ Bone Joint Surg Br.2005876987031:STN:280:DC%2BD2M3lsleksQ%3D%3D10.1302/0301-620X.87B5.1518515855375
MackinnonAThe use and reporting of multiple imputation in medical research: a reviewJ Intern Med.20102685865931:STN:280:DC%2BC3cbotlSntw%3D%3D10.1111/j.1365-2796.2010.02274.x20831627
QuanHLiBCourisCMFushimiKGrahamPHiderPJanuelJMSundararajanVUpdating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countriesAm J Epidemiol.201117367668210.1093/aje/kwq43321330339
US National Heart Lung and Blood Institute. The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. National Institutes of Health; 2000. Available at: http://www.nhlbi.nih.gov/files/docs/guidelines/prctgd_c.pdf. Accessed June 26, 2015.
IasonosASchragDRajGVPanageasKSHow to build and interpret a nomogram for cancer prognosisJ Clin Oncol.2008261364137010.1200/JCO.2007.12.979118323559
PepeMLongtonGJanesHEstimation and comparison of receiver operating characteristic curvesStata J.200991277490920161343
CollinsGSReitsmaJBAltmanDGMoonsKGTransparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statementBMJ.2015350g759410.1136/bmj.g759425569120
HarrellFEJrLeeKLMarkDBMultivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errorsStat Med.19961536138710.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-48668867
JungSHYangDHAhnJSLeeSSAhnSYKimYKKimHJLeeJJDecreased body mass index is associated with poor prognosis in patients with multiple myelomaAnn Hematol.20149383584010.1007/s00277-013-1977-924310866
DeyoRACherkinDCCiolMAAdapting a clinical comorbidity index for use with ICD-9-CM administrative databasesJ Clin Epidemiol.1992456136191:STN:280:DyaK38zgtVeqsA%3D%3D10.1016/0895-4356(92)90133-81607900
ForsbergJAWedinRBauerHCHansenBHLaitinenMTrovikCSKellerJOBolandPJHealeyJHExternal validation of the Bayesian Estimated Tools for Survival (BETS) models in patients with surgically treated skeletal metastasesBMC Cancer.201212493355606310.1186/1471-2407-12-49323098538
SchonlauMBoosted regression (boosting): an introductory tutorial and a Stata pluginStata J.20055330354
EdwardsBKNooneAMMariottoABSimardEPBoscoeFPHenleySJJemalAChoHAndersonRNKohlerBAEhemanCRWardEMAnnual report to the nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancerCancer.201412012901314399920510.1002/cncr.2850924343171
GoodwinPJEnnisMPritchardKIKooJTrudeauMEHoodNDiet and breast cancer: evidence that extremes in diet are associated with poor survivalJ Clin Oncol.2003212500250710.1200/JCO.2003.06.12112829669
VoskuijlTHagemanMRingDHigher Charlson Comorbidity Index Scores are associated with readmission after orthopaedic surgeryClin Orthop Relat Res.201447216381644397121310.1007/s11999-013-3394-824276857
GuptaSTranTLuoWPhungDKennedyRLBroadACampbellDKippDSinghMKhasrawMMathesonLAshleyDMVenkateshSMachine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registryBMJ Open.20144e004007396310110.1136/bmjopen-2013-00400724643167
KimMSLeeSYLeeTRChoWHSongWSKohJSLeeJAYooJYJeonDGPrognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcomaAnn Oncol.2009209559601:STN:280:DC%2BD1MzgvVyhtQ%3D%3D10.1093/annonc/mdn72319153123
HendersonRKeidingNIndividual survival time prediction using statistical modelsJ Med Ethics.20053170370617340731:STN:280:DC%2BD2MnjvVertg%3D%3D10.1136/jme.2005.01242716319233
Allison PD. Survival Analysis Using SAS®: A Practical Guide, Cary, NC: SAS® Institute; 2010.
RatasvuoriMWedinRKellerJNottrottMZaikovaOBerghPKalenANilssonJJonssonHLaitinenMInsight opinion to surgically treated metastatic bone disease: Scandinavian Sarcoma Group Skeletal Metastasis Registry report of 1195 operated skeletal metastasisSurg Oncol.20132213213810.1016/j.suronc.2013.02.00823562148
PoeranJRasulRSuzukiSDanningerTMazumdarMOppererMBoettnerFMemtsoudisSGTranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safetyBMJ.2014349g4829413096110.1136/bmj.g482925116268
BryantDHaveyTCRobertsRGuyattGHow many patients? How many limbs? Analysis of patients or limbs in the orthopaedic literature: a systematic reviewThe J Bone Joint Surg Am.200688414510.2106/JBJS.E.0027216391248
GS Collins (4446_CR5) 2015; 350
M Ratasvuori (4446_CR31) 2013; 22
D Bryant (4446_CR3) 2006; 88
J Poeran (4446_CR28) 2014; 349
H Quan (4446_CR30) 2002; 40
EW Steyerberg (4446_CR36) 2001; 54
4446_CR1
HC Bauer (4446_CR2) 1995; 66
M Sogaard (4446_CR35) 2013; 5
BK Edwards (4446_CR7) 2014; 120
T Hastie (4446_CR13) 2009
PJ Goodwin (4446_CR10) 2003; 21
JA Forsberg (4446_CR8) 2011; 6
GC Siontis (4446_CR34) 2015; 68
T Voskuijl (4446_CR38) 2014; 472
SS Nathan (4446_CR24) 2005; 23
JA Forsberg (4446_CR9) 2012; 12
A Iasonos (4446_CR17) 2008; 26
4446_CR37
H Katagiri (4446_CR19) 2005; 87
MS Kim (4446_CR21) 2009; 20
JL Patnaik (4446_CR26) 2011; 103
R Henderson (4446_CR14) 2005; 31
A McTiernan (4446_CR23) 2010; 28
MM Schneiderbauer (4446_CR32) 2004; 86
SH Jung (4446_CR18) 2014; 93
S Gupta (4446_CR11) 2014; 4
JT Huntington (4446_CR16) 2013; 3
A Mackinnon (4446_CR22) 2010; 268
D Hosmer (4446_CR15) 1999
H Quan (4446_CR29) 2011; 173
M Pepe (4446_CR27) 2009; 9
M Schonlau (4446_CR33) 2005; 5
MA Cleves (4446_CR4) 2002; 2
FE Harrell Jr (4446_CR12) 1996; 15
MW Kattan (4446_CR20) 1998; 90
RA Deyo (4446_CR6) 1992; 45
C Oberije (4446_CR25) 2015; 92
7740944 - Acta Orthop Scand. 1995 Apr;66(2):143-6
12187181 - Med Care. 2002 Aug;40(8):675-85
1607900 - J Clin Epidemiol. 1992 Jun;45(6):613-9
15855375 - J Bone Joint Surg Br. 2005 May;87(5):698-703
19153123 - Ann Oncol. 2009 May;20(5):955-60
9605647 - J Natl Cancer Inst. 1998 May 20;90(10):766-71
21330339 - Am J Epidemiol. 2011 Mar 15;173(6):676-82
18323559 - J Clin Oncol. 2008 Mar 10;26(8):1364-70
8668867 - Stat Med. 1996 Feb 28;15(4):361-87
25116268 - BMJ. 2014;349:g4829
16319233 - J Med Ethics. 2005 Dec;31(12):703-6
21719777 - J Natl Cancer Inst. 2011 Jul 20;103(14):1101-11
24276857 - Clin Orthop Relat Res. 2014 May;472(5):1638-44
11470385 - J Clin Epidemiol. 2001 Aug;54(8):774-81
25569120 - BMJ. 2015;350:g7594
23562148 - Surg Oncol. 2013 Jun;22(2):132-8
12829669 - J Clin Oncol. 2003 Jul 1;21(13):2500-7
15292415 - J Bone Joint Surg Am. 2004 Aug;86-A(8):1684-9
24643167 - BMJ Open. 2014;4(3):e004007
20161343 - Stata J. 2009 Mar 1;9(1):1
24224129 - Am J Cancer Res. 2013 Nov 01;3(5):518-22
23098538 - BMC Cancer. 2012;12:493
16135474 - J Clin Oncol. 2005 Sep 1;23(25):6072-82
24310866 - Ann Hematol. 2014 May;93(5):835-40
20644095 - J Clin Oncol. 2010 Sep 10;28(26):4074-80
25441703 - J Clin Epidemiol. 2015 Jan;68(1):25-34
20831627 - J Intern Med. 2010 Dec;268(6):586-93
16391248 - J Bone Joint Surg Am. 2006 Jan;88(1):41-5
24343171 - Cancer. 2014 May 1;120(9):1290-314
21603644 - PLoS One. 2011;6(5):e19956
24227920 - Clin Epidemiol. 2013 Nov 01;5(Suppl 1):3-29
25936599 - Int J Radiat Oncol Biol Phys. 2015 Jul 15;92(4):935-44
References_xml – reference: BryantDHaveyTCRobertsRGuyattGHow many patients? How many limbs? Analysis of patients or limbs in the orthopaedic literature: a systematic reviewThe J Bone Joint Surg Am.200688414510.2106/JBJS.E.0027216391248
– reference: IasonosASchragDRajGVPanageasKSHow to build and interpret a nomogram for cancer prognosisJ Clin Oncol.2008261364137010.1200/JCO.2007.12.979118323559
– reference: HendersonRKeidingNIndividual survival time prediction using statistical modelsJ Med Ethics.20053170370617340731:STN:280:DC%2BD2MnjvVertg%3D%3D10.1136/jme.2005.01242716319233
– reference: Allison PD. Survival Analysis Using SAS®: A Practical Guide, Cary, NC: SAS® Institute; 2010.
– reference: HastieTTibshiraniRFriedmanJThe Elements of Statistical Learning: Data Mining, Inference, and Prediction2009New York, NYSpringer-Verlag10.1007/978-0-387-84858-7
– reference: ClevesMAFrom the help desk: Comparing areas under receiver operating characteristic curves from two or more probit or logit modelsStata J.20022301313
– reference: PatnaikJLByersTDiguiseppiCDenbergTDDabeleaDThe influence of comorbidities on overall survival among older women diagnosed with breast cancerJ Natl Cancer Inst.201110311011111313958510.1093/jnci/djr18821719777
– reference: SogaardMThomsenRWBossenKSSorensenHTNorgaardMThe impact of comorbidity on cancer survival: a reviewClin Epidemiol.20135suppl 1329382048310.2147/CLEP.S4715024227920
– reference: QuanHLiBCourisCMFushimiKGrahamPHiderPJanuelJMSundararajanVUpdating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countriesAm J Epidemiol.201117367668210.1093/aje/kwq43321330339
– reference: MackinnonAThe use and reporting of multiple imputation in medical research: a reviewJ Intern Med.20102685865931:STN:280:DC%2BC3cbotlSntw%3D%3D10.1111/j.1365-2796.2010.02274.x20831627
– reference: HarrellFEJrLeeKLMarkDBMultivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errorsStat Med.19961536138710.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-48668867
– reference: GuptaSTranTLuoWPhungDKennedyRLBroadACampbellDKippDSinghMKhasrawMMathesonLAshleyDMVenkateshSMachine-learning prediction of cancer survival: a retrospective study using electronic administrative records and a cancer registryBMJ Open.20144e004007396310110.1136/bmjopen-2013-00400724643167
– reference: McTiernanAIrwinMVongruenigenVWeight, physical activity, diet, and prognosis in breast and gynecologic cancersJ Clin Oncol.20102840744080294042510.1200/JCO.2010.27.975220644095
– reference: BauerHCWedinRSurvival after surgery for spinal and extremity metastases: prognostication in 241 patientsActa orthopaedica Scandinavica.1995661431461:STN:280:DyaK2M3lvFGjsw%3D%3D10.3109/174536795089955087740944
– reference: HuntingtonJTButterfieldMFisherJTorrentDBloomstonMThe Social Security Death Index (SSDI) most accurately reflects true survival for older oncology patientsAm J Cancer Res.20133518522381697124224129
– reference: QuanHParsonsGAGhaliWAValidity of information on comorbidity derived rom ICD-9-CCM administrative dataMed Care.20024067568510.1097/00005650-200208000-0000712187181
– reference: DeyoRACherkinDCCiolMAAdapting a clinical comorbidity index for use with ICD-9-CM administrative databasesJ Clin Epidemiol.1992456136191:STN:280:DyaK38zgtVeqsA%3D%3D10.1016/0895-4356(92)90133-81607900
– reference: PoeranJRasulRSuzukiSDanningerTMazumdarMOppererMBoettnerFMemtsoudisSGTranexamic acid use and postoperative outcomes in patients undergoing total hip or knee arthroplasty in the United States: retrospective analysis of effectiveness and safetyBMJ.2014349g4829413096110.1136/bmj.g482925116268
– reference: SchonlauMBoosted regression (boosting): an introductory tutorial and a Stata pluginStata J.20055330354
– reference: VoskuijlTHagemanMRingDHigher Charlson Comorbidity Index Scores are associated with readmission after orthopaedic surgeryClin Orthop Relat Res.201447216381644397121310.1007/s11999-013-3394-824276857
– reference: ForsbergJAWedinRBauerHCHansenBHLaitinenMTrovikCSKellerJOBolandPJHealeyJHExternal validation of the Bayesian Estimated Tools for Survival (BETS) models in patients with surgically treated skeletal metastasesBMC Cancer.201212493355606310.1186/1471-2407-12-49323098538
– reference: ForsbergJAEberhardtJBolandPJWedinRHealeyJHEstimating survival in patients with operable skeletal metastases: an application of a bayesian belief networkPloS One.20116e1995630944051:CAS:528:DC%2BC3MXmsV2iur0%3D10.1371/journal.pone.001995621603644
– reference: SteyerbergEWHarrellFEJrBorsboomGJEijkemansMJVergouweYHabbemaJDInternal validation of predictive models: efficiency of some procedures for logistic regression analysisJ Clin Epidemiol.2001547747811:STN:280:DC%2BD3MvitVOisQ%3D%3D10.1016/S0895-4356(01)00341-911470385
– reference: CollinsGSReitsmaJBAltmanDGMoonsKGTransparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statementBMJ.2015350g759410.1136/bmj.g759425569120
– reference: KattanMWEasthamJAStapletonAMWheelerTMScardinoPTA preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancerJ Natl Cancer Inst.1998907667711:STN:280:DyaK1c3ms1Krtg%3D%3D10.1093/jnci/90.10.7669605647
– reference: KimMSLeeSYLeeTRChoWHSongWSKohJSLeeJAYooJYJeonDGPrognostic nomogram for predicting the 5-year probability of developing metastasis after neo-adjuvant chemotherapy and definitive surgery for AJCC stage II extremity osteosarcomaAnn Oncol.2009209559601:STN:280:DC%2BD1MzgvVyhtQ%3D%3D10.1093/annonc/mdn72319153123
– reference: OberijeCDe RuysscherDHoubenRvan de HeuvelMUyterlindeWDeasyJOBelderbosJDingemansAMRimnerADinSLambinPA validated prediction model for overall survival from stage III non-small cell lung cancer: toward survival prediction for individual patientsInt J Radiat Oncol Biol Phys.20159293594410.1016/j.ijrobp.2015.02.04825936599
– reference: EdwardsBKNooneAMMariottoABSimardEPBoscoeFPHenleySJJemalAChoHAndersonRNKohlerBAEhemanCRWardEMAnnual report to the nation on the status of cancer, 1975–2010, featuring prevalence of comorbidity and impact on survival among persons with lung, colorectal, breast, or prostate cancerCancer.201412012901314399920510.1002/cncr.2850924343171
– reference: RatasvuoriMWedinRKellerJNottrottMZaikovaOBerghPKalenANilssonJJonssonHLaitinenMInsight opinion to surgically treated metastatic bone disease: Scandinavian Sarcoma Group Skeletal Metastasis Registry report of 1195 operated skeletal metastasisSurg Oncol.20132213213810.1016/j.suronc.2013.02.00823562148
– reference: JungSHYangDHAhnJSLeeSSAhnSYKimYKKimHJLeeJJDecreased body mass index is associated with poor prognosis in patients with multiple myelomaAnn Hematol.20149383584010.1007/s00277-013-1977-924310866
– reference: NathanSSHealeyJHMellanoDHoangBLewisIMorrisCDAthanasianEABolandPJSurvival in patients operated on for pathologic fracture: implications for end-of-life orthopedic careJ Clin Oncol.2005236072608210.1200/JCO.2005.08.10416135474
– reference: US National Heart Lung and Blood Institute. The Practical Guide: Identification, Evaluation, and Treatment of Overweight and Obesity in Adults. National Institutes of Health; 2000. Available at: http://www.nhlbi.nih.gov/files/docs/guidelines/prctgd_c.pdf. Accessed June 26, 2015.
– reference: SchneiderbauerMMvon KnochMSchleckCDHarmsenWSSimFHScullySPPatient survival after hip arthroplasty for metastatic disease of the hipJ Bone Joint Surg Am.2004861684168915292415
– reference: SiontisGCTzoulakiICastaldiPJIoannidisJPExternal validation of new risk prediction models is infrequent and reveals worse prognostic discriminationJ Clin Epidemiol.201568253410.1016/j.jclinepi.2014.09.00725441703
– reference: GoodwinPJEnnisMPritchardKIKooJTrudeauMEHoodNDiet and breast cancer: evidence that extremes in diet are associated with poor survivalJ Clin Oncol.2003212500250710.1200/JCO.2003.06.12112829669
– reference: HosmerDLemeshowSApplied Survival Analysis: Regression Modeling of Time to Event Data1999New York, NYJohn Wiley & Sons
– reference: KatagiriHTakahashiMWakaiKSugiuraHKataokaTNakanishiKPrognostic factors and a scoring system for patients with skeletal metastasisJ Bone Joint Surg Br.2005876987031:STN:280:DC%2BD2M3lsleksQ%3D%3D10.1302/0301-620X.87B5.1518515855375
– reference: PepeMLongtonGJanesHEstimation and comparison of receiver operating characteristic curvesStata J.200991277490920161343
– volume: 350
  start-page: g7594
  year: 2015
  ident: 4446_CR5
  publication-title: BMJ.
  doi: 10.1136/bmj.g7594
– volume: 86
  start-page: 1684
  year: 2004
  ident: 4446_CR32
  publication-title: J Bone Joint Surg Am.
  doi: 10.2106/00004623-200408000-00011
– volume: 2
  start-page: 301
  year: 2002
  ident: 4446_CR4
  publication-title: Stata J.
  doi: 10.1177/1536867X0200200307
– volume: 6
  start-page: e19956
  year: 2011
  ident: 4446_CR8
  publication-title: PloS One.
  doi: 10.1371/journal.pone.0019956
– ident: 4446_CR1
– volume: 68
  start-page: 25
  year: 2015
  ident: 4446_CR34
  publication-title: J Clin Epidemiol.
  doi: 10.1016/j.jclinepi.2014.09.007
– volume: 9
  start-page: 1
  year: 2009
  ident: 4446_CR27
  publication-title: Stata J.
  doi: 10.1177/1536867X0900900101
– volume: 21
  start-page: 2500
  year: 2003
  ident: 4446_CR10
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2003.06.121
– volume: 20
  start-page: 955
  year: 2009
  ident: 4446_CR21
  publication-title: Ann Oncol.
  doi: 10.1093/annonc/mdn723
– volume: 28
  start-page: 4074
  year: 2010
  ident: 4446_CR23
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2010.27.9752
– volume: 54
  start-page: 774
  year: 2001
  ident: 4446_CR36
  publication-title: J Clin Epidemiol.
  doi: 10.1016/S0895-4356(01)00341-9
– volume: 87
  start-page: 698
  year: 2005
  ident: 4446_CR19
  publication-title: J Bone Joint Surg Br.
  doi: 10.1302/0301-620X.87B5.15185
– volume: 88
  start-page: 41
  year: 2006
  ident: 4446_CR3
  publication-title: The J Bone Joint Surg Am.
  doi: 10.2106/JBJS.E.00272
– volume: 5
  start-page: 330
  year: 2005
  ident: 4446_CR33
  publication-title: Stata J.
  doi: 10.1177/1536867X0500500304
– volume: 349
  start-page: g4829
  year: 2014
  ident: 4446_CR28
  publication-title: BMJ.
  doi: 10.1136/bmj.g4829
– volume: 26
  start-page: 1364
  year: 2008
  ident: 4446_CR17
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2007.12.9791
– ident: 4446_CR37
– volume: 22
  start-page: 132
  year: 2013
  ident: 4446_CR31
  publication-title: Surg Oncol.
  doi: 10.1016/j.suronc.2013.02.008
– volume: 23
  start-page: 6072
  year: 2005
  ident: 4446_CR24
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2005.08.104
– volume: 40
  start-page: 675
  year: 2002
  ident: 4446_CR30
  publication-title: Med Care.
  doi: 10.1097/00005650-200208000-00007
– volume: 268
  start-page: 586
  year: 2010
  ident: 4446_CR22
  publication-title: J Intern Med.
  doi: 10.1111/j.1365-2796.2010.02274.x
– volume: 120
  start-page: 1290
  year: 2014
  ident: 4446_CR7
  publication-title: Cancer.
  doi: 10.1002/cncr.28509
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: 4446_CR13
  doi: 10.1007/978-0-387-84858-7
– volume: 45
  start-page: 613
  year: 1992
  ident: 4446_CR6
  publication-title: J Clin Epidemiol.
  doi: 10.1016/0895-4356(92)90133-8
– volume: 93
  start-page: 835
  year: 2014
  ident: 4446_CR18
  publication-title: Ann Hematol.
  doi: 10.1007/s00277-013-1977-9
– volume: 4
  start-page: e004007
  year: 2014
  ident: 4446_CR11
  publication-title: BMJ Open.
  doi: 10.1136/bmjopen-2013-004007
– volume-title: Applied Survival Analysis: Regression Modeling of Time to Event Data
  year: 1999
  ident: 4446_CR15
– volume: 5
  start-page: 3
  issue: suppl 1
  year: 2013
  ident: 4446_CR35
  publication-title: Clin Epidemiol.
  doi: 10.2147/CLEP.S47150
– volume: 66
  start-page: 143
  year: 1995
  ident: 4446_CR2
  publication-title: Acta orthopaedica Scandinavica.
  doi: 10.3109/17453679508995508
– volume: 90
  start-page: 766
  year: 1998
  ident: 4446_CR20
  publication-title: J Natl Cancer Inst.
  doi: 10.1093/jnci/90.10.766
– volume: 3
  start-page: 518
  year: 2013
  ident: 4446_CR16
  publication-title: Am J Cancer Res.
– volume: 15
  start-page: 361
  year: 1996
  ident: 4446_CR12
  publication-title: Stat Med.
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume: 31
  start-page: 703
  year: 2005
  ident: 4446_CR14
  publication-title: J Med Ethics.
  doi: 10.1136/jme.2005.012427
– volume: 173
  start-page: 676
  year: 2011
  ident: 4446_CR29
  publication-title: Am J Epidemiol.
  doi: 10.1093/aje/kwq433
– volume: 92
  start-page: 935
  year: 2015
  ident: 4446_CR25
  publication-title: Int J Radiat Oncol Biol Phys.
  doi: 10.1016/j.ijrobp.2015.02.048
– volume: 472
  start-page: 1638
  year: 2014
  ident: 4446_CR38
  publication-title: Clin Orthop Relat Res.
  doi: 10.1007/s11999-013-3394-8
– volume: 12
  start-page: 493
  year: 2012
  ident: 4446_CR9
  publication-title: BMC Cancer.
  doi: 10.1186/1471-2407-12-493
– volume: 103
  start-page: 1101
  year: 2011
  ident: 4446_CR26
  publication-title: J Natl Cancer Inst.
  doi: 10.1093/jnci/djr188
– reference: 23562148 - Surg Oncol. 2013 Jun;22(2):132-8
– reference: 11470385 - J Clin Epidemiol. 2001 Aug;54(8):774-81
– reference: 8668867 - Stat Med. 1996 Feb 28;15(4):361-87
– reference: 16135474 - J Clin Oncol. 2005 Sep 1;23(25):6072-82
– reference: 21719777 - J Natl Cancer Inst. 2011 Jul 20;103(14):1101-11
– reference: 24224129 - Am J Cancer Res. 2013 Nov 01;3(5):518-22
– reference: 25569120 - BMJ. 2015;350:g7594
– reference: 24343171 - Cancer. 2014 May 1;120(9):1290-314
– reference: 20831627 - J Intern Med. 2010 Dec;268(6):586-93
– reference: 7740944 - Acta Orthop Scand. 1995 Apr;66(2):143-6
– reference: 25936599 - Int J Radiat Oncol Biol Phys. 2015 Jul 15;92(4):935-44
– reference: 20161343 - Stata J. 2009 Mar 1;9(1):1
– reference: 24276857 - Clin Orthop Relat Res. 2014 May;472(5):1638-44
– reference: 12187181 - Med Care. 2002 Aug;40(8):675-85
– reference: 12829669 - J Clin Oncol. 2003 Jul 1;21(13):2500-7
– reference: 18323559 - J Clin Oncol. 2008 Mar 10;26(8):1364-70
– reference: 24227920 - Clin Epidemiol. 2013 Nov 01;5(Suppl 1):3-29
– reference: 23098538 - BMC Cancer. 2012;12:493
– reference: 24643167 - BMJ Open. 2014;4(3):e004007
– reference: 15855375 - J Bone Joint Surg Br. 2005 May;87(5):698-703
– reference: 1607900 - J Clin Epidemiol. 1992 Jun;45(6):613-9
– reference: 21603644 - PLoS One. 2011;6(5):e19956
– reference: 9605647 - J Natl Cancer Inst. 1998 May 20;90(10):766-71
– reference: 16319233 - J Med Ethics. 2005 Dec;31(12):703-6
– reference: 15292415 - J Bone Joint Surg Am. 2004 Aug;86-A(8):1684-9
– reference: 19153123 - Ann Oncol. 2009 May;20(5):955-60
– reference: 24310866 - Ann Hematol. 2014 May;93(5):835-40
– reference: 25441703 - J Clin Epidemiol. 2015 Jan;68(1):25-34
– reference: 21330339 - Am J Epidemiol. 2011 Mar 15;173(6):676-82
– reference: 20644095 - J Clin Oncol. 2010 Sep 10;28(26):4074-80
– reference: 16391248 - J Bone Joint Surg Am. 2006 Jan;88(1):41-5
– reference: 25116268 - BMJ. 2014;349:g4829
SSID ssj0003452
Score 2.4378026
Snippet Background Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score,...
Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score, provide...
Background Survival estimation guides surgical decision-making in metastatic bone disease. Traditionally, classic scoring systems, such as the Bauer score,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3112
SubjectTerms Algorithms
Awards and Prizes
Bone Neoplasms - complications
Bone Neoplasms - mortality
Bone Neoplasms - secondary
Conservative Orthopedics
Female
Fractures, Bone - etiology
Fractures, Bone - mortality
Fractures, Spontaneous - etiology
Fractures, Spontaneous - mortality
Humans
Male
Medicine
Medicine & Public Health
Middle Aged
Nomograms
Orthopedics
Prognosis
Retrospective Studies
Society Awards
Sports Medicine
Surgery
Surgical Orthopedics
Survival Analysis
Tumor
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELdG9wA8oCE-FhjISDwxRTSOncST0NSNThOiVQVU9C2KP0IrdUlpUiH2p_DXcpevrpoYL3lIzkoc39m_851_R8jbSDFclTwXyeFcrph0oyBNXVhpdKgC7esUDwqPxsHllH-aidkeGbdnYTCtsp0Tq4na5Br3yN97IVaVxaoQp6ufLlaNwuhqW0IjaUormA8Vxdg9ss-QGatH9s-G48mXbm72uWBtbTXJvFkb56wO09Un8j3hcvCR3OvdleoW_LydRdmFUh-S-5tslfz-lSyXN1ariwPyqIGZdFDrxWOyZ7Mn5A8sw4KOwJXFCip0ivZNK3OnW7qNfE0HmEl7QifrHLPwymZXjy4yOqlZWAv6fVHO6eccWp7lmaUjWyYAMwtbnNCPuS1oAvexKQgMlj_gP5bzK1pvYFj6dQPzE2g4HYLEFYLd06dkejH8dn7pNrUZXA0Yr3RtXzPLwygwxgefjBveN1pEkhmt-krovlE-V4mVaOFwUTJRNgkjRHgCXDT_Gell8IGHhEY6BRzCtecrw4XWUvgsNdrjRkYC4I9D-u04xLohLsf6Gct4S7mMQxfDP4xx6OJrh7zrmqxq1o67hI_awY0bAy7irbo55E33GEwP4ylJZvNNLSMRYDKHPK91oXsbw3hvGEiHhDta0gkgrffuk2wxr-i90SeVvueQ41afbnzWvztx3Knc_7v84u4uvyQPUCHrnMUj0ivXG_sKsFepXjcG9RdAzixQ
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9RADLagSBwPiKsltKBB4okqUjKZSTJ9qRZoVSEWVYIV-xZljrQrbZNqkxWiP4Vfi705tqtyiJc8ZDy5bI8_xx4b4E2qOVml0KficL7QXPlpXBQ-WhqT6NhEpqCNwuPP8clEfJzKabePu-6z3fuQ5GqlXm92a3fMh9IX6MP4V7fhjqRqXijEEz4alt9ISN63T8PRaR_K_N0lNo3RDYR5M1FyiJY-gHvL8jL_8T2fz68ZpONH8LBDkmzUsv4x3HLlE7g77mLlT-EnGl3Jxui4Ur8UNiFtZivlZuviGtWCjShv9oCdLirKuWu6f3hsVrLTtuZqzb7NmnP2qcKZ76rSsbFrcgSVtasP2IfK1SzH8zQVCUbzs2qB5Bes_V3h2JclrkYoz-wIKS4I2h4-g8nx0df3J37XicE3iOga3wWGO5GksbURemDCisAamSpujQ60NIHVkdC5U6TPeNAq1y5PUsJzEh2yaBu2SnzA58BSUyDqECaMtBXSGCUjXlgTCqtSiWDHg6BnSWa6MuXULWOerQssExcz_IYZcTG78uDtMOWyrdHxN-K9ns9Zp651FibUsphajnjwehhGRaPoSV66atnSKIKT3IOdViyGu3GK7iax8iDZEJiBgIp4b46Us_NVMW_yQFUUerDfi9a1x_rzS-wP0vfvV37xX9fehfskn23C4h5sNYule4nAq9GvVor2Cy7RJkE
  priority: 102
  providerName: Springer Nature
Title 2015 Marshall Urist Young Investigator Award: Prognostication in Patients With Long Bone Metastases: Does a Boosting Algorithm Improve Survival Estimates?
URI https://link.springer.com/article/10.1007/s11999-015-4446-z
https://www.ncbi.nlm.nih.gov/pubmed/26155769
https://www.proquest.com/docview/1710148344
https://www.proquest.com/docview/1710983922
https://pubmed.ncbi.nlm.nih.gov/PMC4562931
https://link.springer.com/content/pdf/10.1007/s11999-015-4446-z.pdf
UnpaywallVersion publishedVersion
Volume 473
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1528-1132
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: DIK
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1528-1132
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1528-1132
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: AFBBN
  dateStart: 20080101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1528-1132
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 1528-1132
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1528-1132
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1528-1132
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1528-1132
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003452
  issn: 0009-921X
  databaseCode: U2A
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9NAEB61yQPwwCEuQ4kWiScqp76PviC3pK2ARBEQkT5Z3sM0IrWjxBEiP4Vfy0x8pKEcQrw4knc28W5mZ7_xznwD8CLgFu1Kpk7kcLrDrVAPvDTVcacRPveELVJKFO4PvLOR82bsjnfguM6FWUe710eSZU4DsTRlxcFMpgebxLcye950dQf9GX3VxdZdaHsuAvIWtEeDYXRe11ALLXO8Zk210F9C56s-2_zV92zvTtcg5_XIyeb49BbcWGaz5NvXZDq9skOd3AFZj60MTPnSXRa8K1Y_0T7-5-Dvwu0KwbKoVLl7sKOy-_Add3iX9dFLpuIsbESmg60tCdsweeRzFlGQ7iEbznMK8CuqF4ZskrFhSfC6YJ8mxQV7l2PPozxTrK-KBBHsQi0O2etcLViC96krCkTTz_kcxS9Z-W5EsQ9LNH24eFgPJS4JR796AKOT3sfjM70q-6ALhI-FrgxhKccPPCltdPcc6RhSuEFoScEN7gpDctvhiQrJeOCFhwlXiR8QeHTR-7MfQivDB3wMLBApQhxHmDaXjitE6NpWKoXpyDBwEVlpYNR_dywqTnQqzTGNN2zONNkxzmFMkx2vNHjZdJmVhCB_Et6rdSiubMMiNn2qj0z1TTR43jTjqqajmiRT-bKUCQm7Who8KlWu-TWLjpJ9L9TA31LGRoAYw7dbssnFmjmc3N3QNjXYr7XsymP9fhD7jWb_fchP_kn6Kdwk_SyjI_egVcyX6hmivIJ3YNcf-x1oR6fnb3v4edQbDN_j3dOxideRFXWqdf4D2_pRgw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lA4IBAvQ4FFgguVRbxeP7ZSVaU0VUqTKIJG5Ga8j5BIqR1iR1X7U_gx_DZm4kcaVZRTLz7Es7Y3Mzvzzc7sDCHvQ8nQKjk2FoezuWTCDv3RyAZLowLpK1eN8KBwt-e3B_zL0BtukD_VWRhMq6x04lJR61ThHvknJ8CustgV4mD2y8auURhdrVpoxGVrBb2_LDFWHuw4NZcX4MJl-ydHwO8PjB23zj637bLLgK0AreS2aShmeBD6WrvgXXDNG1p5oWBayYb0VENLl8vYCJRVuEgRSxMHIWIVD5wNF557j2xxlwtw_rYOW73-19oWuNxjVS83wZxhFVddHt4rKgA4ng1v9e2rdct4A-7ezNqsQ7cPyPYimcWXF_F0es06Hj8iD0tYS5uFHD4mGyZ5Qn6D2fdoF1xn7NhCB6hP6FK90FV5j3ROm5i5u0f78xSz_vJyF5FOEtovqr5m9PskH9NOCiMP08TQrsljgLWZyfboUWoyGsPvOBQImtOfwLd8fE6LDRNDvy1AH8KKoi2gOEdwffCUDO6ES8_IZgIf-ILQUI0A93DluFJzTynhuWyklcO1CD2AWxZpVHyIVFkoHft1TKNViWdkXQT_YYSsi64s8rEeMiuqhNxGvFMxNyoVRhatxNsi7-rbsNQxfhMnJl0UNAIBLbPI80IW6rcxjC8HvrBIsCYlNQGWEV-_k0zGy3Li6AML17HIbiVP1z7r35PYrUXu_1N-efuU35Lt9lm3E3VOeqevyH0UziJfcods5vOFeQ24L5dvysVFyY-7Xs9_AfZ3aJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkQo9IN41FFgkTlRW7fVu7O0FBdqoQFNFgojcLO96TSOldhQ7QvSn8GuZiR9pVB7i4oM969fOeL7xzH4D8DrSnLyS7xI5nCs0V27UyzIXPY0Jdc8EJqOFwsOz3slYfJzISdPntGyr3duUZL2mgVia8upgnmYH64Vv9ep5X7oC4xn38ibcEsSTgAo95v3uUxwIydtWaor7kzat-btTbDqma2jzetFklzndgdvLfJ78-J7MZlec0-Ae3G1QJevXanAfbtj8AWwPm7z5Q_iJDliyIQax1DuFjcmy2crQ2Zpoo1iwPtXQHrLRoqD6u6r5n8emORvV_Ksl-zqtztlpgSPfFbllQ1slCDBLWx6yo8KWLMH9NBQF-rNvxQLFL1j968Kyz0v8MqFus2OUuCCY-_YRjAfHX96fuE1XBtcguqtc6xluRRj10jTAaEykwkuNjBRPjfa0NF6qA6ETq8i2caNVom0SRoTtJAZnwWPYyvEGd4FFJkMEIowf6FRIY5QMeJYaX6Qqkgh8HPDaKYlNQ1lOnTNm8ZpsmWYxxncY0yzGlw686YbMa76OvwnvtfMcN6Zbxn5I7Yup_YgDr7rDaHSUSUlyWyxrGUXQkjvwpFaL7mqcMr1hTzkQbihMJ0CE3ptH8un5itibolEV-A7st6p15bb-_BD7nfb9-5Gf_te5X8L26GgQn344-_QM7pCq1nWMe7BVLZb2OeKxSr9Y2dwvr1QtaQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceIiXoaBF4kTl1K-1vb2gUFpViFSRICKcLO_DNCK1o8QWIj-FX8tM_EhDeQhxycE763jXszPfeGe_AXgRS4-8kmsTOZwdSE_YcZhlNnoaFclQ-Sqjg8LDs_B0HLyd8MkOHLVnYdbZ7u2WZH2mgVia8vJgrrODzcG3-vS8y-0A4xl71cfWa7AbcgTkPdgdn40Gn9oaasJzJ2vWVA_jJQy-2r3NX91n2ztdgZxXMye77dObcL3K5-m3r-lsdslDndwG3Y6tTkz50q9K2Vern2gf_3Pwd-BWg2DZoFa5u7Bj8nvwHT08Z0OMkqk4CxuT6WBrS8I2TB7Fgg0oSfeQjRYFJfiVzQdDNs3ZqCZ4XbKP0_KcvSuw5-siN2xoyhQR7NIsD9mbwixZitepKwoMZp-LBYpfsPrbiGHvKzR9uHjYMUpcEI5-dR_GJ8cfjk7tpuyDrRA-lrZxlGeCKA619jHcC3TgaMVj4WklHcmVo6UfyNQIMh74I0UqTRrFBB45Rn_-A-jl-ICPgMUqQ4gTKNeXOuBKCe57mVZuoEXMEVlZ4LSvO1ENJzqV5pglGzZnmuwE5zChyU5WFrzsusxrQpA_Ce-1OpQ0tmGZuBHVR6b6JhY875pxVdNWTZqboqplBGFXz4KHtcp1_-bRVnIUCguiLWXsBIgxfLsln56vmcMp3BW-a8F-q2WXHuv3g9jvNPvvQ378T9JP4AbpZ50duQe9clGZp4jySvmsWcU_AHgvS5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=2015+Marshall+Urist+Young+Investigator+Award%3A+Prognostication+in+Patients+With+Long+Bone+Metastases%3A+Does+a+Boosting+Algorithm+Improve+Survival+Estimates%3F&rft.jtitle=Clinical+orthopaedics+and+related+research&rft.au=Janssen%2C+Stein+J&rft.au=van+der+Heijden%2C+Andrea+S&rft.au=van+Dijke%2C+Maarten&rft.au=Ready%2C+John+E&rft.date=2015-10-01&rft.eissn=1528-1132&rft.volume=473&rft.issue=10&rft.spage=3112&rft_id=info:doi/10.1007%2Fs11999-015-4446-z&rft_id=info%3Apmid%2F26155769&rft.externalDocID=26155769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-921X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-921X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-921X&client=summon